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Abstract 

Basic concepts of interface and interfacial layer are flrst introduced. Orthogonal curviiinear coordinate analysis, 

used to study interfacial zones depending of time, is presented. Classical 3D and 2D thermodynarnical relations 

are reminded and second gradient formulation is introduced. General balance laws are written inside the 

interfacial layer and then, by using an asymptotic approach, balance laws are obtained for interfaces. The 

constitutive relations are deduced from thermodynamics of irreversible processes. More or less classical 

examples are given to illustrate the purpose. 

 

Nomenclature 


SA     interfacial generalized force 

321 e,e,e


 unit basic vectors of the orthogonal   

           curvilinear frame               

gj        chemical potential per unit mass of the  

           species j in a mixture       

SJ


     interfacial generalized flux 

j          wave number                                       m-1 

L0        hydrodynamic scale m 

SL     interfacial phenomenological coefficient 

n         normal coordinate at small scale         m 

p*        interfacial pressure                              Pa 

q         physical parameter 

S         entropy, interface 

S3        coordinate surface 

t          time s 

T


       bulk viscous stress tensor                   Pa 

U        velocity                                               m 

V


      local fluid velocity                              m s-1 

w        velocity of the surface S3                    m s-1 

W


      interfacial velocity equal to 3ewV
//


+   

                                                                       m s-1 

x, y, z Cartesian coordinates                          m 

x1, x2, x3  curvilinear coordinates                 m 

x


             position of a point                         m 

Y j             mass fraction of species j 

 

Greek symbols 

0             interfacial thickness                     m 

             small parameter, = /L0<<1 

               capillarity coefficient            N kg-2 m-6 

              any property per unit mass 

               normal coordinate at any scale     m 




             unit normal to the interface 

               fluid density                               kg m-3 

               surface tension                            N m-1 




             bulk stress tensor                           Pa 

            jump III  −  

 

Subscripts 
1, 2          both sides for superposed fluids 

I, II lower and upper limits of an interfacial layer 

,i               space derivative ix/   

//, S           parallel to the interface 

⊥              normal to the interface 

 

 

 

1. Introduction 

 

Interfaces are often seen as geometrical surfaces. But these surfaces have internal physical 

properties. They are the seat of multiple exchanges with their surrounding, i.e. the bulks in 

contact with them. Thermodynamical properties and balance laws of interfaces are not always 

simple to obtain. It is often necessary to work with several scales of analysis. At microscopic 
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scale, 2D interfaces become 3D interfacial layers, where thermodynamical relations and 

balance equations must be written. A review is presented in our book [1]. 

In order to be clear we use the two designations: interfacial layer and interface. An 

interfacial layer is a region of space where strong gradients of some properties take place in a 

thin layer. At this small scale, the medium is three dimensional with generally non-classical 

properties. At the macroscopic scale, the interface is similar to a material surface with zero 

thickness, which exchanges matter, momentum and energy with the surrounding. 

Interfacial modeling interested many authors. The states that exist in a thin intermediate 

and inhomogeneous layer between gas and liquid phases can be described by the fundamental 

equations of van der Waals’s theory [2], if the temperature is below the critical temperature. 

In the famous paper of Cahn and Hilliard [3], the properties of a flat interfacial layer between 

two coexisting phases are determined. In particular it is proved that its thickness increases 

with increasing temperature and becomes infinite at the critical temperature. Other papers 

give the link between the molecular aspect and the continuum mechanics such as the review 

paper of Ono and Kondo [4] and the book of Rowlinson and Widom [5] The establishment of 

a direct link between capillarity phenomena and the intermolecular forces is based on the 

statistical mechanics of systems that are highly inhomogeneous on the scale of length of the 

range of these forces [5]. Much more sophisticated developments have been published in the 

basis of the so-called density function theory, for example, in the paper by Evans [6]. 

Interfacial fluid layers endowed with internal capillarity were also studied by Casal [7, 8], 

Germain [9]. Casal and Gouin [10], Seppecher [11] and Gatignol and Seppecher [12]. 

Concept of interface extended to stretched flames were considered by Klimov [13], 

Sivashinski [14], Clavin and Joulin [15], Prud’homme [16]. For the concept of an “interface” 

with internal energy per unit area, one can cite Delhaye [17], Scriven [18], and Slattery [19]. 

Rocard [20] gave a statistical approach and Casal, Gouin, Germain, Seppecher a macroscopic 

approach. 

In many papers an emphasis is put on the different interfacial velocities. For the interface 

without mass, discussions were driven by Landau and Lifschitz [21], Bedeaux, Albano and 

Mazur [22], Napolitano [23], Prosperetti [24] and, for interfaces with surface mass, by Ghez 

[25, 26], Prud’homme [27]. In relation with the concept of an “interfacial layer”, Ishii [28], 

Gogosov [29], Sanfeld and Steinchen [30] utilize true quantities, and on the contrary, Landau 

and Lifschitz, Meinhold and Heerlein [31] excess quantities. The concept of dividing surface 

was utilized by Gibbs [32], Slattery [33], and Defay et al. [34]. Many authors have established 

interfacial balance equations, but not always with the desirable strictness. One tries here to 

point out some crucial problems and suggest solutions. 

 

 

2. Interface and interfacial layer 

 

The concept of an interface is relative. Some material surface seams very thin at a given 

scale and appears to be thick at a smaller one (Fig. 1). As examples of interfacial layers and 

interfaces, one can mention various systems: a fluid layer endowed with capillarity and an 

interface with surface tension, a thin layer with diffusion of species between two miscible 

fluids, and so on. One considers here only fluid interfaces, i.e., themselves fluid, without 

rigidity, and located between bulk fluids. 

 

Modeling of such interfaces means establishing equations of material surfaces (2D balance 

equations) and closing the obtained system by constitutive relations. 

 



 
 

Fig. 1. Interface and interfacial layer. 

 

 

2D interfacial quantities can be deduced from 3D analysis, by integration across the 

interfacial layer. Then, interfacial quantities a  and S  are deduced from local 3D quantities 

by integration between layer. It gets 

(1)  

 

with the surface density 

(2)  

 

Applying (1) to the fluid velocity i it gets 

 (3)  

So SV


 is the mean fluid velocity in the interfacial fluid, defining the velocity of the 

interface S at each point. 



To calculate the integrals of the right hand member it is sometimes necessary to apply an 

asymptotic expansion method and to use a new coordinate n at smaller scale than  with 

dnd  =   

(4)   

 

 

 
Fig. 2. Curvilinear orthogonal coordinates; coordinate surfaces. 

 

 
Fig. 3. Velocities inside the interface layer. 

 

3. Orthogonal curvilinear coordinates 

 

It is generally convenient to consider the interfacial layer as a stratified structure. On each 

surface of this structure we suppose that the value of a characteristic parameter q (local 

density, temperature or concentration) is constant. Use of a system of orthogonal curvilinear 

coordinates can be made, and each surface of the stratified structure, on which the 

characteristic parameter q remains constant, can be seen as a coordinate surface S3 (x3, t) or S3 

for a given value of x3 at time t . 

 

Let us consider the following moving curvilinear system 

 
(5) 

 



r, y and z being the Cartesian coordinates in an orthonormal basis ( k,j,i


), x1, x2, x3  the 

curvilinear coordinates and t the time. We call ih


the vector of components (x,i, y,i, zi). For an 

orthogonal curvilinear system of coordinates, the vectors ( )jih,h ji 


 are orthogonal. 

Dividing by the norm ii hh =


we obtain the normalized vector iii hhe


= and we define the 

curvilinear abscissa by dXi = hi dxi (Fig. 2). 

The mean curvature of surface S3 is then 

 
 (6)  

 

where S3 is a current surface S3 element. 

Projection operators can be defined [1] (for instance, one define 33 eeI


=⊥ and 

33 eeII //


−= , and a local velocity W


 inside the interfacial layer is introduced (Fig. 3) by the 

formula 

 

(7)  
with 

tt// hew,h
t

x
,VIV


==




= 3  

 

The stretch of a surface S3 moving locally at velocity W


 is then 

 

(8)  

 

 

with == ⊥⊥


//// I,I and where dtd

W
  stands for the convective derivative 

associated to W


. Quantities defined by (6), (7) and (8) are very important for the interface 

description because they have physical meaning. 

 

4. Thermodynamical relations 

 

For the bulk and the interfacial layer in the case of a classical fluid mixture with N species, 

the internal energy E of a given volume of fluid is an order one homogeneous function of its 

entropy S, its volume V and of the masses of species mj which are extensive quantities. This 

gives, for the unit mass, the Euler, Gibbs and Gibbs-Duhem well-known relations: 

 

(9)  

 



In (9), Yj is mass fraction and gj the chemical potential per unit of mass of the species j. For 

the 2D interface, usual thermodynamical relations read 

(10)  
 

In the case of 3D interfacial fluid layers with internal capillarity, and taking a one 

component fluid for simplicity, internal energy E of the stratified layer, for a volume V with a 

small thickness around a coordinate surface, is an order one homogeneous function of 

quantities S, V, of the mass m, and of a complementary extensive variable S which is 

homogeneous to an area, but is not equal to the area of the part of S3 contained in the 

considered volume. One has =
V

dV
d

dv

v
S



1
, and the internal energy per unit mass becomes e 

= e(s, v, 
d

dv
). 

One can write 

 

(11)  

 

More usually, one write [1, 6] 

 

(12)  

where  is defined as the capillarity coefficient [1]. 

 

5. General balance law 

 

The local form of the balance equation for any property, whose volumetric value is 

denoted by   is 

 

(13)   

 

where velocity W


 is defined by (7). An integration of the two sides of (13) across the 

interfacial layer leads to the balance law for the 2D interface [1]. 

 



 
Fig. 4. The different velocities on the (2D) interface S. 

 

 

(14)  
 

where S


 is the operator //


 taken at x3 = 0, and 


 is the unit normal 3e


to the surface  

S = S3(x3 =0), with definitions (1) to (3) for the interfacial variables, SW


 being defined by 

(3) with W


 in place of V


, and with the flux  

( )( )   −+=
II

I

dWVJJ
SSa







. The average velocities are shown on Fig. 4. 

General surface balance law (14) can be applied to masses of species and to total mass. An 

alternative form of (14) may then be deduced by using the mass balance and by introducing 

the mass flow rate ( ) 


 −= SWVm  

 

(15)  
 

and may be applied to momentum, total energy, internal energy, and entropy [1]. 

 

6. Interfacial constitutive relations 

 

6.1. 2D closure relations 

 

Using mass, species and internal energy balance equations deduced from (15) and using 

the relations of system (10), an interfacial Clausius-Duhem inequality is then written in which 

it appears a sum of products of terms of zero, one and two tensorial order terms [1] In fact, the 

two-dimensional surface entropy production is such that the surface dissipation Tsa has the 

symbolic form: 

 

(16)  
 

Each product corresponds to an irreversible phenomenon, and 

SA and 
SJ  represent the 

generalized forces and fluxes. 



This result suggests applying the general principles of irreversible Thermodynamics [35] 

and writing linear closure relations between generalized forces and fluxes of same tensorial 

order 

 

(17)  
 

This method is usually applied to classical problems of surfaces without mass [1] but with 

surface tension. At equilibrium, the momentum equation is the Laplace law 




−=− III pp  

Out of equilibrium, the momentum equation becomes 

 

(18)  
 

 

With or the bulk 


 stress tensor and //a


 for the interfacial stress tensor. Tensor //a


may 

contain surface viscosities terms [33]. 

Marangoni effect, Bénard-Marangoni instability [36], surface heat transfer, evaporation-

condensation, near-equilibrium surface chemical reactions, may be studied with this method. 

Coefficients 
SL of relation (17) are generally deduced from molecular theory and 

experimental measurements. The previous method is no more valid for material surfaces 

notably far from equilibrium, but constitutive relations can be found in the literature in 

specific cases, as for vapor recoil [37, 39], adsorption-desorption, and surface chemical 

reaction with non-linear kinetics. 

 

6.2. 3D closure relations 

 

Some situations cannot be directly studied using surface equations, and a preliminary study 

of the interfacial layer behavior is necessary. Fluid layers with capillarity must be considered 

as 3D interfacial layers, and the second gradient method utilized [1, 7, 11]. For such a fluid 

inside the interfacial layer far from any wall, and assuming that it is without dissipation 

(19)  
 

 

In simple cases it is possible to connect surface tension u to capillarity coefficient  [11], 

writing 

(20)  
 

 

Fluid with capillarity can also be applied near a wall. This is the case for some wetting 

problems [40, 41]. 

For some generalized interfaces, as premixed flames with high activation energy [13-16], 

shock waves and relaxation zones behind shock waves [1, 42, 43], interfacial layer instability 

between two miscible fluids [44], interfacial layer instability in a pure heated supercritical 



fluid [45], some shear layers [46], it is possible to deduce surface properties. But this results 

from a detailed study of the interfacial layer, which obeys generally to linearized (heat and 

species diffusion, viscosity) or non-linear (chemical kinetics) classical constitutive relations. 

For premixed flames with high activation energy, the obtained combustion velocity is a 

linear function [15] of sur face stretch SS W


 as defined by (8), but in strongly turbulent 

flows the stretch dependence becomes non-linear. 

 

 

 
Fig. 5. Amplification factor for two semi-infinite superposed fluids, without gravity: (a) In inviscid 

fluids with surface tension , 
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DS [1].  (b) With no surface tension but a 

linear velocity profile through the gaseous boundary layer r2=∞: and: o S2 =1; □ S2 = 10-1 ; ◊ S2 = 10-2; 

 = S2 =10-3, r2=U2/U1, S2= (Raynal 1997 [46]). 

 

In the case of interfacial layer with species diffusion between two miscible fluids, but also 

in the case of shear layers with momentum transfer, the stability analysis shows an influence 

of the interfacial layer on the growing curve (i, in function of k) similar to the one of surface 

tension on Rayleigh and Kelvin-Helmholtz instability growing curve. In Fig. 5a, and similarly 

in Fig. 5b, there is a domain of instability for i > O with a maximum of i  and a cut-off 

wave number. This suggests inserting of an effective surface tension in the second case. 

 

7. Conclusion 

 

Other relevant questions can be considered. 

A first question deals with the description of deformations inside the interfacial zone. 

Interfacial zone appeared as a stratified region. This is a relatively comfortable situation, 

where the equation for area deformation can be directly deduced from interfacial kinematics 



written in curvilinear coordinates. Indeed, the material derivative of  VS  3= , the density 

of area per unit volume of the structured layer, reads (see (8)) 

 

(21)  
 

This relation (in another form) is utilized by Candel and Poinsot [47] for flames. In 

turbulent burning flows, average quantities are introduced, and source terms appear on right 

hand side of (20). Another case is the one of two-phase mixtures. Lhuillier, Morel and 

Delhaye [48] introduce a distribution function  I for the interfacial area  per unit volume of 

the mixture. Writing a balance equation for  I a source term  appears, which vanishes in the 

case of our simple stratified interfacial layer. One need certainly a deepening of this problem, 

to understand better why Eq. (20) remains valid in so much various situations.  

The second question deals with numerical solving of interface problems. The 2D 

description often leads to discontinuities, and it is difficult in solve numerically this type of 

problem. Then, some authors try to obtain continuous equations even in discontinuous 

situations. Phase field models have been described for solidification of alloys. The interface is 

considered as a transition region where averaged local quantifies weighted by the liquid and 

solid volume fractions are introduced. At macroscopic scale, we find an enthalpy method [49] 

whereas at smaller scale, balance equations are deduced by minimization of free energy in 

functional analysis [50] Jamet et al. [51] use a second gradient method with an artificially 

thickened interface, and Jamet and Petitjeans [52] apply phase field models to interfaces of 

diffusion. Research attempt would certainly be useful on the topic “Phase field methods for 

fluid interfaces”. 

To conclude, we can say that in this paper, interfacial modeling of fluid was presented in 

such a manner that 2D description result generally from 3D analysis. Many examples where 

briefly presented. The reader will find a more detailed presentation in the book [1]. Other 

examples of application could certainly be considered. 
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