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ASYMPTOTIC STABILITY OF VISCOUS SHOCKS
IN THE MODULAR BURGERS EQUATION

UYEN LE, DMITRY E. PELINOVSKY, AND PASCAL POULLET

Abstract. Dynamics of viscous shocks is considered in the modular Burgers equation,
where the time evolution becomes complicated due to singularities produced by the modular
nonlinearity. We prove that the viscous shocks are asymptotically stable under odd and
general perturbations. For the odd perturbations, the proof relies on the reduction of the
modular Burgers equation to a linear diffusion equation on a half-line. For the general
perturbations, the proof is developed by converting the time-evolution problem to a system
of linear equations coupled with a nonlinear equation for the interface position. Exponential
weights in space are imposed on the initial data of general perturbations in order to gain the
asymptotic decay of perturbations in time. We give numerical illustrations of asymptotic
stability of the viscous shocks under general perturbations.

1. Introduction

Modular nonlinearity is commonly used for approximations of nonlinear interactions be-
tween particles by piecewise linear functions [12, 30]. Unidirectional propagation of waves
in chains of particles is described by simplified nonlinear evolution equations with modular
nonlinearity such as the modular Burgers [16, 20, 22, 24] and modular Korteweg–de Vries
[19, 21, 23] equations.

Traveling solutions of modular evolution equations such as viscous shocks and solitary
waves are found from differential equations by matching solutions of linear equations with
suitable condition at the interface where the modular nonlinearity jumps. On the other
hand, the time evolution of the modular equations is a more complicated problem because
the transport term tends to break the solution along the characteristic lines whereas the
diffusion or dispersion terms smoothen out the solution and affect propagation of waves
near the interface. It is unclear without detailed analysis if the initial-value problem can be
solved in a suitable function space due to singularities arising from the modular nonlinearity.
Because of these reasons, stability of propagation of traveling waves remains open.

Similar questions arise in the context of granular chains and involve the logarithmic ver-
sions of the Burgers and Korteweg–de Vries equations [8, 9]. The logarithmic nonlinearity is
more singular than the modular nonlinearity, hence questions of well-posedness and stability
of nonlinear waves remain open for some time [4, 15].
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The purpose of this work is to clarify stability of viscous shocks in the modular Burgers
equation. We take the modular Burgers equation in the following normalized form:

∂w

∂t
=
∂|w|
∂x

+
∂2w

∂x2
, (1.1)

where w(t, x) : R+ × R 7→ R. Traveling wave solutions and preliminary numerical approxi-
mations of time-dependent solutions to the modular Burgers equation (1.1) were constructed
with the Fourier sine series in [16]. Similar results were discussed in [20, 22]. Collisions of
compactly supported pulses were considered in [12] by using heuristic approximation meth-
ods. However, no rigorous analysis of well-posedness or numerical approximations with the
control of error terms has been developed so far for the modular Burgers equation (1.1).

In a similar context of the diffusion equation with the piecewisely defined nonlinearity, we
mention the Kolmogorov–Petrovskii–Piskunov (KPP) model with the cutoff reaction rate
proposed in [3]. Asymptotic stability of viscous shocks (stationary fronts) was analyzed in
[6] and more recently in [28, 29].

Viscous shocks and metastable N -waves of the classical Burgers equation were studied in
[14] and more recently in [1, 2]. Stability arguments for viscous shocks and metastable N -
waves can be developed by using the linearization analysis and dynamical system methods.
Viscous shocks are also useful for analysis of the enstrophy growth in the limit of small
dissipation, see [17, 18] and references therein.

Non-smoothness of the nonlinear term in the modular Burgers equation (1.1) restricts
us from using the dynamical system methods in the analysis of asymptotic stability of vis-
cous shocks. Nevertheless, we are able to use the linearized estimates due to the piecewise
definition of the nonlinear term in this model.

The main novelty of this paper is the rigorous analysis of the modular nonlinearity. We
keep the functional-analytic framework as simple as possible. If the perturbation has the odd
spatial symmetry, the asymptotic stability result follows from analysis of the linear diffusion
equation. For general perturbations, we impose the spatial exponential decay on the initial
data in order to gain the asymptotic decay of perturbations in time. This technique is defi-
nitely not novel, see [7, 13, 25] for earlier studies in a similar context. Further improvements
of the asymptotic stability results in less restrictive function spaces are left for future work.

The paper is organized as follows. Main results are described in Section 2. Properties
of solutions of the linear diffusion and Abel integral equations are reviewed in Section 3.
Asymptotic stability of viscous shocks in the space of odd and general functions is proven in
Sections 4 and 5 respectively. Numerical illustrations are given in Section 6. The summary
and open directions are described in Section 7.

2. Main results

In what follows, we use the classical notations Hk(R) for the Sobolev space of squared
integrable distributions on R with squared integrable derivatives up to the integer order
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k ∈ N. In particular, the norms in H1 and H2 are defined by

‖f‖H1 :=
(
‖f‖2L2 + ‖f ′‖2L2

)1/2
,

‖f‖H2 :=
(
‖f‖2L2 + ‖f ′‖2L2 + ‖f ′′‖2L2

)1/2
,

Similarly, we consider W 1,∞ and W 2,∞ for bounded functions with bounded derivatives up
the first and second order respectively. To simplify the notations, we use

‖f‖Hk∩Wk,∞ := max{‖f‖Hk , ‖f‖Wk,∞}.
By Sobolev’s embedding, if f ∈ H2(R), then f ∈ C1(R) ∩ W 1,∞(R) and f and f ′ decay
to zero at infinity. In many cases throughout our work, if f ∈ W 2,∞(R), then f will be
considered in the class of functions with piecewise continuous f ′′.

Basic properties of the heat kernel, convolution estimates, solutions to the linear diffusion
equations, and solutions to the Abel integral equations are reviewed in Section 3.

The traveling viscous shock of the modular Burgers equation (1.1) can be found in the
closed analytical form. Substituting w(t, x) = Wc(x − ct) in (1.1) yields the differential
equation

W ′′
c (x) + sign(Wc)W

′
c(x) + cW ′

c(x) = 0. (2.1)

Solutions of (2.1) are piecewise C2 functions satisfying the interface condition

[W ′′
c ]+−(x0) = −2W ′

c(x0) (2.2)

at each interface located at x0, where [f ]+−(x0) = f(x+0 ) − f(x−0 ) is the jump of a piecewise
continuous function f across x0. Assuming a single interface at x0 = 0 and the boundary
conditions Wc(x) → W± as x → ±∞ with W− < 0 < W+, we obtain the exact solution to
the differential equation (2.1) satisfying the jump condition (2.2) in the form

Wc(x) =

{
W+(1− e−(1+c)x), x > 0,
W−(1− e(1−c)x), x < 0,

(2.3)

with the uniquely defined speed

c =
W+ +W−
W− −W+

. (2.4)

If W+ = −W−, then c = 0 and the viscous shock W0 is time-independent. Moreover,
the modular Burgers equation (1.1) on the line R is closed on the half-line in the space of
odd functions. In this case, the evolution equation with the normalized boundary condition
W+ ≡ 1 takes the form:  wt = wx + wxx, x > 0,

w(t, 0) = 0,
w(t, x)→ 1 as x→ +∞,

(2.5)

subject to the positivity condition

w(t, x) > 0, x > 0. (2.6)

The classical solution of the boundary-value problem (2.5) satisfies the constraint

wx(t, 0
+) + wxx(t, 0

+) = 0. (2.7)
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If a classical solution w(t, x) : R+×R+ 7→ R to the boundary-value problem (2.5) is extended
to the odd function wext(t, x) : R+ × R 7→ R, then wext(t, ·) is a piecewise C2 function
satisfying the interface condition

[wxx]
+
−(t, 0) = −2wx(t, 0), (2.8)

where w ≡ wext for simplicity of notations.
The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0

under the odd perturbations from the analysis of the boundary-value problem (2.5) subject
to the positivity condition (2.6) and the boundary constraint (2.7). The proof of this theorem
is presented in Section 4.

Theorem 2.1. For every ε > 0 there is δ > 0 such that every odd w0 satisfying

‖w0 −W0‖H2 < δ (2.9)

generates the unique odd solution w(t, x) to the modular Burgers equation (1.1) with w(0, x) =
w0(x) satisfying

‖w(t, ·)−W0‖H2 < ε, t > 0 (2.10)

and

‖w(t, ·)−W0‖W 2,∞ → 0 as t→ +∞. (2.11)

The solution belongs to the class of functions such that w −W0 ∈ C(R+, H
2(R)).

Remark 2.2. Since H2(R) is continuously embedded into C1(R) ∩W 1,∞(R) with functions
and their first derivatives decaying to zero at infinity, whereas W0(0) = 0, W ′

0(0) = 1, and
W0(x) → 1 as x → ∞, the only interface of the solution w(t, ·) in Theorem 2.1 with small
ε > 0 is located at the origin. The positivity condition (2.6) is satisfied for all t ∈ R+.

Remark 2.3. The following transformation

w(t, x) =

{
W+v((1 + c)2t, (1 + c)(x− ct)), x− ct > 0,
W−v((1− c)2t, (1− c)(x− ct), x− ct < 0,

(2.12)

where c is given by (2.4), relates solutions w(t, x) with W+ 6= −W− to solutions v(t, x) with
normalized boundary conditions v(t, x) → ±1 as x → ±∞. If v(t, x) is odd in x, then it
satisfies the same boundary-value problem (2.5) subject to the same constraints (2.6) and
(2.7). Hence Theorem 2.1 can be extended trivially to the traveling viscous shock Wc with
c 6= 0 under the odd perturbation of v(t, x) in (2.12).

For the general perturbations, we consider the solution w(t, x) to the modular Burgers
equation (1.1) with exactly one interface located dynamically at x = ξ(t). Without loss
of generality, we assume ξ(0) = 0. The evolution equation with the normalized boundary
conditions W+ = −W− ≡ 1 takes the form: wt = ±wx + wxx, ±(x− ξ(t)) > 0,

w(t, ξ(t)) = 0,
w(t, x)→ ±1 as x→ ±∞,

(2.13)
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subject to the positivity conditions

± w(t, x) > 0, ±(x− ξ(t)) > 0. (2.14)

Piecewise C2 solutions of the boundary-value problem (2.13) satisfy the interface condition

[wxx]
+
−(t, ξ(t)) = −2wx(t, ξ(t)), (2.15)

whereas the boundary condition w(t, ξ(t)) = 0 implies

wt(t, ξ(t)) + ξ′(t)wx(t, ξ(t)) = 0, (2.16)

for continuous wt and wx across the interface at x = ξ(t).
The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0

under general perturbations from the analysis of the boundary-value problem (2.13) subject
to the positivity conditions (2.14) and the interface conditions (2.15) and (2.16). The proof
of this theorem is presented in Section 5.

Theorem 2.4. Fix α ∈
(
0, 1

2

)
. For every ε > 0 there is δ > 0 such that every w0 satisfying

‖w0 −W0‖H2∩W 2,∞ + ‖eα|·|(w0 −W0)‖W 2,∞ < δ (2.17)

generates the unique solution w(t, x) to the modular Burgers equation (1.1) with w(0, x) =
w0(x) satisfying

‖w(t, ·+ ξ(t))−W0‖H2∩W 2,∞ < ε, t > 0 (2.18)

and

‖w(t, ·+ ξ(t))−W0‖W 2,∞ → 0 as t→ +∞, (2.19)

where ξ ∈ C1(R+) is the uniquely determined interface position satisfying ξ(0) = 0 and
ξ′ ∈ L1(R+) ∩ L∞(R+). The solution belongs to the class of functions such that

w(t, ·+ ξ(t))−W0 ∈ C(R+, H
2(R) ∩W 2,∞(R)) (2.20)

and

eα|·+ξ(t)|[w(t, ·+ ξ(t))−W0] ∈ C(R+,W
2,∞(R)). (2.21)

Remark 2.5. The additional requirement w0 −W0 ∈ H2(R) ∩W 2,∞(R) for the initial data
w0 in Theorem 2.4 compared to w0 −W0 ∈ H2(R) in Theorem 2.1 is due to the necessity
to control ξ′(t) from the interface conditions (2.15) and (2.16). As we will show in Lemma
5.1, this is possible if the solution stays in the class of functions satisfying (2.20).

Remark 2.6. We assume in (2.17) that |w0(x)−W0(x)| → 0 as |x| → ∞ at least exponen-
tially with the decay rate α ∈ (0, 1

2
). This gives the asymptotic stability resulting in

ξ′(t)→ 0 and ‖w(t, ·+ ξ(t))−W0‖W 2,∞ → 0 as t→ +∞.

The exponential decay in space is preserved in time as is shown in (2.21). It is opened for
further studies to relax the exponential decay requirement on the general initial data w0.

Remark 2.7. Thanks to the transformation (2.12), Theorem 2.4 can be extended trivially
to the traveling viscous shock Wc with c 6= 0 under a general perturbation of v(t, x).
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Numerical illustrations of the asymptotic stability of the viscous shock (2.3) with c =
0 for two examples of general perturbations are given in Section 6, where the boundary-
value problem (2.13) with (2.14), (2.15), and (2.16) is approximated by using the finite-
difference method. Error of the finite-difference numerical approximation is controlled by
the standard analysis. The two examples are constructed for perturbations with the Gaussian
and exponential decay at infinity. Numerical simulations illustrate the asymptotic stability
result of Theorem 2.4.

3. Preliminary results

The heat kernel is defined by G(t, x) := 1√
4πt
e−

x2

4t . It follows from explicit computations

of integrals that the heat kernel satisfies the properties:

‖G(t, ·)‖L1(R) = 1, ‖G(t, ·)‖L2(R) =
1

(8πt)1/4
, ‖G(t, ·)‖L∞(R) =

1

(4πt)1/2
, (3.1)

‖∂xG(t, ·)‖L1(R) =
1

(πt)1/2
, ‖∂xG(t, ·)‖L2(R) =

1

2(8π)1/4t3/4
, (3.2)

and

‖∂xG(t, ·)‖L∞(R) =
1

2(2πe)1/2t
, (3.3)

The heat kernel is used to solve the following Dirichlet problem for the linear diffusion
equation on the half-line:  vt = vxx, x > 0, t > 0,

v(t, 0) = 0, t > 0,
v(0, x) = v0(x), x > 0.

(3.4)

For a rather general class of functions v0(x) : R+ 7→ R (not necessarily decaying to zero at
infinity), the Dirichlet problem (3.4) can be solved by the method of images:

v(t, x) =

∫ ∞
0

v0(y) [G(t, x− y)−G(t, x+ y)] dy. (3.5)

The convolution integrals in (3.5) are analyzed with the generalized Young’s inequality:

‖f ∗ g‖Lr(R) ≤ ‖f‖Lp(R)‖g‖Lq(R), p, q, r ≥ 1, 1 +
1

r
=

1

p
+

1

q
, (3.6)

for every f ∈ Lp(R) and g ∈ Lq(R), where (f ∗ g)(x) :=
∫
R f(y)g(x− y)dy is the convolution

integral. When integration is needed to be restricted on R+ as in (3.5), we can use the
characteristic function χR+ defined by χR+(x) = 1 for x > 0 and χR+(x) = 0 for x < 0.

For the inhomogeneous linear diffusion equation on the half-line: vt = vxx + f(t, x), x > 0, t > 0,
v(t, 0) = 0, t > 0,
v(0, x) = v0(x), x > 0.

(3.7)
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with given v0(x) : R+ 7→ R and f(t, x) : R+ × R+ 7→ R, the exact solution is written in the
form

v(t, x) =

∫ ∞
0

v0(y) [G(t, x− y)−G(t, x+ y)] dy

+

∫ t

0

∫ ∞
0

f(τ, y) [G(t− τ, x− y)−G(t− τ, x+ y)] dydτ. (3.8)

Next, we analyze the following initial-value problem:{
νt = νy + νyy + 2γ(t)δ(y), y ∈ R, t > 0,
ν(0, y) = 0, y ∈ R, (3.9)

where δ is the Dirac distribution centered at zero and γ ∈ C(R+) is a given function. In
order to construct the exact solution to this problem, we use the Laplace transform in time
t defined by

γ̂(p) := L(γ)(p) =

∫ ∞
0

γ(t)e−ptdt, p ≥ 0. (3.10)

We also use the following relations from the table of Laplace transforms for every y ∈ R:

L
(

1√
πt
e−

y2

4t

)
=

1
√
p
e−
√
p|y|, p > 0 (3.11)

and

L
(

1√
πt

y

2t
e−

y2

4t

)
= sign(y) e−

√
p|y|, p > 0. (3.12)

The following lemma gives the exact solution to the initial-value problem (3.9).

Lemma 3.1. For every γ ∈ C(R+), there exists the unique solution to the initial-value
problem (3.9) in the exact form:

ν(t, y) := 2

∫ t

0

γ(τ)√
4π(t− τ)

e−
(y+t−τ)2
4(t−τ) dτ, y ∈ R, t > 0. (3.13)

Moreover, ν belongs to the class of functions in C(R+, H
1(R) ∩W 1,∞(R+)) satisfying

νy(t, 0
±) +

1

2
ν(t, 0) = ∓γ(t), t > 0. (3.14)

Proof. By using (3.10) and (3.11), we compute from (3.13):

ν̂(p, y) = L
(

1√
πt
e−

(y+t)2

4t

)
(p)× L(γ)(p) = e−

y
2
e−
√
p+ 1

4
|y|√

p+ 1
4

γ̂(p),

where we have used properties of the Laplace transform, e.g.

L(f(t)e−
t
4 )(p) = f̂(p+

1

4
) and L

(∫ t

0

f(τ)g(t− τ)dτ

)
(p) = f̂(p)ĝ(p).
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Differentiations of ν̂(p, y) in y yield

ν̂y = −1

2
ν̂ − sign(y)e−

y
2 e−
√
p+ 1

4
|y|γ̂(p), (3.15)

ν̂yy = −1

2
ν̂y − 2δ(y)γ̂(p) +

1

2
sign(y)e−

y
2 e−
√
p+ 1

4
|y|γ̂(p) +

(
p+

1

4

)
ν̂. (3.16)

Combining (3.15) and (3.16) yields

ν̂yy = −ν̂y − 2δ(y)γ̂(p) + pν̂, (3.17)

which becomes the initial-value problem (3.9) after the inverse Laplace transform. It follows
from (3.15) for p ≥ 0 that

ν̂y(p, 0
±) = −1

2
ν̂(p, 0)∓ γ̂(p),

which yields (3.14) after the inverse Laplace transform. Uniqueness of the solution (3.13) is
proven from uniqueness of the zero solution in the homogeneous version of the initial-value
problem (3.9).

Next, we estimate the solution (3.13) in Sobolev spaces provided that γ ∈ C(R+). By
using (3.1), we obtain

‖ν(t, ·)‖L2(R) ≤
2

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)1/4

dτ (3.18)

and

‖ν(t, ·)‖L∞(R) ≤
1√
π

∫ t

0

|γ(τ)|
(t− τ)1/2

dτ. (3.19)

The derivative ν(t, y) in y is given by

νy(t, y) = −
∫ t

0

γ(τ)(y + t− τ)√
4π(t− τ)3

e−
(y+t−τ)2
4(t−τ) dτ. (3.20)

By using (3.2), we obtain

‖νy(t, ·)‖L2(R) ≤
1

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)3/4

dτ, (3.21)

hence ν ∈ C(R+, H
1(R)) if γ ∈ C(R+). By Sobolev embedding, ν ∈ C(R+, L

∞(R)), which
also follows from (3.19).

It remains to show that νy ∈ C(R+, L
∞(R+)). Due to (3.3), estimates on ‖νy(t, ·)‖L∞(R)

which are similar to (3.19) produce a non-integrable singularity in the convolution integral
in time. Nevertheless, we show hereafter that ‖νy(t, ·)‖L∞(R+) can be estimated in terms of
|γ(t)|.

The initial-value problem (3.9) can be rewritten in the piecewise form: νt = νy + νyy, ±y > 0, t > 0,
νy(t, 0

+)− νy(t, 0−) = −2γ(t), t > 0,
ν(0, y) = 0, y ∈ R.

(3.22)
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With the transformation

ν(t, y) = e−
y
2
− t

4 ν̃(t, y),

the initial-boundary-value problem (3.22) is equivalently written as
ν̃t = ν̃yy, ±y > 0, t > 0,

ν̃y(t, 0
+)− ν̃y(t, 0−) = −2γ(t)e

t
4 , t > 0,

ν̃(0, y) = 0, y ∈ R.
(3.23)

Due to the parity symmetry of the boundary and initial conditions in (3.23), ν̃ is even in
y, ν̃y is odd in y, so that ν̃y solves Dirichlet’s problems for the diffusion equation on the
quarter planes {y > 0, t > 0} and {y < 0, t > 0} subject to the boundary conditions

ν̃y(t, 0
+) = −γ(t)e

t
4 and ν̃y(t, 0

−) = γ(t)e
t
4 respectively. It follows by the maximum principle

that

‖ν̃y(t, ·)‖L∞(R) ≤ |γ(t)|e
t
4 , t > 0, (3.24)

which yields

‖νy(t, ·)‖L∞(R+) ≤
1

2
‖ν(t, ·)‖L∞(R+) + |γ(t)|, t > 0, (3.25)

since νy + 1
2
ν = e−

y
2
− t

4 ν̃y and e−
y
2 ≤ 1 for y ≥ 0. Hence, νy ∈ C(R+, L

∞(R+)). �

Remark 3.2. Since e−
y
2 is unbounded for y ∈ R−, no bound on ‖νy(t, ·)‖L∞(R−) can be

obtained from the estimate (3.24). However, we only need to use ν(t, y) for t > 0 and y > 0.

Next, we consider inverting the linear equation

M(γ) =
1√
4πt

∫ ∞
0

f(η)e−
η2

4t dη, t > 0, (3.26)

where

M(γ) :=

∫ t

0

γ(τ)√
π(t− τ)

dτ −
∫ t

0

γ(τ)√
4π(t− τ)

∫ ∞
0

e−
η
2 e−

η2

4(t−τ)dηdτ (3.27)

and f ∈ W 1,∞(R+) is a given function. The invertion problem (3.26) is related to Abel’s
integral equation [26, 27]. We use again the Laplace transform in time t, as is defined in
(3.10). The following lemma gives the exact solution to the integral equation (3.26) in the
space of bounded functions.

Lemma 3.3. For every f ∈ W 1,∞(R+) satisfying f(0) = 0, there exists the unique solution
γ ∈ L∞(R+) to the integral equation (3.26) in the exact form:

γ(t) =
1√
4πt

∫ ∞
0

f(η)

(
η + t

2t

)
e−

η2

4t dη, t > 0, (3.28)

or, equivalently,

γ(t) =
1√
4πt

∫ ∞
0

[
f ′(η) +

1

2
f(η)

]
e−

η2

4t dη, t > 0, (3.29)
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Proof. By using (3.10) and (3.11), we rewrite the integral equation (3.26) in the product
form:

1
√
p
γ̂(p)− 1

2
√
p
γ̂(p)

∫ ∞
0

e−
η
2 e−

√
pηdη =

1

2
√
p

∫ ∞
0

f(η)e−
√
pηdη, p > 0.

Evaluating the integral gives the solution in the Laplace transform space:

γ̂(p) =
1

2

∫ ∞
0

f(η)

(
1 +

1

2
√
p

)
e−
√
pηdη.

After the inverse Laplace transform, we obtain the exact solution (3.28) with the use of
(3.12). The equivalent form (3.29) is obtained from (3.28) after integration by parts if
f ∈ W 1,∞(R+) and f(0) = 0. It follows from (3.29) that

sup
t≥0
|γ(t)| ≤ 1

2
‖f ′‖L∞(R+) +

1

4
‖f‖L∞(R+),

so that γ ∈ L∞(R+). �

Similarly to Lemma 3.3, we consider inverting of the linear equations

M(γ) =

∫ t

0

1√
4π(t− τ)

∫ ∞
0

g(τ, η)e−
η2

4(t−τ)dηdτ, t > 0 (3.30)

and

M(γ) =

∫ t

0

h(τ)dτ√
4π(t− τ)

, t > 0 (3.31)

where M(γ) is given by (3.27), g ∈ L1(R+, L
∞(R+)) ∩ L∞(R+, L

∞(R+)) and h ∈ L1(R+) ∩
L∞(R+) are given functions. The following lemma gives the exact solutions of the integral
equations (3.30) and (3.31) in the space of bounded functions.

Lemma 3.4. For every g ∈ L1(R+, L
∞(R+)) ∩ L∞(R+, L

∞(R+)), there exists the unique
solution γ ∈ L∞(R+) to the integral equation (3.30) in the exact form:

γ(t) =

∫ t

0

1√
4π(t− τ)

∫ ∞
0

g(τ, η)

(
η + t− τ
2(t− τ)

)
e−

η2

4(t−τ)dηdτ, t > 0. (3.32)

For every h ∈ L1(R+)∩L∞(R+), there exists the unique solution γ ∈ L∞(R+) to the integral
equation (3.31) in the exact form:

γ(t) =
1

2
h(t) +

1

2

∫ t

0

h(τ)dτ√
4π(t− τ)

, t > 0. (3.33)

Proof. By using (3.10) and (3.11), we solve the integral equation (3.30) for the Laplace
transform:

γ̂(p) =
1

2

∫ ∞
0

ĝ(p, η)

(
1 +

1

2
√
p

)
e−
√
pηdη.
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After the inverse Laplace transform, we obtain the exact solution (3.32) with the use of
(3.12). By using the first integrals in (3.1) and (3.2), we obtain

sup
t≥0
|γ(t)| ≤ 1

4

∫ t

0

‖g(τ, ·)‖L∞(R+)dτ +
1

2

∫ t

0

‖g(τ, ·)‖L∞(R+)dτ√
π(t− τ)

,

where upper bound is bounded if ‖g(t, ·)‖L∞(R+) belongs to L1(R+) ∩ L∞(R+).
For the integral equation (3.31), we use the substitution γ(t) = 1

2
h(t) + υ(t), where υ(t)

satisfies the integral equation

M(υ) =
1

2

∫ t

0

h(τ)√
4π(t− τ)

∫ ∞
0

e−
η
2 e−

η2

4(t−τ)dηdτ, t > 0.

Since g(τ, η) := 1
2
h(τ)e−

η
2 belongs to L1(R+, L

∞(R+)) ∩ L∞(R+, L
∞(R+)), we can use the

exact solution (3.32) and obtain

υ(t) =
1

2

∫ t

0

h(τ)√
4π(t− τ)

∫ ∞
0

e−
η
2

(
η + t− τ
2(t− τ)

)
e−

η2

4(t−τ)dηdτ, t > 0.

Integrating by parts gives

υ(t) =
1

2

∫ t

0

h(τ)dτ√
4π(t− τ)

, t > 0,

which recovers (3.33) for γ(t) = 1
2
h(t) + υ(t). Again, we have γ ∈ L∞(R+) if h ∈ L1(R+) ∩

L∞(R+). �

Remark 3.5. Compared to the decomposition method γ = 1
2
h + υ in the proof of Lemma

3.4, the exact solution (3.33) can be independently obtained by using the Laplace transform
(3.10) in the linear equation (3.31).

Finally, Young’s inequality (3.6) for convolution integrals in space can be extended to the
convolution integrals in time:

‖β ? γ‖Lr(R+) ≤ ‖β‖Lp(R+)‖γ‖Lq(R+), p, q, r ≥ 1, 1 +
1

r
=

1

p
+

1

q
, (3.34)

for every β ∈ Lp(R+) and γ ∈ Lq(R+), where (β?γ)(t) :=
∫ t
0
β(t−τ)γ(τ)dτ is the convolution

integral in time. The following lemma gives useful bounds.

Lemma 3.6. For every γ ∈ L1(R+) ∩ L∞(R+) and every s ∈ [0, 1), there exists a positive
constant Cs such that ∫ t

0

|γ(τ)|
(t− τ)s

dτ ≤ Cs‖γ‖L1(R+)∩L∞(R+), t > 0. (3.35)

Proof. For every fixed T > 0, it is obvious that∫ t

0

|γ(τ)|
(t− τ)s

dτ ≤ T 1−s

1− s
‖γ‖L∞(R+), t ∈ [0, T ].
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Then, provided T > 1, we get the bounds∫ t

0

|γ(τ)|
(t− τ)s

dτ =

∫ t−1

0

|γ(τ)|
(t− τ)s

dτ +

∫ t

t−1

|γ(τ)|
(t− τ)s

dτ

≤ ‖γ‖L1(R+) +
1

1− s
‖γ‖L∞(R+), t > T,

and the bound (3.35) holds. �

4. Asymptotic stability under odd perturbations

Here we study the boundary-value problem (2.5) in order to prove Theorem 2.1. The
boundary-value problem (2.5) is solved by direct methods. First, we decompose

w(t, x) = W0(x) + u(t, x), x > 0, (4.1)

where W0(x) = 1−e−x is the viscous shock given by (2.3) with c = 0 under the normalization
W+ = −W− = 1. The perturbation u(t, x) satisfies the following boundary-value problem: ut = ux + uxx, x > 0, t > 0,

u(t, 0) = 0, t > 0,
u(t, x)→ 0 as x→ +∞, t > 0,

(4.2)

subject to the initial condition u(0, x) = w(0, x)−W0(x) =: u0(x).
In order to prove Theorem 2.1, we first derive a priori energy estimates (Lemma 4.1) and

then explore the exact formula (3.5) to study the solution in H2 (Lemma 4.3) and in W 2,∞

(Lemma 4.4).
The following lemma implies that the H1-norm of a smooth solution u(t, ·) is decreasing

in time t. The result is obtained by using a priori energy estimates.

Lemma 4.1. Assume existence of the solution u ∈ C(R+, H
2(R+)) to the boundary-value

problem (4.2) with the initial condition u(0, x) = u0(x). Then, for every t > 0:

‖u(t, ·)‖L2 ≤ ‖u0‖L2 , ‖u(t, ·)‖H1 ≤ ‖u0‖H1 .

Proof. Multiplying ut = ux + uxx by u and uxx and integrating by parts yield

d

dt
‖u(t, ·)‖2L2 = −2‖ux(t, ·)‖2L2 , (4.3)

d

dt
‖ux(t, ·)‖2L2 = [ux(t, 0)]2 − 2‖uxx(t, ·)‖2L2 . (4.4)

It follows from (4.3) that ‖u(t, ·)‖L2 ≤ ‖u0‖L2 . By Sobolev embedding, it follows for every
f ∈ H1(R+) that

[f(0)]2 = −2

∫ ∞
0

f(x)f ′(x)dx ≤ ‖f‖2H1 , (4.5)

so that we obtain by adding both equations (4.3) and (4.4) together and using (4.5) that

d

dt
‖u(t, ·)‖2H1 = [ux(t, 0)]2 − 2‖ux(t, ·)‖2H1 ≤ −‖ux(t, ·)‖2H1 ,

hence ‖u(t, ·)‖H1 ≤ ‖u0‖H1 . �
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Remark 4.2. By using the same method as in the proof of Lemma 4.1, one can derive

d

dt
‖uxx(t, ·)‖2L2 = − [uxx(t, 0)]2 − 2uxx(t, 0)uxxx(t, 0)− 2‖uxxx(t, ·)‖2L2 . (4.6)

By using also ux(t, 0)+uxx(t, 0) = 0 and utx(t, 0) = uxx(t, 0)+uxxx(t, 0) for smooth solutions,
this balance equation can be rewritten to the form:

d

dt

(
‖uxx(t, ·)‖2L2 − [ux(t, 0)]2

)
= [ux(t, 0)]2 − 2‖uxxx(t, ·)‖2L2 . (4.7)

With an inequality similar to (4.5), we derive

‖u(t, ·)‖2H2 − [ux(t, 0)]2 ≤ ‖u0‖2H2 − [u′0(0)]2.

However, due to the inequality (4.5) this a priori energy estimate does not imply monotonicity
of the H2-norm of the smooth solutions of the boundary-value problem (4.2).

Lemma 4.1 implies uniqueness and continuous dependence of solutions to the boundary-
value problem (4.2) with initial condition u(0, x) = u0(x). It remains to show existence of a
solution u ∈ C(R+, H

2(R+)) for any given u0 ∈ H2(R+). The following lemma explores an
explicit formula for solutions u ∈ C(R+, H

2(R+)) to the boundary-value problem (4.2) for
any given initial condition u0 ∈ H2(R+).

Lemma 4.3. For any given u0 ∈ H2(R+), there exists a solution u(t, x) to the boundary-
value problem (4.2) with the initial condition u(0, x) = u0(x) given explicitly by

u(t, x) =
1√
4πt

∫ ∞
0

u0(y)

[
e−

(x−y+t)2
4t − e−xe−

(x+y−t)2
4t

]
dy. (4.8)

Moreover, u ∈ C(R+, H
2(R+)).

Proof. By using the transformation

u(t, x) = e−
x
2
− t

4v(t, x), (4.9)

we can write the boundary-value problem (4.2) in the form (3.4) with the initial condition
v0(x) = e

x
2u0(x), where u0(x) = u(0, x). By substituting the transformation (4.9) to the

exact solution (3.5) and completing squares for the heat kernel G(t, x) = 1√
4πt
e−

x2

4t , we

obtain the exact representation (4.8).
Next we show that u ∈ C(R+, H

2(R+)) if u0 ∈ H2(R+). The convolution integrals in (4.8)
are analyzed by means of the generalized Young’s inequality (3.6) with p = r = 2 and q = 1:

‖u0χR+ ∗G(t, ·+ t)‖L2(R+) ≤ ‖u0‖L2(R+)‖G(t, ·+ t)‖L1(R) ≤ ‖u0‖L2(R+)

and

‖u0χR+ ∗G(t,− ·+t)‖L2(R+) ≤ ‖u0‖L2(R+)‖G(t,− ·+t)‖L1(R) ≤ ‖u0‖L2(R+)

At the same time, e−x ≤ 1 for x ≥ 0, so that

‖u(t, ·)‖L2 ≤ 2‖u0‖L2 , (4.10)
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where the L2 norms are understood as L2(R+). In order to obtain similar estimates for ux
and uxx, we differentiate (4.8) in x, use integration by parts, and obtain

ux(t, x) =
1√
4πt

∫ ∞
0

u′0(y)

[
e−

(x−y+t)2
4t + e−xe−

(x+y−t)2
4t

]
dy

+
1√
4πt

e−x
∫ ∞
0

u0(y)e−
(x+y−t)2

4t dy (4.11)

and

uxx(t, x) =
1√
4πt

∫ ∞
0

u′′0(y)

[
e−

(x−y+t)2
4t − e−xe−

(x+y−t)2
4t

]
dy

− 1√
πt
e−x

∫ ∞
0

u′0(y)e−
(x+y−t)2

4t dy − 1√
4πt

e−x
∫ ∞
0

u0(y)e−
(x+y−t)2

4t dy, (4.12)

where the boundary condition u(t, 0) = 0 has been used. By the same estimates used in
(4.10), we obtain:

‖ux(t, ·)‖L2 ≤ 2‖u′0‖L2 + ‖u0‖L2 , (4.13)

‖uxx(t, ·)‖L2 ≤ 2‖u′′0‖L2 + 2‖u′0‖L2 + ‖u0‖L2 . (4.14)

This shows that u(t, ·) ∈ H2(R+) continuously in t ∈ R+. It follows from (4.11) and (4.12)
as x→ 0+ that

ux(t, 0
+) + uxx(t, 0

+) = 0, t > 0. (4.15)

The decay condition u(t, x) → 0 as x → ∞ is satisfied by the continuous embedding of
H2(R+) into C1(R+)∩W 1,∞(R+) with functions and their first derivatives decaying to zero
at infinity. �

The following lemma establishes the decay of ‖u(t, ·)‖W 2,∞ to zero as t→ +∞.

Lemma 4.4. Let u ∈ C(R+, H
2(R+)) be the solution to the boundary-value problem (4.2)

given by Lemma 4.3. Then, we have

‖u(t, ·)‖W 2,∞ → 0 as t→∞. (4.16)

Proof. For t ≥ 1, we can estimate the convolution integrals in (4.8) by means of the gener-
alized Young’s inequality (3.6) with p = q = 2 and r =∞:

‖u0χR+ ∗G(t, ·+ t)‖L∞(R+) ≤ ‖u0‖L2(R+)‖G(t, ·+ t)‖L2(R) ≤
1

(8πt)1/4
‖u0‖L2(R+)

and

‖u0χR+ ∗G(t,− ·+t)‖L∞(R+) ≤ ‖u0‖L2(R+)‖G(t,− ·+t)‖L2(R) ≤
1

(8πt)1/4
‖u0‖L2(R+).
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Using these estimates in (4.8), (4.11), and (4.12), we obtain

‖u(t, ·)‖L∞ ≤ 2

(8πt)1/4
‖u0‖L2 ,

‖ux(t, ·)‖L∞ ≤ 1

(8πt)1/4
(2‖u′0‖L2 + ‖u0‖L2),

‖uxx(t, ·)‖L∞ ≤ 1

(8πt)1/4
(2‖u′′0‖L2 + 2‖u′0‖L2 + ‖u0‖L2),

which prove the decay (4.16). �

Remark 4.5. The asymptotic decay of the solution u ∈ C(R+, H
2(R+)) in the H2 norm

does not follow from the convolution estimates (3.6) unless u±0 ∈ W 2,p(R+) for some p < 2.

Proof of Theorem 2.1. By Lemma 4.3 and the bounds (4.10), (4.13), and (4.14), if u0 ∈
H2(R+) satisfies ‖u0‖H2 < δ as in (2.9), then

‖u(t, ·)‖H2 ≤ C‖u0‖H2 < Cδ

for a fixed δ-independent positive constant C. Hence, for every ε > 0, there is δ := ε/C
such that the odd perturbation u(t, ·) to the viscous shock W0 in the decomposition (4.1) is
bounded in H2(R) norm for every t > 0 according to the bound (2.10). The decay (2.11)
follows from the decay (4.16) in Lemma 4.4.

The constraint (2.7) is satisfied because both W0 and u in the decomposition (4.1) satisfy
this constraint. Under the constraint (2.7), the solutions w(t, x) : R+ × R+ 7→ R to the
boundary-value problem (2.5) are extended to the odd function wext(t, x) : R+ × R 7→ R
satisfying the interface condition (2.8).

It remains to verify that w(t, x) = W0(x) + u(t, x) > 0 for every x > 0. The positivity
condition (2.6) is necessary for reduction of the modular Burgers equation (1.1) with the
odd functions to the boundary-value problem (2.5). By Sobolev embedding of H2(R+) into
C1(R+) ∩W 1,∞(R+), we obtain the uniform bound:

‖u(t, ·)‖L∞ + ‖ux(t, ·)‖L∞ < ε, t > 0,

where ε is small. The symmetry point x = 0 is a simple root of w(t, ·) for every t > 0
because W0(0) = 0, W ′

0(0) = 1, u(t, 0) = 0, and |ux(t, 0)| < ε is small. Therefore, there
exists an ε-independent x0 > 0 such that w(t, x) > 0 for every t > 0 and x ∈ (0, x0). Now,
W0(x) ≥ W0(x0) > 0 for every x ≥ x0 and since |u(t, x)| < ε for every t > 0 and x > 0,
then w(t, x) > 0 for every t > 0 and x ≥ x0 if ε is sufficiently small. Combining these two
estimates together yields w(t, x) > 0 for every t > 0 and x > 0. �

5. Asymptotic stability under general perturbations

Here we study the boundary-value problem (2.13) in order to prove Theorem 2.4. The
boundary-value problem (2.13) can be reformulated by using the decomposition

w(t, x) = W0(x− ξ(t)) + u(t, x− ξ(t)), x ∈ R, (5.1)
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where W0 is the viscous shock (2.3) with c = 0 under the normalization W+ = −W− = 1,
ξ(t) is the location of a single interface, and u(t, y) with y := x − ξ(t) is a perturbation
satisfying  ut = (ξ′(t)± 1)uy + uyy + ξ′(t)W ′

0(y), ±y > 0,
u(t, 0) = 0,
u(t, y)→ 0 as y → ±∞,

(5.2)

subject to the initial condition u(0, x) = w(0, x)−W0(x) =: u0(x). We assume without loss
of generality that ξ(0) = 0. The interface dynamics is defined by the following lemma.

Lemma 5.1. Let u(t, ·) ∈ C1(R) ∩ C2(R\{0}) be a solution of the boundary-value problem
(5.2) for t ∈ R+. Then, ξ′(t), t ∈ R+ can be expressed in two equivalent ways by

ξ′(t) = −uy(t, 0
+) + uyy(t, 0

+)

1 + uy(t, 0+)
=
uy(t, 0

−)− uyy(t, 0−)

1 + uy(t, 0−)
, t ∈ R+. (5.3)

Proof. It follows from (2.15) and (5.1) that piecewise C2 solutions of the boundary-value
problem (5.2) satisfy the interface condition

[uyy]
+
−(t, 0) = −2uy(t, 0). (5.4)

On the other hand, it follows from (2.16) and (5.1) that ut(t, 0) = 0. Taking the limits
y → 0± results in the dynamical equations (5.3) since W ′

0(0) = 1. The two equalities in (5.3)
are consistent under the interface condition (5.4) since uy(t, 0

+) = uy(t, 0
−). �

Remark 5.2. The system of equations (5.2), (5.3), and (5.4) is derived under the condition

± [W0(y) + u(t, y)] > 0, ±y > 0 (5.5)

which follows from (2.14) and (5.1). Since W0(0) = 0, W ′
0(0) = 1, and u(t, 0) = 0, the

positivity conditions (5.5) imply that 1 + uy(t, 0) > 0, hence the interface dynamics is well
defined by the evolution equation (5.3) under the positivity conditions (5.5).

Let us define

u+(t, y) := u(t, y), u−(t, y) := u(t,−y), y > 0. (5.6)

We also define γ(t) := ξ′(t) and use W ′
0(y) = e−|y|. The boundary-value problem (5.2) can

be rewritten in the equivalent form u±t = (1± γ)u±y + u±yy + γe−y, y > 0,
u±(t, 0) = 0,
u±(t, y)→ 0 as y →∞,

(5.7)

subject to the continuity condition

u+y (t, 0+) = −u−y (t, 0+), (5.8)

the interface condition

u+yy(t, 0
+)− u−yy(t, 0+) = −2u+y (t, 0+), (5.9)
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and the dynamical condition

γ(t) = −
u+y (t, 0+) + u+yy(t, 0

+)

1 + u+y (t, 0+)
= −

u−y (t, 0+) + u−yy(t, 0
+)

1− u−y (t, 0+)
. (5.10)

The proof of Theorem 2.4 is divided into two steps.
In the first step, for a given γ ∈ L1(R+) ∩ L∞(R+), we show that the boundary-value

problems (5.7) equipped with the initial conditions u±(0, x) = u±0 (x) can be uniquely solved
provided the norms of γ ∈ L1(R+) ∩ L∞(R+) and u±0 ∈ H2(R+) ∩ W 2,∞(R+) are small.
If γ ∈ C(R+), the unique global solutions u± ∈ C(R+, H

2(R+) ∩ W 2,∞(R+)) satisfy the
dynamical conditions (5.10) for any t > 0.

The two solutions for u+ and u− are uncoupled if γ is given. However, if the solutions u+

and u− are required to satisfy the continuity condition (5.8), then this constraint yields an
integral equation on γ ∈ L1(R+) ∩ L∞(R+). In the second step, we prove that the integral
equation for γ ∈ L1(R+)∩L∞(R+) can be uniquely solved provided u±0 ∈ H2(R+)∩W 2,∞(R+)
are small and satisfy an additional requirement of the exponential decay in space.

Finally, the two conditions (5.8) and (5.10) imply the interface condition (5.9), which is
thus redundant in the boundary-value problem.

The following lemma gives a priori energy estimates for the boundary-value problems (5.7)
completed with the continuity condition (5.8). These energy estimates imply monotonicity
of the H1-norm of a smooth solution in time t.

Lemma 5.3. Assume existence of the solutions u± ∈ C(R+, H
2(R+)) to the boundary-

value problem (5.7) completed with the continuity condition (5.8) for the initial conditions
u±(0, x) = u±0 (x) and for some γ ∈ C(R+). Then, for every t > 0:

‖u+(t, ·)‖2H1 + ‖u−(t, ·)‖2H1 ≤ ‖u+0 ‖2H1 + ‖u−0 ‖2H1 . (5.11)

Proof. Multiplying u±t = (1±γ)u±y +u±yy +γe−y by u± and u±yy and integrating by parts yield

d

dt
‖u±(t, ·)‖2L2 = −2‖u±y (t, ·)‖2L2 + 2γ

∫ ∞
0

u±(t, y)e−ydy, (5.12)

d

dt
‖u±y (t, ·)‖2L2 = (1± γ)

[
u±y (t, 0+)

]2 − 2‖u±yy(t, ·)‖2L2 + 2γu±y (t, 0+)− 2γ

∫ ∞
0

u±(t, y)e−ydy.

Adding all equations and using the continuity condition (5.8) yield

d

dt
‖u+(t, ·)‖2H1 +

d

dt
‖u−(t, ·)‖2H1 =

[
u+y (t, 0+)

]2
+
[
u−y (t, 0+)

]2 − 2‖u+y (t, ·)‖2H1 − 2‖u−y (t, ·)‖2H1 .

By using the same inequality (4.5), we close the estimate and obtain

d

dt

[
‖u+(t, ·)‖2H1 + ‖u−(t, ·)‖2H1

]
≤ −‖u+y (t, ·)‖2H1 − 2‖u−y (t, ·)‖2H1 ≤ 0,

from which the inequality (5.11) follows. �

Remark 5.4. Compared to Lemma 4.1, we are not able to conclude on monotonicity of
the L2-norm of the solution. Integrating by parts and using Cauchy–Schwarz inequality in
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(5.12), we get

d

dt
‖u±(t, ·)‖L2 ≤ |γ|‖e−y‖L2

y(R+),

which yields the Stritcharz-type estimate

sup
t∈R+

‖u±(t, ·)‖L2 ≤ ‖u±0 ‖L2 + ‖γ‖L1‖e−y‖L2
y(R+),

where we write ‖e−y‖L2
y(R+) instead of ‖e−·‖L2 for better clarity.

We shall now consider the existence of solutions for the boundary-value problems (5.7)
with γ expressed by (5.10). Due to the latter condition, we need to require the second
derivative to be bounded and piecewise continuous in a one-sided neighborhood of y = 0.
This is achieved by using a sharper condition on the initial data u±0 ∈ H2(R+) ∩W 2,∞(R+)
compared to the requirement u0 ∈ H2(R+) imposed in Lemma 4.3.

The following lemma provides a convenient reformulation of the boundary-value problems
(5.7) as systems of integral equations. In these systems, u± and γ are not required to satisfy
the continuity condition (5.8), the interface condition (5.9), and the dynamical conditions
(5.10).

Lemma 5.5. There exist solutions u± ∈ C(R+, H
2(R+)∩W 2,∞(R+)) to the boundary-value

problems (5.7) with the initial conditions u±(0, x) = u±0 (x) and the given function γ ∈ C(R+)
if there exist solutions u± ∈ C(R+, H

2(R+) ∩W 2,∞(R+)) to the following integral equations
for (t, y) ∈ R+ × R+:

u±(t, y) =
1√
4πt

∫ ∞
0

u±0 (η)

[
e−

(y−η+t)2
4t − e−ye−

(y+η−t)2
4t

]
dη

+

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

e−η
[
e−

(y−η+t−τ)2
4(t−τ) − e−ye−

(y+η−t+τ)2
4(t−τ)

]
dη

±
∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±η (τ, η)

[
e−

(y−η+t−τ)2
4(t−τ) − e−ye−

(y+η−t+τ)2
4(t−τ)

]
dη.

Proof. Similar to the transformation formula (4.9) in the proof of Lemma 4.3, the system of
equations (5.7) can be simplified by using the transformation formulas:

u±(t, y) = e−
y
2
− t

4v±(t, y), γ(t) = e−
t
4 γ̃(t). (5.13)

The boundary-value problems (5.7) can be rewritten in the form (3.7) with v = v±,

f(t, y) = γ̃e−
y
2 ± γ̃e−

t
4 (v±y −

1

2
v±),
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and v0(y) := u±0 (y)e
y
2 , where u±0 (y) := u±(0, y) are the initial conditions. By using the exact

solution (3.8), we obtain the integral equations for v±:

v±(t, y) =
1√
4πt

∫ ∞
0

v±0 (η)

[
e−

(y−η)2
4t − e−

(y+η)2

4t

]
dη

+

∫ t

0

γ̃(τ)dτ√
4π(t− τ)

∫ ∞
0

e−
η
2

[
e−

(y−η)2
4(t−τ) − e−

(y+η)2

4(t−τ)

]
dη

±
∫ t

0

γ̃(τ)e−
τ
4 dτ√

4π(t− τ)

∫ ∞
0

(
v±y (τ, η)− 1

2
v±(τ, η)

)[
e−

(y−η)2
4(t−τ) − e−

(y+η)2

4(t−τ)

]
dη.

Substituting the transformation (5.13) yields the integral equations for u±(t, y). �

Given solutions u± ∈ C(R+, H
2(R+)∩W 2,∞(R+)) of the integral equations in Lemma 5.5,

we require them to satisfy the continuity condition (5.8). This sets up the existence problem
for γ ∈ L1(R+)∩L∞(R+). By computing partial derivatives of u±(t, y) in y, taking the limit
y → 0+, substituting u±y (t, 0+) into (5.8), and integrating by parts, we obtain the following
integral equation:∫ t

0

γ(τ)√
π(t− τ)

e−
t−τ
4 dτ −

∫ t

0

γ(τ)√
4π(t− τ)

∫ ∞
0

e−
(η+t−τ)2
4(t−τ) dηdτ

+
1√
4πt

∫ ∞
0

[
u+′0 (η) + u−′0 (η) +

1

2
u+0 (η) +

1

2
u−0 (η)

]
e−

(η−t)2
4t dη (5.14)

+

∫ t

0

γ(τ)√
4π(t− τ)

∫ ∞
0

[
u+y − u−y +

1

2
u+ − 1

2
u−
]

(τ, η)

(
η − t+ τ

2(t− τ)

)
e−

(η−t+τ)2
4(t−τ) dηdτ = 0.

The following lemma rewrites the integral equation (5.14) in the equivalent form.

Lemma 5.6. There exists a solution γ ∈ L1(R+) ∩ L∞(R+) to the integral equation (5.14)
if there exists a solution γ ∈ L1(R+) ∩ L∞(R+) to the following integral equation

γ(t) = − 1√
4πt

∫ ∞
0

[
u+′0 (η) + u−′0 (η) +

1

2
u+0 (η) +

1

2
u−0 (η)

](
η + t

2t

)
e−

(η−t)2
4t dη

−1

2
γ(t)

[
u+y (t, 0+)− u−y (t, 0+)

]
− 1

2

∫ t

0

γ(τ)e−
t−τ
4√

4π(t− τ)

[
u+y (τ, 0+)− u−y (τ, 0+)

]
dτ

−
∫ t

0

γ(τ)√
4π(t− τ)

∫ ∞
0

[
u+yy − u−yy +

1

2
u+y −

1

2
u−y

]
(τ, η)

(
η + t− τ
2(t− τ)

)
e−

(η−t+τ)2
4(t−τ) dηdτ.

Proof. By using the same transformation (5.13), we rewrite the integral equation (5.14) in
the equivalent form:

M(γ̃) +
1√
4πt

∫ ∞
0

[
v+′0 (η) + v−′0 (η)

]
e−

η2

4t dη

+

∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

∫ ∞
0

[
v+y − v−y

]
(τ, η)

(
η − t+ τ

2(t− τ)

)
e−

η2

4(t−τ)dηdτ = 0, (5.15)
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where the linear operator M is given by (3.27) and v±0 (y) = u±0 (y)e
y
2 . By using Lemma 3.3

with

f(η) = v+′0 (η) + v−′0 (η),

the linear operator M can be inverted on the second term of the integral equation (5.15).
In order to invert the linear operator M on the third term of the integral equation (5.15),
we integrate it by parts and obtain∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

∫ ∞
0

[
v+y − v−y

]
(τ, η)

(
η − t+ τ

2(t− τ)

)
e−

η2

4(t−τ)dηdτ

=

∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

[
v+y (τ, 0+)− v−y (τ, 0+)

]
dτ

+

∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

∫ ∞
0

[
v+yy − v−yy −

1

2
v+y +

1

2
v−y

]
(τ, η)e−

η2

4(t−τ)dηdτ.

We are now in position to use Lemma 3.4 with

g(τ, η) = γ̃(τ)e−
τ
4

[
v+yy(τ, η)− v−yy(τ, η)− 1

2
v+y (τ, η) +

1

2
v−y (τ, η)

]
and

h(τ) = γ̃(τ)e−
τ
4

[
v+y (τ, 0+)− v−y (τ, 0+)

]
.

By using Lemmas 3.3 and 3.4 as described above, we obtain the following integral equation:

γ̃(t) = − 1√
4πt

∫ ∞
0

[
v+′0 (η) + v−′0 (η)

](η + t

2t

)
e−

η2

4t dη

−1

2
γ̃(t)e−

t
4

[
v+y (t, 0+)− v−y (t, 0+)

]
− 1

2

∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

[
v+y (τ, 0+)− v−y (τ, 0+)

]
dτ

−
∫ t

0

γ̃(τ)e−
τ
4√

4π(t− τ)

∫ ∞
0

[
v+yy − v−yy −

1

2
v+y +

1

2
v−y

]
(τ, η)

(
η + t− τ
2(t− τ)

)
e−

η2

4(t−τ)dηdτ.

Substituting the transformation (5.13) yields the integral equation for γ(t). �

Next, we solve the integral equations in Lemmas 5.5 and 5.6.
The following lemma guarantees existence of the global solutions u± ∈ C(R+, H

2(R+) ∩
W 2,∞(R+)) to the boundary-value problems (5.7) for small initial data u±0 ∈ H2(R+) ∩
W 2,∞(R+) and the given function γ ∈ L1(R+) ∩ L∞(R+) ∩ C(R+). The global solutions
satisfy the dynamical conditions (5.10) but do not generally satisfy the additional conditions
(5.8) and (5.9).

Lemma 5.7. For every ε > 0 (small enough), there is δ > 0 such that for every u±0 ∈
H2(R+) ∩W 2,∞(R+) and for every γ ∈ L1(R+) ∩ L∞(R+) ∩ C(R+) satisfying

‖u+0 ‖H2∩W 2,∞ + ‖u−0 ‖H2∩W 2,∞ + ‖γ‖L1∩L∞ < δ, (5.16)
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there exist the unique solutions u± ∈ C(R+, H
2(R+) ∩W 2,∞(R+)) to the integral equations

in Lemma 5.5. Moreover, the solutions satisfy

‖u+(t, ·)‖H2∩W 2,∞ + ‖u−(t, ·)‖H2∩W 2,∞ < ε t > 0 (5.17)

and the dynamical conditions (5.10) for t > 0.

Proof. We rewrite the integral equations in Lemma 5.5 as the fixed-point equations associated
with the following integral operators:

u± = A±(u±) := u±1 + u±2 ± u±3 , (5.18)

where

u±1 (t, y) =
1√
4πt

∫ ∞
0

u±0 (η)

[
e−

(y−η+t)2
4t − e−ye−

(y+η−t)2
4t

]
dη, (5.19)

u±2 (t, y) =

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

e−η
[
e−

(y−η+t−τ)2
4(t−τ) − e−ye−

(y+η−t+τ)2
4(t−τ)

]
dη, (5.20)

u±3 (t, y) =

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±η (τ, η)

[
e−

(y−η+t−τ)2
4(t−τ) − e−ye−

(y+η−t+τ)2
4(t−τ)

]
dη. (5.21)

The fixed-point equations (5.18) are considered in a small ball Bε ⊂ X of radius ε > 0 in
Banach space

X := L∞(R+, H
2(R+) ∩W 2,∞(R+)),

where u±0 ∈ H2(R+) ∩W 2,∞(R+) and γ ∈ L1(R) ∩ L∞(R) are given and satisfy the initial
bound (5.16). We analyze hereafter each term in the definition of A±(u±) in X.

The explicit expressions for u±1 in (5.19) coincide with (4.8) after the change of the initial
data u0 to u±0 . By using the same analysis as in the proof of Lemma 4.3, we obtain the
same bounds (4.10), (4.13), and (4.14) for u±1 (t, ·) and their first and second y-derivatives
in the L2(R+) norm. Similarly, the same bounds can be rederived in the L∞(R+) norm.
Combining them together, we deduce that there exists C > 0 such that

‖u±1 (t, ·)‖H2∩W 2,∞ ≤ C‖u±0 ‖H2∩W 2,∞ , t > 0. (5.22)

By Lebesgue’s dominated convergence theorem, u±1 (t, ·) and their first and second derivatives
in y are continuous functions of y for every t > 0 such that taking the limit y → 0+ yields

∂yu
±
1 (t, 0+) + ∂2yu

±
1 (t, 0+) = 0, t > 0. (5.23)

Let us now consider the explicit expressions for u±2 in (5.20). By the generalized Young’s
inequality (3.6) with either p = 1 and q = r = 2 or p = q = 2 and r =∞, we obtain

‖u±2 (t, ·)‖L2∩L∞ ≤ 2

∫ t

0

|γ(τ)|‖e−y ∗G(t− τ, y + t− τ)‖L2
y(R+)∩L∞y (R+)dτ

≤ 2

∫ t

0

|γ(τ)|‖e−y‖L1
y(R+)∩L2

y(R+)‖G(t− τ, y + t− τ)‖L2
y(R)dτ

≤ 2

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)1/4

dτ,
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where the second equality in (3.1) has been used together with ‖e−y‖L1
y(R+) = 1 and ‖e−y‖L2

y(R+) =
1√
2
< 1. Computing derivatives in y and integrating by parts yield

∂yu
±
2 (t, y) = −

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

e−ηe−
(y−η+t−τ)2

4(t−τ) dη + ν(t, y)

and

∂2yu
±
2 (t, y) =

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

e−ηe−
(y−η+t−τ)2

4(t−τ) dη − 1

2
ν(t, y) + νy(t, y),

where ν(t, y) is given by (3.13). By using estimates in the proof of Lemma 3.1, we obtain

‖∂yu±2 (t, ·)‖L2 ≤ 3

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)1/4

dτ,

‖∂yu±2 (t, ·)‖L∞ ≤
3√
4π

∫ t

0

|γ(τ)|
(t− τ)1/2

dτ,

‖∂2yu±2 (t, ·)‖L2 ≤ 2

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)1/4

dτ +
1

(8π)1/4

∫ t

0

|γ(τ)|
(t− τ)3/4

dτ,

and

‖∂2yu±2 (t, ·)‖L∞ ≤
3√
4π

∫ t

0

|γ(τ)|
(t− τ)1/2

dτ + |γ(t)|.

Combining all estimates together, we deduce that there exists C > 0 such that

‖u±2 (t, ·)‖H2∩W 2,∞ ≤ C

(∫ t

0

|γ(τ)|
(t− τ)1/4

dτ + |γ(t)|
)
, t > 0, (5.24)

where the end point estimates are taken into account. Moreover, u±2 (t, ·) and their first and
second derivatives in y are continuous functions of y for every t > 0. By taking the limit
y → 0+ and using (3.14) in Lemma 3.1, we obtain

∂yu
±
2 (t, 0+) + ∂2yu

±
2 (t, 0+) =

1

2
ν(t, 0) + νy(t, 0

+) = −γ(t), t > 0. (5.25)

We turn now to the explicit expressions for u±3 in (5.21). Integrating by parts, we obtain

u±3 (t, y) = −
∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±(τ, η)

(
y − η + t− τ

2(t− τ)

)
e−

(y−η+t−τ)2
4(t−τ) dη

−
∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±(τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη.
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By the generalized Young’s inequality (3.6) with p = 1 and either q = r = 2 or q = r =∞,
we obtain

‖u±3 (t, ·)‖L2∩L∞ ≤ 2

∫ t

0

|γ(τ)|‖u±(τ, y) ∗ ∂yG(t− τ, y + t− τ)‖L2
y(R+)∩L∞y (R+)dτ

≤ 2

∫ t

0

|γ(τ)|‖u±(τ, ·)‖L2∩L∞‖∂yG(t− τ, y + t− τ)‖L1
y(R)dτ

≤ 2

∫ t

0

|γ(τ)|√
π(t− τ)

‖u±(τ, ·)‖L2∩L∞dτ,

where the first equality in (3.2) has been used. Computing derivative in y and integrating
by parts yield

∂yu
±
3 (t, y) = −

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±y (τ, η)

(
y − η + t− τ

2(t− τ)

)
e−

(y−η+t−τ)2
4(t−τ) dη

+

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±y (τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη

+

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±(τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη

With similar estimates as above, we obtain

‖∂yu±3 (t, ·)‖L2∩L∞ ≤
∫ t

0

|γ(τ)|√
π(t− τ)

(2‖∂yu±(τ, ·)‖L2∩L∞ + ‖u±(τ, ·)‖L2∩L∞)dτ.

Computing another derivative in y and integrating by parts yield

∂2yu
±
3 (t, y) = −

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±yy(τ, η)

(
y − η + t− τ

2(t− τ)

)
e−

(y−η+t−τ)2
4(t−τ) dη

−
∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±yy(τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη

−2

∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±y (τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη

−
∫ t

0

γ(τ)dτ√
4π(t− τ)

∫ ∞
0

u±(τ, η)

(
y + η − t+ τ

2(t− τ)

)
e−ye−

(y+η−t+τ)2
4(t−τ) dη

−
∫ t

0

γ(τ)√
4π(t− τ)

∂yu
±(τ, 0+)

(
y

t− τ

)
e−

(y+t−τ)2
4(t−τ) dτ,

where the last term can be written as ν̃y(t, y) + 1
2
ν̃(t, y) with

ν̃(t, y) := 2

∫ t

0

γ(τ)u±(τ, 0+)√
4π(t− τ)

e−
(y+t−τ)2
4(t−τ) dτ.
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All terms in ∂2yu
±
3 including the last one are estimated similarly to what was done above. As

a result, we obtain

‖∂2yu±3 (t, ·)‖L2∩L∞ ≤ 2
∫ t
0
|γ(τ)|dτ√
π(t−τ)

(‖∂2yu±(τ, ·)‖L2∩L∞ + ‖∂yu±(τ, ·)‖L2∩L∞)dτ

+
∫ t
0
|γ(τ)|dτ√
π(t−τ)

‖u±(τ, ·)‖L2∩L∞dτ + ‖ν̃y(t, ·) + 1
2
ν̃(t, ·)‖L2∩L∞ ,

where the following estimates from the proof of Lemma 3.1 can be used:

‖ν̃y(t, ·) +
1

2
ν̃(t, ·)‖L2 ≤ 1

(8π)1/4

∫ t

0

|γ(τ)||∂yu±(τ, 0+)|
(t− τ)1/4

dτ +
1

(8π)1/4

∫ t

0

|γ(τ)||∂yu±(τ, 0+)|
(t− τ)3/4

dτ

and

‖ν̃y(t, ·) +
1

2
ν̃(t, ·)‖L∞ ≤ |γ(τ)||∂yu±(τ, 0+)|.

Combining all estimates together, we deduce that there exists C > 0 such that

‖u±3 (t, ·)‖H2∩W 2,∞ ≤ C

(∫ t

0

|γ(τ)|
(t− τ)1/2

‖u±(τ, ·)‖H2∩W 2,∞dτ +

∫ t

0

|γ(τ)||∂yu±(τ, 0+)|
(t− τ)1/4

dτ

+|γ(τ)||∂yu±(τ, 0+)|
)
, t > 0, (5.26)

where the end point estimates are taken into the account. Moreover, u±3 (t, ·) and their first
and second derivatives in y are continuous functions of y for every t > 0. By taking the limit
y → 0+, we obtain

∂yu
±
3 (t, 0+) + ∂2yu

±
3 (t, 0+) = −γ(t)∂yu

±(t, 0+), t > 0. (5.27)

Summing (5.23), (5.25), and (5.27) recovers the dynamical conditions (5.10) for u±.
Next, we run the fixed-point arguments for the fixed-point equations (5.18) in Bε ⊂ X. If

u±0 and γ satisfy the initial bound (5.16), then there exists C > 0 such that

‖A±(0)‖X ≤ Cδ

due to bounds (5.22) and (5.24), where we have also used the bound (3.35) in Lemma 3.6.
Furthermore, for every small ε > 0, there is sufficiently small δ > 0 such that if u± ∈ Bε ⊂ X,
then A±(u±) ∈ Bε ⊂ X; moreover A± are contractions on Bε ⊂ X due to bounds (5.26),
where the bound (3.35) can be used again. Existence and uniqueness of the fixed point
u± ∈ Bε ⊂ X to the fixed-point equations (5.18) follows by the Banach fixed-point theorem.
Hence, the bound (5.17) is proven. By the standard bootstrapping arguments, if γ ∈ C(R+),
we also get

u± ∈ C(R+, H
2(R+) ∩W 2,∞(R+)).

The proof of the lemma is complete. �

When u± ∈ C(R+, H
2(R+)∩W 2,∞(R+)) are substituted from Lemma 5.7 into the integral

equation (5.14), we are looking for a small solution γ ∈ L1(R+)∩L∞(R+)∩C(R+) in response
to small initial data u±0 ∈ H2(R+)∩W 2,∞(R+). However, we were not able to close the fixed-
point iterations unless we added the additional requirement of the spatial exponential decay
of the initial data u±0 .
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The following lemma shows that the spatial exponential decay of the initial data u±0 is
preserved in time.

Lemma 5.8. In addition to (5.16), we assume that u±0 ∈ H2(R+) ∩W 2,∞(R+) satisfy

‖eα·u+0 ‖W 2,∞ + ‖eα·u−0 ‖W 2,∞ < δ, (5.28)

for a fixed α ∈ (0, 1
2
]. Then, the unique solutions u± ∈ C(R+, H

2(R+) ∩ W 2,∞(R+)) of
Lemma 5.7 satisfy

‖eα·u+(t, ·)‖W 2,∞ + ‖eα·u−(t, ·)‖W 2,∞ < ε, t > 0 (5.29)

and

‖u±(t, ·)‖W 2,∞ → 0 as t→ +∞. (5.30)

Proof. By rearranging the heat kernels, we can rewrite (5.19), (5.20), and (5.21) as

eαyu±1 (t, y) =
e−α(1−α)t√

4πt

∫ ∞
0

eαηu±0 (η)

[
e−

(y−η+(1−2α)t)2

4t − e−(1−2α)ye−
(y+η−(1−2α)t)2

4t

]
dη , (5.31)

eαyu±2 (t, y) =

∫ t

0

γ(τ)e−α(1−α)(t−τ)dτ√
4π(t− τ)

×
∫ ∞
0

e−(1−α)η
[
e−

(y−η+(1−2α)(t−τ))2
4(t−τ) − e−(1−2α)ye−

(y+η−(1−2α)(t−τ))2
4(t−τ)

]
dη, (5.32)

eαyu±3 (t, y) =

∫ t

0

γ(τ)e−α(1−α)(t−τ)dτ√
4π(t− τ)

×
∫ ∞
0

eαηu±η (τ, η)

[
e−

(y−η+(1−2α)(t−τ))2
4(t−τ) − e−(1−2α)ye−

(y+η−(1−2α)(t−τ))2
4(t−τ)

]
dη. (5.33)

If α ∈ (0, 1
2
], the exponential function e−(1−2α)y is still bounded on R+, whereas eαyu±0 (y)

belongs to W 2,∞(R+) and satisfies the initial bound (5.28). All convolution estimates of
Lemma 5.7 hold true with some α-dependent constants and give the unique solution in
W 2,∞(R+) satisfying the bound (5.29).

It remains to prove the asymptotic decay (5.30). Since

‖u‖L∞(R+) ≤ ‖eα·u‖L∞(R+),

‖uy‖L∞(R+) ≤ ‖(eα·u)y‖L∞(R+) + α‖eα·u‖L∞(R+),

‖uyy‖L∞(R+) ≤ ‖(eα·u)yy‖L∞(R+) + 2α‖(eα·u)y‖L∞(R+) + α2‖eα·u‖L∞(R+),

it is sufficient to prove the decay to zero for eαyu±(t, y) as t → +∞ in W 2,∞(R+). In
order to prove the decay in time, we show henceforth that eαyu±(t, y) are bounded in
L1(R+,W

2,∞(R+)) since ‖eα·u±(t, ·)‖W 2,∞ are continuous functions of t ∈ R+.
Thanks to the decaying exponential function e−α(1−α)t as t → +∞ in (5.31) and the

Young’s inequality (3.6) with p = r = ∞ and q = 1, there exists the α-dependent Cα > 0
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such that ∫ ∞
0

‖eα·u±1 (t, ·)‖W 2,∞dt ≤ Cα‖eα·u±0 ‖W 2,∞ . (5.34)

Similarly, it follows from (5.32) that∫ ∞
0

‖eα·u±2 (t, ·)‖W 2,∞dt ≤ Cα

∫ ∞
0

∫ t

0

|γ(τ)|e−α(1−α)(t−τ)dτdt ≤ Cα
α(1− α)

‖γ‖L1(R+), (5.35)

where we have used the Young’s inequality (3.34) with p = q = r = 1.
Finally, integrating (5.33) by parts yields

eαyu±3 (t, y) = −
∫ t

0

γ(τ)e−α(1−α)(t−τ)dτ√
4π(t− τ)

∫ ∞
0

eαηu±(τ, η)

(
y − η + (1− 2α)(t− τ)

2(t− τ)

)
e
− (y−η+t−τ)2

4(t−τ) dη

−
∫ t

0

γ(τ)e−α(1−α)(t−τ)dτ√
4π(t− τ)

∫ ∞
0

eαηu±(τ, η)

(
y + η − (1− 2α)(t− τ)

2(t− τ)

)
e−(1−2α)ye

− (y+η−t+τ)2
4(t−τ) dη.

By using the bounds (3.1) and (3.2), the Young’s inequality (3.6) with p = r =∞ and q = 1,
and the Young’s inequality (3.34) with p = q = r = 1, we obtain∫ ∞

0

‖eα·u±3 (t, ·)‖W 2,∞dt ≤ Cα‖γ‖L1(R+) sup
t∈R+

‖eα·u±(t, ·)‖W 2,∞ , (5.36)

for every solutions u± ∈ C(R+, H
2(R+)∩W 2,∞(R+)) of Lemma 5.7 satisfying (5.29). Hence,

eαyu±(t, y) are bounded in L1(R+,W
2,∞(R+)), which implies the asymptotic decay (5.30)

since ‖eα·u±(t, ·)‖W 2,∞ are continuous functions of t ∈ R+. �

Remark 5.9. Due to the exponential decay with α ∈ (0, 1
2
], we also have the bound

‖u‖H2(R+) ≤ Cα‖eα·u‖W 2,∞(R+),

which implies that ‖u±(t, ·)‖H2 → 0 as t→∞. This decay in time is impossible if the initial
data do not satisfy the spatial exponential decay, see Remark 4.5.

The final lemma gives the existence of the unique solution to the integral equation (5.14)
for γ ∈ L1(R+)∩L∞(R+)∩C(R+), where u± ∈ C(R+, H

2(R+)∩W 2,∞(R+)) are substituted
from Lemmas 5.7 and 5.8 into the integral equation (5.14) and the initial data u±0 ∈ H2(R+)∩
W 2,∞(R+) satisfy the bounds (5.16) and (5.28).

Lemma 5.10. Fix α ∈ (0, 1
2
] and consider the integral equation (5.14) with the unique

solutions u± ∈ C(R+, H
2(R+) ∩W 2,∞(R+)) defined in Lemmas 5.7 and 5.8 that depend on

(small) γ ∈ L1(R+)∩L∞(R+)∩C(R+). For every ε̃ > 0 (small enough), there is δ̃ > 0 such
that for every u±0 ∈ H2(R+ ∩W 2,∞(R+)) satisfying

‖u+0 ‖H2∩W 2,∞ + ‖u−0 ‖H2∩W 2,∞ + ‖eα·u+0 ‖W 2,∞ + ‖eα·u−0 ‖W 2,∞ ≤ δ̃ (5.37)

and the continuity condition u+′0 (0+) + u−′0 (0+) = 0, there exists the unique solution γ ∈
L1(R+) ∩ L∞(R+) ∩ C(R+) of the integral equation (5.14) satisfying

‖γ‖L∞∩L1 ≤ ε̃. (5.38)
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Proof. We rewrite the integral equation in Lemma 5.6 as the fixed-point equation associated
with the following integral integral operator:

γ = A(γ) := γ1 + γ2 + γ3, (5.39)

where

γ1(t) = − 1√
4πt

∫ ∞
0

[
u+′0 (η) + u−′0 (η) +

1

2
u+0 (η) +

1

2
u−0 (η)

](
η + t

2t

)
e−

(η−t)2
4t dη,

γ2(t) = −1

2
γ(t)

[
u+y (t, 0+)− u−y (t, 0+)

]
− 1

2

∫ t

0

γ(τ)e−
t−τ
4√

4π(t− τ)

[
u+y (τ, 0+)− u−y (τ, 0+)

]
dτ,

γ3(t) = −
∫ t

0

γ(τ)√
4π(t− τ)

∫ ∞
0

[
u+yy − u−yy +

1

2
u+y −

1

2
u−y

]
(τ, η)

(
η + t− τ
2(t− τ)

)
e−

(η−t+τ)2
4(t−τ) dηdτ.

The fixed-point equation (5.39) is considered in a small ball Bε̃ ⊂ L1(R+) ∩ L∞(R+) of
radius ε̃ > 0, where u±0 ∈ H2(R+) ∩ W 2,∞(R+) are given and satisfy (5.37) and u± ∈
C(R+, H

2(R+) ∩W 2,∞(R+)) are defined in Lemmas 5.7 and 5.8 such that δ̃ and ε̃ in (5.37)
and (5.38) are smaller than δ in (5.16). We analyze hereafter each term in the definition of
A(γ) in L1(R+) ∩ L∞(R+).

Since the initial constraint u+′0 (0+) + u−′0 (0+) = 0 is satisfied and u±0 ∈ W 2,∞(R+), we can
use the equivalent form (3.29) in Lemma 3.3 and rewrite γ1 in (5.39) in the form:

γ1(t) = − 1√
4πt

∫ ∞
0

f(η)e−
(η−t)2

4t dη, (5.40)

where

f(η) = u+′′0 (η) + u−′′0 (η) +
3

2
u+′0 (η) +

3

2
u−′0 (η) +

1

2
u+0 (η) +

1

2
u−0 (η).

It follows from the first identity in (3.1) that there exists C > 0 such that

sup
t≥0
|γ1(t)| ≤ C

(
‖u+0 ‖W 2,∞ + ‖u−0 ‖W 2,∞

)
. (5.41)

However, there is no bound on ‖γ1‖L1 unless we add the exponential weight on the initial
conditions u±0 and rewrite γ1 in (5.40) in the form:

γ1(t) = −e
−α(1−α)t
√

4πt

∫ ∞
0

eαηf(η)e−
(η−(1−2α)t)2

4t dη. (5.42)

Now, thanks to the exponential factor e−α(1−α)t decaying to zero as t→ +∞, we obtain

‖γ1‖L1 ≤ 1

α(1− α)
‖eα·f‖L∞ ,

so there exists a positive α-dependent constant Cα such that

‖γ1‖L1 ≤ Cα
(
‖eα·u+0 ‖W 2,∞ + ‖eα·u−0 ‖W 2,∞

)
. (5.43)
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For γ2 in (5.39), we obtain

‖γ2‖L1∩L∞ ≤
1

2

(
1 +

∫ ∞
0

e−
t
4

√
4πt

dt

)
‖γ‖L1∩L∞ sup

t∈R+

(
‖u+(t, ·)‖W 1,∞ + ‖u−(t, ·)‖W 1,∞

)
,

(5.44)
where the expression in brackets is a finite constant. No exponential weight is needed to
estimate γ2 in L1(R+) ∩ L∞(R+).

For γ3 in (5.39), we use the Young’s inequality (3.6) with p = q = 2 and r =∞ and obtain

|γ3(t)| ≤ C

(∫ t

0

|γ(τ)|dτ
(t− τ)1/4

+

∫ t

0

|γ(τ)|dτ
(t− τ)3/4

)
× sup

t∈R+

(
‖u+(t, ·)‖H2 + ‖u−(t, ·)‖H2

)
, t > 0,

which is bounded due to (3.35) if γ ∈ L1(R+) ∩ L∞(R+). There is no bound on ‖γ3‖L1 ,
unless we add the exponential weight and rewrite γ3 in the equivalent form:

γ3(t) = −
∫ t

0

γ(τ)e−α(1−α)(t−τ)√
4π(t− τ)

∫ ∞
0

eαηg(τ, η)

(
η + t− τ
2(t− τ)

)
e−

(η−(1−2α)(t−τ))2
4(t−τ) dηdτ,

where

g(τ, η) = u+yy(τ, η)− u−yy(τ, η) +
1

2
u+y (τ, η)− 1

2
u−y (τ, η).

By using the Young’s inequality (3.6) with p = r =∞ and q = 1 and by using the Young’s
inequality (3.34) with either p = r = 1 or p = r =∞ and q = 1, we now obtain

‖γ3‖L1∩L∞ ≤
(

1

α
+

∫ ∞
0

e−α(1−α)t√
πt

dt

)
‖γ‖L1∩L∞ sup

t∈R+

‖eα·g(t, ·)‖L∞ ,

so there exists a positive α-dependent constant Cα such that

‖γ3‖L1∩L∞ ≤ Cα‖γ‖L1∩L∞ sup
t∈R+

(
‖eα·u+(t, ·)‖W 2,∞ + ‖eα·u−(t, ·)‖W 2,∞

)
. (5.45)

Next, we run the fixed-point arguments for the fixed-point equation (5.39) in Bε̃ ⊂
L1(R+) ∩ L∞(R+). If u±0 satisfy the initial bound (5.37) and γ ∈ Bε̃, then the solutions
u± ∈ C(R+, H

2(R+) ∩ W 2,∞(R+)) in Lemmas 5.7 and 5.8 satisfy the bounds (5.17) and

(5.29) if δ̃ ≤ δ and ε̃ ≤ δ. The bounds (5.41), (5.43), (5.44), and (5.45) imply that

A(γ) ∈ Bε̃ for sufficiently small δ̃ and given small ε̃. Moreover, A is a contraction on
Bε̃ ⊂ L1(R+) ∩ L∞(R+) due to the same bounds (5.44), and (5.45) and the smallness of the
solutions u± ∈ C(R+, H

2(R+) ∩W 2,∞(R+)).
Existence and uniqueness of the fixed point γ ∈ Bε̃ ⊂ L1(R+)∩L∞(R+) to the fixed-point

equation (5.39) follows from the Banach fixed-point theorem. Hence, the bound (5.38) is
proven. By the standard bootstrapping arguments, if u± ∈ C(R+, H

2(R+ ∩W 2,∞(R+)) and
eαyu± ∈ C(R+,W

2,∞(R+)), then γ ∈ C(R+). The proof of the lemma is complete. �

Proof of Theorem 2.4. The existence, uniqueness, and continuous dependence of the solutions
u± to the boundary-value problems (5.7) with (5.8) and (5.10) is obtained from Lemmas 5.7,
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5.8, and 5.10 as follows. For a fixed ε in (5.17) and (5.29), there exists a small δ in (5.16)

and (5.28), for which we select ε̃ in (5.38) such that ε̃ ≤ δ. By Lemma 5.10, there exists δ̃ in

(5.37) and, if necessary, we reduce δ̃ so that δ̃ ≤ δ. Then, the results of Lemmas 5.7, 5.8, and
5.10 hold simultaneously for the initial conditions satisfying (5.37), which is obtained from
(2.17) by the transformations (5.1) and (5.6). The bound (2.18) follows from u± ∈ Bε ⊂ X
in the proof of Lemma 5.7 and the transformations (5.1) and (5.6). The decay (2.19) follows
from the decay (5.30). By Lemmas 5.7 and 5.8, the solutions belong to the spaces (2.20)
and (2.21).

The interface condition (5.9) follows from (5.8) and (5.10). The interface condition (5.3)
of Lemma 5.1 follows from the transformation (5.6) and the dynamical condition (5.10).
The positivity condition (5.5) follows from the decomposition (5.1) and smallness of u in
W 1,∞(R) similarly to the proof of Theorem 2.1. �

6. Numerical simulations

Here we simulate numerically the boundary-value problem (5.2) completed with the dy-
namical equation (5.3) and the interface condition (5.4). The interface location ξ(t) satisfies
ξ(0) = 0. We define again γ(t) = ξ′(t) and use W ′

0(y) = e−|y|. By using new variables

v±(t, y) = u(t, y)∓ u(t,−y), y > 0, (6.1)

we can rewrite the boundary-value problem (5.2) as a system of two coupled equations:{
v+t = v+y + v+yy + γv−y , y > 0,
v−t = v−y + v−yy + γv+y + 2γe−y, y > 0,

(6.2)

subject to the boundary conditions
v±(t, 0) = 0,

v−y (t, 0) = 0,

v±(t, y)→ 0 as y →∞,
(6.3)

the interface condition
v+y (t, 0) + v+yy(t, 0) = 0, (6.4)

and the dynamical condition

γ(t) = −
v−yy(t, 0)

2 + v+y (t, 0)
. (6.5)

If v−(0, y) = 0 initially, then γ(t) = 0 and v−(t, y) = 0 are preserved in the time evolution of
(6.2), (6.3), and (6.5). In this case, the variable v+(t, y) satisfies the boundary-value problem
(4.2), which is analyzed in Theorem 2.1 for the odd perturbations to the viscous shock. In
what follows, we consider the general case of v−(0, y) 6= 0 which is analyzed in Theorem 2.4.

The spatial domain of system (6.2) is discretized at the points yn = nh with equal step
size h for n = 1, . . . , N . It follows from the boundary conditions (6.3) that v±(t, y0) = 0 at
y0 = 0. Although the problem is unbounded in one direction, one can truncate the half-line
on the finite interval [0, L] with sufficiently large L and yN+1 = L = (N + 1)h and apply
the Dirichlet condition v±(t, yN+1) = 0 at the end point. This approach of truncation is
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commonly adopted for the numerical approximation of evanescent waves in engineering [5]
as the Dirichlet condition does not provide large errors due to reflections if the waves have
fast spatial decay.

At each time level tk = kτ with the time step τ , we approximate the spatial derivatives
with the second-order central differences as follows:

v±y (tk, yn) =
v±n+1,k − v

±
n−1,k

2h
, (6.6)

v±yy(tk, yn) =
v±n+1,k − 2v±n,k + v±n−1,k

h2
. (6.7)

where vn,k is a numerical approximation of v(tk, xn). The Neumann condition v−y (t, 0) = 0

is modeled with the virtual grid point y−1 = −h so that v−−1,k = v−1,k. By using the virtual
grid point y−1 and the interface condition (6.4), we also express

v+−1,k = −2 + h

2− h
v+1,k, (6.8)

after which the approximation of γ(tk) is obtained from (6.5) as follows:

γ(tk) = −
(2− h)v−1,k

hv+1,k + h2(2− h)
. (6.9)

We use the Crank–Nicholson method in order to perform steps in time for the evolution
system (6.2). For each equation of the form dv

dt
= f(v), the Crank–Nicholson method yields:

vk+1 −
τ

2
f(vk+1) = vk +

τ

2
f(vk), (6.10)

where f for the first and second equations of system (6.2) take the form:

[f+]n,k =
v+n+1,k − v

+
n−1,k

2h
+
v+n+1,k − 2v+n,k + v+n−1,k

h2
+ γk

v−n+1,k − v
−
n−1,k

2h
,

[f+]n,k =
v−n+1,k − v

−
n−1,k

2h
+
v−n+1,k − 2v−n,k + v−n−1,k

h2
+ γk

v+n+1,k − v
+
n−1,k

2h
+ 2γke

−yn .

For simplicity, we use γk at the time level k on both sides of equation (6.10). Thus, in order
to advance the solution of (6.2) to the next time level k + 1, we have to solve the following
algebraic system:

L(−τ)vk+1 = L(τ)vk + ck (6.11)

where vk and ck are the 2N vectors with the elements

vn,k = v+n,k, 1 ≤ n ≤ N, and vn,k = v−n,k, N + 1 ≤ n ≤ 2N, (6.12)

and

cn,k = 0, 1 ≤ n ≤ N, and cn,k = 2τγke
−yn , N + 1 ≤ n ≤ 2N, (6.13)

and L(τ) is the (2N × 2N) matrix defined in the block form:

L =

[
A B
B A

]
, (6.14)
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with A and B are (N ×N) three-diagonal matrices with the elements:

aj,j = 1− τ

h2
, aj,j+1 =

τ

2

(
1

2h
+

1

h2

)
, aj,j−1 =

τ

2

(
− 1

2h
+

1

h2

)
and

bj,j = 0, bj,j+1 =
τ

4h
γk, bj,j−1 = − τ

4h
γk.

The solution u(t, y) to the boundary-value problem (5.2) for y ∈ R is recovered from solution
v±(t, y) to system (6.2) for y ∈ R+ by using the transformation (6.1). Finally, we use

y = x− ξ(t) with ξ(t) :=
∫ t
0
γ(t′)dt′ in order to display u(t, x) versus x on R.
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Figure 6.1. Numerical simulations for the initial conditions (6.15). Top:
plot of u(t, x) versus x for t = 0, 0.5, 1 (left) and t = 2, 3, 4 (right). Bottom:
plot of w(t, x) versus x for t = 0, 1, 2 (left) and plot of γ(t) versus t (right).
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Figure 6.1 reports the results of numerical simulations for the initial condition with the
Gaussian decay: {

v+(0, x) = 0.1(x− 0.5x2)e−x
2
,

v−(0, x) = 0.5x2e−x
2
,

(6.15)

where the coefficients are carefully selected to satisfy the boundary conditions in (6.3) and
the interface condition (6.4) at t = 0.

Snapshots of u(t, x) versus x for different values of t (top panels) show that the solution
quickly decays to zero in the supremum norm. Although the perturbation u is sign-indefinite,
the values of u are smaller compared to the values of W0 in the viscous shock, hence w =
W0+u remains positive (negative) to the right (left) of the interface located at x = ξ(t). The
snapshots of w are shown on the bottom left panel for t = 0, 1, 2 with the insert showing the
profile of w near the interface. The bottom right panel shows the position of the interface ξ
versus t. It quickly relaxes to the equilibrium position at ξ∞ ≈ −0.11.
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Figure 6.2. The same as in Figure 6.1 but for the initial condition (6.16).
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Figure 6.2 reports similar results for the initial conditions with the exponential decay:{
v+(x, 0) = 0.1(x+ 0.5x2)e−x,

v−(x, 0) = 0.5x2e−x.
(6.16)

Dynamics of the perturbation u in time t for the initial data (6.16) resembles the same
dynamics as for the initial condition (6.15). However, the relaxation time is slower for the
exponentially decaying perturbations, hence the time window is extended from T = 4 on
Figure 6.1 to T = 12 on Figure 6.2. Nevertheless, the interface ξ(t) moves to the left and
relaxes to some equilibrium position ξ∞ ≈ −0.49.

7. Conclusion

We have considered the modular Burgers equation, where the advective nonlinearity pro-
duces singularities related to the modular functions. For the class of viscous shocks with a
single interface at the zero value of the modular function, we have proven their asymptotic
stability under a general perturbation of sufficient regularity with the spatial exponential
decay at infinity. This work may open up new directions of research.

First, it is interesting to consider the existence and nonlinear dynamics of the viscous
shocks with multiple interfaces. It is expected that the perturbations at the tails will behave
similarly but the dynamics will be complicated by the internal interactions among the inter-
faces. The periodic waves with an infinite number of interfaces located at the equal distance
is another interesting case for further studies, e.g., see [10, 11].

Second, one can wonder if the exponential weight requirement on the initial perturbations
can be relaxed or completely removed. It may be relatively easy to replace the exponential
weights with the algebraic weights of sufficiently fast decay as done in [1]. However, we are
not able to close the fixed-point arguments for the perturbations to the viscous shocks in
H2(R) ∩W 2,∞, hence new ideas for analysis are needed to remove the weights.

Finally, the Burgers equation with more singular nonlinearity, e.g. given by the logarithmic
functions, arises in the applications of granular chains [9]. It is definitely interesting if the
asymptotic stability of viscous shocks can be proven for the logarithmic Burgers equations.
Unfortunately, our methods rely on the reductions provided by the modular nonlinearity
and cannot be extended to the case of logarithmic or other singular nonlinearities.
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