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Introduction

Interfaces are often seen as geometrical surfaces. But these surfaces have internal physical properties. They are the seat of multiple exchanges with their surrounding, i.e. the bulks in contact with them. Thermodynamical properties and balance laws of interfaces are not always simple to obtain. It is often necessary to work with several scales of analysis. At microscopic scale, 2D interfaces become 3D interfacial layers, where thermodynamical relations and balance equations must be written. A review is presented in our book [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF].

In order to be clear we use the two designations: interfacial layer and interface. An interfacial layer is a region of space where strong gradients of some properties take place in a thin layer. At this small scale, the medium is three dimensional with generally non-classical properties. At the macroscopic scale, the interface is similar to a material surface with zero thickness, which exchanges matter, momentum and energy with the surrounding.

Interfacial modeling interested many authors. The states that exist in a thin intermediate and inhomogeneous layer between gas and liquid phases can be described by the fundamental equations of van der Waals's theory [START_REF] Van Der Waals | Lehrbuch der Thermostatik[END_REF], if the temperature is below the critical temperature. In the famous paper of Cahn and Hilliard [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF], the properties of a flat interfacial layer between two coexisting phases are determined. In particular it is proved that its thickness increases with increasing temperature and becomes infinite at the critical temperature. Other papers give the link between the molecular aspect and the continuum mechanics such as the review paper of Ono and Kondo [START_REF] Ono | Molecular theory of surface tension in liquids[END_REF] and the book of Rowlinson and Widom [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF] The establishment of a direct link between capillarity phenomena and the intermolecular forces is based on the statistical mechanics of systems that are highly inhomogeneous on the scale of length of the range of these forces [START_REF] Rowlinson | Molecular Theory of Capillarity[END_REF]. Much more sophisticated developments have been published in the basis of the so-called density function theory, for example, in the paper by Evans [START_REF] Evans | The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids[END_REF].

Interfacial fluid layers endowed with internal capillarity were also studied by Casal [START_REF]La capillarité interne[END_REF][START_REF]La théorie du second gradient et la capillarité[END_REF], Germain [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus[END_REF]. Casal and Gouin [START_REF] Casal | A representation of liquid-vapor interfaces by using fluids of second grade[END_REF], Seppecher [START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides: Interfaces et lignes de contact[END_REF] and Gatignol and Seppecher [START_REF] Gatignol | Modelisation of fluid-fluid interfaces with material properties[END_REF]. Concept of interface extended to stretched flames were considered by Klimov [13], Sivashinski [START_REF] Sivashinsky | Structure of Bunsen flames[END_REF], Clavin and Joulin [START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF], Prud'homme [START_REF] Prud'homme | Fluides Hétérogènes et Réactifs: Écoulements et Transferts[END_REF]. For the concept of an "interface" with internal energy per unit area, one can cite Delhaye [START_REF] Delhaye | Jump conditions and entropy sources in two-phase systems[END_REF], Scriven [START_REF] Scriven | Dynamics of a fluid interface. Equation of motion for Newtonian surface[END_REF], and Slattery [START_REF] Slattery | General balance equation for a phase interface[END_REF]. Rocard [START_REF] Rocard | Thermodynamique[END_REF] gave a statistical approach and Casal, Gouin, Germain, Seppecher a macroscopic approach.

In many papers an emphasis is put on the different interfacial velocities. For the interface without mass, discussions were driven by Landau and Lifschitz [START_REF] Landau | Statistical Physics[END_REF], Bedeaux, Albano and Mazur [START_REF] Bedeaux | Boundary conditions and non equilibrium thermodynamics[END_REF], Napolitano [START_REF] Napolitano | Thermodynamics, and dynamics of surface phase[END_REF], Prosperetti [START_REF] Prosperetti | Boundary conditions at a liquid-vapor interface[END_REF] and, for interfaces with surface mass, by Ghez [START_REF] Ghez | A generalized Gibbsian surface[END_REF][START_REF] Ghez | Irreversible thermodynamics of a stationary interface[END_REF], Prud'homme [START_REF] Prud'homme | Equations du bilan de systèmes comprenant des interfaces[END_REF]. In relation with the concept of an "interfacial layer", Ishii [START_REF] Ishii | Thermo-Fluid Dynamic Theory of Two-Phase Flow[END_REF], Gogosov [START_REF] Gogosov | Conservation laws for the mass, the momentum and energy on a phase interface for true and excess surface parameters[END_REF], Sanfeld and Steinchen [START_REF] Steinchen | Surface excess momentum balances by integration across the surface of the volume balances[END_REF] utilize true quantities, and on the contrary, Landau and Lifschitz, Meinhold and Heerlein [START_REF] Meinhold-Heerlein | Surface conditions for the liquid-vapor system. taking in account entropy production caused by mass and energy transport across the interface[END_REF] excess quantities. The concept of dividing surface was utilized by Gibbs [START_REF] Gibbs | The Scientific Papers of J.W. Gibbs[END_REF], Slattery [START_REF] Slattery | Interfacial Transport Phenomena[END_REF], and Defay et al. [START_REF] Defay | Surface Tension and Adsorption[END_REF]. Many authors have established interfacial balance equations, but not always with the desirable strictness. One tries here to point out some crucial problems and suggest solutions.

Interface and interfacial layer

The concept of an interface is relative. Some material surface seams very thin at a given scale and appears to be thick at a smaller one (Fig. 1). As examples of interfacial layers and interfaces, one can mention various systems: a fluid layer endowed with capillarity and an interface with surface tension, a thin layer with diffusion of species between two miscible fluids, and so on. One considers here only fluid interfaces, i.e., themselves fluid, without rigidity, and located between bulk fluids. 2D interfacial quantities can be deduced from 3D analysis, by integration across the interfacial layer. Then, interfacial quantities a  and S  are deduced from local 3D quantities by integration between layer. It gets [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF] with the surface density 

Modeling of such interfaces means establishing equations of material surfaces (2D balance equations) and closing the obtained system by constitutive relations.

Orthogonal curvilinear coordinates

It is generally convenient to consider the interfacial layer as a stratified structure. On each surface of this structure we suppose that the value of a characteristic parameter q (local density, temperature or concentration) is constant. Use of a system of orthogonal curvilinear coordinates can be made, and each surface of the stratified structure, on which the characteristic parameter q remains constant, can be seen as a coordinate surface S3 (x3, t) or S3 for a given value of x3 at time t .

Let us consider the following moving curvilinear system (5) r, y and z being the Cartesian coordinates in an orthonormal basis (

k , j , i   
), x1, x2, x3 the curvilinear coordinates and t the time. We call i h  the vector of components (x,i, y,i, zi). For an orthogonal curvilinear system of coordinates, the vectors ( )

j i h , h j i   
are orthogonal.

Dividing by the norm

i i h h = 
we obtain the normalized vector

i i i h h e   =
and we define the curvilinear abscissa by dXi = hi dxi (Fig. 2).

The mean curvature of surface S3 is then [START_REF] Evans | The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids[END_REF] where S3 is a current surface S3 element.

Projection operators can be defined [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF] (for instance, one define , and a local velocity W  inside the interfacial layer is introduced (Fig. 3) by the formula [START_REF]La capillarité interne[END_REF] with

t t // h e w , h t x , V I V         = =    = 3
The stretch of a surface S3 moving locally at velocity W  is then [START_REF]La théorie du second gradient et la capillarité[END_REF] with

  =    =  ⊥ ⊥         // // I , I
and where dt d W  stands for the convective derivative to W  . Quantities defined by ( 6), ( 7) and ( 8) are very important for the interface description because they have physical meaning.

Thermodynamical relations

For the bulk and the interfacial layer in the case of a classical fluid mixture with N species, the internal energy E of a given volume of fluid is an order one homogeneous function of its entropy S, its volume V and of the masses of species mj which are extensive quantities. This gives, for the unit mass, the Euler, Gibbs and Gibbs-Duhem well-known relations: [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus[END_REF] In ( 9), Y j is mass fraction and g j the chemical potential per unit of mass of the species j. For the 2D interface, usual thermodynamical relations read [START_REF] Casal | A representation of liquid-vapor interfaces by using fluids of second grade[END_REF] In the case of 3D interfacial fluid layers with internal capillarity, and taking a one component fluid for simplicity, internal energy E of the stratified layer, for a volume V with a small thickness around a coordinate surface, is an order one homogeneous function of quantities S, V, of the mass m, and of a complementary extensive variable S which is homogeneous to an area, but is not equal to the area of the part of S3 contained in the 

where  is defined as the capillarity coefficient [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF].

General balance law

The local form of the balance equation for any property, whose volumetric value is denoted by  is (13) where velocity W  is defined by ( 7). An integration of the two sides of (13) across the interfacial layer leads to the balance law for the 2D interface [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF]. 

( ) ( )       - + = II I d W V J J S S a          
. The average velocities are shown on Fig. 4.

General surface balance law ( 14) can be applied to masses of species and to total mass. An alternative form of ( 14) may then be deduced by using the mass balance and by introducing the mass flow rate [START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF] and may be applied to momentum, total energy, internal energy, and entropy [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF].

( )        - = S W V m

Interfacial constitutive relations

2D closure relations

Using mass, species and internal energy balance equations deduced from (15) and using the relations of system [START_REF] Casal | A representation of liquid-vapor interfaces by using fluids of second grade[END_REF], an interfacial Clausius-Duhem inequality is then written in which it appears a sum of products of terms of zero, one and two tensorial order terms [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF] In fact, the two-dimensional surface entropy production is such that the surface dissipation Tsa has the symbolic form: This result suggests applying the general principles of irreversible Thermodynamics [START_REF] De Groot | Non-Equilibrium Thermodynamics[END_REF] and writing linear closure relations between generalized forces and fluxes of same tensorial order [START_REF] Delhaye | Jump conditions and entropy sources in two-phase systems[END_REF] This method is usually applied to classical problems of surfaces without mass [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF] but with surface tension. At equilibrium, the momentum equation is the Laplace law

      - = -I II p p
Out of equilibrium, the momentum equation becomes [START_REF] Scriven | Dynamics of a fluid interface. Equation of motion for Newtonian surface[END_REF] With or the bulk    stress tensor and // a    for the interfacial stress tensor. Tensor // a    may contain surface viscosities terms [START_REF] Slattery | Interfacial Transport Phenomena[END_REF].

Marangoni effect, Bénard-Marangoni instability [START_REF] Le. Scriven | On cellular convection driven by surface-tension gradients: Effects of mean surface tension and surface viscosity[END_REF], surface heat transfer, evaporationcondensation, near-equilibrium surface chemical reactions, may be studied with this method.

Coefficients  S L of relation ( 17) are generally deduced from molecular theory and experimental measurements. The previous method is no more valid for material surfaces notably far from equilibrium, but constitutive relations can be found in the literature in specific cases, as for vapor recoil [START_REF] Palmer | The hydrodynamic stability of rapidly evaporating liquids at reduced pressure[END_REF][START_REF] Nicolaiev | Bolling crisis and non-equilibrium drying transition[END_REF], adsorption-desorption, and surface chemical reaction with non-linear kinetics.

3D closure relations

Some situations cannot be directly studied using surface equations, and a preliminary study of the interfacial layer behavior is necessary. Fluid layers with capillarity must be considered as 3D interfacial layers, and the second gradient method utilized [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF][START_REF]La capillarité interne[END_REF][START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides: Interfaces et lignes de contact[END_REF]. For such a fluid inside the interfacial layer far from any wall, and assuming that it is without dissipation [START_REF] Slattery | General balance equation for a phase interface[END_REF] In simple cases it is possible to connect surface tension u to capillarity coefficient  [START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides: Interfaces et lignes de contact[END_REF], writing [START_REF] Rocard | Thermodynamique[END_REF] Fluid with capillarity can also be applied near a wall. This is the case for some wetting problems [START_REF] Seppecher | Equilibrium of Cahn md Hilliard fluid on a wall: Influence of the wetting properties of the fluid upon the stability of a thin liquid film[END_REF][START_REF] Pomeau | Moving contact line[END_REF].

For some generalized interfaces, as premixed flames with high activation energy [13][START_REF] Sivashinsky | Structure of Bunsen flames[END_REF][START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF][START_REF] Prud'homme | Fluides Hétérogènes et Réactifs: Écoulements et Transferts[END_REF], shock waves and relaxation zones behind shock waves [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF][START_REF] Jamet | Modélisation des discontinuities dans les écoulements diphasiques compressibles[END_REF][START_REF] Jamet | Modélisation interfaciale de chocs dans les suspensions[END_REF], interfacial layer instability between two miscible fluids [START_REF] Kurowski | Gravitational instability of a fictitious front during mixing of miscible fluids[END_REF], interfacial layer instability in a pure heated supercritical fluid [START_REF] Zappoli | Instabilité gravitationnelle dans un fluide supercritique pur[END_REF], some shear layers [START_REF]Instabilité et entrainement à l'interface d'une couche de mélange liquide-gaz[END_REF], it is possible to deduce surface properties. But this results from a detailed study of the interfacial layer, which obeys generally to linearized (heat and species diffusion, viscosity) or non-linear (chemical kinetics) classical constitutive relations.

For premixed flames with high activation energy, the obtained combustion velocity is a linear function [START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF] of sur face stretch

S S W    
as defined by ( 8), but in strongly turbulent flows the stretch dependence becomes non-linear.  = S2 =10 -3 , r2=U2/U1, S2= (Raynal 1997 [46]).

In the case of interfacial layer with species diffusion between two miscible fluids, but also in the case of shear layers with momentum transfer, the stability analysis shows an influence of the interfacial layer on the growing curve (i, in function of k) similar to the one of surface tension on Rayleigh and Kelvin-Helmholtz instability growing curve. In Fig. 5a, and similarly in Fig. 5b, there is a domain of instability for i > O with a maximum of i and a cut-off wave number. This suggests inserting of an effective surface tension in the second case.

Conclusion

Other relevant questions can be considered. A first question deals with the description of deformations inside the interfacial zone. Interfacial zone appeared as a stratified region. This is a relatively comfortable situation, where the equation for area deformation can be directly deduced from interfacial kinematics written in curvilinear coordinates. Indeed, the material derivative of

V S   3 = 
, the density of area per unit volume of the structured layer, reads (see ( 8)) [START_REF] Landau | Statistical Physics[END_REF] This relation (in another form) is utilized by Candel and Poinsot [START_REF] Candel | Flame stretch and the balance equation for the flame area[END_REF] for flames. In turbulent burning flows, average quantities are introduced, and source terms appear on right hand side of [START_REF] Rocard | Thermodynamique[END_REF]. Another case is the one of two-phase mixtures. Lhuillier, Morel and Delhaye [START_REF] Lhuillier | Bilan d'aire interfaciale dans un mélange diphasique: approche locale vs approche particulaire[END_REF] introduce a distribution function  I for the interfacial area  per unit volume of the mixture. Writing a balance equation for  I a source term  appears, which vanishes in the case of our simple stratified interfacial layer. One need certainly a deepening of this problem, to understand better why Eq. ( 20) remains valid in so much various situations.

The second question deals with numerical solving of interface problems. The 2D description often leads to discontinuities, and it is difficult in solve numerically this type of problem. Then, some authors try to obtain continuous equations even in discontinuous situations. Phase field models have been described for solidification of alloys. The interface is considered as a transition region where averaged local quantifies weighted by the liquid and solid volume fractions are introduced. At macroscopic scale, we find an enthalpy method [START_REF] Ganaoui | Modélisation numérique de la convection thermique instationnaire en présence d'un front de solidification déformable[END_REF] whereas at smaller scale, balance equations are deduced by minimization of free energy in functional analysis [START_REF] Plapp | Eutectic colony formation: A phase field model[END_REF] Jamet et al. [START_REF] Jamet | A numerical description of a liquid-vapor interface based on the second gradient theory[END_REF] use a second gradient method with an artificially thickened interface, and Jamet and Petitjeans [START_REF] Jamet | A physical justification of a phase-field model for interfaces separating miscible fluids[END_REF] apply phase field models to interfaces of diffusion. Research attempt would certainly be useful on the topic "Phase field methods for fluid interfaces".

To conclude, we can say that in this paper, interfacial modeling of fluid was presented in such a manner that 2D description result generally from 3D analysis. Many examples where briefly presented. The reader will find a more detailed presentation in the book [START_REF] Gatignol | homme, Mechanical and Thermodynamical Modeling of Fluid Interfaces[END_REF]. Other examples of application could certainly be considered.
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