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Abstract9

Automotive and avionics embedded systems are usually composed of several tasks that are subject10

to complex timing constraints. In this context, the LET paradigm was introduced to improve the11

determinism of a system of tasks that communicate data through shared variables. The age latency12

corresponds to the maximum time for the propagation of data in these systems. Its precise evaluation13

is an important and challenging question for the design of these systems.14

We consider in this paper a set of multi-periodic tasks that communicate data following the LET15

paradigm. Our main contribution is the development of mathematical and algorithmic tools to model16

precisely the dependency between tasks executions to experiment with an original methodology17

for computing the age latency of the system. These tools allow to handle the whole graph instead18

of particular chains and to extract automatically the critical parts of the graph. Experiments on19

randomly generated graphs indicate that systems with up to 90 periodic tasks and a hyperperiod20

bounded by 100 can be handled within a reasonable amount of time.21
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1 Introduction26

A real-time system is a system that responds in a timely fashion to external events created27

by its environment [18]. In various contexts such as avionics or automotive, these systems28

must verify hard timing constraints. Their design and analysis are usually complex processes29

that require efficient methods.30

We consider in this paper a set T of periodic tasks with different periods that are executed31

following the model of Liu and Layland [19]. A directed acyclic graph G = (T , E) defines32

communication links between task executions. Each arc (ti, tj) ∈ E between the two tasks33

ti and tj is associated to a shared memory variable that is modified by ti and read by tj .34

We assume that each execution of ti updates the variable at its completion time, while each35

execution of tj reads it at its starting time. This communication scheme, usually known as36

“implicit communication” follows the AUTOSAR requirements [1] and is commonly used for37

the design of automotive real-time systems.38

However, the instants of the exchanges between tasks depend on the successive starting39

and completion times of the tasks, and are thus not predictable. The Logical Execution40

Time (LET) paradigm [15] delays writes to the periodic deadlines of the tasks and advances41

reads to their periodic release dates. The communication instants are then fixed before the42

execution of the tasks and the system is deterministic. This communication scheme was43

implemented by the time-triggered language Giotto [12]. This timing predictability makes44

it particularly suitable for safety-critical applications. This model was thus considered in45
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20:2 Evaluation of the Age Latency

industrial domains like automotive [4, 10] and avionics [13, 23]. We suppose in this paper46

that tasks are periodic with different periods and that all communications follow the LET47

paradigm.48

A real-time system usually communicates with its environment through sensors that49

detect events and actuators that transduce its reactions. Paths from a sensor to an actuator50

are usually referred to as event chains (see, for example, [10]). The time needed to propagate51

data from a sensor to an actuator is closely related to the reaction delay of the system. Several52

measures can be defined to capture these delays, as presented by Feiertag et al. [8]. We limit53

our study to the age latency, also called the end-to-end latency, which is the maximum time54

interval from a specific input value on a sensor to the last corresponding output value. It55

can be interpreted as the maximum delay that a specific data element spends in the system.56

This value measures the freshness of data producing a response of the system, and ensures57

that the actions of actuators are not too old.58

The main contribution of the paper is to develop a general framework to model com-59

munications on successive task executions using LET communications for a general task60

dependency graph. The computation of the age latency of the application can then be seen61

as an example of a concrete application. This value cannot be defined in the presence of62

cycles in the dependency graph, thus graphs are assumed to be cycle-free. However, the63

transformations presented in this paper can be considered for general graphs. Observe that64

most of authors limit their methods to a single event chain [2, 8, 20].65

Indeed, we first prove that dependencies induced by a LET communication e = (ti, tj) ∈ E66

between the successive executions of ti and tj can be modelled by an original simple inequality67

involving parameters of the tasks ti and tj and the execution numbers considered.68

Then, it can be observed that, if Ti denotes the period of task ti, these dependency69

relations between task executions are repeated within the hyperperiod T = lcmti∈T (Ti). An70

expanded valued graph PN (G) can then be built by duplicating each task Ni = T
Ti

times.71

We prove in this paper that setting any vector K with Ki ∈ N − {0} for any ti ∈ T , a72

partial expanded graph PK(G) can be built by duplicating each task Ki times. Each arc73

of this graph includes the modelling of the dependency relation between the corresponding74

executions of its adjacent task duplicates. This partial expanded graph is inspired from75

Bodin et al. [5] and de Groote [7] for Synchronous DataFlow Graphs [17], for which the76

initial inequality modelling dependency is slightly different.77

Subsequently, we show that upper bounds on the latency between adjacent duplicates of78

PK(G) can be derived and considered as a valuation of the arcs. The longest paths of PK(G)79

then provide an upper bound on the latency. However, the computation of these paths has a80

time complexity proportional to
∑
e=(ti,tj)∈E Ki ×Kj . The main problem is then to find the81

value of K that minimises this function with an exact evaluation of the age latency.82

We first prove that our study can be limited to vectors K such that, for any task ti, Ki83

divides Ni. We then develop a greedy algorithm that converges to a vector K? that provides84

the exact value of the age latency. This algorithm can be seen as an adaptation of the K-iter85

algorithm [6] for the determination of the maximum throughput of a Synchonous DataFlow86

Graph, which is up to now one of the best algorithms to solve this latter problem. Our87

algorithm was experimentally tested on randomly generated graphs with periods inspired88

from automotive real-life benchmarks [11, 16].89

Our paper is organised as follows. Section 2 presents related work. The problem and our90

characterisation of the dependencies between tasks executions are presented in Section 3.91

Section 4 is devoted to the construction of the partial expanded graph PK(G) for any fixed92

vector K. It is shown in Section 5 that exploration can be limited to K vectors such that,93
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for any task ti ∈ T , Ki is a divisor of Ni. Section 6 presents our greedy algorithm for the94

computation of a vector K? leading to the exact value of the age latency. In section 7, we95

experiment with this algorithm on the ROSACE case study. Section 8 presents experiments96

on randomly generated graphs. Section 9 is our conclusion.97

2 Related work98

The evaluation of the age latency of an event chain is a challenging question tackled by99

several authors. Feiertag et al. [8] first introduced the definition of dependency between100

tasks of an event chain and four metrics to evaluate the delay between a sensor and an101

actuator. Becker et al. [2] developed a general framework to evaluate the age latency of102

an event chain using feasible intervals. They built an expanded graph by evaluating the103

possible propagation of input data by the successive executions of tasks. They tested in [3]104

their approach against the evaluation of the latency of a fixed schedule or under the LET105

hypothesis. They concluded that if there is no information on the communications or on the106

schedule, a pessimistic value of the age latency will be obtained, which is very similar to the107

value obtained using the LET paradigm. However, the computation time grows exponentially108

with the number of tasks if an enumeration is needed, while it remains constant for the LET109

paradigm.110

Under the LET assumption, the times of the communications between tasks are known111

before the executions of the tasks. This strong assumption allows to characterise the112

dependencies between tasks if their parameters are fixed. Martinez et al. [20] gave a formal113

characterisation of the dependencies between tasks in an event chain using time instants.114

They then derived the age latency by enumerating all the possible paths of the corresponding115

expanded graph. They also proved that the release times influence the age latency and they116

developed a heuristic to fix them in order to minimise it.117

Many practical applications are composed of graphs with no particular assumption on118

their structure [16, 22]. None of these previous approaches can be easily extended to these119

graphs. Indeed, the number of paths between two vertices is potentially exponential. The120

complexity of a method that enumerates all the paths for evaluating their age latency will thus121

grow exponentially following the parameters of the graph. Anyway, mainly two frameworks122

referenced below are capable of tackling such applications.123

Pagetti et al. [21] have developed a language to express the constraints and a multi-124

periodic synchronous model to represent the whole system for a general graph. The size of125

the description of the communications is then equivalent to the one of the expanded graph126

PN (G). Forget et al. [9] showed that this approach supports several metrics.127

Khatib et al. [14] proved that constraints between the successive executions of two adjacent128

tasks can be modelled using a Synchronous DataFlow Graph [17]. Our equation is slightly129

different since for any arc e = (ti, tj), they did not not consider the successive constraints130

between two adjacent tasks if Ti > Tj , dealing only with precedence constraints. They then131

computed the age latency using the expansion of the Synchronous DataFlow Graph which is132

equivalent to PN (G). They also proposed the computation of a polynomial upper bound on133

the age latency equivalent to the determination of the longest paths of P1n(G) with n = |T |.134

Lastly, they showed that the difference between this bound and the age latency is on average135

between 10 and 15 percent. This result motivates the development of efficient methods to136

evaluate more precisely the age latency of a graph G.137
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20:4 Evaluation of the Age Latency

3 Modelling of the system138

This section formally presents the problem tackled in this paper. Subsection 3.1 defines the139

periodic tasks model considered according to LET restrictions. Subsection 3.2 is dedicated to140

the definition of the dependency relation between the successive executions of two adjacent141

tasks. Subsection 3.3 formally defines the age latency of a graph. Subsection 3.4 is devoted142

to the definition of the problem and the presentation of a small pedagogical example.143

3.1 Periodic tasks model considering LET communications144

Let us consider a set T = {t1, . . . , tn} of real-time periodic tasks following the model of Liu145

and Layland [19]. Each task ti ∈ T is characterised by a quadruple (ri, Ci, Di, Ti) such that:146

ri is the release date (the offset) of the first execution of ti;147

Ci is the worst-case execution time of ti;148

Di is the relative deadline of ti;149

Ti is the period of ti.150

For any value n ∈ N − {0}, we denote by 〈ti, n〉 the nth execution of ti and by s(ti, n)151

its starting time. The execution of 〈ti, n〉 must be scheduled in its time window, that is152

ri + (n− 1)× Ti ≤ s(ti, n) and s(ti, n) + Ci ≤ Di + (n− 1)× Ti.153

The LET communication model separates task executions from communications. In this154

model, data are read at the release dates of reading tasks and written at the deadlines of155

writing tasks. Moreover, reading tasks always get the last emitted data. The main advantage156

of this model is to define a deterministic communications system even if tasks are delayed157

inside their time windows.158

In this paper, we only consider LET communications and we limit the characterization of159

tasks to their successive time windows. The execution time associated to the nth execution of160

ti is then set to its release date, that is, S(ti, n) = ri + (n− 1)×Ti. Similarly, the completion161

time is fixed to S(ti, n) +Di. Each task ti is then given by the triple (ri, Di, Ti).162

3.2 LET dependencies163

Communications are expressed by a directed graph G = (T , E). Each arc e = (ti, tj) ∈ E164

induces dependencies between executions of ti and tj , defined as follows:165

I Definition 1. Let us suppose that e = (ti, tj) ∈ E and that νi and νj are two positive166

integers. There exists a dependency relation from 〈ti, νi〉 to 〈tj , νj〉 if 〈tj , νj〉 receives data167

from 〈ti, νi〉 that is if:168

1. The execution time of 〈tj , νj〉 is greater than or equal to the completion time of 〈ti, νi〉169

and170

2. the execution time of 〈ti, νi + 1〉 is greater than the completion time of 〈tj , νj〉 (since the171

data element from 〈ti, νi + 1〉 is not available for 〈tj , νj〉).172

Figure 1 presents successive time windows of the first executions of two periodic tasks t1 and173

t2 with a LET communication e = (t1, t2) ∈ E. Since T1 > T2 a single write from t1 can174

be read by several executions of t2. As an example, there is a dependency from 〈t1, 2〉 to175

〈t2, 4〉 since 〈t1, 2〉 ends before the beginning of 〈t2, 4〉 and the data written by 〈t1, 3〉 is not176

available at the beginning of 〈t2, 4〉.177

The next theorem characterises the dependency relation between the executions of two178

communicating tasks using the parameters of the executions:179
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t1
1 2 3 4 5 6

t2
1 2 3 4 5 6 7 8

0 1 4 7 8 10 12 13 16 19 20 20

Figure 1 Time windows associated to two periodic tasks t1 and t2 with a LET dependency
e = (t1, t2). Parameters of tasks are respectively (r1, D1, T1) = (0, 3, 4) and (r2, D2, T2) = (1, 2, 3).

I Theorem 2. Let e = (ti, tj) ∈ E, gcdeT = gcd(Ti, Tj) and the delay of e, Me = Tj +180 ⌈
ri−rj+Di

gcde
T

⌉
× gcdeT . For any pair (νi, νj) ∈ N − {0} × N − {0}, there exists a dependency181

from 〈ti, νi〉 to 〈tj , νj〉 iff Ti ≥Me + Tiνi − Tjνj > 0.182

Proof. Following Definition 1, there exists a dependency from 〈ti, νi〉 to 〈tj , νj〉 if:183

1. 〈tj , νj〉 begins after the completion of 〈ti, νi〉, thus S(ti, νi) + Di ≤ S(tj , νj). Since
S(ti, νi) = ri + (νi − 1)× Ti and S(tj , νj) = rj + (νj − 1)× Tj , we get

ri + (νi − 1)× Ti +Di ≤ rj + (νj − 1)× Tj ,

thus,
Ti ≥ Tj + (ri − rj +Di) + Tiνi − Tjνj ,

and since in the inequality above only ri − rj +Di cannot be divided by gcdeT , we obtain184

that Ti ≥Me + Tiνi − Tjνj .185

2. The completion time of 〈ti, νi + 1〉 is strictly greater than the execution time of 〈tj , νj〉,
thus S(ti, νi + 1) +Di > S(tj , νj) and then

ri + νiTi +Di > rj + (νj − 1)× Tj ,

thus,
Tj + (ri − rj +Di) + Tiνi − Tjνj > 0.

Since Me ≥ Tj + (ri − rj +Di), Me + Tiνi − Tjνj > 0.186

Merging the two inequalities gives the theorem. J187

Let us consider, for example, the two tasks t1 and t2 with the LET communication188

e = (t1, t2) presented in Figure 1. We get gcdeT = gcd(3, 4) = 1 and Me = 3 + (0− 1 + 3) = 5.189

The inequality of Theorem 2 is 4 ≥ 5 + 4ν1 − 3ν2 ≥ 0. One can observe that the first190

executions of t1 and t2 with a dependency relation correspond to the pairs that verify this191

inequality. For (ν1, ν2) = (1, 2), we get 5 + 4ν1 − 3ν2 = 5 + 4− 6 = 3 ∈ {1, . . . , 4}. Similarly,192

for (ν1, ν2) = (2, 3), we get 5 + 4ν1 − 3ν2 = 5 + 8− 9 = 4 ∈ {1, . . . , 4}. Now, if we consider193

(ν1, ν2) = (2, 5), 5 + 4ν1 − 3ν2 = 5 + 8− 15 = −2 6∈ {1, . . . , 4} and there is no dependency194

from 〈t1, 2〉 to 〈t2, 5〉.195

3.3 Age latency196

Let us suppose that e = (ti, tj) ∈ E and let R(e) be the set of pairs (νi, νj) ∈ (N − {0})2
197

such that e induces a dependency from 〈ti, νi〉 to 〈tj , νj〉. Then, for any pair (νi, νj) ∈ R(e),198

we define the latency of e between the executions 〈ti, νi〉 and 〈tj , νj〉 as199

Lνi,νj
(e) = S(tj , νj)− S(ti, νi) = rj − ri + Ti − Tj − (Tiνi − Tjνj). (1)200

ECRTS 2020



20:6 Evaluation of the Age Latency

t1

t2

t3

t4

ti t1 t2 t3 t4

ri 0 1 2 3
Di 1 0.5 4 3
Ti 2 1 6 3

Figure 2 An instance of four periodic tasks and the associated DAG G.

Now, for any path p = t1t2 . . . tk of G, we set e` = (t`, t`+1) for the corresponding arcs
with ` ∈ {1, . . . , k − 1}. We define R(p) as the set of k-tuples (ν1, . . . , νk) ∈ (N− {0})k such
that ∀` ∈ {1, . . . , k − 1}, (ν`, ν`+1) ∈ R(e`). Then, for any k-tuple (ν1, . . . , νk) ∈ R(p), we
have

Lν1,...,νk
(p) =

k−1∑
`=1
Lν`,ν`+1(e`) +Dk.

The age latency of a path p of G is then defined as the maximum time interval from a specific
input value 〈t1, ν1〉 to the end of the output value 〈t1, ν1〉, thus

L?(p) = max{Lν1,...,νk
(p), (ν1, . . . , νk) ∈ R(p)}

and the maximum latency of a directed graph G corresponds to

L?(G) = max{L?(p), p path of G}.

Let us observe that, if the initial graph G contains cycles, its latency may not be bounded.201

Indeed, infinite paths p can be built in this case by looping in the cycles and the latency202

cannot be defined. So, we suppose in the following that G is acyclic. Moreover, since the203

latency between two executions is positive, L?(G) is reached for a path p such that t1 has no204

predecessor and tk no successor.205

If G contains cycles, other definitions of the latency could be considered as “last-to-first” or206

“first-to-first”, following Feiertag et al.’s definition [8]. The methodology and the algorithms207

presented in this paper can clearly be extended to tackle these cases and the existence of208

cycles does not complicate most of the reasoning.209

3.4 Problem definition and example210

The problem tackled in this paper can be formalised as follows: let us consider a directed211

acyclic graph G = (T , E), each arc modelling a LET communication. Each periodic task212

ti ∈ T is associated to a triple (ri, Di, Ti). The problem is to compute the maximal age213

latency L?(G).214

Figure 2 presents an instance of our problem comprising four periodic tasks and the215

associated directed acyclic graph G. Dependency relations between the first executions of tasks216

t1, t2 and t4 are shown in Figure 3, following the path p = t1t2t4 of G. The latency of the path217

from 〈t1, 1〉 to 〈t4, 1〉 is L1,2,1(p) = S(t4, 1)−S(t1, 1)+3 = 3−0+3 = 6. In the same way, the218

latency of the path p from 〈t1, 3〉 to 〈t4, 2〉 is L3,5,2(p) = S(t4, 2)−S(t1, 3)+3 = 6−4+3 = 5.219

We deduce that L?(p) = 6.220
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t1
1 2 3 4 5 6 7

t2
1 2 3 4 5 6 7 8 9 10 11 12

t4
1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3 A path p = t1t2t4 from the graph G shown in Figure 2. Time windows are colored
following blocks of K1 = 2 executions of t1, K2 = 4 executions of t2 and K4 = 2 executions of t4.

4 Construction of a partial expanded graph221

The aim of this section is to detail and prove the construction of a partial expanded graph222

PK(G) associated to a fixed vector K ∈ (N− {0})n. The main idea is to duplicate each task223

ti, Ki times and to express the dependencies directly on duplicates.224

Subsection 4.1 is devoted to the proof of Theorem 5 that characterises the dependency225

relations between the duplicates of two adjacent tasks. An upper bound on the latency226

between two duplicates corresponding to dependant executions is then evaluated in Subsection227

4.2. Subsection 4.3 formally defines the partial expanded graph PK(G) associated with a228

vector K, while subsection 4.4 evaluates the complexity of its computation.229

4.1 Characterisation of the dependencies between duplicates of the230

partial expanded graph231

Let us suppose that for any task ti, a number of duplicates Ki ∈ N − {0} is fixed. Then,232

for any ai ∈ {1, . . . ,Ki}, the aith duplicate of ti is simply associated to the executions233

ai + pKi for p ∈ N. For example, let us suppose that the task t2 has a fixed number234

of duplicates K2 = 4. For any value a2 ∈ {1, 2, 3, 4}, we merge into a unique duplicate235

all the executions 〈t2, a2 + pK2〉 for p ∈ N. For a2 = 1, it corresponds to executions236

〈t2, 1〉, 〈t2, 5〉, 〈t2, 9〉 . . . 〈t2, 1 + 4p〉.237

Now, suppose that K2 = 4, K4 = 2. We aim to characterize the dependencies from238

duplicates of t2 to duplicates of t4 due to the LET communication e = (t2, t4). We observe239

in Figure 3 that there exists a dependency from 〈t2, 11〉 to 〈t4, 4〉. Moreover, 11 = 3 + 2× 4240

and 4 = 2 + 1× 2. So, we set a2 = 3, a4 = 2 and we look to characterize dependencies from241

executions ν2 = a2 + p2K2 = 3 + 4p2 of t2 to executions ν4 = a4 + p4K4 = 2 + 2p4 of t4.242

Following Theorem 2, the delay associated to e is Me = 3 +
⌈ 1−3+0.5

1
⌉

= 2. Moreover,243

there exists a dependency from 〈t2, ν2〉 to 〈t4, ν4〉 if and only if T2 ≥Me + T2ν2 − T4ν4 > 0.244

Now, with these previous assumptions, T2ν2−T4ν4 = (3+4p2)−3(2+2p4) = (4p2−6p4)−3.245

This difference is composed by a linear function of p2 and p4 and a constant term equal to 3.246

These two terms are characterized in next lemma. Moreover, since T2 = 1 we observe that,247

Me + T2ν2 − T4 = (4p2 − 6p4)− 1 = 1, and thus 4p2 − 6p4 = 2.248

The conclusion is that there exists a dependency from 〈t2, 3 + 4p2〉 to 〈t4, 2 + 2p4〉 if and249

only if 4p2−6p4 = 2. Theorem 5 generalizes this characterization to any LET communication250
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20:8 Evaluation of the Age Latency

between two communicating tasks.251

I Lemma 3. Consider e = (ti, tj) ∈ E and let gcdeT (resp., gcdeK) be the greatest common252

divisor between Ti and Tj (resp., KiTi and KjTj). Let νi = ai + piKi and νj = aj + pjKj253

with (ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj} and (pi, pj) ∈ N× N. Let us define the four values254

αe(ai, aj) = Tiai − Tjaj
gcdeT

,255

πe(pi, pj) = TipiKi − TjpjKj

gcdeK
,256

πmaxe (ai, aj) =
⌊
−Me + Ti − αe(ai, aj) · gcdeT

gcdeK

⌋
and257

πmine (ai, aj) =
⌈
−Me + gcdeT − αe(ai, aj)gcdeT

gcdeK

⌉
.258

If e induces a dependency from 〈ti, νi〉 to 〈tj , νj〉, then

Tiνi − Tjνj = πe(pi, pj) · gcdeK + α(ai, aj) · gcdeT

with πe(pi, pj) ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}.259

Proof. By definition of νi and νj ,260

Tiνi − Tjνj = Ti × (ai +Kipi)− Tj × (aj +Kjpj) = (TiKipi − TjKjpj) + (Tiai − Tjaj)261

= πe(pi, pj) · gcdeK + αe(ai, aj) · gcdeT .262
263

By Theorem 2, Ti −Me ≥ Ti νi − Tjνj > −Me. Thus, since all the terms of this inequality
are divisible by gcdeT , it is equivalent to Ti −Me ≥ Ti νi − Tjνj ≥ −Me + gcdeT and we get

Ti −Me ≥ πe(pi, pj) · gcdeK + αe(ai, aj) · gcdeT ≥ −Me + gcdeT .

From the right part of the inequality,

πe(pi, pj) ≥
−Me + gcdeT − αe(ai, aj) · gcdeT

gcdeK
.

Since πe(pi, pj) is an integer, we can tighten the lower bound of πe(pi, pj) by

πe(pi, pj) ≥
⌈
−Me + gcdeT − αe(ai, aj) · gcdeT

gcdeK

⌉
= πmine (ai, aj).

In the same way, the left part of the previous inequality is

Ti −Me − αe(ai, aj) · gcdeT
gcdeK

≥ πe(pi, pj).

Since πe(pi, pj) is an integer, we can tighten the upper bound on πe(pi, pj) by⌊
Ti −Me − αe(ai, aj) · gcdeT

gcdeK

⌋
≥ πe(pi, pj)

So we get πmaxe (ai, aj) ≥ πe(pi, pj) and the lemma is proved. J264

Consider as an example, the arc e = (t2, t4) of the example shown in Figure 2 with fixed265

values K2 = 4 and K4 = 2. We get gcdeT = gcd(1, 3) = 1, gcdeK = gcd(4, 6) = 2 and Me = 2.266

The corresponding values of αe(ai, aj), πmaxe (ai, aj) and πmine (ai, aj) are shown in Table 1.267



A. Munier Kordon and N. Tang 20:9

a2
a4 1 2

1 −2 −5
2 −1 −4
3 0 −3
4 1 −2

αe(a2, a4)

a2
a4 1 2

1 0 2
2 0 1
3 −1 1
4 −1 0

πmaxe (a2, a4)

a2
a4 1 2

1 1 2
2 0 2
3 0 1
4 −1 1

πmine (a2, a4)

Table 1 Values αe(a2, a4), πmax
e (a2, a4) and πmin

e (a2, a4) for a2 ∈ {1, 2, 3, 4} and a4 ∈ {1, 2}.

For the pair (a2, a4) = (3, 2), suppose that there exists a dependency from 〈t2, ν2〉 to
〈t4, ν4〉 with ν2 = a2 + p2K2 = 3 + 4p2 and ν4 = a4 + p4K4 = 2 + 2p4.

T2ν2−T4ν4 = ν2−3ν4 = (3+4p2)−3(2+2p4) = 2(2p2−3p4)−3 = gcdeK ·πe(p2, p4)−αe(3, 2).

As πmaxe (3, 2) = πmine (3, 2) = 1, the only possible value for πe(p2, p4) is 1, thus πe(p2, p4) =268

2p2 − 3p4 = 1.269

Consider now the pair (a2, a4) = (1, 1). Then, since πmaxe (1, 1) < πmine (1, 1), such a270

decomposition of the difference T2ν2 − T4ν4 with ν2 = 1 + p2K2 and ν4 = 1 + p4K4 is not271

possible; a simple consequence of Lemma 3 is that there is no dependency relation between272

executions 〈t2, 1 + p2K2〉 and 〈t4, 1 + p4K4〉.273

We observe in Figure 3 that there exist dependencies 〈t2, 2〉 → 〈t4, 1〉, 〈t2, 5〉 → 〈t4, 2〉,274

〈t2, 8〉 → 〈t4, 3〉 and 〈t2, 11〉 → 〈t4, 4〉. They correspond respectively to the pairs (a2, a4) =275

(2, 1), (a2, a4) = (1, 2), (a2, a4) = (4, 1) and (a2, a4) = (3, 2). For all these pairs, one can276

check that πmaxe (a2, a4) ≥ πmine (a2, a4).277

For the general case, a consequence of Lemma 3 is that there is no dependency between
executions 〈ti, ai + piKi〉 and 〈tj , aj + pjKj〉 if πmaxe (ai, aj) < πmine (ai, aj). Thus, let us
define

A(e) =
{

(ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj} | πmaxe (ai, aj) ≥ πmine (ai, aj)
}
.

For our particular case, A(e) = {(2, 1), (1, 2), (4, 1), (3, 2)}.278

The next lemma is the converse of Lemma 3.279

I Lemma 4. Let e = (ti, tj) ∈ E and (ai, aj) ∈ A(e). For any integer value π ∈280

{πmine (ai, aj), . . . , πmaxe (ai, aj)}, there exists an infinite number of pairs (pi, pj) ∈ N2 such281

that π = πe(pi, pj). Moreover, setting νi = ai + piKi and νj = aj + pjKj, e induces a282

dependency from 〈ti, νi〉 to 〈tj , νj〉.283

Proof. By Bezout’s identity, there exists (x, y) ∈ Z2 such that xKiTi + yKjTj = gcdeK and284

thus πxKiTi + πyKjTj = π · gcdeK .285

For z ∈ N, let us define pi = πx + zKjTj and pj = −πy + zKiTi. Let us also consider286

values νi and νj such that νi = ai+Kipi and νj = aj +Kjpj . For z sufficiently large (z ≥ z0),287

pi ≥ 1 and pj ≥ 1, and thus νi and νj are both greater than 1. Then,288

TipiKi − TjpjKj = KiTi(πx+ zKjTj)−KjTj(−πy + zKiTi)289

= xπKiTi + yπKjTj = π · gcdeK ,290

thus π = πe(pi, pj). Now,291

Tiνi − Tjνj = aiTi − ajTj +KiTipi −KjZjpj = aiTi − ajTj + π · gcdeK292
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and thus, by definition of αe, Tiνi − Tjνj = αe(ai, aj) · gcdeT + π · gcdeK . Recall now that293

π ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}, thus294

Tiνi − Tjνj ≤ αe(ai, aj) · gcdeT + πmaxe (ai, aj) · gcdeK ,295

and, since πmaxe (ai, aj) · gcdeK ≤ −Me + Ti − αe(ai, aj) · gcdeT ,296

Tiνi − Tjνj ≤ −Me + Ti. (2)297

Similarly, since πmine (ai, aj) · gcdeK ≥ −Me + gcdeT − αe(ai, aj) · gcdeT ,298

Tiνi − Tjνj ≥ πmine (ai, aj)gcdeK + αe(ai, aj)gcdeT299

≥ −Me + gcdeT > −Me. (3)300

From equations (2) and (3), we have Ti ≥Me + Tiνi − Tjνj > 0 and by Theorem 2 there is301

a dependency from 〈ti, νi〉 to 〈tj , νj〉. The lemma is proved. J302

From Lemmas 3 and 4, we deduce the following main theorem:303

I Theorem 5. Let ti and tj be two tasks such that ti (resp.tj) is duplicated Ki (resp.Kj)304

times. Let e = (ti, tj) ∈ E and (ai, aj) ∈ {1, . . . ,Ki}×{1, . . . ,Kj}. There exists a dependency305

relation from 〈ti, ai + piKi〉 to 〈tj , aj + pjKj〉 for (pi, pj) ∈ N2 iff πmine (ai, aj) ≤ πe(pi, pj) ≤306

πmaxe (ai, aj).307

4.2 Upper bound on the latency308

For any arc e = (ti, tj) ∈ E and any pair (ai, aj) ∈ A(e), Theorem 5 gives the existence of a309

dependency from some executions 〈ti, νi〉 to 〈tj , νj〉 with νi = ai + piKi and νj = aj + pjKi.310

In order to evaluate the age latency of the whole graph G, the next theorem evaluates the311

maximum latency associated to these executions of ti and tj .312

I Theorem 6 (Upper bound on the latency between two tasks). Let ti and tj be two tasks such
that ti (resp.tj) is duplicated Ki (resp.Kj) times. Let also e = (ti, tj) ∈ E and (ai, aj) ∈ A(e).
Then

Lmax(ai,aj)(e) = rj − ri + Ti − Tj − (πmine (ai, aj) · gcdeK + αe(ai, aj) · gcdeT )

is the maximal value of the latency Lνi,νj
(e) for (νi, νj) ∈ R(e) with νi = ai mod Ki and313

νj = aj mod Kj.314

Proof. By Equation (1), the latency between executions 〈ti, νi〉 and 〈tj , νj〉 for (νi, νj) ∈ R(e)315

is Lνi,νj (e) = rj−ri+Ti−Tj−(Tiνi−Tjνj). Assuming that νi = ai+piKi and νj = aj+pjKj316

with (pi, pj) ∈ N2 we have by Lemma 3 that317

Lνi,νj
(e) = rj − ri + Ti − Tj − (πe(pi, pj) · gcdbK + αb(ai, aj) · gcdbT ) (4)318

By Theorem 5, πe(pi, pj) ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}. We conclude that Lνi,νj (e) is319

maximum for πe(pi, pj) = πmine (ai, aj) and the theorem is proved. J320
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4.3 Definition of the partial expanded graph321

We suppose that the vector K ∈ (N − {0})n is fixed. The associated expanded graph322

PK(G) = (V,B,Lmax) is a valued directed acyclic graph defined as follows:323

1. Each task ti is duplicated Ki times. For any value a ∈ {1, . . . ,Ki}, the ath duplicate of324

ti is denoted by tai and is associated to the executions 〈ti, a+ pKi〉 for p ∈ N.325

2. For any arc e = (ti, tj) ∈ E, we build an arc (tai , tbj) for every pair (a, b) ∈ {1, . . . ,Ki} ×326

{1, . . . ,Kj} if πmaxe (a, b) ≥ πmine (a, b).327

3. For every arc β = (tai , tbj) ∈ B, Lmax(β) = Lmax(a,b)(e) following Theorem 6.328

4. Lastly, two additional fictitious tasks s and f are considered with the arcs defined as:329

For any duplicate tai with no predecessors, add the arc β = (s, tai ) with Lmax(β) = 0;330

For any duplicate tai with no successors, add the arc β = (tai , f) with Lmax(β) = Di.331

Let us denote by LPmax(PK(G)) the length of the longest path of the associated partial332

expanded graph PK(G) considering the arcs values Lmax(β), β ∈ B. By Theorem 6, values333

on the arcs of PK(G) are upper bounds of the age latency, thus LPmax(PK(G)) is an upper334

bound of the maximum latency of G.335

Figure 4 presents the expanded graph PK(G) associated with the vector K = (2, 4, 1, 2)336

for the instance shown in Figure 2. A longest path is given by p = s, t11, t
1
3, t

1
4, f with a337

corresponding length equal to 12, i.e., LPmax(PK(G)) = 12. We conclude that L?(G) ≤338

LPmax(PK(G)) = 12.339

s

t11

t21

t12

t22

t32

t42

t13

t14

t24

f

0

0

1

2

1

2

2

2

1

1

1

1

1

1

4

7
3

3

Figure 4 Expanded graph PK(G) = (V,B,Lmax) for the instance shown in Figure 2 associated
with the vector K = (2, 4, 1, 2). Arcs β ∈ B are weighted by Lmax(β) in gray.

ECRTS 2020



20:12 Evaluation of the Age Latency

4.4 Complexity of the computation of PK(G) and its longest paths340

PK(G) is a graph without cycles. Thus, the computation of the longest paths can be done in341

time complexity Θ(|V | + |B|) by simply sorting the vertices following a topological order342

used in the next step to explore the vertices.343

Note that the total number of vertices of PK(G) is |V | =
∑n
i=1 Ki + 2, while the number344

of arcs |B| is bounded by O(
∑
e=(ti,tj)∈E Ki ×Kj). These two values may be huge for large345

values of K. The main problem consists then in the determination of the vector K of small346

values such that the bound LPmax(PK(G)) is as close as possible to the age latency L?(G).347

5 Dominant set for the expansion vector K348

This section is devoted to the study of dominance properties on K w.r.t the age latency to349

reduce the set of vectors K. In Subsection 5.1 we prove that the value of the longest paths of350

the expanded graph PN (G) associated with the hyperperiod N of G is the age latency L?(G).351

We prove in Subsection 5.2 that we can reduce our study to the set of the partial expansions352

PK(G) such that each component Ki divises Ni and we provide a partial order relation353

between these vectors that will be exploited in the following section for the computation of354

the age latency of G.355

5.1 Maximal value of the age latency for K = N356

Consider T = lcmti∈T (Ti) and the repetition vector N ∈ N∗n defined as Ni = T

Ti
for any357

task ti ∈ T . For our example shown in Figure 2, we get T = lcm(2, 1, 6, 3) = 6 and thus358

N = (3, 6, 1, 2). Lemma 7 is a simple technical lemma.359

I Lemma 7. Let PN (G) = (V,B,Lmax) be the expanded graph with K = N , e = (ti, tj) be360

an arc of G. For any arc β = (tai
i , t

aj

j ) ∈ B associated with e and any pair (qi, qj) ∈ N2,361

πe(qi, qj) = qi − qj.362

Proof. By definition of πe, πe(qi, qj) = TiqiKi − TjqjKj

gcdeK
. As TiKi = TjKj = T = gcdeK , we363

have πe(qi, qj) = qi − qj and the lemma is proved. J364

We prove formally in the following that the value of the longest path of the expanded365

graph PN (G) is the age latency of G, i.e., L?(G):366

I Theorem 8. For any acyclic directed graph G, LPmax(PN (G)) = L?(G).367

Proof. By Theorem 6 and the definition of the partial expanded graphs, LPmax(PN (G)) ≥368

L?(G). We prove that LPmax(PN (G)) ≤ L?(G).369

Consider a path pN = ta1
1 , ta2

2 . . . tak

k of PN (G) and the corresponding path p = t1, t2 . . . tk370

of G. We also set e` = (t`, t`+1) for ` ∈ {1, . . . , k − 1}. By Lemma 7, we have for any371

vector (q1, . . . , qk) ∈ Nk and ` ∈ {1, . . . , k− 1}, πe`
(q`, q`+1) = q` − q`+1. Let us consider the372

sequence of integers q̃1, . . . , q̃k defined as follows:373

q̃`+1 = q̃` + πmaxe`
(a`, a`+1)374

q̃1 is fixed sufficiently large such that, ∀` ∈ {1, . . . , k}, q̃` ≥ 0.375

This sequence satisfies ∀` ∈ {1, . . . , k − 1}, πe`
(q̃`, q̃`+1) = πmaxe`

(a`, a`+1), thus by Theorem376

5, there is a dependency relation from 〈t`, a` + q̃`K`〉 to 〈t`+1, a`+1 + q̃`+1K`+1〉. Moreover,377

by the definition of the sequence of arcs β`, Lmax(β`) = Lq̃`,q̃`+1(e`) and then Lq̃1,...,q̃k
(p) =378

LPmax(pN ). If pN is the longest path PN (G), LPmax(PN (G)) = LPmax(pN ) = Lq̃1,...,q̃k
(p) ≤379

L?(G), which proves the theorem. J380
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5.2 Order relation between the divisors of the repetition vector N381

The next theorem introduces an order relation between vectors K ∈ (N− {0})n.382

I Theorem 9. For any acyclic directed graph G, suppose that K and K ′ are two different383

vectors such that ∀ti ∈ T , K ′i is a divisor of Ki, then LPmax(PK′(G)) ≥ LPmax(PK(G)).384

Proof. Let us consider the arc e = (ti, tj) of G. By the hypothesis, there exists (xi, xj) ∈385

(N − {0})2, such that Ki = xiK
′
i and Kj = xjK

′
j . Let β = (tai

i , t
aj

j ) be an arc of PK(G)386

with (ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj}. Then, following Theorem 6 and the definition387

of the partial expanded graph, there exists (νi, νj) ∈ (N − {0})2 such that νi = ai + piKi,388

νj = aj + pjKj and Lνi,νj
(ti, tj) = Lmax(β).389

Let us consider now integer values a′i ∈ {1, 2, . . . ,K ′i}, a′j ∈ {1, 2, . . . ,K ′j}, yi and390

yj such that ai = a′i + yiK
′
i and aj = a′j + yjK

′
j . Thus, νi = a′i + (yi + xipi)K ′i and391

νj = a′j + (yj + xjpj)K ′j . Since there is a dependency relation between 〈ti, νi〉 and 〈tj , νj〉,392

β′ = (ta
′
i
i , t

a′
j

j ) belongs to PK′(G) and Lνi,νj (ti, tj) ≤ Lmax(β′), thus we get Lmax(β) ≤393

Lmax(β′).394

For any path p = ta1
1 , ta2

2 , . . . t
aq
q in PK(G), there is a corresponding path p′ = t

a′
1

1 , t
a′

2
2 , . . . t

a′
q
q395

in PK′(G) that includes all executions represented by path p. Therefore, LPmax(PK′(G)) ≥396

LPmax(PK(G)). J397

For any pair of vectors (K,K ′) ∈ (N − {0})n × (N − {0})n, we set K ′ � K if, for any398

ti ∈ T , K ′i divides Ki. By Theorem 8, the exact value of the latency is reached for K = N .399

The consequence of this last theorem is that we can limit our study to the set K of vectors400

K � N . Let us consider the graph H = (K,�). The evaluation of the age latency is401

improved following paths from K = 1n to K = N . A vector K ∈ K is said to be optimum if402

LPmax(PK(G)) = L?(G).403

Figure 5 shows the graph H associated with the example from Figure 2. We observe that404

the exact value L?(G) of the age latency can be reached for vectors K smaller than N , i.e.,405

there are several optimum vectors. The next section presents an algorithm to compute an406

optimum vector.407

6 Determination of an optimum vector K?
408

The problem considered in this section is to compute an optimum vector K?, i.e., such that409

LPmax(PK?(G)) = L?(G). Our algorithm computes iteratively a vector K ∈ K until the410

optimality test expressed by the next lemma is true.411

I Lemma 10 (Optimality test). Consider a vector K ∈ K, a longest path pK of PK(G) and its412

corresponding path p of G. If, for every task ti ∈ p, Ki is a multiple of Ni(p) =
lcmtj∈p{Tj}

Ti
,413

then LPmax(pK) = L?(G).414

Proof. Consider a vector K and the path p of G following the assumptions of the theorem. By415

definition of pK , LPmax(PK(G)) = LPmax(pK). We first prove that L?(p) = LPmax(pK).416

Since p is a path of G, L?(G) ≥ L?(p). Now, by Theorem 6, LPmax(PK(G)) ≥ L?(G) and417

by definition of pK , LPmax(pK) = LPmax(PK(G)), thus L?(p) ≤ LPmax(pK).418

Now, since for any task ti of p, Ni(p) is a divisor of Ki, we have by Theorem 9 that419

LPmax(PN(p)(p)) ≥ LPmax(pK). Moreover, by Theorem 8, LPmax(PN(p)(p)) = L?(p),420

thus L?(p) ≥ LPmax(pK).421
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(1, 1, 1, 1)

(3,1,1,1) (1,2,1,1) (1,3,1,1) (1,1,1,2)

(3,2,1,1) (1,2,1,2) (3,3,1,1) (1,6,1,1) (3,1,1,2) (1,3,1,2)

(3,2,1,2) (3,6,1,1) (3,3,1,2) (1,6,1,2)

(3,6,1,2)

13

13 12 13 13

12 12 13 12 13 13

12 12 13 12

12

Figure 5 Graph H = (K,�) associated with the example shown in Figure 2. Values
LPmax(PK(G)) are given in gray for each vertex K ∈ K.

So, we proved that L?(p) = LPmax(pK) = LPmax(PK(G)). Now, L?(G) ≥ L?(p) =422

LPmax(pK). Since K � N , L?(G) ≤ LPmax(PK(G)) = LPmax(pK) by Theorem 9, and thus423

LPmax(PK(G)) = L?(G) = LPmax(pK), which completes the proof. J424

Algorithm 1 is inspired from the K-iter algorithm [6] which computes an expansion vector425

K for the determination of the optimum throughput of a Synchronous DataFlow Graph.426

For the initialisation phase, K = 1n. K is simply increased at each step for tasks from the427

longest path of PK(G) until the maximality test is met.428

Algorithm 1 Compute an optimum vector K? and the age latency L(G)

Require: A DAG G = (T , E), (ri, Di, Ti) for every ti ∈ T
Ensure: An optimum vector K? and the age latency L?(G)
Set K = 1n

repeat
Compute PK(G) and a longest path pK of PK(G)
Set p = s, t1 . . . tk, f to the corresponding path of G
Set T (p)← lcm(T1, . . . , Tk) and ∀i ∈ {1, . . . , k}, Ni(p)← T (p)

Ti

OptPathFound← ∀ti ∈ p,Ni(p)|Ki

if not OptPathFound then
∀i ∈ {1, . . . , k}, Ki ← lcm(Ki, Ni(p))

end if
until OptPathFound

Theorem 11 shows the convergence of the algorithm.429
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I Theorem 11. For any directed acyclic graph G, Algorithm 1 converges to a vector K? ∈ K430

such that LPmax(PK?(G)) = L?(G).431

Proof. For any q > 0, we denote by K(q) the vector K at the end of the qth iteration: q = 0432

corresponds to the initialisation phase. We show that for any integer q ≥ 0, K(q) ∈ K and433

K(q) � K(q + 1) with K(q) 6= K(q + 1).434

At the initialisation step, K(0) = 1n ∈ K.435

Now, suppose that at step q, the optimality test is not true and that K(q) ∈ K. Consider436

a task ti ∈ T . If ti does not belong to p, Ki(q + 1) = Ki(q). Otherwise, Ki(q + 1) =437

lcm(Ki(q), Ni(p)) where Ki(q) and Ni(p) are both divisors of Ni. Thus, Ki(q+ 1) is also438

a divisor of Ni, and we get that K(q + 1) ∈ K with K(q) � K(q + 1).439

Lastly, we prove by contradiction that K(q) 6= K(q + 1). Indeed, suppose that Ki(q) =440

Ki(q + 1) for any task ti ∈ T , then since Ki(q + 1) = lcm(Ki(q), Ni(p)), we deduce that441

Ni(p) is a divisor of Ki(q). Thus, the optimality test is true, which is a contradiction.442

We conclude that vectors K(q) are strictly increasing while the optimality test is false. By443

Lemma 10, the vectorK(q) is optimum when the optimality test is true. Lastly, the optimality444

test is true for the repetition vector N ; this insures the convergence of the algorithm. J445

The number of iterations of Algorithm 1 is not bounded and can be theoretically propor-446

tional to the maximum length of a path of the graph H = (K, E�).447

Let us consider the first step of Algorithm 1 for the example of Figure 2. At initialisation,448

K = 14. The corresponding partial expanded graph PK(G) is shown by Figure 6. Its longest449

path of PK(G) is pK = s, t11, t
1
2, t

1
3, t

1
4, f valued by LPmax(pK) = 13. The optimality test fails,450

and we get N(p) = (3, 6, 1, 2) which is the repetition vector and thus K? = K(1) = N .451

t11

t12

t13

t14s f

2 1

2 7

10 3

Figure 6 The partial expanded graph for the instance shown in Figure 2 and a unit vector
K = (1, 1, 1, 1). Arcs are weighted by Lmax in gray.

7 ROSACE Case Study452

ROSACE is the acronym for Research Open-Source Avionics and Control Engineering. This453

case study was developed by Pagetti et al. [22] to illustrate the implementation of a real-time454

system on a many-core architecture. Figure 7 presents an instance of the problem extracted455

from [9]. We arbitrarily set ri = 0 and Di = Ti for any task ti ∈ T .456

Figure 8 presents the partial expansion of the instance of Figure 7 for the unit expansion457

vector K = 16. A path of maximum length is pK = s, t11, t
1
2, t

1
3, t

1
4, f with LPmax(PK(G)) =458

LPmax(pK) = 260ms.459

At the first iteration of Algorithm 1, p = s, t1, t2, t3, t4, f is expanded. We set T (p) =460

lcm(60, 40, 30) = 120, N1(p) = N2(p) = 2, N3(p) = 3 and N4(p) = 4. The next iteration, we461

set K = (2, 2, 3, 4, 1, 1).462
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t1 t2 t3 t4

t5 t6 ti t1 t2 t3 t4 t5 t6

ri 0 0 0 0 0 0
Di 60 60 40 30 30 30
Ti 60 60 40 30 30 30

Figure 7 An instance of 6 periodic tasks and the associated DAG G extracted from the ROSACE
case study [9].

s ft11 t12 t13 t14

t15 t16

0 60 100 70

50 300

0

30

Figure 8 The partial expanded graph PK(G) for the instance shown in Figure 7 and a unit vector
K = 16. Each arc β is weighted by Lmax(β), shown in gray.

The partial expanded graph PK(G) built at the second iteration is shown in Figure463

9. pK = s, t11, t
2
2, t

2
3, t

4
4, f is a longest path of PK(G) with LPmax(pK) = LPmax(PK(G)) =464

240ms Moreover, the associated path p = s, t1, t2, t3, t4, f verifies T (p) = lcm(30, 40, 60),465

N1(p) = N2(p) = 2, N3(p) = 3 and N4(p) = 4. The optimality test is true and we get466

K? = (2, 2, 3, 4, 1, 1). The maximum age latency of G is thus L?(G) = LPmax(pK?) = 240ms.467

We observe in this example that all the tasks of the critical path (i.e., the paths p of468

G such that L?(p) = L?(G)) were expanded at least following N(p). Moreover, tasks from469

other paths are not necessarily duplicated: for example, K?
5 = K?

6 = 1 with N5 = N6 = 4.470

Thus, we can identify that paths s, t5, t3, t4, f and s, t6, t4, f are not critical and tasks can471

be delayed without influence on the age latency.472
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Figure 9 The partial expanded graph PK(G) for the instance shown in Figure 7 and the vector
K = (2, 2, 3, 4, 1, 1). Each arc β is weighted by Lmax(β).
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8 Experimental results473

Our experiments aim at testing the performance of Algorithm 1. Following the experiments474

of Khatib et al. [14], the bound obtained from the longest paths of P1n(G) can be computed475

quickly, but its performance is on average between 10 and 15 percent from the maximal value476

L?(G). Moreover, their method does not precisely identify the real critical paths w.r.t the477

age latency of the initial graph.478

Our Benchmarks were randomly generated: they are detailed is Subsection 8.1. The479

analysis of the computation time of our algorithm is presented in Subsection 8.2. Subsection480

8.3 deals with the analysis of the critical vectors K? obtained by our algorithm.481

All our experiments were performed on an Intel(R) Core(TM) i5-8400 CPU (6 cores at482

2.80GHz) and 15 GB of RAM. Our codes are written in Python. Functions dealing with483

graphs were implemented using the Python package NetworkX.484

The goal is to experimentally analyse properties of Algorithm 1, like the number of485

iterations, space and time complexity. We used linear regression and curve fitting to map486

these properties to the size and density of initial graphs graphs.487

8.1 Benchmarks488

Random instances of n tasks were generated as follows. Periods of tasks are selected uniformly489

in H = {1, 2, 5, 10, 20, 50, 100}. H is a subset of the values presented by Kramer et al. [16] for490

the 2015 WATERS challenge and several authors dealing with the age latency for automotive491

applications [10, 3].492

Release times ri are uniformly selected in {0, 1, 2, 3, 4, 5}, while we fix the relative493

deadline Di equal to the period of the task, i.e., Di = Ti for any task ti ∈ T . Graphs are494

randomly generated using the Python NetworkX function dense_gnm_random_graph. Nodes495

are arbitrary numbered from 1 to n. A directed acyclic graph is then built by replacing each496

edge e = {i, j} with i < j by an arc e = (i, j).497

For any number n of tasks, we set the number of arcs to m` =
⌊

(n(n−1)
4

⌋
for low density498

graphs and mh =
⌈

(n(n−1)
3

⌉
for high density. We start with n = 5 tasks with a step of 5. For499

each data point, 150 random instances were generated and an average value of the functions500

considered are shown.501

8.2 Analysis of the computation time of Algorithm 1502

For sufficiently large n, the hyperperiod of an instance is exactly T = lcm{α ∈ H} = 100.503

The consequence is that the number of duplicates (resp., the number of arcs) of the expanded504

graph PN (G) is bounded by T × n (resp., T 2 × n2).505

We measured the running time and the number of iterations of Algorithm 1. We stopped506

at n = 90 tasks, since the running time exceeded 15 minutes on average for instances with507

higher values of n. Figure 10 reports the average running times and Figure 11 the average508

number of iterations following the number of tasks.509

We observed that the running time of Algorithm 1 is a quadratic function of the number510

of tasks, and thus is linear in the number of arcs of the graph G. Unsurprisingly, these511

running times are longer for high-density graphs. This observation seems to contradict the512

experimental results of Becker et al. [3]: indeed, they remarked that the average running513

time for the computation of the age latency of a chain is linear w.r.t the number of tasks.514

In this case, the number of arcs equals n− 1: the running time is then also linear w.r.t the515

number of arcs, which is coherent with our result.516

ECRTS 2020
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We also noticed that the whole number of iterations of Algorithm 1 grows logarithmically517

on average. Our first experimental conclusion is thus that the convergence of the algorithm518

to the exact value seems to be a logarithmic function of the number of tasks. The long519

running time is thus due to the time needed to build the successive partial expansions and520

not to the increase of the number of iterations of the algorithm.521

Figure 10 Average running times w.r.t the
number of nodes. Fitting functions presented
are fh(n) = (2.02× 10−3)n2 − 0.03n+ 0.29 and
f`(n) = (1.53 × 10−3)n2 − 0.05n + 0.51 for re-
spectively high-density and low-density graphs.

Figure 11 Average number of iterations w.r.t
the number of nodes. Fitting functions presen-
ted are gh(n) = 1.34 ln(0.62(n + 5.89)) − 0.64
and g`(n) = 1.96 ln(1.59(n + 13.42)) − 4.81 for
respectively high-density and low-density graphs.

8.3 Analysis of the partial expanded graph obtained522

Figure 12 presents the evolution of the ratio r(n) =
∑n
i=1 K

?
i∑n

i=1 Ni
following the number of tasks523

and the density of the graph. We observed that it is roughly a linear function that remains524

bounded by 0.8 for high-density graphs and 0.65 for low-density ones. The consequence is525

that in many cases we clearly do not need to completely expand the graph to get the exact526

value of the age latency and that good algorithms should be sought to identify the critical527

paths of a graph.528

9 Conclusion529

In this paper, we present a new definition of the dependency between the successive executions530

of two tasks that communicate following the LET paradigm. This definition was exploited531

to build a partial expanded graph PK(G) associated to any vector K ∈ (N− {0})n for the532

computation of an upper bound of the age latency. A greedy algorithm to compute an533

accurate value K? leading to the exact value of the age latency was developed and tested on534

random instances. This optimal partial expansion allows to identify the critical paths of the535

graph G.536

Many extensions of our study may be considered. The performance of our algorithm537

should be improved by building the successive partial expended graphs incrementally and538

optimizing data structures for graphs. Our methodology can surely be applied to evaluate539



A. Munier Kordon and N. Tang 20:19

Figure 12 Average ratio r(n) =
∑n

i=1
K?

i∑n

i=1
Ni

for the partial expanded graph computed by Algorithm 1.

Fitting functions presented are rh(n) = 8.67 × 10−4n + 0.69 and r`(n) = 9.1 × 10−4n + 0.52 for
respectively high-density and low-density graphs.

accurate lower bounds of the age latency. Coupling the upper and the lower bounds will540

allow then to precisely measure the error between the longest paths of PK(G) and L?(G).541

Our general framework should also be extended to tackle other possible latencies [8]. Lastly,542

an implicit communication between two tasks of same period (which corresponds to two543

tasks in the same runnable for an AUTOSAR compatible system) could easily be considered544

in our model.545
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