Roger Prud'homme 
  
Renée Gatignol 
  
  
  
PRUD'HOMME 1 THICK FLUID INTERFACE MODELING

Basic concepts of interface and interfacial layer are first introduced. Orthogonal curvilinear coordinate analysis, used to study interfacial zones depending of time, is presented. Classical 3D and 2D thermodynamical relations are reminded and second gradient formulation is introduced. Then general balance laws are written and examples are given to illustrate the purpose.

INTRODUCTION

Interfaces are often compared with geometrical surfaces. But these surfaces have internal physical properties and must be considered as material surfaces. They are the seat of multiple exchanges with their surrounding, i.e. the bulks in contact with them. Thermodynamical properties and balance laws of interfaces are not always simple to obtain. It is often necessary to work with several scales of analysis. At microscopic scale, 2D interfaces become 3D interfacial layers, where thermodynamical relations and balance equations must be written. A review is presented in our book [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces[END_REF]. Many authors were interested by interfacial modeling. Interfacial fluid layers endowed with internal capillarity were studied in particular by Casal [START_REF] Casal | La capillarité interne[END_REF][START_REF] Casal | La théorie du second gradient et la capillarité[END_REF], Germain [START_REF] Germain | La méthode des puissances virtuelles en mécanique des milieux continus[END_REF], Gouin [START_REF] Casal | A representation of liquid-vapor interfaces by using fluids of second grade[END_REF], Seppecher [START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides : Interfaces et lignes de contact[END_REF] and Gatignol [START_REF] Gatignol | Modelisation of fluid-fluid interfaces with material properties[END_REF]. Concept of interface extended to stretched flames were considered by Klimov [8], Sivashinski [START_REF] Sivashinsky | Structure of Bunsen flames[END_REF], Clavin and Joulin [START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF], Prud'homme [START_REF] Prud'homme | Fluides hétérogènes et réactifs: écoulements et transferts[END_REF]. For the concept of an "interface" with internal energy per unit aera, one can cite Delhaye [START_REF] Delhaye | Jump conditions and entropy sources in two-phase systems[END_REF], Scriven [START_REF] Scriven | Dynamics of a fluid interface. Equation of motion for Newtonian surface[END_REF], Slattery [START_REF] Slattery | General balance equation for a phase interface[END_REF]. Rocard [START_REF] Rocard | Thermodynamique[END_REF] gave a statistical approach and Casal, Gouin, Germain, Seppecher a macroscopic approach. Discussion about interfacial velocities were driven by Landau and Lifschitz [START_REF] Landau | Statistical physics[END_REF], Bedeaux, Albano and Mazur [START_REF] Bedeaux | Boundary conditions and non equilibrium thermodynamics[END_REF], Napolitano [START_REF] Napolitano | Thermodynamics and dynamics of surface phase[END_REF], Prosperetti [START_REF] Prosperitti | Boundary conditions at a liquid-vapor interface[END_REF] and, for interfaces with surface mass, by Ghez [START_REF] Ghez | A generalized Gibbsian surface[END_REF][START_REF] Ghez | Irreversible thermodynamics of a stationary interface[END_REF], Prud'homme [START_REF] Prud'homme | Equations du bilan de systèmes comprenant des interfaces[END_REF]. In relation with the concept of an "interfacial layer", Ishii [START_REF] Ishii | Thermo-fluid dynamic theory of two phase flow[END_REF], Gogosov [START_REF] Gogosov | Conservation laws for the mass, the momentum and energy on a phase interface for true and excess surface parameters[END_REF], Sanfeld and Steinchen [START_REF] Sanfeld | Surface excess momentum balances by i,tegration across the surface of the volume balances[END_REF] utilize true quantities, and on the contrary, Landau and Lifschitz, Meinhold and Heerlein [START_REF] Meinhold-Heerlein | Surface conditions for the liquid-vapor system, taking in account entropy production caused by mass and energy transport across the interface[END_REF] excess quantities. The concept of dividing surface was utilized by Gibbs [START_REF] Gibbs | The scientific papers of J. W. Gibbs[END_REF], Slattery [START_REF] Slattery | Interfacial transport phenomena[END_REF], Defay et al. [START_REF] Defay | Surface tension and adsorption[END_REF]. Many authors have established interfacial balance equations, but not always with the desirable strictness. One try here to point out some crucial problems and suggest solutions.

INTERFACE AND INTERFACIAL LAYER

The concept of an interface is relative. Some material surface seams very thin at a given scale and appear to be thick at a smaller one (Fig. 1). As examples of interface, one can mention various systems as capillary surfaces, miscible interfaces, some flames, and so on, all systems whose properties verify the same type of balance equations at a convenient scale. One consider here only fluid interfaces, i.e., themselves fluid, without rigidity, and located between bulk fluids.

Modeling of such interfaces means establishing equations of material surfaces (2D balance equations) and closing the obtained system by constitutive relations.

2D interfacial properties can be deduced from 3D analysis, by integration across the interfacial layer. Then, interfacial quantities 
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To calculate the integrals of the right hand member it is sometimes necessary to apply an asymptotic expansion method and to use a new coordinate n at
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ORTHOGONAL CURVILINEAR COORDINATES

It is generally convenient to consider the interfacial layer as a stratified structure. On each surface of this structure we suppose that the value of a characteristic parameter q (local density, temperature or concentration) is constant. Use of a system of orthogonal curvilinear coordinates can be made, and each surface of the stratified structure, on which the characteristic parameter q remains constant, can be seen as a coordinate surface Let us consider the following moving curvilinear system
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x , y and z being the Cartesian coordinates in an

orthonormal basis   k , j , i    , 1 x , 2
x and 3 x the curvilinear coordinates and t the time. 
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and we define the curvilinear abscissa by
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Projection operators can be defined [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces[END_REF] (for instance one define
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), and a local velocity W  inside the interfacial layer is introduced (Fig. 3) by the formula
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Fig. 3. Velocities inside the interface layer

The stretch of a surface S 3 moving locally at velocity
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Quantities defined by ( 6), ( 7) and ( 8) are very important for the interface description because they have physical meaning.

THERMODYNAMICAL RELATIONS

For the bulk and the interfacial layer in the case of a classical fluid mixture, the internal energy E of a given volume of fluid is an order one homogeneous function of its entropy S, its volume V and the masses of species m j , which are extensive quantities. This gives, for the unit mass, the Euler, Gibbs and Gibbs-Duhem well known relations:
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For the 2D interface, usual thermodynamical relations read
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In the case of 3D interfacial fluid layers with internal capillarity, and taking a one component fluid for simplicity, internal energy E of the stratified layer -a volume with a small thickness   around a coordinate surface -is an order one homogeneous function of quantities S, V , the mass m, and of a complementary extensive variable S, which is homogeneous to an area, but is not equal to the area of the part of S 3 contained in the considered volume. 
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More usually, one write [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces[END_REF][START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides : Interfaces et lignes de contact[END_REF]    
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GENERAL BALANCE LAW

The local form of the balance equation for any property, whose volumetric value is denoted by  , is
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where velocity W  is defined by [START_REF] Gatignol | Modelisation of fluid-fluid interfaces with material properties[END_REF] and where dt d W  stands for the convective derivative associated to W

 . An integration of the two sides of (13) across the interfacial layer leads to the balance law for the 2D interface
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with definitions (1) to (3) for the interfacial variables, General surface balance law [START_REF] Slattery | General balance equation for a phase interface[END_REF] can be applied to masses of species and to total mass. An alternative form of ( 14) may then be deduced

  S a // a S S S S a J ] ] m J [ [ dt d                  (15) 
and may be applied to momentum, total energy, internal energy and entropy. An interfacial Clausius-Duhem inequality is then written which first member is a sum of products of terms of zero, one and two tensorial order terms.

INTERFACIAL CONSTITUTIVE RELATIONS

2D closure relations

Then, the two-dimensional surface entropy production a  is such that the surface dissipation a S T  has the symbolic form:
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Each product corresponds to an irreversible phenomena, and  S A and  S J represent the generalized forces and fluxes. This result suggests applying the general principles of Irreversible Thermodynamics [START_REF] De | Nonequilibrium thermodynamics[END_REF] and writing linear closure relations between generalized forces and fluxes of same tensorial order
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This method is usually applied to classical problems related to capillarity at equilibrium (where
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), and it is possible to introduce surface viscosities [START_REF] Slattery | Interfacial transport phenomena[END_REF]. Marangoni effect, Bénard-Marangoni instability [START_REF] Scriven | On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity[END_REF], surface heat transfer, evaporation-condensation, near-equilibrium surface chemical reactions, may be studied with this method. There are important simplifications for interfaces without mass [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces[END_REF].

Coefficients   S L
are generally deduced from molecular theory and experimental measurements. The previous method is no more valid for material surfaces far from equilibrium, but constitutive relations can be found in the literature in specific cases, as for vapor recoil [START_REF] Palmer | The hydrodynamic stability of rapidly evaporating liquids at reduced pressure[END_REF][START_REF] Sefiane | A new mechanism for pool boiling crisis, recoil instability and contact angle influence[END_REF][START_REF] Nicolaiev | Boiling crisis and non-equilibrium drying transition[END_REF], adsorptiondesorption, and surface chemical reaction with nonlinear kinetics.

3D closure relations

Some situations can not be directly studied using surface equations, and a preliminary study of the interfacial layer behavior is necessary. This is the case for some wetting problems [START_REF] Pomeau | Moving contact line[END_REF] where fluid layers with capillarity must be considered as 3D interfacial layers, and the second gradient method utilized [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces[END_REF][START_REF] Casal | La capillarité interne[END_REF][START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides : Interfaces et lignes de contact[END_REF]. For such a fluid inside the interfacial layer and assuming that it is without dissipation
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(In simple cases it is possible to connect surface tension  to capillarity coefficient  , writing [START_REF] Seppecher | Etude d'une modélisation des zones capillaires fluides : Interfaces et lignes de contact[END_REF]  
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For some generalized interfaces, as premixed flames with high activation energy [8][START_REF] Sivashinsky | Structure of Bunsen flames[END_REF][START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF][START_REF] Prud'homme | Fluides hétérogènes et réactifs: écoulements et transferts[END_REF], shock waves and relaxation zones behind shock waves [START_REF] Jamet | Modélisation des discontinuities dans les écoulements diphasiques compressibles[END_REF][START_REF] Jamet | Modélisation interfaciale de chocs dans les suspensions[END_REF], interfacial layer instability between two miscible fluids [START_REF] Kurowski | Gravitational instability of a fictitious front during mixing of miscible fluids[END_REF], interfacial layer instability in a pure heated supercritical fluid [START_REF] Zappoli | Instabilité gravitationnelle dans un fluide supercritique pur[END_REF], some shear layers [START_REF] Raynal | Instabilité et entrainement à l'interface d'une couche de mélange liquide-gaz[END_REF], it is possible to deduce surface properties. But this results from a detailed study of the interfacial layer, which obeys generally to linearized (heat and species diffusion, viscosity) or non-linear (chemical kinetics) classical constitutive relations. For premixed flames with high activation energy, the obtained combustion velocity is a linear function [START_REF] Clavin | Premixed flames in large and high intensity turbulent flow[END_REF] of surface stretch
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as defined by (8), but in strongly turbulent flows the stretch dependence becomes non-linear. In the case of interfacial layer between two miscible fluids, or in the shear layers, the stability analysis shows an influence of the interfacial layer on the growing curve ( i  in function of k) similar to the one of surface tension on Rayleigh and Kelvin-Helmholtz instability growing curve (Fig. 5). This suggests inserting of an effective surface tension.
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Fig. 5. Amplification factor for two semi infinite superposed fluids, without gravity in inviscid fluids with surface tension:,
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OTHER RELEVANT QUESTIONS Interfacial zone appeared as a stratified region. This is a relatively comfortable situation, where the balance equation for area can be directly deduced from interfacial kinematics written in curvilinear coordinates. Indeed, the material derivative of  , the density of area per unit volume of the structured layer (see (8)) reads
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This equation (in an other form) is utilized by Candel & Poinsot [START_REF] Candel | Flame stretch and the balance equation for the flame area[END_REF] for flames. In turbulent burning flows, average quantities are introduced and source terms appear on right-hand side of [START_REF] Prosperitti | Boundary conditions at a liquid-vapor interface[END_REF].

An other case is the one of two-phase mixtures. Lhuillier, Morel & Delhaye [START_REF] Lhuillier | Bilan d'aire interfaciale dans un mélange diphasique : approche locale vs approche particulaire[END_REF] introduce a distribution function I  for the interfacial area  per unit volume of the mixture. Writing a balance equation for I  , a source term  appears, which vanishes if applied to our simple stratified interfacial layer. In this paper, interfacial modeling of fluid was presented in such a manner that 2D description result generally from 3D analysis. The 2D description often leads to discontinuities, and it is difficult to solve numerically this type of problem. Then, some authors try to obtain continuous equations even in discontinuous situations. Phase field models have been described for solidification of alloys. The interface is considered as a transition region where averaged local quantities weighted by the liquid and solid volume fractions are introduced. At macroscopic scale, we find an enthalpy method [START_REF] El Ganaoui | Modélisation numérique de la convection thermique instationnaire en présence d'un front de solidification déformable[END_REF] whereas at smaller case, balance equations are deduced by minimization of free energy in functional analysis [START_REF] Plapp | Eutectic colony formation: A phase field model[END_REF]. Jamet et al. [START_REF] Jamet | A numerical description of a liquid-vapor interface based on the second gradient theory[END_REF] use a second gradient method with an artificially thickened interface, and Jamet and Petitjeans [START_REF] Jamet | A physical justification of a phase-field model for interfaces separating miscible fluids[END_REF] apply phase field models to interfaces of diffusion. 
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