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This article investigates the complex phenomena of canard explosion with mixed-mode 

oscillations, observed from a fractional-order FitzHugh–Nagumo (FFHN) model. To rigorously 

analyze the dynamics of the FFHN model, a new mathematical notion, referred to as Hopf-like 

bifurcation (HLB), is introduced. HLB provides a precise definition for the change between a 

fixed point and an S-asymptotically T-periodic solution of the fractional-order dynamical 

system, as well as the stability of the FFHN model and the appearance of the HLB. The 

existence of canard oscillations in the neighborhoods of such HLB points are numerically 

investigated. Using a new algorithm, referred to as the global-local canard explosion search 

algorithm, the appearance of various patterns of solutions is revealed, with an increasing 

number of small amplitude oscillations when two key parameters of the FFHN model are 

varied. The numbers of such oscillations versus the two parameters, respectively, are perfectly 

fitted using exponential functions. Finally, it is conjectured that chaos could occur in a two-

dimensional fractional-order autonomous dynamical system, with the fractional order close to 

one. After all, the article demonstrates that the FFHN model is a very simple two-dimensional 

model with an incredible ability to present the complex dynamics of neurons. 

Keywords: FitzHugh–Nagumo model; canard explosion; fractional-order system; mixed-mode 

oscillation; chaos. 
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1. Introduction 

The FitzHugh–Nagumo (FHN) system [FitzHugh, 1961], modeled by a two-dimensional 

nonlinear differential equation, is one of the most important simplified Hodgkin–Huxley (HH) 

model of electric circuits, which reproduces fairly the action potential of many types of neurons 

[Hodgkin & Huxley, 1952]. On one hand, the four-dimensional nonlinear differential equation 

of the HH model is difficult to study thoroughly either analytically or even numerically; on the 

other hand, however, due to the innermost properties of two-dimensional dynamical systems 

highlighted by the Poincaré–Bendixon theorem [Perko, 2002], the FHN model is unable to 

reproduce many complex dynamics of the corresponding four-dimensional system, such as 

chaos and hyperchaos. Moreover, mixed-mode oscillations (MMO), which are very common 

in electroencephalography (EEG) data, can only be modeled by autonomous systems of 

ordinary differential equations (ODE) with integer dimensions greater than two. Nevertheless, 

it is possible to find a resolution to this concerned issue between too simple and too complex 

systems, using fractional derivatives. In fact, there are some recent studies on the fractional-

order FitzHugh–Nagumo (FFHN) model [Liu & Xie, 2010; Brandibur & Kaslik, 2018], or its 

modified versions.  

This article further investigates the MMO and the complex canard explosion in the FFHN 

model. Specifically, the appearance of patterns, from the solution of the FFHN model with a 

fractional order close to one, is studied as one system parameter is varied, where the number of 

small-amplitude oscillations increases. Such a phenomenon is impossible to appear from a 

system with the order of derivative being equal to one, due to the Poincaré–Bendixon theorem. 

Moreover, to rigorously analyze the FFHN model, it turns out that the classical notion of 

Hopf bifurcation is not well applicable to fractional-order systems, which cannot have exactly 

periodic solutions on a finite time interval [Tavazoei & Haeri, 2009]. To deal with this problem, 

in this article a Hopf-like bifurcation (HLB) theory is introduced, which provides a precise 

definition for the change between a fixed point and an S-asymptotically T-periodic solution of 

a fractional-order system. The following study of the complex canard explosion and MMO in 

the FFHN model leads to a conjecture that chaotic phenomenon can occur in two-dimensional 

autonomous fractional-order dynamical system with a fractional order close to one. It thus 

reveals that the FFHN model is a very simple two-dimensional model with an incredible ability 

to present the complex dynamics of neurons. 

Next, in Sec. 2, the definition and properties of canard and MMO will be reviewed. In Sec. 

3, some classical results on fractional calculus will be summarized. In Sec. 4, fractional calculus 

will be further discussed within the context of dynamical systems. The relationship between 

classical and fractional systems will then be discussed in terms of semigroups. In Sec. 5, the 

new definition of HLB will be introduced, followed by an analysis of the stability and HLB of 

the solutions of the FFHN model. In Sec. 6, complex canard explosion and MMO in the FFHN 

model will be investigated. Finally, in Sec. 7, a brief conclusion will be drawn. 
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2. Canard and Mixed-Mode Oscillations 

Solutions of differential equations are trajectories (curves) in the phase space. Many electric 

and electronic devices, like oscilloscopes, provide also curves as results of sampled physical or 

physiological phenomena. In biomedical studies, the shapes of these curves are often used to 

characterize diseases like epilepsy and stroke. Therefore, the study of particular patterns in such 

trajectory curves is very important in practice. 

2.1. Canard and false-canard trajectories 

Canard cycles were first discovered and investigated in 1981 by a team of French 

mathematicians in their pioneering work [Benoît et al., 1981], who coined the French name of 

canard for such unexpected complex dynamical behavior. 

The conventional canard phenomena highlight the very fast transition (called canard 

explosion) with respect to a varying parameter, from a large amplitude limit cycle (relaxation) 

[Fig. 1(a)] to a small-amplitude one [Fig. 1(c)], in a slow–fast ODE, which is also referred to 

as singularly perturbed systems. 

At the beginning of their discovery, this French team used nonstandard analysis as the main 

mathematical method to analyze canards [Diener, 1984]. Today, the name canard has been 

widely accepted by the mathematical community and applied to various analyses [Desroches & 

Jeffrey, 2011]. Its prototypical model is the van der Pol system with constant forcing 𝑎 > 0 

[van der Pol, 1926], described in the Liénard plane (x, y) as 

{
𝑥̇ = 𝑦 −

1

3
𝑥3 + 𝑥,

𝑦̇ = 𝜀(𝑎 − 𝑥).
 (1) 

For a small positive parameter 𝜀 ≪ 1, the variable x is driven by the fast vector field 

evolving on the fast time scale 𝑡 = 𝜏/𝜀, and y evolves on a slow time scale 𝜏 directed by the 

slow vector field. Thus, x and y are referred to, respectively, as fast and slow variables. The 

slow nullcline S, where 𝑥̇ = 0, is called the slow curve or critical manifold.  

In the van der Pol system (1), the slow curve is cubic shaped consisting of three branches, 

the middle one is repelling and connected with two attracting outer branches via two fold-

points, as shown in Fig. 1.  

Starting from any initial point in the Liénard plane, the solution of (1) is quickly attracted 

by the fast vector field in a neighborhood of one of the stable parts of the critical manifold. As 

an example, if the initial point belongs to the upper right-hand side of the Liénard plane, it will 

follow this stable slow curve downward, directed by the slow vector field, until it reaches the 

lower fold-point from which it jumps to the other stable part of the critical manifold, as shown 

in Fig. 1(a). The slow vector field will then drive the solution trajectory upward until it reaches 

the other fold-point. Then, the trajectory will jump back to the previous stable part of the slow 

curve, forming a periodic cycle. However, it is possible that, depending on the value of the 

parameter a, instead of jumping immediately from the first fold-point to the other stable slow 

curve, the trajectory will follow the unstable part for a while, as shown in Figs. 1(b) and 1(c).  



4 
 

 

Fig. 1. Canard explosion of the van der Pol oscillator for ε = 0.01 happens in an exponentially small parameter 

interval near a = a* ≈ 0.998740451245,  where the transition from relaxation oscillations for (a) a ≤ 

0.998740451244, to small-amplitude limit cycles for (c) a ≥ 0.998740451246, happens via (b) canard cycles. 
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This “amplitude bifurcation”, in which the periodic nature of the solution is unchanged, 

is referred to as canard, because its shape resembles that of a duck [Fig. 1(b), in which both 

legs are intentionally added].  

In general, canard solutions occur in singularly perturbed systems of the form 

{
𝜀

𝑑𝑥(𝜏)

𝑑𝜏
= 𝑓(𝑥(𝜏), 𝑦(𝜏), 𝜀) ,

𝑑𝑦(𝜏)

𝑑𝜏
= 𝑔(𝑥(𝜏), 𝑦(𝜏), 𝜀) ,

 (2) 

Where 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ𝑚 are fast and slow variables, respectively, f and g are sufficiently 

smooth functions, and 𝜏 denotes the independent variable of (2), called the slow time scale. 

After a time rescaling to the fast time scale 𝑡 = 𝜏/𝜀 (for 𝜀 ≠ 0), one gets an equivalent system 

of the form 

{

𝑑𝑥(𝜏)

𝑑𝜏
= 𝑓(𝑥(𝜏), 𝑦(𝜏), 𝜀) ,

𝑑𝑦(𝜏)

𝑑𝜏
= 𝜀𝑔(𝑥(𝜏), 𝑦(𝜏), 𝜀) ,

 (3) 

Now, simply write 

{
𝑥̇ = 𝑓(𝑥, 𝑦, 𝜀),

𝑦̇ = 𝜀𝑔(𝑥, 𝑦, 𝜀),
 (4) 

where the dot denotes differentiation with respect to t. 

In the limiting case, 0 → , both systems (2) and (4) read 

{
0 = 𝑓(𝑥, 𝑦, 0),

𝑦̇ = 𝑔(𝑥, 𝑦, 0),
 (5) 

which is a differential-algebraic equation, called the reduced (or slow) subsystem, and 

{
𝑥̇ = 𝑓(𝑥, 𝑦, 0),
𝑦̇ = 0,

 (6) 

called the layer (or fast) subsystem, respectively.  

The reduced and the layer subsystems are not equivalent, but they both play a key role in 

the geometric singular perturbation theory that deals with the dynamical analysis of the full 

system for 𝜀 > 0 [Wechselberger, 2012]. The critical (slow) manifold 𝑆 = {(𝑥, 𝑦) ∈

ℝ𝑛 × ℝ𝑚: 𝑓(𝑥, 𝑦, 0) = 0} for system (2) corresponds to the phase space of the reduced 

subsystem (5) and the set of equilibria of the layer subsystem (6). 

Normal hyperbolicity fails at points on S where the Jacobian 𝐷𝑥𝑓 has (at least) one 

eigenvalue with zero real part (the most common case where normal hyperbolicity fails is on 

critical folded manifolds). The subset 𝑆𝑎 ⊂ 𝑆 for which all eigenvalues of 𝐷𝑥𝑓 have negative 

real parts is called the attracting slow invariant manifold and, similarly, the subset 𝑆𝑟 ⊂ 𝑆 for 

which all eigenvalues of 𝐷𝑥𝑓 have positive real parts is called the repelling slow invariant 



6 
 

Depending upon the directions of the trajectories on the slow manifold, one can define canard 

trajectories as well as false-canard as follows. 

Definition 2.1 (Canard Trajectory) [Shchepakina et al., 2014]. A trajectory of (2) or (4), first 

moving along 𝑆𝑎 and then continuing for a while along 𝑆𝑟, is called a canard (or duck) 

trajectory. 

Definition 2.2 (False-Canard Trajectory) [Shchepakina et al., 2014]. A trajectory of (2) or (4), 

first moving along 𝑆𝑟 and then continuing for a while along 𝑆𝑎, is called a false-canard 

trajectory. 

2.2. Mixed-mode oscillations 

The canard phenomenon is important for better understanding and analyzing of the slow–fast 

dynamics. For example, the coupling of local passage near a folded singularity, around which 

canard solutions emerge, with the global return mechanism via relaxation spikes that reset the 

local dynamics, can explain complex oscillatory patterns called mixed-mode oscillations 

(MMO). The MMO consists of  L large-amplitude (relaxation) oscillations followed by s small-

amplitude (subthreshold) oscillations, simply denoted by Ls [Rubin & Wechselberger, 2007]. 

The topic of MMO is of great importance in various applications, such as cellular electrical and 

secretory activities [Harvey et al., 2011; Krupa et al., 2008], chemical reactions [Milik & 

Szmolyan, 2001], optical oscillations [Marino et al., 2011], etc.  

In 1952, Alan Lloyd Hodgkin and Andrew Huxley built a mathematical model of electric 

circuits, which reproduces fairly accurately the action potential of many types of neurons, 

represented by a nonlinear system of four ordinary differential equations. They were awarded 

the Nobel Prize for Medicine in 1963 for their works. The complexity of the mathematical 

analysis of such a four-dimensional nonlinear system had motivated the introduction of various 

simplifications of the original Hodgkin–Huxley model, the best known (and simplest) one being 

probably the FitzHugh–Nagumo model proposed in 1961 [FitzHugh, 1961], described by a two-

dimensional differential system with cubic nonlinearity. Unfortunately, as indicated by the 

Poincaré–Bendixon theorem [Perko, 2002], bounded solutions of a two-dimensional 

autonomous system are attracted to fixed points or period cycles, and they cannot reproduce all 

the complex dynamics of a four-dimensional dynamical system, such as chaos and hyperchaos. 

Indeed, MMO dynamics can only be modeled by autonomous systems of ordinary differential 

equations of greater than two dimensions. The occurrence of such chaotic behavior in the 

Hodgkin–Huxley model was reported in [Guckenheimer & Oliva, 2002] as well as the 

occurrence of the MMO in [Rubin & Wechselberger, 2007]. 

3. Fractional Calculus 

Due to the complexity of the dynamical phenomena encountered in nature, more flexibility in 

the mathematical modeling of such phenomena is needed. To do so, other than increasing the 

dimension of the dynamical systems, it is possible to resort to fractional-order dynamical 

systems.  
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The idea of fractional calculus goes back to the early development of the regular calculus 

[Leibniz, 1962], as a generalization of integration and differentiation to noninteger-orders. It 

has been found that many systems in interdisciplinary fields can be described by fractional-

order differential equations, such as viscoelastic systems, dielectric polarization, and quantum 

evolution of complex systems [Bagley & Calico, 1991; Sun et al., 1984; Kusnezov et al., 1999]. 

3.1. Definitions 

There are several definitions of fractional derivatives [Podlubny, 1999; Caputo, 1967]. A 

common one is the Riemann–Liouville definition of fractional derivatives [Podlubny, 1999], 

given by 

𝐷𝛼
𝑅

𝑡
𝛼𝑥(𝑡) =

1

𝛤(𝑚 − 𝛼)

𝑑𝑚

𝑑𝑡𝑚
∫ (𝑡 − 𝜏)𝑚−𝛼−1

𝑡

𝑎

𝑥(𝜏)𝑑𝜏 

=
𝑑𝑚

𝑑𝑡𝑚
( 𝑗𝑎 𝑡

𝑚−𝛼𝑥(𝑡)),   𝑡 > 𝑎,  𝑚 − 1 ≤ 𝛼 < 𝑚, 

where 𝛤 is the gamma function and 𝑗𝑎 𝑡
𝛽

is the Riemann–Liouville integral operator defined 

a 𝑗𝑎 𝑡
𝛽

𝑥(𝑡) =
1

𝛤(𝛽)
∫ (𝑡 − 𝜏)𝛽−1𝑡

𝑎
𝑥(𝜏)𝑑𝜏. 

The Laplace transform of the -order Riemann–Liouville differential operator is 

𝐿{ 𝐷0
𝑅

𝑡
𝛼𝑥(𝑡)} = 𝑠𝛼𝐿{𝑥(𝑡)} − ∑ 𝑠𝑘[ 𝐷0

𝑅
𝑡
𝛼−1−𝑘𝑥(𝑡)]𝑡=0

𝑚−1
𝑘=0 . 

For zero initial condition, one has 

𝐿{ 𝐷0
𝑅

𝑡
𝛼𝑥(𝑡)} = 𝑠𝛼𝐿{𝑥(𝑡)}. 

A numerical method often used to compute the Riemann–Liouville fractional derivative is 

based on the Grünwald–Letnikov definition, given by 

𝐷𝑎
𝐺

𝑡
𝛼𝑥(𝑡) = 𝑙𝑖𝑚

ℎ→0

1

ℎ𝛼
∑ (−1)𝑘 ×

𝛤(𝛼+1)

𝑘!𝛤(𝛼−𝑘+1)
𝑥(𝑡 − 𝑘ℎ)

𝑘=
𝑡−𝛼

ℎ
𝑘=0 , (7) 

where 𝑡 > 𝑎 and 𝛼 is a positive real number. Its integral form is 

𝐷𝑎
𝐺

𝑡
−𝛼𝑥(𝑡) = 𝑙𝑖𝑚

ℎ→0
ℎ𝛼 ∑

𝛤(𝛼+𝑘)

𝑘!𝛤(𝛼)
𝑥(𝑡 − 𝑘ℎ).

𝑘=
𝑡−𝛼

ℎ
𝑘=0  (8) 

When f is of class Cm, where m−1 ≤ α < m, both Riemann–Liouville and Grünwald–Letnikov 

definitions are equivalent [Podlubny, 1999]. Another definition is the Caputo definition of 

fractional derivatives [Caputo, 1967], given by 

𝐷𝛼
𝐶

𝑡
𝛼𝑥(𝑡) =

1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1

𝑡

𝑎

𝑥(𝑛)(𝜏)𝑑𝜏 = 𝑗𝑛−𝛼 (
𝑑𝑛

𝑑𝑡𝑛
𝑥(𝑡)) ,   𝑡 > 𝑎, 
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where 𝑛 = ⌈𝛼⌉ is the value of 𝛼 rounded up to the nearest integer. 

Regarding Lyapunov exponents for fractional chaotic systems, Matlab codes are available 

in [Danca & Kuznetsov, 2018]. 

3.2. Basic properties 

Next, recall some basic properties of fractional calculus. 

Lemma 1 [Diethelm, 2010].  Let 𝛼 > 0,  𝛼 ∉ ℕ  and 𝑚 = ⌈𝛼⌉. Moreover, assume that 

𝑥 ∈ 𝐶𝑚[𝑎, 𝑏]. Then, 𝐷𝑎
𝐶

𝑡
𝛼𝑥 ∈ 𝐶𝑚[𝑎, 𝑏] and 𝐷𝑎

𝐶
𝑡
𝛼𝑥(𝑎) = 0. 

Lemma 2 [Diethelm, 2010]. Let 𝑥 ∈ 𝐶𝑘[𝑎, 𝑏] for some 𝑎 < 𝑏 and some 𝑘 ∈ ℕ. Moreover, let 

𝛼, 𝛽 > 0, be such that there exists some 𝑙 ∈ ℕ with 𝑙 ≤ 𝑘 and 𝛼, 𝛼 + 𝛽 ∈ [𝑙 − 1, 𝑙]. Then, 

𝐷𝛼
𝐶

𝑡
𝛽

𝐷𝛼
𝐶

𝑡
𝛼𝑥(𝑡) = 𝐷𝛼

𝐶
𝑡
𝛼+𝛽

𝑥(𝑡) 

The Laplace transform of the -order Caputo differential operator is 

𝐿{ 𝐷0
𝑐

𝑡
𝛼𝑥(𝑡)} = 𝑠𝛼𝐿{𝑥(𝑡)} − ∑ 𝑠𝛼−1−𝑘𝑥(𝑘)(0)

𝑚−1

𝑘=0

 

For zero initial conditions, one has 

𝐿{ 𝐷0
𝑐

𝑡
𝛼𝑥(𝑡)} = 𝑠𝛼𝐿{𝑥(𝑡)} 

and in this case the above three definitions of the fractional derivative are equivalent. 

Remark 3.1. When 𝛼 is close to 𝑚 = ⌈𝛼⌉, the derivatives generated by the above three 

definitions are close. 

4. Classical and Fractional Dynamical Systems 

Fractional differential equations are used to describe systems with long-range interactions or 

systems with power-law memory. Some examples of fractional-order systems in modeling and 

control are described in [Caponetto et al., 2010].  

Now, consider fractional calculus within the scope of dynamical systems. First, recall the 

definition of a classical (integer-order) dynamical system in terms of semi-group. Then, 

considering fractional dynamical systems, with the concepts of S-asymptotically and T-periodic 

solutions, the relationship between both kinds of systems will be discussed in terms of semi-

group. 

4.1. Classical dynamical systems 

A dynamical system in terms of semi-group (in classical definition) on an open set 𝑈 ⊂ ℝ𝑛 is a 

triplet (T, U, t) describing the motion of points 𝑥 ∈ 𝑈 with respect to time t in a set of numbers 
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T (usually, T = R or T = Z). In addition, 𝜙𝑡(𝑥) = 𝜙(𝑡, 𝑥) : T × U → U is a one-parameter 

family of class-C1 maps satisfying the following properties [Perko, 2002; Kuznetsov, 1995]: 

(i) 𝜙0(𝑥) = 𝑥 for all 𝑥 ∈ 𝑈. 

(ii) 𝜙𝑡+𝑠(𝑥) = 𝜙𝑡(𝑥) ∘ 𝜙𝑠(𝑥) for all 𝑥 ∈ 𝑈. 

This one-parameter family of maps, 𝜙𝑡, is called the flow of the underlying dynamical 

system. 

Remark 4.1 [Perko, 2002] 

(1) If T = R, then the triplet (T, U, t) defines a continuous dynamical system, whereas it 

defines a discrete dynamical system if  T = Z. 

(2) If (R, U, t) is a continuous dynamical system, then the function 

𝑓(𝑥) =
𝑑

𝑑𝑡
𝜙(𝑡, 𝑥)|𝑡=0  (9) 

defines a C1-vector field on U and, for each 𝑥0 ∈ 𝑈, 𝜙(𝑡, 𝑥0) is the solution of the initial 

value problem 

{
𝑥̇ = 𝑓(𝑥),

𝑥(0) = 𝑥0.
  (10) 

(3) Reciprocally, for a given C1-function 𝑓 ∈ 𝐶1(𝑈) and 𝑈 an open subset of ℝ𝑛, the solution 

𝜙𝑡(𝑥) of the initial value problem (10), defined for all 𝑡 ∈ ℝ, has the following properties: 

(i) 𝜙0(𝑥) = 𝑥 for all 𝑥 ∈ 𝑈. 

(ii) 𝜙𝑡+𝑠(𝑥) = 𝜙𝑡 ∘ 𝜙𝑠(𝑥) for all 𝑥 ∈ 𝑈. 

Thus, the triplet (R, U, t) is a dynamical system. 

4.2. Fractional dynamical systems 

Fractional derivative is quite different from the standard integer-order one because it is not 

local; as a consequence, the solution of a fractional-order equation at time t depends on its 

memory from the starting time t0 to t [Yazdani & Salarieh, 2011]. In fact, fractional differential 

equations are integro-differential equations. Their numerical solution requires large computer 

memory and long runs of numerical simulations in general.  

Consider the following fractional-order initial value problem in terms of Caputo derivative: 

{
𝐷0

𝐶
𝑡
𝛼𝑥(𝑡) = 𝑓(𝑥) ,

𝑥(0) = 𝑥0 ,
  (11) 

where 𝑥(𝑡) = (𝑥1(𝑡), ⋯ , 𝑥𝑛(𝑡))𝑇 ∈ 𝑈 ⊂ ℝ𝑛, 𝑓(𝑥) = (𝑓1(𝑥), ⋯ , 𝑓𝑛(𝑥))𝑇 ,   𝑡 ∈ ℝ+ and 𝛼 ∈ (0,1). 

This initial value problem can be converted to the following nonlinear Volterra integral 

equation of the second kind [Kilbas et al., 2006]: 
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𝑥(𝑡) = 𝑥0 +
1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑡

0
𝑓(𝑥(𝜏))𝑑𝜏  (12) 

4.2.1. Flows of fractional dynamical systems 

Theorem 1 [Diethelm, 2010]. If the function 𝑓: 𝑈 ⊂ ℝ𝑛 → ℝ𝑛 is continuous and satisfies the 

Lipschitz condition on 𝑈, then for each 𝑥0 ∈ 𝑈 the initial value problem (11) has an unique 

maximal continuous solution 𝑥(𝑡). 

Based on this theorem, a two-parameter family of mappings can be defined: 𝜙𝑡
𝛼(∙) ∶ T × U 

→ U, associated with 𝑥0 ∈ 𝑈, for which there is a unique solution passing through it at 𝑡 = 0.  

Thus, for all 𝑥0 ∈ 𝑈 and taking into account (12), one gets 

𝜙𝑡
𝛼(𝑥0) = 𝑥0 +

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑡

0
𝑓(𝜙𝜏

𝛼(𝑥0))𝑑𝜏  (13) 

Proposition 1. Under the assumptions of Theorem 1, the two-parameter family of mappings 

𝜙0
𝛼(∙) satisfies the following properties:  

(i) 𝜙0
𝛼 = 𝐼𝑑, and 𝜙𝑡

1 = 𝜙𝑡. 

(ii) 𝜙𝑡
𝛼 ∘ 𝜙𝑠

𝛼 = 𝜙𝑡+𝑠
𝛼 + 𝛥𝑠,𝑡

𝛼 (𝑥0), where 

𝛥𝑠,𝑡
𝛼 (𝑥0) =

1

𝛤(𝛼)
∫ [(𝑠 − 𝜏)𝛼−1 − (𝑡 + 𝑠 − 𝜏)𝛼−1]𝑓(𝜙𝜏

𝛼𝑠

0
(𝑥0))𝑑𝜏, for all 𝑠, 𝑡 ∈ ℝ+. 

Proof. The statement (i) is obvious. It can be verified by substituting 𝑡 = 0 and 𝛼 = 1 

respectively in (13). 

For (ii), letting 𝑥0 ∈ 𝑈 and then using (13), one obtains 

𝜙𝑡
𝛼 ∘ 𝜙𝑠

𝛼(𝑥0) = 𝜙𝑠
𝛼(𝑥0) +

1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜙𝜏

𝛼
𝑡

0

(𝜙𝑠
𝛼(𝑥0)))𝑑𝜏 

= 𝑥0 +
1

𝛤(𝛼)
∫ (𝑠 − 𝜏)𝛼−1𝑓(𝜙𝜏

𝛼
𝑠

0

(𝑥0))𝑑𝜏

+
1

𝛤(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜙𝜏

𝛼
𝑡

0

(𝜙𝑠
𝛼(𝑥0)))𝑑𝜏 

= 𝑥0 +
1

𝛤(𝛼)
∫ (𝑠 − 𝜏)𝛼−1𝑓(𝜙𝜏

𝛼
𝑠

0

(𝑥0))𝑑𝜏

+
1

𝛤(𝛼)
∫ (𝑡 + 𝑠 − 𝜏)𝛼−1𝑓(𝜙𝜏−𝑠

𝛼
𝑡+𝑠

𝑠

(𝜙𝑠
𝛼(𝑥0)))𝑑𝜏 

= 𝑥0 +
1

𝛤(𝛼)
∫ (𝑠 − 𝜏)𝛼−1𝑓(𝜑𝜏

𝛼
𝑠

0

(𝑥0))𝑑𝜏

−
1

𝛤(𝛼)
∫ (𝑡 + 𝑠 − 𝜏)𝛼−1𝑓(𝜑𝜏

𝛼
𝑠

0

(𝑥0))𝑑𝜏 

+
1

𝛤(𝛼)
∫ (𝑡 + 𝑠 − 𝜏)𝛼−1𝑓(𝜑𝜏

𝛼𝑡+𝑠

0
(𝑥0))𝑑𝜏  (14) 
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where 

{
𝜑𝜏

𝛼(𝑥0) = 𝜙𝜏
𝛼(𝑥0),  0 ≤ 𝜏 ≤ 𝑠

𝜑𝜏
𝛼(𝑥0) = 𝜙𝜏−𝑠

𝛼 (𝜙𝑠
𝛼(𝑥0)),  𝜏 > 𝑠.

 

It can be easily verified that, 𝜑𝜏
𝛼(𝑥0) is continuous with respect to 𝜏. Thus, 

𝜑𝑡+𝑠
𝛼 (𝑥0) = 𝑥0 +

1

𝛤(𝛼)
∫ (𝑡 + 𝑠 − 𝜏)𝛼−1 × 𝑓(𝜑𝜏

𝛼
𝑡+𝑠

0

(𝑥0))𝑑𝜏 

and 𝜑𝜏+𝑠
𝛼 (𝑥0) is a solution of (11). By the uniqueness of the solution, one has 

𝜑𝑡+𝑠
𝛼 (𝑥0) = 𝜙𝑡+𝑠

𝛼 (𝑥0). 

Substituting it into (14) yields 

𝜙𝑡
𝛼 ∘ 𝜙𝑠

𝛼 = 𝜙𝑡+𝑠
𝛼 + 𝛥𝑠,𝑡

𝛼 (𝑥0) 

Clearly, if 𝛼 = 1 then 𝛥𝑠,𝑡
𝛼 (𝑥0) = 0 for all 𝑠, 𝑡 ∈ ℝ+; however, for 0 < 𝛼 < 1 then 𝛥𝑠,𝑡

𝛼 (𝑥0) =

0 for all f only if 𝑡 = 0 or 𝑠 = 0. Thus, for 0 < 𝛼 < 1, the triplet (ℝ+, 𝑈, 𝜙𝑡
𝛼) is not a dynamical 

system in terms of semi-group. 

Definition 4.1. Let 0 < 𝛼 < 1. Then, under the above assumptions, the triplet (ℝ+, 𝑈, 𝜙𝑡
𝛼) is 

called a fractional dynamical system.  

Figure 2 illustrates the discrepancy between solutions of a fractional dynamical system and 

solutions of a classical dynamical system. 

 

Fig. 2. Flow of a fractional dynamical system. 
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Since the semi-group property is not satisfied by the flow of a fractional dynamical system, 

a trajectory in the phase space of such a system can intersect itself (without giving a periodic 

orbit) after a certain time t. This will never happen in the integer-order setting. 

4.2.2. Generalized fractional-order dynamical systems in semi-group 

Now, it is to show that a generalized fractional order dynamical system can be converted to a 

classical dynamical system (in terms of semi-group) of a greater dimension. 

Lemma 3. If the function f is of class 𝐶1(𝑈), then there exists a 𝐶(ℝ+ × 𝑈). function 𝑔𝑓
𝛼 , such 

that the fractional-order initial value problem (11) is equivalent to the integer-order 

nonautonomous initial value problem: 

{
𝑥̇(𝑡) = 𝑔𝑓

𝛼(𝑡, 𝑥)

𝑥(0) = 𝑥0
  (15) 

Proof.   Applying the fractional operator 𝐷0
𝐶

𝑡
1−𝛼 to both sides of the first equation in (11), and 

taking into account Lemma 2, yields 

𝑥̇(𝑡) = 𝐷0
𝐶

𝑡
1−𝛼𝑓(𝑥)  (16) 

Putting 𝑔𝑓
𝛼 = 𝐷0

𝐶
𝑡
1−𝛼𝑓(𝑥) since 𝑓 ∈ 𝐶1(𝑈), by Lemma 1 one obtains 𝑔𝑓

𝛼 ∈ 𝐶(ℝ+ × 𝑈). Thus, the 

fractional-order initial value problem (11) is equivalent to the integer-order nonautonomous 

initial value problem (15), where 𝑔𝑓
𝛼(𝑡, 𝑥) = 𝐷0

𝐶
𝑡
1−𝛼𝑓(𝑥). 

Theorem 2. If the function f and its fractional derivative 𝐷0
𝐶

𝑡
1−𝛼𝑓(𝑥) are of class 𝐶1, then the 

fractional-order initial value problem (11) defines an (n+1)-dimensional dynamical system, 

(ℝ+, 𝑈, 𝜙𝑡
𝛼) in terms of semi-group, where 𝑈 ⊂ ℝ𝑛+1. 

Proof.   By Lemma 3, the fractional-order initial value problem (11) is equivalent to the integer 

order nonautonomous initial value problem (15), which can be converted to an (n + 1)-

dimensional autonomous system by denoting 𝑥𝑛+1 = 𝑡, which yields 𝑥̇𝑛+1 = 1. The resultant 

initial value problem reads 

{
𝑥̇(𝑡) = 𝐹(𝑥, 𝛼),
𝑥(0) = 𝑥0.

   (17) 

where 𝐹𝑖(𝑥, 𝛼) = 𝐷0
𝐶

𝑥𝑛+1
1−𝛼 𝑓𝑖(𝑥), for 𝑖 = 1, ⋯ , 𝑛, and 𝐹𝑛+1(𝑥, 𝛼) = 1. Thus, 𝐹 is a 𝐶1-function. 

Consequently, by Remark 4.1, the initial value problem (17) defines an (n + 1)-dimensional 

dynamical system, (ℝ+, 𝑈, 𝜙𝑡
𝛼). 

4.2.3. S-asymptotically T-periodic solutions 

The nonexistence of periodic solutions in fractional order autonomous systems with bounded 

lower terminal was proved in [Tavazoei & Haeri, 2009; Tavazoei et al., 2009] and the existence 

of periodic solutions in fractional-order autonomous systems with unbounded lower terminal 

or with fixed memory lengths was discussed in [Yazdani & Salarieh, 2011; Kang et al., 2015; 

Abdelouahab & Hamri, 2016].  



13 
 

Now, recall the definitions of asymptotically T-periodic and S-asymptotically T-periodic 

functions [Henriquez et al., 2008], which can occur as solutions of a fractional-order 

autonomous system with fixed bounded lower terminal, instead of a normal T-periodic solution 

[Yazdani & Salarieh, 2011; Kang et al., 2015]. 

Let 𝐶𝑏(ℝ+, ℝ𝑛) denote the space of continuous and bounded functions 𝑥: ℝ+ → ℝ𝑛 , equipped 

with the norm ‖∙‖∞ 

Definition 4.2. A function 𝑥 ∈ 𝐶𝑏(ℝ+, ℝ𝑛) is called asymptotically T-periodic, if there exists a 

bounded continuous T-periodic function u and a bounded continuous function v with 

𝑙𝑖𝑚𝑡→∞ 𝑣 (𝑡) = 0 such that 𝑥 = 𝑢 + 𝑣. The collection of all these functions is denoted by 

𝐴𝑃𝑇(ℝ+, ℝ𝑛). 

Definition 4.3. A function 𝑥 ∈ 𝐶𝑏(ℝ+, ℝ𝑛) is called S-asymptotically T-periodic, if there exists 

T > 0 such that 𝑙𝑖𝑚𝑡→∞(𝑥(𝑡 + 𝑇) − 𝑥(𝑡)) = 0. In this case, T is said to be an asymptotic period 

of x. The collection of all these functions is denoted by 𝑆𝐴𝑃𝑇(ℝ+, ℝ𝑛).  

The sets 𝐴𝑃𝑇(ℝ+, ℝ𝑛) and 𝑆𝐴𝑃𝑇(ℝ+, ℝ𝑛), equipped with the norm ‖∙‖∞, are Banach spaces. 

Moreover,  

𝐴𝑃𝑇(ℝ+, ℝ𝑛) ⊂ 𝑆𝐴𝑃𝑇(ℝ+, ℝ𝑛). 

The existence of S-asymptotically T-periodic solutions in a class of fractional-order 

differential equations and fractional-order functional integro-differential equations have been 

studied in [Cuevas & Cesar de Souza, 2010]. 

5. Hopf-Like Bifurcation in the Fractional-Order FitzHugh–

Nagumo Model 

This section studies the FFHN model, for which a mathematical notion of Hopf-like bifurcation 

(HLB) is introduced and analyzed. 

5.1. FitzHugh–Nagumo model 

As mentioned in the Introduction, as an approximation of the Hodgkin–Huxley model [Hodgkin 

& Huxley, 1952], the FitzHugh–Nagumo model [FitzHugh, 1961] has become popular. An 

electrical circuit equivalent to this model was constructed by Nagumo et al. [1962], as shown 

in Fig. 3. 

This electrical model consists of a voltage variable v (membrane potential) with cubic 

nonlinearity that allows regenerative self-excitation via a positive feedback, and a recovery 

variable w, which describes the combined effect of ion channels, with a linear term that affords 

a slower negative feedback. 

The mathematical model reads 
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{

𝑑𝑣

𝑑𝑡
= 𝑣 −

1

3
𝑣3 − 𝑤 + 𝐼,

𝑑𝑤

𝑑𝑡
=

1

𝑇
(𝑣 + 𝑎 − 𝑏𝑤),

  (18) 

with parameters I, a, b and T. With a change of variables, x = v, y = w, and 𝜀 = 1/𝑇, the system 

becomes 

{
𝑥̇ = 𝑥 −

1

3
𝑥3 − 𝑦 + 𝐼,

𝑦̇ = 𝜀(𝑥 + 𝑎 − 𝑏𝑦).
  (19) 

 

Fig. 3. Electrical circuit of the FitzHugh–Nagumo model. 

One can see that, if b = I = 0 and 𝑥 → −𝑥, Eq. (19) is exactly the van der Pol system (1). 

5.2. Fractional-order FitzHugh–Nagumo model 

In 1983, Jonscher [1983] demonstrated that the ideal capacitor having integer-order constitutive 

equation 

𝑣(𝑡) =
1

𝐶
𝑞(𝑡)  ⇔  𝐼(𝑡) = 𝐶

𝑑𝑣(𝑡)

𝑑𝑡
, 

cannot exist in nature, where I(t) is the current through the capacitor, v(t) is the voltage across 

the capacitor, and C is the capacitance of the capacitor. 

In 1991, Westerlund [1991] demonstrated that the inductor is fractional in nature and its 

better constitutive relation is 

𝑣(𝑡) = 𝐿𝐷𝛼𝐼(𝑡), 

where the constant 𝛼 is related to the proximity effect. 
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In 1994 [Westerlund & Ekstam, 1994] proposed that also a more realistic capacitor could 

be represented with a fractional-order constitutive equation, as 

𝐼(𝑡) = 𝐶𝐷𝛼𝑣(𝑡), 

where the constant 𝛼 (derivative order) is related to the loss of the capacitor. 

Based on the above observations, it is natural to introduce the fractional-order version of 

the FitzHugh–Nagumo model [Liu & Xie, 2010], using the fractional-order constitutive 

equations of capacitor and inductor. In so doing, system (19) can be transformed to its fractional 

version 

{
𝐷𝛼1𝑥 = 𝑥 −

1

3
𝑥3 − 𝑦 + 𝐼,

𝐷𝛼2𝑦 = 𝜀(𝑥 + 𝑎 − 𝑏𝑦),
  (20) 

where 𝛼1 and 𝛼2 are constants related to the loss of the capacitor and the proximity effect of the 

inductor, respectively. 

5.3. Stability and Hopf-like bifurcation 

As a first approach to analyzing the FFHN model, only the case of 𝛼1 = 𝛼2 = 𝛼 ∈ (0,2) is 

analyzed in this section. 

5.3.1. Fixed points and stability 

In order to have a unique fixed point of the FFHN model, some parameter restrictions are first 

introduced.  

The existence of this fixed point is characterized by the following proposition. 

Proposition 2. For all 𝑎,  𝑏,  𝐼 ∈ ℝ satisfying 

−4 (1 −
1

𝑏
)

3

+ 9 (𝐼 −
𝑎

𝑏
)

2

> 0, 

the system (20) has a unique equilibrium point 

𝐸 = (𝑥𝑒(𝑏), 𝑦𝑒(𝑏)) 

where 

𝑥𝑒(𝑏) =
√−𝑞 + √−𝛥

27

2

3

+
√−𝑞 − √−𝛥

27

2
 ,

3

 

𝑦𝑒(𝑏) = 𝑥𝑒(𝑏) −
1

3
𝑥𝑒

3(𝑏) + 𝐼, 

 𝛥 = −(4𝑝3 + 27𝑞2) , 𝑝 = −3 (1 −
1

𝑏
) , and 𝑞 = −3 (𝐼 −

𝑎

𝑏
) , 

Proof.   A fixed point 𝐸 = (𝑥𝑒 , 𝑦𝑒) of system (20) is a solution of 
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{
𝑥 −

1

3
𝑥3 − 𝑦 + 𝐼 = 0,

𝜀(𝑥 + 𝑎 − 𝑏𝑦) = 0.
   (21) 

Thus, 

{
𝑦 = 𝑥 −

1

3
𝑥3 + 𝐼,

𝑥 + 𝑎 − 𝑏 (𝑥 −
1

3
𝑥3 + 𝐼) = 0.

  (22) 

Since the second equation is cubic, its canonical form reads 

𝑥3 + 𝑝𝑥 + 𝑞 = 0,  (23) 

where 

𝑝 = −3 (1 −
1

𝑏
), 𝑞 = −3 (𝐼 −

𝑎

𝑏
) . 

Assume that 

−4 (1 −
1

𝑏
)

3

+ 9 (𝐼 −
𝑎

𝑏
)

2

> 0. 

Then, 

−(4𝑝3 + 27𝑞2) = 𝛥 < 0 . 

Using Cardan’s cubic method, Eq. (23) has a unique real solution 

𝑥𝑒(𝑏) =
√−𝑞 + √−𝛥

27

2

3

+
√−𝑞 − √−𝛥

27

2
 ,

3

 

For the stability analysis, the following theorem will be applied. 

Theorem 3 [Matignon, 1996; Moze & Sabatier, 2005]. The following fractional-order linear 

autonomous system: 

{
𝐷𝛼𝑋 = 𝐴𝑋,
𝑋(0) = 𝑋0

  𝑋 ∈ ℝ𝑛 

0 < 𝛼 < 2 𝑎𝑛𝑑 𝐴 ∈ ℝ𝑛 × ℝ𝑛, 

is locally asymptotically stable if and only if 

𝑚𝑖𝑛
𝑖

|𝑎𝑟𝑔( 𝜆𝑖)| > 𝛼
𝜋

2
, 𝑖 = 1,2, ⋯ , 𝑛. 

The following proposition for fractional-order nonlinear systems will also be utilized. 

Proposition 3   [Abdelouahab et al., 2010]. Let E be an equilibrium point of the fractional-

order nonlinear system 
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𝐷𝛼 = 𝑓(𝑥) 0 < 𝛼 < 2. 

If the eigenvalues of the Jacobian matrix 𝐴 =
𝜕𝑓

𝜕𝑥
|

𝐸
 satisfy 

𝑚𝑖𝑛
𝑖

|𝑎𝑟𝑔( 𝜆𝑖)| > 𝛼
𝜋

2
, 𝑖 = 1,2, ⋯ , 𝑛. 

then the system is asymptotically stable at the equilibrium point 𝐸. 

The Jacobian matrix of system (20) at the equilibrium point 𝐸 is 

𝐽𝐸 = (1 − 𝑥𝑒
2(𝑏) −1

𝜀 −𝑏𝜀
), 

and the characteristic polynomial reads 

𝑃(𝜆) = 𝜆2 + (𝑥𝑒
2(𝑏) + 𝑏𝜀 − 1)𝜆 + 𝜀(1 + 𝑏(𝑥𝑒

2(𝑏) − 1)). 

For (𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2 < 4𝜀, the Jacobian matrix 𝐽𝐸 has a pair of complex conjugate eigenvalues: 

𝜆± =
−(𝑥𝑒

2(𝑏)+𝑏𝜀−1)±𝑖√−(𝑥𝑒
2(𝑏)−𝑏𝜀−1)2+4𝜀

2
. 

According to Proposition 3, the fixed point 𝐸 of (20) is locally asymptotically stable if 

|𝑎𝑟𝑐𝑡𝑎𝑛 (
√−(𝑥𝑒

2(𝑏) − 𝑏𝜀 − 1)2 + 4𝜀

𝑥𝑒
2(𝑏) + 𝑏𝜀 − 1

)| >
𝛼

2
. 

5.3.2. Hopf-like bifurcation 

Since exact periodic solutions are not expected in fractional-order autonomous systems 

[Tavazoei & Haeri, 2009; Yazdani & Salarieh, 2011; Tavazoei et al., 2009; Kang et al., 2015], 

the classical notion of Hopf bifurcation does not exist in such systems. Thus, it is natural to 

introduce a new notion that will be meaningful for this kind of systems. 

Here, the idea is to define Hopf-like bifurcation (HLB) in fractional-order systems as a local 

bifurcation, where a fixed point of the underlying dynamical system changes its stability 

property as a pair of complex conjugate eigenvalues 𝜆∓ of the Jacobian matrix at the fixed point 

cross the boundary of an angular sector |𝑎𝑟𝑔( 𝜆∓)| = 𝛼
𝜋

2
 of the complex plane, giving rise (or 

vanishing) to a small-amplitude S-asymptotically T-periodic solution. In fact, some criteria of 

HLB in fractional-order systems were already introduced in [Abdelouahab et al., 2012], 

although it was not called “Hopf-like” therein. 

To analyze HLB in system (20) at its unique fixed point 𝐸 = (𝑥𝑒(𝑏), 𝑦𝑒(𝑏)) with respect to 

the parameter b and the parameter 𝛼, respectively, a function 𝑀(𝑏, 𝛼) is defined as follows: 

𝑀(𝑏, 𝛼) = 𝛼
𝜋

2
− |𝑎𝑟𝑐𝑡𝑎𝑛 (

√−(𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2 + 4𝜀

𝑥𝑒
2(𝑏) + 𝑏𝜀 − 1

)| 
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Then, some conditions on the parameters to generate HLB are derived. 

Proposition 4   (HLB with Respect to the Parameter b). Let the fractional order 𝛼 be fixed and 

b* be the value of solution b to 𝑀(𝑏, 𝛼) = 0. If 

(𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2 < 4𝜀 

and 

(2𝑥𝑒(𝑏)
𝑑𝑥𝑒(𝑏)

𝑑𝑏
(𝑏2𝜀 − 𝑏(𝑥𝑒

2(𝑏) − 1) − 2) + (𝑥𝑒
2(𝑏) − 1)2 − 𝑏𝜀(𝑥𝑒

2(𝑏) − 1) − 2𝜀)|
𝑏=𝑏∗

≠ 0 

then system (20) undergoes an HLB at the unique equilibrium point 𝐸, when 𝑏 = 𝑏 ∗. 

Proof.   For (𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2 < 4𝜀 the Jacobian matrix 𝐽𝐸 has a pair of complex conjugate 

eigenvalues: 

𝜆± =
−(𝑥𝑒

2(𝑏)+𝑏𝜀−1)±𝑖√−(𝑥𝑒
2(𝑏)−𝑏𝜀−1)2+4𝜀

2
. 

Let 𝑏 ∗ be the value of solution 𝑏 to 𝑀(𝑏, 𝛼) = 0, and denote 

𝑢(𝑏) =
√−(𝑥𝑒

2(𝑏) − 𝑏𝜀 − 1)2 + 4𝜀

𝑥𝑒
2(𝑏) + 𝑏𝜀 − 1

 

Then, one has 

𝑀(𝑏, 𝛼) = 𝛼
𝜋

2
− |𝑎𝑟𝑐𝑡𝑎𝑛( 𝑢(𝑏))|, 

so that 

𝜕𝑀(𝑏, 𝛼)

𝜕𝑏
= ±

𝑑(𝑢(𝑏)
𝑑𝑏

1 + 𝑢2(𝑏)
 

It then follows that 
𝜕𝑀(𝑏,𝛼)

𝜕𝑏
 has the same sign as ±

𝑑𝑢(𝑏)

𝑑𝑏
. 

Let us suppose that 

(2𝑥𝑒(𝑏)
𝑑𝑥𝑒(𝑏)

𝑑𝑏
(𝑏2𝜀 − 𝑏(𝑥𝑒

2(𝑏) − 1) − 2) + (𝑥𝑒
2(𝑏) − 1)2 − 𝑏𝜀(𝑥𝑒

2(𝑏) − 1) − 2𝜀)|
𝑏=𝑏∗

≠ 0 

Then 

±
𝑑𝑢(𝑏)

𝑑𝑏
|

𝑏=𝑏∗
= ±

𝑑

𝑑𝑏
(

√−(𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2 + 4𝜀

𝑥𝑒
2(𝑏) + 𝑏𝜀 − 1

)|

𝑏=𝑏∗

 

= ±2𝜀
2𝑥𝑒(𝑏)

𝑑𝑥𝑒(𝑏)
𝑑𝑏

(𝑏2𝜀 − 𝑏(𝑥𝑒
2(𝑏) − 1) − 2) + (𝑥𝑒

2(𝑏) − 1)2 − 𝑏𝜀(𝑥𝑒
2(𝑏) − 1) − 2𝜀

(𝑥𝑒
2(𝑏) − 𝑏𝜀 − 1)2√4𝜀 − (𝑥𝑒

2(𝑏) − 𝑏𝜀 − 1)2
|

𝑏=𝑏∗
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Fig. 4. (a) HLB curve in the (𝑏, 𝛼) parameter space and (b) curve of the derivative 
𝜕𝑀(𝑏,𝛼)

𝜕𝑏
|

𝑏=𝑏∗
 versus the 

bifurcation value b*. 

Thus, according to the HLB criteria introduced in [Abdelouahab et al., 2012], system (20) 

undergoes a Hopf-like bifurcation at 𝐸, when b=b*. 

The parameter values are chosen as 𝑎 = 0.75,  𝐼 = 0.41,  𝜀 = 0.05, and the two other 

parameters 0 < 𝑏 < 𝑏̄ and 𝛼 ∈ (0,2) are considered as control parameters, where 𝑏̄ ≈ 1.4371898. 

Figure 4(a) shows the critical curve 𝛾 of the following equation: 

𝑀(𝑏, 𝛼) = 𝛼
𝜋

2
− 𝑚𝑖𝑛

𝑖
|𝑎𝑟𝑔(𝜆𝑖(𝑏))| = 0, 

which separates stable and unstable regions in the (𝑏, 𝛼) parameter space. Figure 4(b) shows 

the curve of the derivative function 
𝜕𝑀(𝑏,𝛼)

𝜕𝑏
|

𝑏=𝑏∗
 versus the bifurcation value b*, which is strictly 

negative. 

All conditions for HLB [Abdelouahab et al., 2012] are satisfied at each point in the curve 

𝛾, implying that when parameters move from stable to unstable regions in the (𝑏, 𝛼) parameter 

space, the fixed point 𝐸 loses its stability near the critical curve 𝛾. This gives rise to small-
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amplitude oscillatory behavior and allows the possibility of developing fractional-order canard 

solutions. 

5.3.3. Canard cycles 

To investigate the canard phenomenon in the FFHN model, the theory of singularly perturbed 

system will be applied.  

In the limiting case as 𝜀 → 0, the reduced fractional-order equation of system (20), which 

characterizes the slow dynamics, reads 

{
𝑥 −

1

3
𝑥2 − 𝑦 + 𝐼 = 0 ,

𝐷𝛼𝑦 = 𝑥 + −𝑏𝑦 ,
  (25) 

and the fractional-order layer equation, which characterizes the fast dynamics, reads 

{
𝐷𝛼 = 𝑥 −

1

3
𝑥3 + 𝐼 − 𝑦 = 𝑓(𝑥) − 𝑦 ,

𝐷𝛼𝑦 = 0 ,
  (26) 

The critical manifold is given by 

𝑆0 = {(𝑥, 𝑦) ∈ ℝ2|𝑦 = 𝑥 −
1

3
𝑥3 + 𝐼 − 𝑦 = 𝑓(𝑥)} 

Thus, 𝑓′(𝑥) = 1 − 𝑥2, so 𝑆0 has two folds, (𝑥, 𝑦) = (±1, ±
2

3
+ 𝐼) which separates the two 

attractive branches 𝑆𝑎, where 𝑓′(𝑥) < 0, from the repulsive branch 𝑆𝑟, where 𝑓′(𝑥) > 0, as shown 

in Fig. 5. 

 
 

Fig. 5. Fractional-order fast and slow subsystems of system (20). Single arrows indicate slow motions along the 

slow curve 𝑆0. Double arrows indicate fast motions outside 𝑆0, which has two attracting branches, 𝑆𝑎, and one 

repelling branch, 𝑆𝑟, separated by fold-points (dots) of the slow curve, corresponding to saddle-node bifurcation 

points of the fast subsystem. 
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6. Numerical Analysis of Complex Canard Explosion and Mixed-

Mode Oscillations 

Proceeding as in the integer-order setting, by examining the existence of canard oscillations in 

the neighborhood of the HLB points (b*, α*) versus the two parameters b and α, respectively, 

system (20) is numerically integrated over the interval [0, tf ]. In doing so, the Grünwald–

Letnikov approximation method is applied, where the integrating step size is h = 0.01, with the 

initial conditions x0 = xe(b) and y0 = ye(b)−0.005. In order to accelerate the calculation 

processes, the short memory length principle [Podlubny, 1999; Abdelouahab & Hamri, 2016] 

is adopted, with memory length L = 100. 

6.1. Complex canard explosion and mixed-mode oscillations versus parameter b 

To illustrate the complex canard explosion versus the parameter b, fix α = 0.95 and consider 

b as the bifurcation parameter in interval (0, 1.2). Then, HLB occurs at b* ≈ 0.83, while 

oscillations can be observed for b < 0.83. 

 

Fig. 6. Mixed-mode oscillations observed in the two-dimensional fractional-order system (20), with b = 0.815: 

(a) phase portrait and (b) time evolution of x. 
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Figure 6 displays the phase portrait and the time evolution of system (20) at b = 0.815. 

From this figure, a new phenomenon can be observed that cannot be observed from the integer-

order setting. There is an alternation between oscillations of distinct large- and small-amplitude 

“mixed-mode oscillations”. This phenomenon cannot occur in smooth two-dimensional 

autonomous integer-order systems, thanks to the semi-group property of the flow 𝜙 (namely, 

for any 𝑡, 𝑠 ∈ ℝ,  𝑥 ∈ 𝑈 ⊂ ℝ𝑛, one has 𝜙𝑡(𝜙𝑠𝑥)) = 𝜙𝑡+𝑠(𝑥)). This property does not allow any 

trajectory to cross itself without giving periodic orbits (due to the Cauchy–Lipschitz theorem). 

But, this property is not verified in the following fractional-order flow: 

𝜙0 𝑡
𝛼( 𝜙0 𝑠

𝛼𝑥)) ≠ 𝜙0 𝑡+𝑠
𝛼 (𝑥) 

because of the memory dependency, as mentioned in Sec. 3. Consequently, a trajectory in the 

fractional order flow can cross itself without giving rise to any periodic orbit, allowing for the 

appearance of MMO in smooth two-dimensional autonomous fractional order systems. 

For b = 0.7, one can only observe large-amplitude oscillations. For b = 0.83, one can only 

observe small-amplitude oscillations (with amplitude close to zero). When the parameter b is 

varied from b = 0.7 to b = 0.83, the number of small-amplitude oscillations, 𝑁𝑆𝐴𝑂(𝑏), which 

occurs between every two successive large-amplitude oscillations, changes from     

𝑁𝑆𝐴𝑂(0.7) = 0 to 𝑁𝑆𝐴𝑂(0.83) = +∞. 

To localize infinitesimal subintervals for which 𝑁𝑆𝐴𝑂(𝑏) increases by 1, where canard 

cycle can be developed, a “Global-Local Canard Explosion Search Algorithm” (GLCESA) 

is applied, with two search steps as follows: 

• Global search step 

The parameter b is varied in a global loop by a dynamic step size hd and “Parameter 

Subinterval Detections” 𝑃𝑆𝐷 = [𝑏𝑖, 𝑏𝑖 + ℎ𝑑] in which an increment of 𝑁𝑆𝐴𝑂 by 1 is 

determined. 

• Local high-precision search step 

The parameter b is varied within a local loop, based on a successive division of each subinterval, 

𝑃𝑆𝐷 = [𝑏𝑖, 𝑏𝑖−1] (bisection method), to obtain the “Infinitesimal Canard Explosion Parameter 

Subinterval” 𝐼𝐶𝐸𝑃𝑆 = [𝑎𝑐𝑘 , 𝑏𝑐𝑘], with high precision. 

First, the subinterval 𝐶𝐸𝑃𝑆 is initialized at 𝑃𝑆𝐷; then, at each step, it is divided into two 

halves, by computing the midpoint 𝑐𝑘  and the value of 𝑁𝑆𝐴𝑂(𝑐𝑘) at that point. 

The proposed GLCESA is described in more detail in Appendix A. 

Here, the 𝐼𝐶𝐸𝑃𝑆 is estimated with accuracy of 10−13, so the number of iterations of the 

algorithm in the local search step is NI ≥ E(13 ln(10)+ ln(hd)/ ln(2)) iterations, where 𝐸(⋅) is 

the integer part. 

A total of 13 canard explosion parameter subintervals, 𝐶𝑃𝐸𝑆 = [𝑏̄𝑖, 𝑏̄𝑖 + 10−13], 𝑖 =

1,2, ⋯ ,13, are stored in Table 1, with their corresponding 𝑁𝑆𝐴𝑂, tf and 𝑃𝑆𝐷.  
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From this table, one can see that the amplitude of the last small oscillation increases, as the 

parameter b decreases. Then, one can observe canard explosion within an exponentially small 

neighborhood of b*, where the transition from small-amplitude oscillation (stationary-like 

behavior) to large-amplitude oscillation (relaxation oscillation) happens a fractional canard 

solution, as illustrated in Fig. 8, where the canard explosion occurs in the parameter subinterval 

𝐼𝐶𝐸𝑃𝑆 = [0.7863948204251, 0.7863948204252]. For b = 0.7863948204252, there are three 

small-amplitude oscillations between the first and the second large-amplitude oscillations; for 

b = 0.7863948204251, there are only two small amplitude oscillations. 

To find the best fitted curve for the points (𝑏̄𝑖, 𝑁𝑆𝐴𝑂(𝑏̄𝑖)), 𝑖 = 1,2, ⋯ ,13, that represents the 

general trend, the “Esyfit” Matlab tool is used. For this purpose, choose a function that can 

meet the constraints, namely: 𝑁𝑆𝐴𝑂(0.7) = 0 and 𝑙𝑖𝑚𝛼→0.83 𝑁 𝑆𝐴𝑂(𝑏) = +∞. A candidate 

function is 

𝑁𝑆𝐴𝑂(𝑏) = 𝑎1(𝑏 − 0.7)𝑒(𝑎2/(𝑏−0.83)) 

which yields 𝑎1 ≈ 23.27, 𝑎2 ≈ −0.034131, and the correlation coefficient 𝑅 ≈ 0.99902, 

indicating a good fitting as shown in Fig. 7. 

Table 1. Some canard explosion parameter subintervals: 𝐶𝑃𝐸𝑆 =

[𝑏̄𝑖 , 𝑏̄𝑖 + 10−13], 𝑖 = 1,2, ⋯ ,13, with their corresponding NSAO, tf and 

PSD, determined by the proposed GLCESA as the parameter b is varied.  

𝑁𝑆𝐴𝑂(𝑏) 𝑡𝑓(𝑏) 𝑃𝑆𝐷 𝑏̄𝑖  

12 631.37 [0.8130, 0.8135] 0.8132582019492 

11 600.82 [0.8125, 0.8130] 0.8125822722024 

10 533.30 [0.8110, 0.8120] 0.8117440824567 

9 498.47 [0.8100, 0.8110] 0.8108161227377 

8 464.69 [0.8090, 0.8100] 0.8096401834456 

7 434.24 [0.8080, 0.8090] 0.8081607987814 

6 364.90 [0.8050, 0.8070] 0.8062222250391 

5 331.33 [0.8030, 0.8050] 0.8037293956898 

4 298.72 [0.7970, 0.8010] 0.8002011697320 

3 230.58 [0.7930, 0.7970] 0.7949145990424 

2 193.00 [0.7810, 0.7890] 0.7863948204251 

1 157.62 [0.7570, 0.7730] 0.7704659452418 

0 126.61 [0.7410, 0.7570] 0.7457271691909 
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Fig. 7. Curve fitting points (𝑏̄𝑖 , 𝑁𝑆𝐴𝑂(𝑏̄𝑖)), generated using the proposed GLCESA. The fitted function is 

𝑁𝑆𝐴𝑂(𝑏) = 23.27(𝑏 − 0.7)𝑒(−0.034131/(𝑏−0.83)). 

 
Fig. 8. Canard solutions observed from fractional-order system (20): (a) phase portrait for b = 0.7863948204251, 

(b) time evolution of x for b = 0.7863948204251, (c) phase portrait for b = 0.7863948204252 and (d) time 

evolution of x for b =0.7863948204252. 
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Fig. 8. (Continued) 

 

Fig. 9. Curve fitting points (𝑁𝑆𝐴𝑂(𝛼̄𝑖), 𝛼̄𝑖 , ) generated using the proposed GLCESA. The fitted function is 
𝑁𝑆𝐴𝑂(𝛼) = 38.9(0.97 − 𝛼)𝑒(0.040417/(𝛼−0.925)). 
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6.2. Complex canard explosion 

To illustrate the complex canard explosion versus fractional order α, fix b = 0.8 and consider 

α as the bifurcation parameter in the interval (0,1). Then, HLB occurs at α* = 0.9251. 

For α = 0.97, one can only observe large amplitude oscillations; for α = 0.9251, one can 

only observe small-amplitude oscillations (with amplitude close to zero). When the fractional 

order α is varied, from α = 0.97 to α = 0.9251, the number of small-amplitude oscillations 

𝑁𝑆𝐴𝑂(𝛼), which occur between every two successive large amplitude oscillations, change from 

𝑁𝑆𝐴𝑂(0.97) = 0 to 𝑁𝑆𝐴𝑂(0.9251) = +∞. To localize the infinitesimal subintervals on which 

𝑁𝑆𝐴𝑂 increases by 1, where canard cycles can be developed, we proceed as in the above 

subsection, for which the proposed GLCESA is applied. 

A total of 13 canard explosion parameter subintervals, 𝐶𝑃𝐸𝑆 = [𝛼̄𝑖, 𝛼̄𝑖 + 10−13], 𝑖 =

1,2, ⋯ ,13, are stored in Table 2, with their corresponding 𝑁𝑆𝐴𝑂, tf and 𝑃𝑆𝐷. 

From this table one can see that the amplitude of the last small oscillation increases as the 

fractional order α increases. Then, one can observe canard explosion within an exponentially 

small neighborhood of α*, where the transition from small-amplitude oscillation (stationary-

like behavior) to large-amplitude oscillation (relaxation oscillation) happens via fractional 

canard solutions, as illustrated in Fig. 10, where the canard explosion occurs in the parameter 

subinterval 𝐶𝐸𝑃𝑆 = [0.9677434182069, 0.9677434182070] (for 𝛼 = 0.9677434182069, there 

is one small-amplitude oscillation between the first and the second large amplitude oscillations; 

for 𝛼 = 0.9677434182070, there is zero small-amplitude oscillations). To find the best fitted 

curve for the points (𝛼̄𝑖 , 𝑁𝑆𝐴𝑂(𝛼̄𝑖)), 𝑖 = 1,2, ⋯ ,13, that represents their general trend, again the 

“Esyfit” Matlab tool is applied. To this end, choose a function that can meet the constraints, 

namely: 𝑁𝑆𝐴𝑂(0.97) = 0 and 𝑙𝑖𝑚𝛼→0.9251 𝑁 𝑆𝐴𝑂(𝛼) = +∞. The candidate function is 

𝑁𝑆𝐴𝑂(𝛼) = 𝑎1(0.97 − 𝛼)𝑒(𝑎2/(𝛼−0.925)). 

Thus, one obtains 𝑎1 ≈ 38.9, 𝑎2 ≈ 0.040417 and the correlation coefficient 𝑅 ≈ 0.99908, 

indicating a good fitting, as shown in Fig. 9.  

As previously mentioned, a trajectory of a smooth two-dimensional autonomous fractional 

order system can cross itself without giving rise to any periodic orbit. This shows that the 

Poincaré–Bendixson theorem, which guarantees the nonexistence of the chaotic phenomena in 

smooth two-dimensional autonomous systems, is only valid for the integer-order setting. When 

fractional-order dynamical systems are considered, there is more flexibility of models with the 

possibility of having chaotic solutions in dimension two. Moreover, even if the fractional order 

is close to one, such chaotic phenomenon can still arise. This leads to the following interesting 

conjecture. 

Conjecture 1. Chaos can exist in two-dimensional autonomous fractional-order dynamical 

systems with the fractional order close to one. 

The chaotic phenomena, if existing in a two dimensional autonomous fractional-order 

dynamical system, are likely to have only one positive Lyapunov exponent (repelling) and one 
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negative Lyapunov exponent (attracting), which is larger than the positive Lyapunov exponent 

in magnitude, having no zero ones [Danca et al., 2018]. 

Table 2. Some canard explosion parameter subintervals 𝐶𝑃𝐸𝑆 =

[𝛼̄𝑖 , 𝛼̄𝑖 + 10−13], 𝑖 = 1,2, ⋯ ,13,  with their corresponding 𝑁𝑆𝐴𝑂, tf and 

𝑃𝑆𝐷, determined using the proposed GLCESA, as the parameter α is 

varied. 

𝑁𝑆𝐴𝑂(𝛼) 𝑡𝑓(𝛼) 𝑃𝑆𝐷 𝛼̄𝑖  

12 610.69 [0.9419, 0.9422] 0.9419865649848 

11 577.39 [0.9422, 0.9425] 0.9424658807848 

10 539.24 [0.9428, 0.9434] 0.9430130879415 

9 504.79 [0.9434, 0.9440] 0.9436601053460 

8 472.07 [0.9440, 0.9446] 0.9444332599613 

7 403.39 [0.9452, 0.9462] 0.9453719917284 

6 366.80 [0.9462, 0.9472] 0.9465298907124 

5 333.88 [0.9472, 0.9482] 0.9479883536832 

4 296.46 [0.9492, 0.9512] 0.9498957361566 

3 233.18 [0.9512, 0.9532] 0.9524863819805 

2 189.15 [0.9552, 0.9592] 0.9561361504262 

1 155.12 [0.9592, 0.9632] 0.9614783464776 

0 113.26 [0.9672, 0.9752] 0.9677434182069 

7. Conclusions 

This article has investigated the complex phenomena of canard explosion with mixed-mode 

oscillations (MMO), which can be observed from a fractional-order FitzHugh–Nagumo 

(FFHN) model.  

The study has highlighted the appearance of patterns of solutions with increasing number 

of small-amplitude oscillations in each of such patterns, as one parameter of the FFHN model 

is varied when fractional order is close to one. 

To rigorously analyze such complex dynamics of the FFHN model, a new mathematical 

tool is introduced, namely the Hopf-like bifurcation (HLB), which gives rise to a precise 

definition of the change between a fixed point and an S-asymptotically T-periodic solution of 

the fractional-order system. 

The study has also highlighted the relationship between classical and fractional systems in 

terms of semi-group. 

Then, the stability and HLB analyses of the FFHN model have been carefully analyzed, 

confirming the existence of canard oscillations in the neighborhood of a HLB point versus either 

the system parameter b, or the fractional order α. A new algorithm, named the Global-Local 

Canard Explosion Search Algorithm, has been designed and verified. The simulation results 



28 
 

show that one can perfectly fit the number of small-amplitude oscillations in each pattern versus 

the lengths of the intervals for both parameters between two different patterns, using 

exponential functions.  

 
Fig. 10. Canard solution observed from fractional-order system (20): (a) phase portrait for α = 0.9677434182069, 

(b) time evolution of x for α = 0.9677434182069, (c) phase portrait for α = 0.9677434182070 and (d) time 

evolution of x for α = 0.9677434182070. 
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Fig. 10. (Continued) 

Finally, it was conjectured that chaos can exist in two-dimensional autonomous fractional 

order dynamical systems with the fractional order close to one. 

In summary, this study reveals that the FFHN model as a very simple two-dimensional 

fractional order system offers an incredible possibility for describing the complex dynamics of 

neuron. 
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Appendix A 

Global-Local Canard Explosion Search Algorithm 

The Global-Local Canard Explosion Search Algorithm (GLCESA) is summarized as follows: 

Inputs: 

α; Fractional-order derivative 

tf ; Final time integration 

h; Discretization time step of the system 

L; Memory length 

System parameters 

a; I; ε; 

bi; bf ; Initial and final values of the parameter b 

Outputs: 

NSAO; Numbers of small-amplitude oscillations 

PSD; Parameter subintervals detection 

CEPS; Canard explosion parameter subintervals 

Step 1. Initialization of: 

tf ; First length of integration interval of the system 

hd; Initial value of dynamical step size 

x0, y0; Initial conditions 
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k = 0; i = 1; Initializing index 

b(i) = bi; Initializing parameter 

Step 2. Global-local search 

Solve system (20) and calculate NSAO(b(i)) 

Step 2.1. Global search 

while b(i) ≥ bf (Global search loop) do 

i = i + 1; b(i) = bi + (i − 1) ∗ hd; 

Solve the system (20) and calculate NSAO(b(i)) 

Δ = NSAO(b(i − 1)) − NSAO(b(i)) 

if Δ = 1 then 

k = k + 1 

PSD(k) = [bi, bi−1] 

ack = bi, bck = bi−1 

Step 2.2. Local search subalgorithm 

while |bck - ack| > 10−13 (local loop of high precision search) do 

𝑐𝑘 =
𝑎𝑐𝑘 + 𝑏𝑐𝑘

2
 

Solve system (20) and calculate NSAO(c(k)) 

if  NSAO(c(k)) = NSAO(bc(k)) then 

bck = ck; 

else 

ack = ck; 

end if 

endwhile 

ICEPSk = [ack, bck] else if Δ = 0 ‘the parameter step size hd is relatively small’ then 

hd = 2∗ hd 

else if Δ > 1 ‘the parameter step size hd is relatively large’ then 

bi = bi − hd; 

hd = hd/Δ 

i = i − 1; 

end if 

end while 


