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ASYMPTOTIC STABILITY OF VISCOUS SHOCKS IN THE MODULAR BURGERS EQUATION

Keywords: modular Burgers equation, traveling fronts, asymptotic stability

Dynamics of viscous shocks is considered in the modular Burgers equation, where the time evolution becomes complicated due to singularities produced by the modular nonlinearity. We prove that the viscous shocks are asymptotically stable under odd and general perturbations. For the odd perturbations, the proof relies on the reduction of the modular Burgers equation to a linear diffusion equation on a half-line. For the general perturbations, the proof is developed by converting the time-evolution problem to a system of linear equations coupled with a nonlinear equation for the interface position. Exponential weights in space are imposed on the initial data of general perturbations in order to gain the asymptotic decay of perturbations in time. We give numerical illustrations of asymptotic stability of the viscous shocks under general perturbations.

Introduction

Modular nonlinearity is commonly used for approximations of nonlinear interactions between particles by piecewise linear functions [START_REF] Hedberg | Collisions, mutual losses and annihilation of pulses in a modular nonlinear media[END_REF][START_REF] Vainchtein | Dynamics of phase transitions in a piecewise linear diatomic chain[END_REF]. Unidirectional propagation of waves in chains of particles is described by simplified nonlinear evolution equations with modular nonlinearity such as the modular Burgers [START_REF] Nazarov | Stationary waves in a bimodular rod of finite radius[END_REF][START_REF] Rudenko | Equation admitting linearization and describing waves in dissipative media with modular, quadratic, and quadratically cubic nonlinearities[END_REF][START_REF] Rudenko | Inhomogeneous Burgers equation with modular nonlinearity: excitation and evolution of high-intensity waves[END_REF][START_REF] Rudenko | Wave resonance in media with modular, quadratic and quadraticallycubic nonlinearities described by inhomogeneous Burgers-type equations[END_REF] and modular Korteweg-de Vries [START_REF] Radostin | Propagation of noninear acoustic waves in bimodular media with linear dissipation[END_REF][START_REF] Rudenko | Modular solitons[END_REF][START_REF] Rudenko | A new equation and exact solutions describing focal fields in media with modular nonlinearity[END_REF] equations.

Traveling solutions of modular evolution equations such as viscous shocks and solitary waves are found from differential equations by matching solutions of linear equations with suitable condition at the interface where the modular nonlinearity jumps. On the other hand, the time evolution of the modular equations is a more complicated problem because the transport term tends to break the solution along the characteristic lines whereas the diffusion or dispersion terms smoothen out the solution and affect propagation of waves near the interface. It is unclear without detailed analysis if the initial-value problem can be solved in a suitable function space due to singularities arising from the modular nonlinearity. Because of these reasons, stability of propagation of traveling waves remains open.

Similar questions arise in the context of granular chains and involve the logarithmic versions of the Burgers and Korteweg-de Vries equations [START_REF] James | Gaussian solitary waves and compactons in Fermi-Pasta-Ulam lattices with Hertzian potentials[END_REF][START_REF] James | Traveling fronts in dissipative granular chains and nonlinear lattices[END_REF]. The logarithmic nonlinearity is more singular than the modular nonlinearity, hence questions of well-posedness and stability of nonlinear waves remain open for some time [START_REF] Carles | On the orbital stability of Gaussian solitary waves in the log-KdV equation[END_REF][START_REF] Natali | Orbital stability of periodic traveling-wave solutions for the log-KdV equation[END_REF].

The purpose of this work is to clarify stability of viscous shocks in the modular Burgers equation. We take the modular Burgers equation in the following normalized form:

∂w ∂t = ∂|w| ∂x + ∂ 2 w ∂x 2 , (1.1) 
where w(t, x) : R + × R → R. Traveling wave solutions and preliminary numerical approximations of time-dependent solutions to the modular Burgers equation (1.1) were constructed with the Fourier sine series in [START_REF] Nazarov | Stationary waves in a bimodular rod of finite radius[END_REF]. Similar results were discussed in [START_REF] Rudenko | Equation admitting linearization and describing waves in dissipative media with modular, quadratic, and quadratically cubic nonlinearities[END_REF][START_REF] Rudenko | Inhomogeneous Burgers equation with modular nonlinearity: excitation and evolution of high-intensity waves[END_REF]. Collisions of compactly supported pulses were considered in [START_REF] Hedberg | Collisions, mutual losses and annihilation of pulses in a modular nonlinear media[END_REF] by using heuristic approximation methods. However, no rigorous analysis of well-posedness or numerical approximations with the control of error terms has been developed so far for the modular Burgers equation (1.1).

In a similar context of the diffusion equation with the piecewisely defined nonlinearity, we mention the Kolmogorov-Petrovskii-Piskunov (KPP) model with the cutoff reaction rate proposed in [START_REF] Brunet | Shift in the velocity of a front due to a cut-off[END_REF]. Asymptotic stability of viscous shocks (stationary fronts) was analyzed in [START_REF] Dumortier | The critical wave speed for the Fisher-Kolmogorov-Petrovskii-Piscounov equation with cut-off[END_REF] and more recently in [START_REF] Tisbury | The evolution of travelling waves in a KPP reactiondiffusion model with cut-off reaction rate. I. Permanent form travelling waves[END_REF][START_REF] Tisbury | The evolution of travelling waves in a KPP reactiondiffusion model with cut-off reaction rate. II. Evolution of travelling waves[END_REF].

Viscous shocks and metastable N -waves of the classical Burgers equation were studied in [START_REF] Kim | Diffusive N -waves and metastability in the Burgers equation[END_REF] and more recently in [START_REF] Beck | Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity[END_REF][START_REF] Mcquighan | An explanation of metastability in the viscous Burgers equation with periodic boundary conditions via a spectral analysis[END_REF]. Stability arguments for viscous shocks and metastable Nwaves can be developed by using the linearization analysis and dynamical system methods. Viscous shocks are also useful for analysis of the enstrophy growth in the limit of small dissipation, see [START_REF] Pelinovsky | Enstrophy growth in the viscous Burgers equation[END_REF][START_REF] Pelinovsky | Sharp bounds on enstrophy growth in the viscous Burgers equation[END_REF] and references therein.

Non-smoothness of the nonlinear term in the modular Burgers equation (1.1) restricts us from using the dynamical system methods in the analysis of asymptotic stability of viscous shocks. Nevertheless, we are able to use the linearized estimates due to the piecewise definition of the nonlinear term in this model.

The main novelty of this paper is the rigorous analysis of the modular nonlinearity. We keep the functional-analytic framework as simple as possible. If the perturbation has the odd spatial symmetry, the asymptotic stability result follows from analysis of the linear diffusion equation. For general perturbations, we impose the spatial exponential decay on the initial data in order to gain the asymptotic decay of perturbations in time. This technique is definitely not novel, see [START_REF] Eckmann | Non-linear stability of modulated fronts for the Swift-Hohenberg equation[END_REF][START_REF] Hilder | Nonlinear stability of fast invading fronts in a Ginzburg-Landau equation with an additional conservation law[END_REF][START_REF] Sattinger | Weighted norms for the stability of traveling waves[END_REF] for earlier studies in a similar context. Further improvements of the asymptotic stability results in less restrictive function spaces are left for future work.

The paper is organized as follows. Main results are described in Section 2. Properties of solutions of the linear diffusion and Abel integral equations are reviewed in Section 3. Asymptotic stability of viscous shocks in the space of odd and general functions is proven in Sections 4 and 5 respectively. Numerical illustrations are given in Section 6. The summary and open directions are described in Section 7.

Main results

In what follows, we use the classical notations H k (R) for the Sobolev space of squared integrable distributions on R with squared integrable derivatives up to the integer order k ∈ N. In particular, the norms in H 1 and H 2 are defined by

f H 1 := f 2 L 2 + f 2 L 2 1/2 , f H 2 := f 2 L 2 + f 2 L 2 + f 2 L 2 1/2 ,
Similarly, we consider W 1,∞ and W 2,∞ for bounded functions with bounded derivatives up the first and second order respectively. To simplify the notations, we use

f H k ∩W k,∞ := max{ f H k , f W k,∞ }. By Sobolev's embedding, if f ∈ H 2 (R), then f ∈ C 1 (R) ∩ W 1,∞ (R)
and f and f decay to zero at infinity. In many cases throughout our work, if f ∈ W 2,∞ (R), then f will be considered in the class of functions with piecewise continuous f . Basic properties of the heat kernel, convolution estimates, solutions to the linear diffusion equations, and solutions to the Abel integral equations are reviewed in Section 3.

The traveling viscous shock of the modular Burgers equation (1.1) can be found in the closed analytical form. Substituting

w(t, x) = W c (x -ct) in (1.1) yields the differential equation W c (x) + sign(W c )W c (x) + cW c (x) = 0.
(2.1) Solutions of (2.1) are piecewise C 2 functions satisfying the interface condition

[W c ] + -(x 0 ) = -2W c (x 0 ) (2.2)
at each interface located at x 0 , where

[f ] + -(x 0 ) = f (x + 0 ) -f (x - 0 )
is the jump of a piecewise continuous function f across x 0 . Assuming a single interface at x 0 = 0 and the boundary conditions W c (x) → W ± as x → ±∞ with W -< 0 < W + , we obtain the exact solution to the differential equation (2.1) satisfying the jump condition (2.2) in the form

W c (x) = W + (1 -e -(1+c)x ), x > 0, W -(1 -e (1-c)x ), x < 0, (2.3) 
with the uniquely defined speed

c = W + + W - W --W + . (2.4) 
If W + = -W -, then c = 0 and the viscous shock W 0 is time-independent. Moreover, the modular Burgers equation (1.1) on the line R is closed on the half-line in the space of odd functions. In this case, the evolution equation with the normalized boundary condition

W + ≡ 1 takes the form:    w t = w x + w xx , x > 0, w(t, 0) = 0, w(t, x) → 1 as x → +∞, (2.5) 
subject to the positivity condition

w(t, x) > 0, x > 0. (2.6)
The classical solution of the boundary-value problem (2.5) satisfies the constraint 

w x (t, 0 + ) + w xx (t, 0 + ) = 0. ( 2 
× R → R, then w ext (t, •) is a piecewise C 2 function satisfying the interface condition [w xx ] + -(t, 0) = -2w x (t, 0), (2.8) 
where w ≡ w ext for simplicity of notations.

The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0 under the odd perturbations from the analysis of the boundary-value problem (2.5) subject to the positivity condition (2.6) and the boundary constraint (2.7). The proof of this theorem is presented in Section 4.

Theorem 2.1. For every > 0 there is δ > 0 such that every odd w 0 satisfying

w 0 -W 0 H 2 < δ (2.9)
generates the unique odd solution w(t, x) to the modular Burgers equation (1.1) with w(0, x) =

w 0 (x) satisfying w(t, •) -W 0 H 2 < , t > 0 (2.10) and w(t, •) -W 0 W 2,∞ → 0 as t → +∞. (2.11) 
The solution belongs to the class of functions such that w -

W 0 ∈ C(R + , H 2 (R)). Remark 2.2. Since H 2 (R) is continuously embedded into C 1 (R) ∩ W 1,∞ (R)
with functions and their first derivatives decaying to zero at infinity, whereas W 0 (0) = 0, W 0 (0) = 1, and W 0 (x) → 1 as x → ∞, the only interface of the solution w(t, •) in Theorem 2.1 with small > 0 is located at the origin. The positivity condition (2.6) is satisfied for all t ∈ R + .

Remark 2.3. The following transformation

w(t, x) = W + v((1 + c) 2 t, (1 + c)(x -ct)), x -ct > 0, W -v((1 -c) 2 t, (1 -c)(x -ct), x -ct < 0, (2.12) 
where c is given by (2.4), relates solutions w(t, x) with W + = -W -to solutions v(t, x) with normalized boundary conditions v(t, x) → ±1 as x → ±∞. If v(t, x) is odd in x, then it satisfies the same boundary-value problem (2.5) subject to the same constraints (2.6) and (2.7). Hence Theorem 2.1 can be extended trivially to the traveling viscous shock W c with c = 0 under the odd perturbation of v(t, x) in (2.12).

For the general perturbations, we consider the solution w(t, x) to the modular Burgers equation (1.1) with exactly one interface located dynamically at x = ξ(t). Without loss of generality, we assume ξ(0) = 0. The evolution equation with the normalized boundary conditions W + = -W -≡ 1 takes the form:

   w t = ±w x + w xx , ±(x -ξ(t)) > 0, w(t, ξ(t)) = 0, w(t, x) → ±1 as x → ±∞, (2.13)
subject to the positivity conditions ± w(t, x) > 0, ±(x -ξ(t)) > 0.

(2.14)

Piecewise C 2 solutions of the boundary-value problem (2.13) satisfy the interface condition

[w xx ] + -(t, ξ(t)) = -2w x (t, ξ(t)), (2.15) 
whereas the boundary condition w(t, ξ(t)) = 0 implies

w t (t, ξ(t)) + ξ (t)w x (t, ξ(t)) = 0, (2.16) 
for continuous w t and w x across the interface at x = ξ(t).

The following theorem states the asymptotic stability of the viscous shock (2.3) with c = 0 under general perturbations from the analysis of the boundary-value problem (2.13) subject to the positivity conditions (2.14) and the interface conditions (2.15) and (2.16). The proof of this theorem is presented in Section 5.

Theorem 2.4. Fix α ∈ 0, 1 2 . For every > 0 there is δ > 0 such that every w 0 satisfying

w 0 -W 0 H 2 ∩W 2,∞ + e α|•| (w 0 -W 0 ) W 2,∞ < δ (2.17)
generates the unique solution w(t, x) to the modular Burgers equation (1.1) with w(0, x) = w 0 (x) satisfying

w(t, • + ξ(t)) -W 0 H 2 ∩W 2,∞ < , t > 0 (2.18) and w(t, • + ξ(t)) -W 0 W 2,∞ → 0 as t → +∞, (2.19) 
where ξ ∈ C 1 (R + ) is the uniquely determined interface position satisfying ξ(0) = 0 and ξ ∈ L 1 (R + ) ∩ L ∞ (R + ). The solution belongs to the class of functions such that

w(t, • + ξ(t)) -W 0 ∈ C(R + , H 2 (R) ∩ W 2,∞ (R)) (2.20
) Remark 2.6. We assume in (2.17) that |w 0 (x) -W 0 (x)| → 0 as |x| → ∞ at least exponentially with the decay rate α ∈ (0, 1 2 ). This gives the asymptotic stability resulting in ξ (t) → 0 and w(t,

and e α|•+ξ(t)| [w(t, • + ξ(t)) -W 0 ] ∈ C(R + , W 2,∞ (R)). (2.21) Remark 2.5. The additional requirement w 0 -W 0 ∈ H 2 (R) ∩ W 2,∞ (R) for the initial data w 0 in Theorem 2.4 compared to w 0 -W 0 ∈ H 2 (R) in Theorem 2.
• + ξ(t)) -W 0 W 2,∞ → 0 as t → +∞.
The exponential decay in space is preserved in time as is shown in (2.21). It is opened for further studies to relax the exponential decay requirement on the general initial data w 0 . Remark 2.7. Thanks to the transformation (2.12), Theorem 2.4 can be extended trivially to the traveling viscous shock W c with c = 0 under a general perturbation of v(t, x).

Numerical illustrations of the asymptotic stability of the viscous shock (2.3) with c = 0 for two examples of general perturbations are given in Section 6, where the boundaryvalue problem (2.13) with (2.14), (2.15), and (2.16) is approximated by using the finitedifference method. Error of the finite-difference numerical approximation is controlled by the standard analysis. The two examples are constructed for perturbations with the Gaussian and exponential decay at infinity. Numerical simulations illustrate the asymptotic stability result of Theorem 2.4.

Preliminary results

The heat kernel is defined by

G(t, x) := 1 √ 4πt e -x 2
4t . It follows from explicit computations of integrals that the heat kernel satisfies the properties:

G(t, •) L 1 (R) = 1, G(t, •) L 2 (R) = 1 (8πt) 1/4 , G(t, •) L ∞ (R) = 1 (4πt) 1/2 , (3.1) 
∂ x G(t, •) L 1 (R) = 1 (πt) 1/2 , ∂ x G(t, •) L 2 (R) = 1 2(8π) 1/4 t 3/4 , (3.2) 
and

∂ x G(t, •) L ∞ (R) = 1 2(2πe) 1/2 t , (3.3) 
The heat kernel is used to solve the following Dirichlet problem for the linear diffusion equation on the half-line:

   v t = v xx , x > 0, t > 0, v(t, 0) = 0, t > 0, v(0, x) = v 0 (x),
x > 0.

(3.4)

For a rather general class of functions v 0 (x) : R + → R (not necessarily decaying to zero at infinity), the Dirichlet problem (3.4) can be solved by the method of images:

v(t, x) = ∞ 0 v 0 (y) [G(t, x -y) -G(t, x + y)] dy. (3.5) 
The convolution integrals in (3.5) are analyzed with the generalized Young's inequality:

f * g L r (R) ≤ f L p (R) g L q (R) , p, q, r ≥ 1, 1 + 1 r = 1 p + 1 q , (3.6) 
for every f ∈ L p (R) and g ∈ L q (R), where (f * g)(x) := R f (y)g(x -y)dy is the convolution integral. When integration is needed to be restricted on R + as in (3.5), we can use the characteristic function χ R + defined by χ R + (x) = 1 for x > 0 and χ R + (x) = 0 for x < 0.

For the inhomogeneous linear diffusion equation on the half-line:

   v t = v xx + f (t, x), x > 0, t > 0, v(t, 0) = 0, t > 0, v(0, x) = v 0 (x),
x > 0.

(3.7)

with given v 0 (x) : R + → R and f (t, x) : R + × R + → R, the exact solution is written in the form

v(t, x) = ∞ 0 v 0 (y) [G(t, x -y) -G(t, x + y)] dy + t 0 ∞ 0 f (τ, y) [G(t -τ, x -y) -G(t -τ, x + y)] dydτ. (3.8)
Next, we analyze the following initial-value problem:

ν t = ν y + ν yy + 2γ(t)δ(y), y ∈ R, t > 0, ν(0, y) = 0, y ∈ R, (3.9) 
where δ is the Dirac distribution centered at zero and γ ∈ C(R + ) is a given function. In order to construct the exact solution to this problem, we use the Laplace transform in time t defined by

γ(p) := L(γ)(p) = ∞ 0 γ(t)e -pt dt, p ≥ 0. (3.10)
We also use the following relations from the table of Laplace transforms for every y ∈ R:

L 1 √ πt e -y 2 4t = 1 √ p e -√ p|y| , p > 0 (3.11)
and

L 1 √ πt y 2t e -y 2 4t
= sign(y) e -√ p|y| , p > 0.

(3.12)

The following lemma gives the exact solution to the initial-value problem (3.9).

Lemma 3.1. For every γ ∈ C(R + ), there exists the unique solution to the initial-value problem (3.9) in the exact form:

ν(t, y) := 2 t 0 γ(τ ) 4π(t -τ ) e -(y+t-τ ) 2 4(t-τ ) dτ, y ∈ R, t > 0. (3.13)
Moreover, ν belongs to the class of functions in

C(R + , H 1 (R) ∩ W 1,∞ (R + )) satisfying ν y (t, 0 ± ) + 1 2 ν(t, 0) = ∓γ(t), t > 0. (3.14)
Proof. By using (3.10) and (3.11), we compute from (3.13):

ν(p, y) = L 1 √ πt e -(y+t) 2 4t (p) × L(γ)(p) = e -y 2 e - √ p+ 1 4 |y| p + 1 4 γ(p),
where we have used properties of the Laplace transform, e.g.

L(f (t)e -t 4 )(p) = f (p + 1 4
) and Next, we estimate the solution (3.13) in Sobolev spaces provided that γ ∈ C(R + ). By using (3.1), we obtain

L t 0 f (τ )g(t -τ )dτ (p) = f (p)ĝ(p).
ν(t, •) L 2 (R) ≤ 2 (8π) 1/4 t 0 |γ(τ )| (t -τ ) 1/4 dτ (3.18) 
and

ν(t, •) L ∞ (R) ≤ 1 √ π t 0 |γ(τ )| (t -τ ) 1/2 dτ. (3.19)
The derivative ν(t, y) in y is given by

ν y (t, y) = - t 0 γ(τ )(y + t -τ ) 4π(t -τ ) 3 e -(y+t-τ ) 2 4(t-τ ) dτ. (3.20) 
By using (3.2), we obtain

ν y (t, •) L 2 (R) ≤ 1 (8π) 1/4 t 0 |γ(τ )| (t -τ ) 3/4 dτ, (3.21) hence ν ∈ C(R + , H 1 (R)) if γ ∈ C(R + ). By Sobolev embedding, ν ∈ C(R + , L ∞ (R)), which also follows from (3.19). It remains to show that ν y ∈ C(R + , L ∞ (R + )). Due to (3.3), estimates on ν y (t, •) L ∞ (R)
which are similar to (3.19) produce a non-integrable singularity in the convolution integral in time. Nevertheless, we show hereafter that ν y (t, •) L ∞ (R + ) can be estimated in terms of |γ(t)|.

The initial-value problem (3.9) can be rewritten in the piecewise form:

   ν t = ν y + ν yy , ±y > 0, t > 0, ν y (t, 0 + ) -ν y (t, 0 -) = -2γ(t), t > 0, ν(0, y) = 0, y ∈ R. (3.22)
With the transformation ν(t, y) = e -y 2 -t 4 ν(t, y), the initial-boundary-value problem (3.22) is equivalently written as 

   νt = νyy , ±y > 0, t > 0, νy (t, 0 + ) -νy (t, 0 -) = -2γ(t)e t 4 , t > 0, ν(0, y) = 0, y ∈ R. ( 3 
ν y (t, •) L ∞ (R + ) ≤ 1 2 ν(t, •) L ∞ (R + ) + |γ(t)|, t > 0, (3.25) 
since

ν y + 1 2 ν = e -y 2 -t 4 νy and e -y 2 ≤ 1 for y ≥ 0. Hence, ν y ∈ C(R + , L ∞ (R + )). Remark 3.2. Since e -y 2 is unbounded for y ∈ R -, no bound on ν y (t, •) L ∞ (R -)
can be obtained from the estimate (3.24). However, we only need to use ν(t, y) for t > 0 and y > 0.

Next, we consider inverting the linear equation

M(γ) = 1 √ 4πt ∞ 0 f (η)e -η 2 4t dη, t > 0, (3.26) 
where

M(γ) := t 0 γ(τ ) π(t -τ ) dτ - t 0 γ(τ ) 4π(t -τ ) ∞ 0 e -η 2 e -η 2 4(t-τ ) dηdτ (3.27) and f ∈ W 1,∞ (R + ) is a given function. The invertion problem (3.26
) is related to Abel's integral equation [START_REF] Tamarkin | On integrable solutions of Abel's integral equation[END_REF][START_REF] Tonelli | Su un problema di Abel[END_REF]. We use again the Laplace transform in time t, as is defined in (3.10). The following lemma gives the exact solution to the integral equation (3.26) in the space of bounded functions.

Lemma 3.3. For every f ∈ W 1,∞ (R + ) satisfying f (0) = 0, there exists the unique solution γ ∈ L ∞ (R + ) to the integral equation (3.26) in the exact form:

γ(t) = 1 √ 4πt ∞ 0 f (η) η + t 2t e -η 2 4t dη, t > 0, (3.28) 
or, equivalently,

γ(t) = 1 √ 4πt ∞ 0 f (η) + 1 2 f (η) e -η 2 4t dη, t > 0, (3.29) 
Proof. By using (3.10) and (3.11), we rewrite the integral equation (3.26) in the product form:

1 √ p γ(p) - 1 2 √ p γ(p) ∞ 0 e -η 2 e -√ pη dη = 1 2 √ p ∞ 0 f (η)e -√ pη dη, p > 0.
Evaluating the integral gives the solution in the Laplace transform space:

γ(p) = 1 2 ∞ 0 f (η) 1 + 1 2 √ p e -√ pη dη.
After the inverse Laplace transform, we obtain the exact solution (3.28) with the use of (3.12). The equivalent form (3.29) is obtained from (3.28) after integration by parts if

f ∈ W 1,∞ (R + ) and f (0) = 0. It follows from (3.29) that sup t≥0 |γ(t)| ≤ 1 2 f L ∞ (R + ) + 1 4 f L ∞ (R + ) , so that γ ∈ L ∞ (R + ).
Similarly to Lemma 3.3, we consider inverting of the linear equations

M(γ) = t 0 1 4π(t -τ ) ∞ 0 g(τ, η)e -η 2 4(t-τ ) dηdτ, t > 0 (3.30)
and

M(γ) = t 0 h(τ )dτ 4π(t -τ ) , t > 0 (3.31)
where M(γ) is given by (3.27), g

∈ L 1 (R + , L ∞ (R + )) ∩ L ∞ (R + , L ∞ (R + )) and h ∈ L 1 (R + ) ∩ L ∞ (R +
) are given functions. The following lemma gives the exact solutions of the integral equations (3.30) and (3.31) in the space of bounded functions.

Lemma 3.4. For every g ∈ L 1 (R + , L ∞ (R + )) ∩ L ∞ (R + , L ∞ (R + ))
, there exists the unique solution γ ∈ L ∞ (R + ) to the integral equation (3.30) in the exact form:

γ(t) = t 0 1 4π(t -τ ) ∞ 0 g(τ, η) η + t -τ 2(t -τ ) e -η 2 4(t-τ ) dηdτ, t > 0. (3.32) For every h ∈ L 1 (R + ) ∩ L ∞ (R + )
, there exists the unique solution γ ∈ L ∞ (R + ) to the integral equation (3.31) in the exact form: 

γ(t) = 1 2 h(t) + 1 2 t 0 h(τ )dτ 4π(t -τ ) , t > 0. ( 3 
γ(p) = 1 2 ∞ 0 ĝ(p, η) 1 + 1 2 √ p e -√ pη dη.
After the inverse Laplace transform, we obtain the exact solution (3.32) with the use of (3.12). By using the first integrals in (3.1) and (3.2), we obtain

sup t≥0 |γ(t)| ≤ 1 4 t 0 g(τ, •) L ∞ (R + ) dτ + 1 2 t 0 g(τ, •) L ∞ (R + ) dτ π(t -τ ) ,
where upper bound is bounded if

g(t, •) L ∞ (R + ) belongs to L 1 (R + ) ∩ L ∞ (R + ).
For the integral equation (3.31), we use the substitution γ(t) = 1 2 h(t) + υ(t), where υ(t) satisfies the integral equation

M(υ) = 1 2 t 0 h(τ ) 4π(t -τ ) ∞ 0 e -η 2 e -η 2 4(t-τ ) dηdτ, t > 0. Since g(τ, η) := 1 2 h(τ )e -η 2 belongs to L 1 (R + , L ∞ (R + )) ∩ L ∞ (R + , L ∞ (R + ))
, we can use the exact solution (3.32) and obtain

υ(t) = 1 2 t 0 h(τ ) 4π(t -τ ) ∞ 0 e -η 2 η + t -τ 2(t -τ ) e -η 2 4(t-τ ) dηdτ, t > 0.
Integrating by parts gives Finally, Young's inequality (3.6) for convolution integrals in space can be extended to the convolution integrals in time:

υ(t) = 1 2 t 0 h(τ )dτ 4π(t -τ ) , t > 0, which recovers (3.33) for γ(t) = 1 2 h(t) + υ(t). Again, we have γ ∈ L ∞ (R + ) if h ∈ L 1 (R + ) ∩ L ∞ (R + ).
β γ L r (R + ) ≤ β L p (R + ) γ L q (R + ) , p, q, r ≥ 1, 1 + 1 r = 1 p + 1 q , (3.34) 
for every β ∈ L p (R + ) and γ ∈ L q (R + ), where (β γ)(t) := t 0 β(t-τ )γ(τ )dτ is the convolution integral in time. The following lemma gives useful bounds. Lemma 3.6. For every γ ∈ L 1 (R + ) ∩ L ∞ (R + ) and every s ∈ [0, 1), there exists a positive constant C s such that

t 0 |γ(τ )| (t -τ ) s dτ ≤ C s γ L 1 (R + )∩L ∞ (R + ) , t > 0.
(3.35)

Proof. For every fixed T > 0, it is obvious that

t 0 |γ(τ )| (t -τ ) s dτ ≤ T 1-s 1 -s γ L ∞ (R + ) , t ∈ [0, T ].
Then, provided T > 1, we get the bounds

t 0 |γ(τ )| (t -τ ) s dτ = t-1 0 |γ(τ )| (t -τ ) s dτ + t t-1 |γ(τ )| (t -τ ) s dτ ≤ γ L 1 (R + ) + 1 1 -s γ L ∞ (R + ) , t > T,
and the bound (3.35) holds.

Asymptotic stability under odd perturbations

Here we study the boundary-value problem (2.5) in order to prove Theorem 2.1. The boundary-value problem (2.5) is solved by direct methods. First, we decompose

w(t, x) = W 0 (x) + u(t, x), x > 0, ( 4.1) 
where W 0 (x) = 1-e -x is the viscous shock given by (2.3) with c = 0 under the normalization

W + = -W -= 1.
The perturbation u(t, x) satisfies the following boundary-value problem:

   u t = u x + u xx , x > 0, t > 0, u(t, 0) = 0, t > 0, u(t, x) → 0 as x → +∞, t > 0, (4.2)
subject to the initial condition u(0, x) = w(0, x) -W 0 (x) =: u 0 (x).

In order to prove Theorem 2.1, we first derive a priori energy estimates (Lemma 4.1) and then explore the exact formula (3.5) to study the solution in H 2 (Lemma 4.3) and in W 2,∞ (Lemma 4.4).

The following lemma implies that the H 1 -norm of a smooth solution u(t, •) is decreasing in time t. The result is obtained by using a priori energy estimates. Lemma 4.1. Assume existence of the solution u ∈ C(R + , H 2 (R + )) to the boundary-value problem (4.2) with the initial condition u(0, x) = u 0 (x). Then, for every t > 0:

u(t, •) L 2 ≤ u 0 L 2 , u(t, •) H 1 ≤ u 0 H 1 .
Proof. Multiplying u t = u x + u xx by u and u xx and integrating by parts yield

d dt u(t, •) 2 L 2 = -2 u x (t, •) 2 L 2 , (4.3) 
d dt u x (t, •) 2 L 2 = [u x (t, 0)] 2 -2 u xx (t, •) 2 L 2 . (4.4) It follows from (4.3) that u(t, •) L 2 ≤ u 0 L 2 . By Sobolev embedding, it follows for every f ∈ H 1 (R + ) that [f (0)] 2 = -2 ∞ 0 f (x)f (x)dx ≤ f 2 H 1 , (4.5) 
so that we obtain by adding both equations (4.3) and (4.4) together and using (4.5) that

d dt u(t, •) 2 H 1 = [u x (t, 0)] 2 -2 u x (t, •) 2 H 1 ≤ -u x (t, •) 2 H 1 , hence u(t, •) H 1 ≤ u 0 H 1 .
Remark 4.2. By using the same method as in the proof of Lemma 4.1, one can derive

d dt u xx (t, •) 2 L 2 = -[u xx (t, 0)] 2 -2u xx (t, 0)u xxx (t, 0) -2 u xxx (t, •) 2 L 2 . (4.6)
By using also u x (t, 0)+u xx (t, 0) = 0 and u tx (t, 0) = u xx (t, 0)+u xxx (t, 0) for smooth solutions, this balance equation can be rewritten to the form:

d dt u xx (t, •) 2 L 2 -[u x (t, 0)] 2 = [u x (t, 0)] 2 -2 u xxx (t, •) 2 L 2 . (4.7)
With an inequality similar to (4.5), we derive

u(t, •) 2 H 2 -[u x (t, 0)] 2 ≤ u 0 2 H 2 -[u 0 (0)] 2 .
However, due to the inequality (4.5) this a priori energy estimate does not imply monotonicity of the H 2 -norm of the smooth solutions of the boundary-value problem (4.2). Lemma 4.1 implies uniqueness and continuous dependence of solutions to the boundaryvalue problem (4.2) with initial condition u(0, x) = u 0 (x). It remains to show existence of a solution u ∈ C(R + , H 2 (R + )) for any given u 0 ∈ H 2 (R + ). The following lemma explores an explicit formula for solutions u ∈ C(R + , H 2 (R + )) to the boundary-value problem (4.2) for any given initial condition u 0 ∈ H 2 (R + ). 

Moreover, u ∈ C(R + , H 2 (R + )).
Proof. By using the transformation

u(t, x) = e -x 2 -t 4 v(t, x), (4.9) 
we can write the boundary-value problem (4.2) in the form (3.4) with the initial condition v 0 (x) = e

x 2 u 0 (x), where u 0 (x) = u(0, x). By substituting the transformation (4.9) to the exact solution (3.5) and completing squares for the heat kernel

G(t, x) = 1 √ 4πt e -x 2 4t
, we obtain the exact representation (4.8).

Next we show that

u ∈ C(R + , H 2 (R + )) if u 0 ∈ H 2 (R + )
. The convolution integrals in (4.8) are analyzed by means of the generalized Young's inequality (3.6) with p = r = 2 and q = 1:

u 0 χ R + * G(t, • + t) L 2 (R + ) ≤ u 0 L 2 (R + ) G(t, • + t) L 1 (R) ≤ u 0 L 2 (R + )
and

u 0 χ R + * G(t, -• +t) L 2 (R + ) ≤ u 0 L 2 (R + ) G(t, -• +t) L 1 (R) ≤ u 0 L 2 (R + )
At the same time, e -x ≤ 1 for x ≥ 0, so that

u(t, •) L 2 ≤ 2 u 0 L 2 , (4.10) 
where the L 2 norms are understood as L 2 (R + ). In order to obtain similar estimates for u x and u xx , we differentiate (4.8) in x, use integration by parts, and obtain

u x (t, x) = 1 √ 4πt ∞ 0 u 0 (y) e -(x-y+t) 2 4t + e -x e -(x+y-t) 2 4t dy + 1 √ 4πt e -x ∞ 0 u 0 (y)e -(x+y-t) 2 4t dy (4.11)
and

u xx (t, x) = 1 √ 4πt ∞ 0 u 0 (y) e -(x-y+t) 2 4t -e -x e -(x+y-t) 2 4t dy - 1 √ πt e -x ∞ 0 u 0 (y)e -(x+y-t) 2 4t dy - 1 √ 4πt e -x ∞ 0 u 0 (y)e -(x+y-t) 2 4t dy, (4.12) 
where the boundary condition u(t, 0) = 0 has been used. By the same estimates used in (4.10), we obtain:

u x (t, •) L 2 ≤ 2 u 0 L 2 + u 0 L 2 , (4.13) u xx (t, •) L 2 ≤ 2 u 0 L 2 + 2 u 0 L 2 + u 0 L 2 . ( 4.14) 
This shows that u(t, •) ∈ H 2 (R + ) continuously in t ∈ R + . It follows from (4.11) and (4.12) as x → 0 + that u x (t, 0 + ) + u xx (t, 0 + ) = 0, t > 0.

(4.15)

The decay condition u(t, x) → 0 as x → ∞ is satisfied by the continuous embedding of

H 2 (R + ) into C 1 (R + ) ∩ W 1,∞ (R +
) with functions and their first derivatives decaying to zero at infinity.

The following lemma establishes the decay of u(t, •) W 2,∞ to zero as t → +∞. given by Lemma 4.3. Then, we have

u(t, •) W 2,∞ → 0 as t → ∞. (4.16)
Proof. For t ≥ 1, we can estimate the convolution integrals in (4.8) by means of the generalized Young's inequality (3.6) with p = q = 2 and r = ∞:

u 0 χ R + * G(t, • + t) L ∞ (R + ) ≤ u 0 L 2 (R + ) G(t, • + t) L 2 (R) ≤ 1 (8πt) 1/4 u 0 L 2 (R + )
and

u 0 χ R + * G(t, -• +t) L ∞ (R + ) ≤ u 0 L 2 (R + ) G(t, -• +t) L 2 (R) ≤ 1 (8πt) 1/4 u 0 L 2 (R + ) .
Using these estimates in (4.8), (4.11), and (4.12), we obtain

u(t, •) L ∞ ≤ 2 (8πt) 1/4 u 0 L 2 , u x (t, •) L ∞ ≤ 1 (8πt) 1/4 (2 u 0 L 2 + u 0 L 2 ), u xx (t, •) L ∞ ≤ 1 (8πt) 1/4 (2 u 0 L 2 + 2 u 0 L 2 + u 0 L 2 ),
which prove the decay (4.16).

Remark 4.5. The asymptotic decay of the solution u ∈ C(R + , H 2 (R + )) in the H 2 norm does not follow from the convolution estimates (3.6) unless u ± 0 ∈ W 2,p (R + ) for some p < 2. Proof of Theorem 2.1. By Lemma 4.3 and the bounds (4.10), (4.13), and (4.14), if u 0 ∈ H 2 (R + ) satisfies u 0 H 2 < δ as in (2.9), then

u(t, •) H 2 ≤ C u 0 H 2 < Cδ
for a fixed δ-independent positive constant C. Hence, for every > 0, there is δ := /C such that the odd perturbation u(t, •) to the viscous shock W 0 in the decomposition (4.1) is bounded in H 2 (R) norm for every t > 0 according to the bound (2.10). The decay (2.11) follows from the decay (4.16) in Lemma 4.4.

The constraint (2.7) is satisfied because both W 0 and u in the decomposition (4.1) satisfy this constraint. Under the constraint (2.7), the solutions w(t, x) : R + × R + → R to the boundary-value problem (2.5) are extended to the odd function w ext (t, x) : R + × R → R satisfying the interface condition (2.8).

It remains to verify that w(t, x) = W 0 (x) + u(t, x) > 0 for every x > 0. The positivity condition (2.6) is necessary for reduction of the modular Burgers equation (1.1) with the odd functions to the boundary-value problem (2.5). By Sobolev embedding of

H 2 (R + ) into C 1 (R + ) ∩ W 1,∞ (R + )
, we obtain the uniform bound:

u(t, •) L ∞ + u x (t, •) L ∞ < , t > 0,
where is small. The symmetry point x = 0 is a simple root of w(t, •) for every t > 0 because W 0 (0) = 0, W 0 (0) = 1, u(t, 0) = 0, and |u x (t, 0)| < is small. Therefore, there exists an -independent x 0 > 0 such that w(t, x) > 0 for every t > 0 and x ∈ (0, x 0 ). Now, W 0 (x) ≥ W 0 (x 0 ) > 0 for every x ≥ x 0 and since |u(t, x)| < for every t > 0 and x > 0, then w(t, x) > 0 for every t > 0 and x ≥ x 0 if is sufficiently small. Combining these two estimates together yields w(t, x) > 0 for every t > 0 and x > 0.

Asymptotic stability under general perturbations

Here we study the boundary-value problem (2.13) in order to prove Theorem 2.4. The boundary-value problem (2.13) can be reformulated by using the decomposition

w(t, x) = W 0 (x -ξ(t)) + u(t, x -ξ(t)), x ∈ R, (5.1) 
(5.12), we get

d dt u ± (t, •) L 2 ≤ |γ| e -y L 2 y (R + ) ,
which yields the Stritcharz-type estimate

sup t∈R + u ± (t, •) L 2 ≤ u ± 0 L 2 + γ L 1 e -y L 2 y (R + ) ,
where we write e -y L 2 y (R + ) instead of e -• L 2 for better clarity.

We shall now consider the existence of solutions for the boundary-value problems (5.7) with γ expressed by (5.10). Due to the latter condition, we need to require the second derivative to be bounded and piecewise continuous in a one-sided neighborhood of y = 0. This is achieved by using a sharper condition on the initial data

u ± 0 ∈ H 2 (R + ) ∩ W 2,∞ (R + ) compared to the requirement u 0 ∈ H 2 (R + ) imposed in Lemma 4.3.
The following lemma provides a convenient reformulation of the boundary-value problems (5.7) as systems of integral equations. In these systems, u ± and γ are not required to satisfy the continuity condition (5.8), the interface condition (5.9), and the dynamical conditions (5.10). Lemma 5.5. There exist solutions u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) to the boundary-value problems (5.7) with the initial conditions u ± (0, x) = u ± 0 (x) and the given function

γ ∈ C(R + ) if there exist solutions u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) to the following integral equations for (t, y) ∈ R + × R + : u ± (t, y) = 1 √ 4πt ∞ 0 u ± 0 (η) e -(y-η+t) 2 4t -e -y e -(y+η-t) 2 4t dη + t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 e -η e -(y-η+t-τ ) 2 4(t-τ ) -e -y e -(y+η-t+τ ) 2 4(t-τ ) dη ± t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± η (τ, η) e -(y-η+t-τ ) 2 4(t-τ ) -e -y e -(y+η-t+τ ) 2 4(t-τ )
dη.

Proof. Similar to the transformation formula (4.9) in the proof of Lemma 4.3, the system of equations (5.7) can be simplified by using the transformation formulas:

u ± (t, y) = e -y 2 -t 4 v ± (t, y), γ(t) = e -t 4 γ(t).
(5.13)

The boundary-value problems (5.7) can be rewritten in the form (3.7

) with v = v ± , f (t, y) = γe -y 2 ± γe -t 4 (v ± y - 1 2 v ± ),
where the second equality in (3.1) has been used together with e -y L 1 y (R + ) = 1 and e -y

L 2 y (R + ) = 1 √ 2 < 1.
Computing derivatives in y and integrating by parts yield

∂ y u ± 2 (t, y) = - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 e -η e -(y-η+t-τ ) 2 4(t-τ ) dη + ν(t, y)
and

∂ 2 y u ± 2 (t, y) = t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 e -η e -(y-η+t-τ ) 2 4(t-τ ) dη - 1 2 ν(t, y) + ν y (t, y),
where ν(t, y) is given by (3.13). By using estimates in the proof of Lemma 3.1, we obtain

∂ y u ± 2 (t, •) L 2 ≤ 3 (8π) 1/4 t 0 |γ(τ )| (t -τ ) 1/4 dτ, ∂ y u ± 2 (t, •) L ∞ ≤ 3 √ 4π t 0 |γ(τ )| (t -τ ) 1/2 dτ, ∂ 2 y u ± 2 (t, •) L 2 ≤ 2 (8π) 1/4 t 0 |γ(τ )| (t -τ ) 1/4 dτ + 1 (8π) 1/4 t 0 |γ(τ )| (t -τ ) 3/4 dτ, and 
∂ 2 y u ± 2 (t, •) L ∞ ≤ 3 √ 4π t 0 |γ(τ )| (t -τ ) 1/2 dτ + |γ(t)|.
Combining all estimates together, we deduce that there exists C > 0 such that

u ± 2 (t, •) H 2 ∩W 2,∞ ≤ C t 0 |γ(τ )| (t -τ ) 1/4 dτ + |γ(t)| , t > 0, (5.24) 
where the end point estimates are taken into account. Moreover, u ± 2 (t, •) and their first and second derivatives in y are continuous functions of y for every t > 0. By taking the limit y → 0 + and using (3.14) in Lemma 3.1, we obtain

∂ y u ± 2 (t, 0 + ) + ∂ 2 y u ± 2 (t, 0 + ) = 1 2 ν(t, 0) + ν y (t, 0 + ) = -γ(t), t > 0. ( 5.25) 
We turn now to the explicit expressions for u ± 3 in (5.21). Integrating by parts, we obtain

u ± 3 (t, y) = - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± (τ, η) y -η + t -τ 2(t -τ ) e -(y-η+t-τ ) 2 4(t-τ ) dη - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± (τ, η) y + η -t + τ 2(t -τ ) e -y e -(y+η-t+τ ) 2 4(t-τ ) dη.
By the generalized Young's inequality (3.6) with p = 1 and either q = r = 2 or q = r = ∞, we obtain

u ± 3 (t, •) L 2 ∩L ∞ ≤ 2 t 0 |γ(τ )| u ± (τ, y) * ∂ y G(t -τ, y + t -τ ) L 2 y (R + )∩L ∞ y (R + ) dτ ≤ 2 t 0 |γ(τ )| u ± (τ, •) L 2 ∩L ∞ ∂ y G(t -τ, y + t -τ ) L 1 y (R) dτ ≤ 2 t 0 |γ(τ )| π(t -τ ) u ± (τ, •) L 2 ∩L ∞ dτ,
where the first equality in (3.2) has been used. Computing derivative in y and integrating by parts yield

∂ y u ± 3 (t, y) = - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± y (τ, η) y -η + t -τ 2(t -τ ) e -(y-η+t-τ ) 2 4(t-τ ) dη + t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± y (τ, η) y + η -t + τ 2(t -τ ) e -y e -(y+η-t+τ ) 2 4(t-τ ) dη + t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± (τ, η) y + η -t + τ 2(t -τ ) e -y e -( y+η-t+τ ) 2 4(t-τ ) 
dη With similar estimates as above, we obtain

∂ y u ± 3 (t, •) L 2 ∩L ∞ ≤ t 0 |γ(τ )| π(t -τ ) (2 ∂ y u ± (τ, •) L 2 ∩L ∞ + u ± (τ, •) L 2 ∩L ∞ )dτ.
Computing another derivative in y and integrating by parts yield

∂ 2 y u ± 3 (t, y) = - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± yy (τ, η) y -η + t -τ 2(t -τ ) e -(y-η+t-τ ) 2 4(t-τ ) dη - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± yy (τ, η) y + η -t + τ 2(t -τ ) e -y e -(y+η-t+τ ) 2 4(t-τ ) dη -2 t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± y (τ, η) y + η -t + τ 2(t -τ ) e -y e -(y+η-t+τ ) 2 4(t-τ ) dη - t 0 γ(τ )dτ 4π(t -τ ) ∞ 0 u ± (τ, η) y + η -t + τ 2(t -τ ) e -y e -(y+η-t+τ ) 2 4(t-τ ) dη - t 0 γ(τ ) 4π(t -τ ) ∂ y u ± (τ, 0 + ) y t -τ e -(y+t-τ ) 2 4(t-τ ) dτ,
where the last term can be written as νy (t, y)

+ 1 2 ν(t, y) with ν(t, y) := 2 t 0 γ(τ )u ± (τ, 0 + ) 4π(t -τ ) e -(y+t-τ ) 2 4(t-τ ) dτ.
The following lemma shows that the spatial exponential decay of the initial data u ± 0 is preserved in time.

Lemma 5.8. In addition to (5.16), we assume that

u ± 0 ∈ H 2 (R + ) ∩ W 2,∞ (R + ) satisfy e α• u + 0 W 2,∞ + e α• u - 0 W 2,∞ < δ, (5.28) 
for a fixed α ∈ (0, 1 2 ]. Then, the unique solutions

u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) of Lemma 5.7 satisfy e α• u + (t, •) W 2,∞ + e α• u -(t, •) W 2,∞ < , t > 0 (5.29) and u ± (t, •) W 2,∞ → 0 as t → +∞. (5.30) 
Proof. By rearranging the heat kernels, we can rewrite (5.19), (5.20), and (5.21) as

e αy u ± 1 (t, y) = e -α(1-α)t √ 4πt ∞ 0 e αη u ± 0 (η) e -(y-η+(1-2α)t) 2 4t -e -(1-2α)y e -(y+η-(1-2α)t) 2 4t
dη , (5.31)

e αy u ± 2 (t, y) = t 0 γ(τ )e -α(1-α)(t-τ ) dτ 4π(t -τ ) × ∞ 0 e -(1-α)η e -(y-η+(1-2α)(t-τ )) 2 4(t-τ ) -e -(1-2α)y e -(y+η-(1-2α)(t-τ )) 2 4(t-τ ) dη, (5.32) 
e αy u ± 3 (t, y) = t 0 γ(τ )e -α(1-α)(t-τ ) dτ 4π(t -τ ) × ∞ 0 e αη u ± η (τ, η) e -(y-η+(1-2α)(t-τ )) 2 4(t-τ ) -e -(1-2α)y e -(y+η-(1-2α)(t-τ )) 2 4(t-τ )
dη. (5.33)

If α ∈ (0, 1 2 ], the exponential function e -(1-2α)y is still bounded on R + , whereas e αy u ± 0 (y) belongs to W 2,∞ (R + ) and satisfies the initial bound (5.28). All convolution estimates of Lemma 5.7 hold true with some α-dependent constants and give the unique solution in W 2,∞ (R + ) satisfying the bound (5.29).

It remains to prove the asymptotic decay (5.30). Since

u L ∞ (R + ) ≤ e α• u L ∞ (R + ) , u y L ∞ (R + ) ≤ (e α• u) y L ∞ (R + ) + α e α• u L ∞ (R + ) , u yy L ∞ (R + ) ≤ (e α• u) yy L ∞ (R + ) + 2α (e α• u) y L ∞ (R + ) + α 2 e α• u L ∞ (R + ) ,
it is sufficient to prove the decay to zero for e αy u ± (t, y) as t → +∞ in W 2,∞ (R + ). In order to prove the decay in time, we show henceforth that e αy u ± (t, y) are bounded in

L 1 (R + , W 2,∞ (R + )) since e α• u ± (t, •) W 2,∞ are continuous functions of t ∈ R + .
Thanks to the decaying exponential function e -α(1-α)t as t → +∞ in (5.31) and the Young's inequality (3.6) with p = r = ∞ and q = 1, there exists the α-dependent

C α > 0 such that ∞ 0 e α• u ± 1 (t, •) W 2,∞ dt ≤ C α e α• u ± 0 W 2,∞ .
(5.34)

Similarly, it follows from (5.32) that

∞ 0 e α• u ± 2 (t, •) W 2,∞ dt ≤ C α ∞ 0 t 0 |γ(τ )|e -α(1-α)(t-τ ) dτ dt ≤ C α α(1 -α) γ L 1 (R + ) , (5.35) 
where we have used the Young's inequality (3.34) with p = q = r = 1. Finally, integrating (5.33) by parts yields

e αy u ± 3 (t, y) = - t 0 γ(τ )e -α(1-α)(t-τ ) dτ 4π(t -τ ) ∞ 0 e αη u ± (τ, η) y -η + (1 -2α)(t -τ ) 2(t -τ ) e - (y-η+t-τ ) 2 4(t-τ ) dη - t 0 γ(τ )e -α(1-α)(t-τ ) dτ 4π(t -τ ) ∞ 0 e αη u ± (τ, η) y + η -(1 -2α)(t -τ ) 2(t -τ ) e -(1-2α)y e - (y+η-t+τ ) 2 4(t-τ ) dη.
By using the bounds (3.1) and (3.2), the Young's inequality (3.6) with p = r = ∞ and q = 1, and the Young's inequality (3.34) with p = q = r = 1, we obtain

∞ 0 e α• u ± 3 (t, •) W 2,∞ dt ≤ C α γ L 1 (R + ) sup t∈R + e α• u ± (t, •) W 2,∞ , (5.36) 
for every solutions u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) of Lemma 5.7 satisfying (5.29). Hence, e αy u ± (t, y) are bounded in L 1 (R + , W 2,∞ (R + )), which implies the asymptotic decay (5.30) since e α• u ± (t, •) W 2,∞ are continuous functions of t ∈ R + .

Remark 5.9. Due to the exponential decay with α ∈ (0, 1 2 ], we also have the bound

u H 2 (R + ) ≤ C α e α• u W 2,∞ (R + ) ,
which implies that u ± (t, •) H 2 → 0 as t → ∞. This decay in time is impossible if the initial data do not satisfy the spatial exponential decay, see Remark 4.5.

The final lemma gives the existence of the unique solution to the integral equation (5.14) 

for γ ∈ L 1 (R + ) ∩ L ∞ (R + ) ∩ C(R + ), where u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )
) are substituted from Lemmas 5.7 and 5.8 into the integral equation (5.14) and the initial data u ± 0 ∈ H 2 (R + )∩ W 2,∞ (R + ) satisfy the bounds (5.16) and (5.28).

Lemma 5.10. Fix α ∈ (0, 1 2 ] and consider the integral equation (5.14) with the unique solutions u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) defined in Lemmas 5.7 and 5.8 that depend on (small) γ ∈ L 1 (R + ) ∩ L ∞ (R + ) ∩ C(R + ). For every ˜ > 0 (small enough), there is δ > 0 such that for every u

± 0 ∈ H 2 (R + ∩ W 2,∞ (R + )) satisfying u + 0 H 2 ∩W 2,∞ + u - 0 H 2 ∩W 2,∞ + e α• u + 0 W 2,∞ + e α• u - 0 W 2,∞ ≤ δ (5.37)
and the continuity condition u + 0 (0 + ) + u - 0 (0 + ) = 0, there exists the unique solution γ ∈

L 1 (R + ) ∩ L ∞ (R + ) ∩ C(R + ) of the integral equation (5.14) satisfying γ L ∞ ∩L 1 ≤ ˜ .
(5.38)

For γ 2 in (5.39), we obtain

γ 2 L 1 ∩L ∞ ≤ 1 2 1 + ∞ 0 e -t 4 √ 4πt dt γ L 1 ∩L ∞ sup t∈R + u + (t, •) W 1,∞ + u -(t, •) W 1,∞ ,
(5.44) where the expression in brackets is a finite constant. No exponential weight is needed to estimate

γ 2 in L 1 (R + ) ∩ L ∞ (R + ).
For γ 3 in (5.39), we use the Young's inequality (3.6) with p = q = 2 and r = ∞ and obtain

|γ 3 (t)| ≤ C t 0 |γ(τ )|dτ (t -τ ) 1/4 + t 0 |γ(τ )|dτ (t -τ ) 3/4 × sup t∈R + u + (t, •) H 2 + u -(t, •) H 2 , t > 0, which is bounded due to (3.35) if γ ∈ L 1 (R + ) ∩ L ∞ (R + ).
There is no bound on γ 3 L 1 , unless we add the exponential weight and rewrite γ 3 in the equivalent form:

γ 3 (t) = - t 0 γ(τ )e -α(1-α)(t-τ ) 4π(t -τ ) ∞ 0 e αη g(τ, η) η + t -τ 2(t -τ ) e -(η-(1-2α)(t-τ )) 2 4(t-τ ) dηdτ, where g(τ, η) = u + yy (τ, η) -u - yy (τ, η) + 1 2 u + y (τ, η) - 1 2
u - y (τ, η). By using the Young's inequality (3.6) with p = r = ∞ and q = 1 and by using the Young's inequality (3.34) with either p = r = 1 or p = r = ∞ and q = 1, we now obtain

γ 3 L 1 ∩L ∞ ≤ 1 α + ∞ 0 e -α(1-α)t √ πt dt γ L 1 ∩L ∞ sup t∈R + e α• g(t, •) L ∞ ,
so there exists a positive α-dependent constant C α such that

γ 3 L 1 ∩L ∞ ≤ C α γ L 1 ∩L ∞ sup t∈R + e α• u + (t, •) W 2,∞ + e α• u -(t, •) W 2,∞ . (5.45) 
Next, we run the fixed-point arguments for the fixed-point equation (5.39) 

in B ˜ ⊂ L 1 (R + ) ∩ L ∞ (R + ). If u ±
0 satisfy the initial bound (5.37) and γ ∈ B ˜ , then the solutions

u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )
) in Lemmas 5.7 and 5.8 satisfy the bounds (5.17) and (5.29) if δ ≤ δ and ˜ ≤ δ. The bounds (5.41), (5.43), (5.44), and (5.45) imply that A(γ) ∈ B ˜ for sufficiently small δ and given small ˜ . Moreover, A is a contraction on B ˜ ⊂ L 1 (R + ) ∩ L ∞ (R + ) due to the same bounds (5.44), and (5.45) and the smallness of the solutions u

± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )).
Existence and uniqueness of the fixed point γ ∈ B ˜ ⊂ L 1 (R + ) ∩ L ∞ (R + ) to the fixed-point equation (5.39) follows from the Banach fixed-point theorem. Hence, the bound (5.38) is proven. By the standard bootstrapping arguments, if u ± ∈ C(R + , H 2 (R + ∩ W 2,∞ (R + )) and e αy u ± ∈ C(R + , W 2,∞ (R + )), then γ ∈ C(R + ). The proof of the lemma is complete.

Proof of Theorem 2.4. The existence, uniqueness, and continuous dependence of the solutions u ± to the boundary-value problems (5.7) with (5.8) and (5.10) is obtained from Lemmas 5.7, commonly adopted for the numerical approximation of evanescent waves in engineering [START_REF] Colton | Inverse Acoustic and Electromagnetic Scattering Theory[END_REF] as the Dirichlet condition does not provide large errors due to reflections if the waves have fast spatial decay.

At each time level t k = kτ with the time step τ , we approximate the spatial derivatives with the second-order central differences as follows:

v ± y (t k , y n ) = v ± n+1,k -v ± n-1,k 2h , (6.6) v ± yy (t k , y n ) = v ± n+1,k -2v ± n,k + v ± n-1,k h 2 . ( 6.7) 
where v n,k is a numerical approximation of v(t k , x n ). The Neumann condition v - y (t, 0) = 0 is modeled with the virtual grid point y -1 = -h so that v - -1,k = v - 1,k . By using the virtual grid point y -1 and the interface condition (6.4), we also express

v + -1,k = - 2 + h 2 -h v + 1,k , (6.8) 
after which the approximation of γ(t k ) is obtained from (6.5) as follows:

γ(t k ) = - (2 -h)v - 1,k hv + 1,k + h 2 (2 -h) . (6.9) 
We use the Crank-Nicholson method in order to perform steps in time for the evolution system (6.2). For each equation of the form dv dt = f (v), the Crank-Nicholson method yields:

v k+1 - τ 2 f (v k+1 ) = v k + τ 2 f (v k ), (6.10) 
where f for the first and second equations of system (6.2) take the form:

[f + ] n,k = v + n+1,k -v + n-1,k 2h + v + n+1,k -2v + n,k + v + n-1,k h 2 + γ k v - n+1,k -v - n-1,k 2h , [f + ] n,k = v - n+1,k -v - n-1,k 2h + v - n+1,k -2v - n,k + v - n-1,k h 2 + γ k v + n+1,k -v + n-1,k 2h + 2γ k e -yn .
For simplicity, we use γ k at the time level k on both sides of equation (6.10). Thus, in order to advance the solution of (6.2) to the next time level k + 1, we have to solve the following algebraic system: 

L(-τ )v k+1 = L(τ )v k + c k ( 6 
v n,k = v + n,k , 1 ≤ n ≤ N, and v n,k = v - n,k , N + 1 ≤ n ≤ 2N, (6.12) 
and

c n,k = 0, 1 ≤ n ≤ N, and c n,k = 2τ γ k e -yn , N + 1 ≤ n ≤ 2N, (6.13) 
and L(τ ) is the (2N × 2N ) matrix defined in the block form:

L = A B B A , (6.14) 
with A and B are (N × N ) three-diagonal matrices with the elements:

a j,j = 1 - τ h 2 , a j,j+1 = τ 2 1 2h + 1 h 2 , a j,j-1 = τ 2 - 1 2h + 1 h 2 and b j,j = 0, b j,j+1 = τ 4h γ k , b j,j-1 = - τ 4h γ k .
The solution u(t, y) to the boundary-value problem (5.2) for y ∈ R is recovered from solution v ± (t, y) to system (6.2) for y ∈ R + by using the transformation (6.1). Finally, we use y = x -ξ(t) with ξ(t) := t 0 γ(t )dt in order to display u(t, x) versus x on R. v + (0, x) = 0.1(x -0.5x 2 )e -x 2 , v -(0, x) = 0.5x 2 e -x 2 , (6.15)

where the coefficients are carefully selected to satisfy the boundary conditions in (6.3) and the interface condition (6.4) at t = 0. Snapshots of u(t, x) versus x for different values of t (top panels) show that the solution quickly decays to zero in the supremum norm. Although the perturbation u is sign-indefinite, the values of u are smaller compared to the values of W 0 in the viscous shock, hence w = W 0 +u remains positive (negative) to the right (left) of the interface located at x = ξ(t). The snapshots of w are shown on the bottom left panel for t = 0, 1, 2 with the insert showing the profile of w near the interface. The bottom right panel shows the position of the interface ξ versus t. It quickly relaxes to the equilibrium position at ξ ∞ ≈ -0.11. Dynamics of the perturbation u in time t for the initial data (6.16) resembles the same dynamics as for the initial condition (6.15). However, the relaxation time is slower for the exponentially decaying perturbations, hence the time window is extended from T = 4 on Figure 6.1 to T = 12 on Figure 6.2. Nevertheless, the interface ξ(t) moves to the left and relaxes to some equilibrium position ξ ∞ ≈ -0.49.

Conclusion

We have considered the modular Burgers equation, where the advective nonlinearity produces singularities related to the modular functions. For the class of viscous shocks with a single interface at the zero value of the modular function, we have proven their asymptotic stability under a general perturbation of sufficient regularity with the spatial exponential decay at infinity. This work may open up new directions of research.

First, it is interesting to consider the existence and nonlinear dynamics of the viscous shocks with multiple interfaces. It is expected that the perturbations at the tails will behave similarly but the dynamics will be complicated by the internal interactions among the interfaces. The periodic waves with an infinite number of interfaces located at the equal distance is another interesting case for further studies, e.g., see [START_REF] Johnson | Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction-diffusion equations[END_REF][START_REF] Johnson | Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations[END_REF].

Second, one can wonder if the exponential weight requirement on the initial perturbations can be relaxed or completely removed. It may be relatively easy to replace the exponential weights with the algebraic weights of sufficiently fast decay as done in [START_REF] Beck | Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity[END_REF]. However, we are not able to close the fixed-point arguments for the perturbations to the viscous shocks in H 2 (R) ∩ W 2,∞ , hence new ideas for analysis are needed to remove the weights.

Finally, the Burgers equation with more singular nonlinearity, e.g. given by the logarithmic functions, arises in the applications of granular chains [START_REF] James | Traveling fronts in dissipative granular chains and nonlinear lattices[END_REF]. It is definitely interesting if the asymptotic stability of viscous shocks can be proven for the logarithmic Burgers equations. Unfortunately, our methods rely on the reductions provided by the modular nonlinearity and cannot be extended to the case of logarithmic or other singular nonlinearities.

  15) and (3.16) yields νyy = -ν y -2δ(y)γ(p) + pν, (3.17) which becomes the initial-value problem (3.9) after the inverse Laplace transform. It follows from (3.15) for p ≥ 0 that νy (p, 0 ± ) = -1 2 ν(p, 0) ∓ γ(p), which yields (3.14) after the inverse Laplace transform. Uniqueness of the solution (3.13) is proven from uniqueness of the zero solution in the homogeneous version of the initial-value problem (3.9).

  .33) Proof. By using (3.10) and (3.11), we solve the integral equation (3.30) for the Laplace transform:

Remark 3 . 5 .

 35 Compared to the decomposition method γ = 1 2 h + υ in the proof of Lemma 3.4, the exact solution (3.33) can be independently obtained by using the Laplace transform(3.10) in the linear equation(3.31).

Lemma 4 . 3 .

 43 For any given u 0 ∈ H 2 (R + ), there exists a solution u(t, x) to the boundaryvalue problem (4.2) with the initial condition u(0, x) = u 0 (x) given explicitly by u(t, x)

Lemma 4 . 4 .

 44 Let u ∈ C(R + , H 2 (R +)) be the solution to the boundary-value problem(4.2) 

  .11) where v k and c k are the 2N vectors with the elements

Figure 6 . 1 .

 61 Figure 6.1. Numerical simulations for the initial conditions(6.15). Top: plot of u(t, x) versus x for t = 0, 0.5, 1 (left) and t = 2, 3, 4 (right). Bottom: plot of w(t, x) versus x for t = 0, 1, 2 (left) and plot of γ(t) versus t (right).

Figure 6 .

 6 Figure 6.1 reports the results of numerical simulations for the initial condition with the Gaussian decay:

Figure 6 . 2 .

 62 Figure6.2. The same as in Figure6.1 but for the initial condition (6.16).

Figure 6 .

 6 Figure 6.2 reports similar results for the initial conditions with the exponential decay:v + (x, 0) = 0.1(x + 0.5x 2 )e -x , v -(x, 0) = 0.5x 2 e -x .(6.16)

  .23) Due to the parity symmetry of the boundary and initial conditions in (3.23), ν is even in y, νy is odd in y, so that νy solves Dirichlet's problems for the diffusion equation on the quarter planes {y > 0, t > 0} and {y < 0, t > 0} subject to the boundary conditions νy (t, 0

	t 4 , t > 0,	(3.24)
	which yields	

+ ) = -γ(t)e t 4 and νy (t, 0 -) = γ(t)e t 4 respectively. It follows by the maximum principle that νy (t, •) L ∞ (R) ≤ |γ(t)|e
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where W 0 is the viscous shock (2.3) with c = 0 under the normalization W + = -W -= 1, ξ(t) is the location of a single interface, and u(t, y) with y := x -ξ(t) is a perturbation satisfying    u t = (ξ (t) ± 1)u y + u yy + ξ (t)W 0 (y), ±y > 0, u(t, 0) = 0, u(t, y) → 0 as y → ±∞, (5.2) subject to the initial condition u(0, x) = w(0, x) -W 0 (x) =: u 0 (x). We assume without loss of generality that ξ(0) = 0. The interface dynamics is defined by the following lemma.

Lemma 5.1. Let u(t, •) ∈ C 1 (R) ∩ C 2 (R\{0}) be a solution of the boundary-value problem (5.2) for t ∈ R + . Then, ξ (t), t ∈ R + can be expressed in two equivalent ways by ξ (t) = -u y (t, 0 + ) + u yy (t, 0 + ) 1 + u y (t, 0 + ) = u y (t, 0 -) -u yy (t, 0 -) 1 + u y (t, 0 -) , t ∈ R + .

(5.3)

Proof. It follows from (2.15) and (5.1) that piecewise C 2 solutions of the boundary-value problem (5.2) satisfy the interface condition [u yy ] + -(t, 0) = -2u y (t, 0). (5.4) On the other hand, it follows from (2.16) and (5.1) that u t (t, 0) = 0. Taking the limits y → 0 ± results in the dynamical equations (5.3) since W 0 (0) = 1. The two equalities in (5.3) are consistent under the interface condition (5.4) since u y (t, 0 + ) = u y (t, 0 -).

Remark 5.2. The system of equations (5.2), (5.3), and (5.4) is derived under the condition ± [W 0 (y) + u(t, y)] > 0, ±y > 0 (5.5)

which follows from (2.14) and (5.1). Since W 0 (0) = 0, W 0 (0) = 1, and u(t, 0) = 0, the positivity conditions (5.5) imply that 1 + u y (t, 0) > 0, hence the interface dynamics is well defined by the evolution equation (5.3) under the positivity conditions (5.5).

Let us define

We also define γ(t) := ξ (t) and use W 0 (y) = e -|y| . The boundary-value problem (5.2) can be rewritten in the equivalent form

subject to the continuity condition

the interface condition u + yy (t, 0 + ) -u - yy (t, 0 + ) = -2u + y (t, 0 + ), (5.9) and the dynamical condition

The proof of Theorem 2.4 is divided into two steps.

In the first step, for a given γ ∈ L 1 (R + ) ∩ L ∞ (R + ), we show that the boundary-value problems (5.7) equipped with the initial conditions u ± (0, x) = u ± 0 (x) can be uniquely solved provided the norms of γ

) satisfy the dynamical conditions (5.10) for any t > 0.

The two solutions for u + and u -are uncoupled if γ is given. However, if the solutions u + and u -are required to satisfy the continuity condition (5.8), then this constraint yields an integral equation on γ ∈ L 1 (R + ) ∩ L ∞ (R + ). In the second step, we prove that the integral equation for γ ∈ L 1 (R + )∩L ∞ (R + ) can be uniquely solved provided u ± 0 ∈ H 2 (R + )∩W 2,∞ (R + ) are small and satisfy an additional requirement of the exponential decay in space.

Finally, the two conditions (5.8) and (5.10) imply the interface condition (5.9), which is thus redundant in the boundary-value problem.

The following lemma gives a priori energy estimates for the boundary-value problems (5.7) completed with the continuity condition (5.8). These energy estimates imply monotonicity of the H 1 -norm of a smooth solution in time t. Lemma 5.3. Assume existence of the solutions u ± ∈ C(R + , H 2 (R + )) to the boundaryvalue problem (5.7) completed with the continuity condition (5.8) for the initial conditions u ± (0, x) = u ± 0 (x) and for some γ ∈ C(R + ). Then, for every t > 0:

(5.11)

Proof. Multiplying u ± t = (1 ± γ)u ± y + u ± yy + γe -y by u ± and u ± yy and integrating by parts yield

Adding all equations and using the continuity condition (5.8) yield

By using the same inequality (4.5), we close the estimate and obtain

from which the inequality (5.11) follows. , where u ± 0 (y) := u ± (0, y) are the initial conditions. By using the exact solution (3.8), we obtain the integral equations for v ± :

dη.

Substituting the transformation (5.13) yields the integral equations for u ± (t, y).

) of the integral equations in Lemma 5.5, we require them to satisfy the continuity condition (5.8). This sets up the existence problem for γ ∈ L 1 (R + ) ∩ L ∞ (R + ). By computing partial derivatives of u ± (t, y) in y, taking the limit y → 0 + , substituting u ± y (t, 0 + ) into (5.8), and integrating by parts, we obtain the following integral equation:

The following lemma rewrites the integral equation (5.14) in the equivalent form.

Lemma 5.6. There exists a solution γ

Proof. By using the same transformation (5.13), we rewrite the integral equation (5.14) in the equivalent form:

where the linear operator M is given by (3.27) and v ± 0 (y) = u ± 0 (y)e y 2 . By using Lemma 3.3 with f (η) = v + 0 (η) + v - 0 (η), the linear operator M can be inverted on the second term of the integral equation (5.15). In order to invert the linear operator M on the third term of the integral equation (5.15), we integrate it by parts and obtain

We are now in position to use Lemma 3.4 with

and h(τ ) = γ(τ )e -τ 4 v + y (τ, 0 + ) -v - y (τ, 0 + ) . By using Lemmas 3.3 and 3.4 as described above, we obtain the following integral equation:

Substituting the transformation (5.13) yields the integral equation for γ(t).

Next, we solve the integral equations in Lemmas 5.5 and 5.6.

The following lemma guarantees existence of the global solutions

The global solutions satisfy the dynamical conditions (5.10) but do not generally satisfy the additional conditions (5.8) and (5.9). Lemma 5.7. For every > 0 (small enough), there is δ > 0 such that for every

there exist the unique solutions

to the integral equations in Lemma 5.5. Moreover, the solutions satisfy

and the dynamical conditions (5.10) for t > 0.

Proof. We rewrite the integral equations in Lemma 5.5 as the fixed-point equations associated with the following integral operators:

where

dη, (5.20)

The fixed-point equations (5.18) are considered in a small ball B ⊂ X of radius > 0 in Banach space

are given and satisfy the initial bound (5.16). We analyze hereafter each term in the definition of A ± (u ± ) in X.

The explicit expressions for u ± 1 in (5. [START_REF] Radostin | Propagation of noninear acoustic waves in bimodular media with linear dissipation[END_REF]) coincide with (4.8) after the change of the initial data u 0 to u ± 0 . By using the same analysis as in the proof of Lemma 4.3, we obtain the same bounds (4.10), (4.13), and (4.14) for u ± 1 (t, •) and their first and second y-derivatives in the L 2 (R + ) norm. Similarly, the same bounds can be rederived in the L ∞ (R + ) norm.

Combining them together, we deduce that there exists C > 0 such that

(5.22) By Lebesgue's dominated convergence theorem, u ± 1 (t, •) and their first and second derivatives in y are continuous functions of y for every t > 0 such that taking the limit y → 0 + yields

(5.23)

Let us now consider the explicit expressions for u ± 2 in (5.20). By the generalized Young's inequality (3.6) with either p = 1 and q = r = 2 or p = q = 2 and r = ∞, we obtain

All terms in ∂ 2 y u ± 3 including the last one are estimated similarly to what was done above. As a result, we obtain

where the following estimates from the proof of Lemma 3.1 can be used:

Combining all estimates together, we deduce that there exists C > 0 such that

where the end point estimates are taken into the account. Moreover, u ± 3 (t, •) and their first and second derivatives in y are continuous functions of y for every t > 0. By taking the limit y → 0 + , we obtain

(5.27) Summing (5.23), (5.25), and (5.27) recovers the dynamical conditions (5.10) for u ± . Next, we run the fixed-point arguments for the fixed-point equations (5.18) in B ⊂ X. If u ± 0 and γ satisfy the initial bound (5.16), then there exists C > 0 such that A ± (0) X ≤ Cδ due to bounds (5.22) and (5.24), where we have also used the bound (3.35) in Lemma 3.6. Furthermore, for every small > 0, there is sufficiently small δ > 0 such that if u ± ∈ B ⊂ X, then A ± (u ± ) ∈ B ⊂ X; moreover A ± are contractions on B ⊂ X due to bounds (5.26), where the bound (3.35) can be used again. Existence and uniqueness of the fixed point u ± ∈ B ⊂ X to the fixed-point equations (5.18) follows by the Banach fixed-point theorem.

Hence, the bound (5.17) is proven. By the standard bootstrapping arguments, if γ ∈ C(R + ), we also get

) are substituted from Lemma 5.7 into the integral equation (5.14), we are looking for a small solution γ ∈ L

. However, we were not able to close the fixedpoint iterations unless we added the additional requirement of the spatial exponential decay of the initial data u ± 0 .

Proof. We rewrite the integral equation in Lemma 5.6 as the fixed-point equation associated with the following integral integral operator:

where

The fixed-point equation (5.39) is considered in a small ball

) are given and satisfy (5.37) and u ± ∈ C(R + , H 2 (R + ) ∩ W 2,∞ (R + )) are defined in Lemmas 5.7 and 5.8 such that δ and ˜ in (5.37) and (5.38) are smaller than δ in (5.16). We analyze hereafter each term in the definition of

Since the initial constraint u + 0 (0 + ) + u - 0 (0 + ) = 0 is satisfied and u ± 0 ∈ W 2,∞ (R + ), we can use the equivalent form (3.29) in Lemma 3.3 and rewrite γ 1 in (5.39) in the form:

where

It follows from the first identity in (3.1) that there exists C > 0 such that

(5.41) However, there is no bound on γ 1 L 1 unless we add the exponential weight on the initial conditions u ± 0 and rewrite γ 1 in (5.40) in the form:

dη.

(5.42) Now, thanks to the exponential factor e -α(1-α)t decaying to zero as t → +∞, we obtain

so there exists a positive α-dependent constant C α such that

(5.43) 5.8, and 5.10 as follows. For a fixed in (5.17) and (5.29), there exists a small δ in (5.16) and (5.28), for which we select ˜ in (5.38) such that ˜ ≤ δ. By Lemma 5.10, there exists δ in (5.37) and, if necessary, we reduce δ so that δ ≤ δ. Then, the results of Lemmas 5.7, 5.8, and 5.10 hold simultaneously for the initial conditions satisfying (5.37), which is obtained from (2.17) by the transformations (5.1) and (5.6). The bound (2.18) follows from u ± ∈ B ⊂ X in the proof of Lemma 5.7 and the transformations (5.1) and (5.6). The decay (2.19) follows from the decay (5.30). By Lemmas 5.7 and 5.8, the solutions belong to the spaces (2.20) and (2.21). The interface condition (5.9) follows from (5.8) and (5.10). The interface condition (5.3) of Lemma 5.1 follows from the transformation (5.6) and the dynamical condition (5.10). The positivity condition (5.5) follows from the decomposition (5.1) and smallness of u in W 1,∞ (R) similarly to the proof of Theorem 2.1.

Numerical simulations

Here we simulate numerically the boundary-value problem (5.2) completed with the dynamical equation (5.3) and the interface condition (5.4). The interface location ξ(t) satisfies ξ(0) = 0. We define again γ(t) = ξ (t) and use W 0 (y) = e -|y| . By using new variables v ± (t, y) = u(t, y) ∓ u(t, -y), y > 0, (

we can rewrite the boundary-value problem (5.2) as a system of two coupled equations:

v + t = v + y + v + yy + γv - y , y > 0, v - t = v - y + v - yy + γv + y + 2γe -y , y > 0, (6.2) subject to the boundary conditions      v ± (t, 0) = 0, v - y (t, 0) = 0, v ± (t, y) → 0 as y → ∞, (

the interface condition v + y (t, 0) + v + yy (t, 0) = 0, (6.4) and the dynamical condition γ(t) = -v - yy (t, 0) 2 + v + y (t, 0) . (6.5)

If v -(0, y) = 0 initially, then γ(t) = 0 and v -(t, y) = 0 are preserved in the time evolution of (6.2), (6.3), and (6.5). In this case, the variable v + (t, y) satisfies the boundary-value problem (4.2), which is analyzed in Theorem 2.1 for the odd perturbations to the viscous shock. In what follows, we consider the general case of v -(0, y) = 0 which is analyzed in Theorem 2.4. The spatial domain of system (6.2) is discretized at the points y n = nh with equal step size h for n = 1, . . . , N . It follows from the boundary conditions (6.3) that v ± (t, y 0 ) = 0 at y 0 = 0. Although the problem is unbounded in one direction, one can truncate the half-line on the finite interval [0, L] with sufficiently large L and y N +1 = L = (N + 1)h and apply the Dirichlet condition v ± (t, y N +1 ) = 0 at the end point. This approach of truncation is