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ABSTRACT 

Basic concepts of interface and interfacial layer are 
first introduced. Orthogonal curvilinear coordinate 
analysis, used to study interfacial zones depending 
of time, is presented. Classical 3D and  2D 
thermodynamical relations are reminded and  
second gradient formulation is introduced. Then 
general balance laws are written and examples are 
given to illustrate the purpose. 
 
INTRODUCTION 

Interfaces are often compared with geometrical 
surfaces. But these surfaces have internal physical 
properties and must be considered as material 
surfaces. They are the seat of multiple exchanges 
with their surrounding, i.e. the bulks in contact with 
them. Thermodynamical properties and balance laws 
of interfaces are not always simple to obtain. It is 
often necessary to work with several scales of 
analysis. At microscopic scale, 2D interfaces 
become 3D interfacial layers, where 
thermodynamical relations and balance equations 
must be written. A review is presented in our book 
[1]. 
Many authors were interested by interfacial  
modeling. Interfacial fluid layers endowed with 
internal capillarity were studied in particular by Casal  
[2,3], Germain [4],  Gouin [5], Seppecher [6] and 
Gatignol [7]. Concept of interface extended to 
stretched flames were considered by Klimov [8], 
Sivashinski [9], Clavin and Joulin [10], Prud’homme 
[11]. For the concept of an “interface” with internal 
energy per unit aera, one can cite Delhaye [12], 
Scriven [13], Slattery [14]. Rocard [15] gave a 
statistical approach and Casal, Gouin, Germain, 
Seppecher a macroscopic approach. Discussion 
about interfacial velocities were driven by Landau 
and Lifschitz [16], Bedeaux, Albano and Mazur [17], 
Napolitano [18], Prosperetti [19] and, for interfaces 
with surface mass, by Ghez [20,21], Prud’homme 
[22]. In relation with the concept of an “interfacial 
layer”, Ishii [23], Gogosov [24], Sanfeld and 
Steinchen [25] utilize true quantities, and on the 
contrary, Landau and Lifschitz, Meinhold and 
Heerlein [26] excess quantities. The concept of 
dividing surface was utilized by Gibbs [27], Slattery 
[28], Defay et al. [29]. Many authors have 
established interfacial balance equations, but not 
always with the desirable strictness. One try here to 
point out some crucial problems and suggest 
solutions. 
  

INTERFACE AND INTERFACIAL LAYER 

The concept of an interface is relative. Some 
material surface seams very thin at a given scale 
and appear to be thick at a smaller one (Fig. 1). 
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 As examples of interface, one can mention various 
systems as capillary surfaces, miscible interfaces, 
some flames, and so on, all systems whose 
properties verify the same type of balance equations 
at a convenient scale. 
One consider here only fluid interfaces, i.e.,  
themselves fluid, without rigidity, and located 
between bulk fluids.  
Modeling of such interfaces means establishing 
equations of material surfaces (2D balance 
equations) and closing the obtained system by 
constitutive relations. 
2D interfacial properties can be deduced from 3D 
analysis, by integration across the interfacial layer. 

Then, interfacial quantities 
a

  and 
S

 are deduced 

from local 3D properties by integration between the 
boundaries of the interfacial layer. It gets 
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with the surface density  
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Applying (1) to the  fluid velocity V


, it gets 
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To calculate the integrals of the right hand member it 
is sometimes necessary to apply an asymptotic 
expansion method and to use a new coordinate n at 

smaller scale than   with dnd   
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ORTHOGONAL CURVILINEAR COORDINATES 

It is generally convenient to consider the interfacial 
layer as a stratified structure. On each surface of this 
structure we suppose that the value of a 
characteristic parameter q  (local density, 

temperature or concentration) is constant. Use of a 
system of orthogonal curvilinear coordinates can be 
made, and each surface of the stratified structure, on 
which the characteristic parameter q  remains 

constant, can be seen as a coordinate surface 

)t,x(S 33  or 3S  - obtained for a given value of 3x  at 

time t. 
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Fig. 2. Curvilinear orthogonal coordinates; coordinate surfaces. 

 
Let us consider the following moving curvilinear 
system 
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x , y  and z  being the Cartesian coordinates in an 

orthonormal basis  k,j,i


, 1x , 2x  and 3x  the 

curvilinear coordinates and t  the time. 

We call ih


, the vector of components  iii ,z,,y,,x . 

For the orthogonal curvilinear system of coordinates, 

the vectors ih


, jh


 )ji(   are orthogonal at any 

point. Dividing by the norm ii hh 


, we obtain the 

normalized vector 
iii h/he


  and we define the 

curvilinear abscissa by 
iii

dxhdX  (Fig. 2). The 

mean curvature of surface S3 is then 
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Projection operators can be defined [1] (for instance 

one define 33eeI


 , and 
33//

eeII


  ), and a local 

velocity W


 inside the interfacial layer is introduced 

(Fig. 3) by the formula 
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Fig. 3. Velocities inside the interface layer 

 
The stretch of a surface S3 moving locally at velocity 

W


is then 
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with 



I , 



////
I . 

Quantities defined by (6), (7) and (8) are very 
important for the interface description because they 
have physical meaning. 

 
THERMODYNAMICAL RELATIONS 
For the bulk and the interfacial layer in the case of a 
classical fluid mixture, the internal energy E of a 
given volume of fluid is an order one homogeneous 
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function of its entropy S, its volume V  and the 

masses of species mj, which are extensive 
quantities. This gives, for the unit mass, the Euler, 
Gibbs and Gibbs-Duhem well known relations: 
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            (9)  
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For the 2D interface, usual thermodynamical 
relations read  
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    (10) 

 
In the case of 3D interfacial fluid layers with internal 
capillarity, and taking a one component fluid for 
simplicity, internal energy E of the stratified layer - a 

volume with a small thickness   around a 

coordinate surface - is an order one homogeneous 

function of quantities S, V  , the mass m, and of a 

complementary extensive variable S, which is 

homogeneous to an area, but is not equal to the area 
of the part of S3 contained in the considered volume. 

One has S = Vv
v

V

d
dξ
d1 , and the internal energy per 

unit mass becomes 
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More usually, one write [1, 6] 
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GENERAL BALANCE LAW 
The local form of the balance equation for any 
property, whose volumetric value is denoted by  , 

is 
 



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
  (13) 

where velocity W


 is defined by (7) and where 

dtd
W
 stands for the convective derivative 

associated to W


. An integration of the two sides of 

(13) across the interfacial layer leads to the balance 
law for the 2D interface 
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with definitions (1) to (3) for the interfacial variables, 

S
W


 being defined by (3) with W


 in place of V


, and 

with the flux 



d)]WV(J[J
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. The average 

velocities are shown on Fig. 4. 
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Fig. 4. The different velocities on the 2D interface S. 

 
General  surface balance law (14) can be applied to 
masses of species and to total mass. An alternative 
form of (14) may then be deduced 
 

  Sa//aSS
SS

a J]]mJ[[
dt

d



 


   (15) 

 
and may be applied to momentum, total energy, 
internal energy and entropy. An interfacial Clausius-
Duhem inequality is then written which first member 
is a sum of products of terms of zero, one and two 
tensorial order terms.  
 
 
INTERFACIAL CONSTITUTIVE RELATIONS 
 
2D closure relations 

Then, the two-dimensional surface entropy 

production a  is such that the surface dissipation  

 

aST   has the symbolic form: 
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Each product corresponds to an irreversible 

phenomena, and 


S
A  and 



S
J  represent the 

generalized forces and fluxes.  
This result suggests applying the general principles 
of Irreversible Thermodynamics [30] and writing 
linear closure relations between generalized forces 
and fluxes of same tensorial order 
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This method is usually applied to classical problems 
related to capillarity at equilibrium (where 




III pp ), or out of equilibrium (where 

  0]]p[[]]T[[ S 


), and it is 

possible to introduce surface viscosities [28]. 
Marangoni  effect, Bénard-Marangoni instability [31], 
surface heat transfer, evaporation-condensation, 
near-equilibrium surface chemical reactions, may be 
studied with this method. There are important 
simplifications for interfaces without mass [1]. 

Coefficients 


S
L  are generally deduced from 

molecular theory and experimental measurements. 
The previous method is no more valid for material 
surfaces far from equilibrium, but constitutive 
relations can be found in the literature in specific 
cases, as for vapor recoil [32, 33, 34], adsorption-
desorption, and surface chemical reaction with non-
linear kinetics. 
 
3D closure relations 
Some situations can not be directly studied using 
surface equations, and a preliminary study of the 
interfacial layer behavior is necessary.  
This is the case for some wetting problems [35]  
where fluid layers with capillarity must be considered 
as 3D interfacial layers, and the second gradient 
method utilized [1, 2, 6]. For such a fluid inside the 
interfacial layer and assuming that it is without 
dissipation 
 




  Ip
*

         (18) 

 
(In simple cases it is possible to connect surface 

tension   to capillarity coefficient   , writing [6] 


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


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II

I

II
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dd)(p
2

*


). 

For some generalized interfaces, as premixed flames 
with high activation energy [8-11], shock waves and 
relaxation zones behind shock waves [36, 37], 
interfacial layer instability between two miscible fluids 

[38], interfacial layer instability in a pure heated 
supercritical fluid [39], some shear layers [40], it is 
possible to deduce surface properties. But this 
results from a detailed study of the interfacial layer, 
which obeys generally to linearized (heat and 
species diffusion, viscosity) or non-linear (chemical 
kinetics) classical constitutive relations. For premixed 
flames with high activation energy, the obtained 
combustion velocity is a linear function [10] of 

surface stretch 
SS

W

  as defined by (8), but in 

strongly turbulent flows the stretch dependence 
becomes non-linear. In the case of interfacial layer 
between two miscible fluids, or in the shear layers, 
the stability analysis shows an influence of the 

interfacial layer on the growing curve (
i

  in  function 

of k) similar to the one of surface tension on 
Rayleigh and Kelvin-Helmholtz instability growing 
curve (Fig. 5). This suggests inserting of an effective 
surface tension. 
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Fig. 5. Amplification factor for two semi infinite superposed fluids, 

without gravity in inviscid fluids with surface tension:,       
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OTHER RELEVANT QUESTIONS 

Interfacial zone appeared as a stratified region. This 
is a relatively comfortable situation, where the 
balance equation for area can be directly deduced 
from interfacial kinematics written in curvilinear 

coordinates. Indeed, the material derivative of  , 
the density of area per unit volume of the structured 
layer (see (8)) reads 
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













V

V     (19) 

 
This equation (in an other form) is utilized by Candel 
& Poinsot [41] for flames. In turbulent burning flows, 
average quantities are introduced and source terms 
appear on right-hand side of (19). 
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An other case is the one of two-phase mixtures. 
Lhuillier, Morel & Delhaye [42] introduce a 

distribution function 
I
  for the interfacial area  per 

unit volume of the mixture. Writing a balance 

equation for 
I
 , a source term   appears, which 

vanishes if applied  to our simple stratified interfacial 
layer. 
In this paper, interfacial modeling of fluid was 
presented in such a manner that 2D description result 
generally from 3D analysis. The 2D description often 
leads to discontinuities, and it is difficult to solve 
numerically this type of problem. Then, some authors 
try to obtain continuous equations even in 
discontinuous situations. Phase field models have 
been described for solidification of alloys. The 
interface is considered as a transition region where 
averaged local quantities weighted by the liquid and 
solid volume fractions are introduced. At 
macroscopic scale, we find an enthalpy method [43] 
whereas at smaller case, balance equations are 
deduced by minimization of free energy in functional 
analysis [44]. Jamet et al. [45] use a second gradient 
method with an artificially thickened interface, and 
Jamet and Petitjeans [46] apply phase field models to 
interfaces of diffusion. 
 

 
NOMENCLATURE 



S
A  interfacial generalized force 



S
J  interfacial generalized flux 

k   wave number 
L0 hydrodynamic scale 



S
L interfacial phenomenological coefficient  

n normal coordinate at small scale 


p  interfacial pressure 

q physical parameter 
S3 coordinate surface 
t  time 

T


 bulk viscous stress tensor 
U velocity  

V


 local fluid velocity  

w


 velocity of the surface S3 

x, y, z Cartesian coordinates 

1x , 2x , 3x  curvilinear coordinates 

x


 position of a point  

0
  interfacial thickness  

  small parameter 1L/ 00   

  any property per unit mass 

  normal coordinate at any scale 




 unit normal to the interface 

  fluid density 

  surface tension 




 bulk stress tensor 

i
  amplification factor 

]][[   jump 
III

  

 
Subscripts 
1, 2  both sides for superposed fluids 
I, II  lower and upper limits of an interfacial layer 

,i space derivative 
i

x/  

//, S parallel to the interface 

  normal to the interface 
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