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Abstract: Magnesium deficiency and stress are both common conditions among the general population,
which, over time, can increase the risk of health consequences. Numerous studies, both in pre-clinical
and clinical settings, have investigated the interaction of magnesium with key mediators of the
physiological stress response, and demonstrated that magnesium plays an inhibitory key role in
the regulation and neurotransmission of the normal stress response. Furthermore, low magnesium
status has been reported in several studies assessing nutritional aspects in subjects suffering from
psychological stress or associated symptoms. This overlap in the results suggests that stress could
increase magnesium loss, causing a deficiency; and in turn, magnesium deficiency could enhance the
body’s susceptibility to stress, resulting in a magnesium and stress vicious circle. This review revisits
the magnesium and stress vicious circle concept, first introduced in the early 1990s, in light of recent
available data.

Keywords: stress; magnesium; hypomagnesemia; magnesium deficiency; vicious circle; dietary
intake; magnesium supplementation

1. Introduction

Stress, often intended as a psychological response to external stressors, has become a common
issue of modern life [1]. From a neurobiology perspective, stress is an adaptive system that continuously
assesses and interacts physically, physiologically, or psychosocially, with the environment. When this
stress system is overloaded, negative health outcomes could result [2]. Magnesium is a fundamental
nutrient, the role of which in human health is widely recognized [3]. Today, magnesium deficiency is
also a common condition among the general population [4], and given its importance in the functioning
of many reactions of the human body, this deficiency can increase the risk of physical and mental health
illness over time. Of note, symptoms of magnesium deficiency and stress are very similar, the most
common being fatigue, irritability, and mild anxiety [5–7]; further symptoms are shown in Table 1.
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Table 1. Symptoms of magnesium deficiency and symptoms of stress.

Most Frequently Reported Symptoms of Stress [6,7] Symptoms of Magnesium Deficiency [5,8]

Fatigue Tiredness
Irritability or anger Irritability

Feeling nervous Mild anxiety/nervousness
Lack of energy Muscle weakness
Upset stomach Gastrointestinal spasms
Muscle tension Muscle cramps

Headache Headache
Sadness/depression Mild sleep disorders

Chest pain/hyperventilation Nausea/vomiting

Note: Similar symptoms are highlighted in bold.

The idea of a bidirectional relationship between magnesium and stress was first introduced by
Galland and Seelig, in the early 1990s [9,10] and then referred to as the vicious circle. This vicious circle
implies that stress can increase magnesium loss, causing a deficiency; in turn, magnesium deficiency
can enhance the body’s susceptibility to stress [10].

Taking into account the increasing prevalence of stress in modern societies [11], and its related
consequences to health, this review revisits the magnesium and stress vicious circle concept, with a
focus on the role of magnesium on the body’s response to stress and the pathways that regulate such
a response. In particular, the scope of this article was to assess the evidence available on the need
of an adequate intake of magnesium, and strengthen the hypothesis that a revision of the current
recommended intake of magnesium is needed for the general population when exposed to stress,
in order to reduce associated health risks.

2. Magnesium: Biological Role and Dietary Needs

2.1. Biological Role of Magnesium and Homeostasis

Magnesium is an essential mineral for humans [12]. Being the second most abundant intracellular
cation [5], magnesium is involved in almost all major metabolic and biochemical processes [13]. It acts
as a cofactor in hundreds of enzymatic reactions [13], its primary functions including protein and
nucleic acid synthesis, regulation of metabolic pathways, neuronal transmission, neuromuscular
function, and regulation of cardiac rhythm [8,14,15]. In addition, magnesium is a naturally occurring
calcium channel blocker, is involved in the maintenance of electrolyte balance (e.g., regulation of
sodium–potassium ATPase activity), and plays a key role in membrane excitability [5,12].

It is estimated that an adult human body contains around 21–28 g of magnesium, 50–60% of
which is stored in the bones, with the remainder distributed in soft tissues such as muscles [14,16].
Magnesium is also an essential component of the extracellular fluid (ECF) and the cerebrospinal fluid
(CSF) in the central nervous system [17,18]. Magnesium enters the brain through the blood–brain
barrier which maintains the passage of nutrients and electrolytes for the ECF homeostasis, and is
actively transported by choroidal epithelial cells into the CSF [17,18]. Although little has been revealed
about the exact mechanisms of magnesium transport into the brain, it is known that magnesium
concentration is higher in the CSF than in plasma [19]. Under conditions of deficiency, magnesium
levels still decline in the CSF, but slower when compared to the changes observed in plasma magnesium
levels [19]. Experimental studies have shown that in magnesium-deficient animals, the brain uptake of
magnesium is almost doubled compared to normal-fed controls [20] and CFS magnesium concentration
was readily repleted, showing that magnesium is an essential mineral for the brain homeostasis [19,20].

Only 1% of the total magnesium is extracellular and 0.3% of this circulates in serum in three
different forms [21]: Free (unbound; 60%), which represents the biologically active form; albumin-bound
(30%); or in a complex with other ions (10%) [13].
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Magnesium homeostasis is tightly regulated and relies on the dynamic balance between intestinal
absorption, kidney excretion, and storage in bones (Figure 1) [22]. Magnesium is mainly absorbed in
the distal parts of the small intestine [22], and mostly stored in bones [22], where it serves as a reservoir
to maintain the equilibrium with its extracellular concentration [22]. The kidneys play a critical part in
magnesium homeostasis by eliminating its excess [22].
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1988 [19] and deBaaij, 2015 [8]. Mg, magnesium.

Many factors can affect magnesium balance: A diet high in sodium, calcium, and protein [5,23–25],
the consumption of caffeine and alcohol [5,13,26], and the use of certain medicines such as diuretics,
proton-pump, and inhibitors or antibiotics [13,26,27], which can all cause lower magnesium retention.
In healthy individuals, some physiological conditions such as pregnancy [28,29], menopause [30],
or ageing [31,32] are associated with changes in the need for magnesium. Pathological conditions,
particularly those affecting the absorption and the elimination of nutrients (e.g., diabetes,
renal function impairment, and physiological stress), may also result in significant magnesium loss or
malabsorption [4,5,26,33,34]. Studies on hereditary forms of magnesium deficiency have contributed
to the identification of both recessive and dominant genetic disorders directly affecting the transport
of magnesium at a cellular level [35]. Although mutated transporting-proteins mainly contribute to
renal wasting or intestinal malabsorption of magnesium, the mechanisms at the molecular level remain
to be elucidated [8,36]. Notably, several studies showed that lower magnesium levels are involved in
the course of several mental disorders, especially depression [37]. A summary of the factors affecting
magnesium homeostasis is presented in Table 2.
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Table 2. Factors contributing to magnesium deficiency.

Diet related

Inadequate magnesium intake [5,13,26]
High protein diet [5,25]
High sodium diet [5,25]

High calcium diet [5,23–25]
High caffeine intake [5]

Alcohol dependence [5,13,26]

Lifestyle

Sports [25,38–40]
Sleep quality and quantity [41,42]

Chronic stress [43,44]

Pharmacological related

Diuretics, e.g., furosemide [13,26,27]
Proton-pump inhibitors, e.g., omeprazole [13,27]

Cisplatin [13,26,27]
Antibiotics, e.g., gentamicin [13,27]

Physiological conditions

Pregnancy [28,29]
Ageing [31,32]

Menopause [30]

Pathological conditions

Genetic disorders [8,35,36]
Type 2 diabetes mellitus [4,5]

Gastrointestinal disorders [5,26]
Kidney failure [5,33]

Cardiovascular diseases [5,45]
Metabolic syndrome [5,34]

Osteoporosis [15,25,33]

2.2. Food Sources, Current Recommended Intakes and Safety

Nuts, legumes, whole cereals, and fruits have the highest magnesium content of all foods [16].
Coffee or cocoa-based products may also contain significant amounts of magnesium, while fish, meats,
and milk have an intermediate amount [46,47]. Drinking water, especially harder water, can also be
rich in magnesium salts [48]. The source of dietary magnesium varies widely according to gender, age,
and dietary habits. For example, French adults in 2016 obtained more than 21% of their magnesium
from hot beverages including coffee, 9% from bread, and 6% from vegetables [47], whereas in a sample
of American adults, the main sources of magnesium were vegetables (13%), milk (7%) and meat
(7%) [49]. In a sample of Polish adults, dietary magnesium requirements were mostly maintained
by the consumption of cereal products (11.8–15.3%) [50], and milk or dairy products (10.9%) [51].
A study investigating the Italian diet found that cereals (27%) are the primary source of magnesium in
adults [52].

Over time, public health agencies have reviewed and established recommendations for dietary
intake of magnesium (and other nutrients). These include the estimated average requirement (EAR),
which represents the average daily intake that satisfies the nutritional requirement of 50% of the
population considered; and the recommended dietary allowance (RDA), which is the daily intake that
meets the requirement of 97.5% of the same population [15,53]. Values are set on the basis of dietary
balance experiments and/or results from clinical studies and meta-analyses [54–57].

Dietary balance studies performed in the 1980s in the USA concluded that the EAR for magnesium
was 310–330 in men and 255–265 mg/day in women [55–57]. As a consequence, in 1997, the Standing
Committee on the Scientific Evaluation of Dietary Reference Intakes (for the USA and Canada)
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set an RDA of 400–420 and 310–320 mg/day for men and women, respectively [58]. Nowadays,
nutrient requirements and dietary guidelines are available in every country. For instance, in Poland,
the RDA for magnesium is 400–420 for men and 310–320 mg/day for women [59], and in Russia,
it is 300 mg/day for both men and women [60]. The European Food Safety Agency (EFSA) did not
consider the available scientific evidence strong enough to determine RDAs, and has suggested an
“adequate intake” of 350 and 300 mg/day for men and women, respectively [16]. Within the EU,
national governmental bodies have set local RDAs. In 2015, the Japanese Ministry of Health, Labor and
Welfare updated the dietary reference intake guidelines and set the RDA at 320–340 and 220–230 mg/day
for adult men and women, respectively [61]. Recommended intakes are summarized by country
in Table 3.

Table 3. Current magnesium recommended dietary allowances (RDAs) across countries.

Country Magnesium, mg/day
Men Women

Italy [62] 240 240
Russia [60] 300 300
Japan [61] 320–340 220–230

Poland [59] 400–420 310–320
USA and Canada [58] 400–420 310–320

France [63] 420 360

Values shown refer to adult population only (≥19 years).

Studies have consistently shown that the dietary magnesium intake is often inadequate across
different countries [5,64]. In 2005, King et al. reported that approximately 60% of Americans do not reach
the recommended daily intake of magnesium through their diet [65]. In the USA, between 2003–2006,
the average intakes of magnesium from food were 268 for men and 234 mg for women, which meant
that 63% of men and 69% of women did not meet the EAR [66]. These results were confirmed and
supported by the Dietary Guidelines Advisory Committee, which, in 2015, concluded that magnesium
is an under-consumed nutrient for many Americans [46].

In Europe, the situation is similar. The National Diet and Nutrition Survey conducted in the UK
between 2014–2016 showed that men’s mean dietary intake in magnesium was 302 and women’s was
238 mg/day [67]. In France in 2007, the mean daily dietary intake was 323 in men and 263 mg in women
and more than two-thirds of the French adult population (67.4% of men and 76.7% of women, aged 18
to 54) had an inadequate magnesium intake [68]. Furthermore, in Spain, the Anthropometry, Intake and
Energy Balance in Spain (ANIBES) study revealed that the mean consumption of magnesium in the
population was 222 mg/day, indicating that 79% of the population had an intake below 80% of the
national RDA [69]. The Mediterranean Healthy Eating, Ageing, and Lifestyle (MEAL) observational
study conducted in Italy found that the dietary intake of magnesium was adequate both in men (397)
and women (390 mg/day), with cereals, dairy products, and legumes being the main food sources [70].
Lastly, an analysis based on national surveys conducted across European countries showed that the
mean magnesium intake among adults (18–60 years old) in Poland was 396 in men and 264 mg/day
in women; [71] whereas German adults had the highest mean intake magnesium, 522 in men and
418 mg/day in women [71].

When there is a need for optimizing the magnesium status, a variety of oral supplements are
available. Magnesium supplementation is considered well-tolerated, with diarrhea typically being the
main manifestation of an excessive intake [72]. The upper limit for magnesium supplementation in
healthy adults is 350 mg/day [73]. Normally, an increased renal filtration can reverse a wide range
of serum magnesium concentration to normal levels. However, serious adverse effects have been
reported for serum magnesium concentration exceeding 1.74–2.61 mmol/L. Symptoms of magnesium
toxicity include hypotension, nausea, flushing of the face, retention of urine, and lethargy, and may
progress to difficulty breathing, extreme hypotension, irregular heartbeat, and cardiac arrest [72].
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2.3. Magnesium Deficiency: Causes and Health Consequences

In clinical practice, measurement of serum magnesium levels is the most common means
of assessing nutrient status [13], with normal values considered to be within the 0.7–1.0 mmol/L
range [74,75]. Hypomagnesemia is clinically defined when serum concentrations drop below
0.7 mmol/L [8]. Severe hypomagnesemia (<0.4 mmol/L) is rare and occurs mostly in serious pathological
conditions [76]. Symptoms may include neuromuscular dysfunction (muscular weakness, tremors,
seizures or tetany); cardiovascular signs (electrocardiographic abnormalities and arrhythmias);
and hypokalemia and hypocalcemia [13]. However, mild hypomagnesemia (0.5–0.7 mmol/L) is
common and estimated to affect around 2.5–15% of the population [4,26]. In the majority of cases,
magnesium deficiency is not identified, as low serum levels are compensated by the release of
magnesium from the bone reservoir [48]. In addition, mild deficiency can remain undetected as it often
occurs with nonspecific symptoms such as irritability, nervousness, mild anxiety, muscle contractions,
weakness, fatigue, and digestive troubles [26]. In addition, it has been suggested that chronic latent
magnesium deficiency could start developing below 0.85 mmol/L with a potential impact on human
health [12,77]. A recent study by Noah et al. found that nearly half (~44%) of the subjects screened for
stress had chronic latent magnesium deficiency (defined as serum magnesium <0.85 mmol/L) [78].
Moreover, subclinical, chronic magnesium depletion may contribute to various dysfunctions and
diseases and the scientific literature is rich in studies highlighting the association between low
dietary magnesium intake and a higher risk of type 2 diabetes, cardiovascular diseases, osteoporosis,
and metabolic syndrome [8,79,80].

Several factors contribute to magnesium deficiency (Table 2). Dietary surveys point to an inadequate
magnesium intake from food. Surveys conducted in different countries have consistently showed
a substantial inadequate intake of magnesium from food in the general population, particularly in
young adults, those over 70 years of age [81], and in women [71]. Of note, over the past 60 years,
intensive farming practices have caused a significant depletion of the mineral content of the soil [82–84],
including a decrease in magnesium of up to 30% [85,86]. Additionally, western diets typically have a
greater proportion of processed food, where several products are mostly refined, with magnesium being
depleted by up to 80–90% in the process [5,8]. Factors and behaviors associated with the western lifestyle,
including intense sport and physical activity [38], poor sleep quality and quantity [41], and psychological
stress [43,44], can also induce magnesium loss. Magnesium deficiency is linked to many health conditions,
from those affecting its metabolism, such as gastrointestinal diseases, type 2 diabetes, alcohol dependence,
or kidney failure [5,26], to genetic disorders [35]. A growing body of evidence also suggests that chronic
stress may cause magnesium loss/deficiency [43]. Numerous studies have shown lower magnesium
levels associated with different neurological and psychiatric disorders, particularly depression and
post-traumatic stress disorder [87,88] but also anxiety disorders, attention deficit hyperactivity disorder,
and bipolar disorder [37,89]. Although evidence on a causal factor between mental disorders and
magnesium deficiency has yet to be confirmed, stress appears as a key component in the relationship
between mental health illness and magnesium deficiency.

3. Stress

Stress is commonly described as a trigger that evokes a physiological and psychological response
of the body [90]. Over the past decades, the understanding of stress biology has largely evolved.
Stress is no longer considered as a temporary response to occasional threats, but rather an ongoing and
adaptive system that enables an individual to assess, cope, and predict constantly changing conditions.
However, the capacity of this stress system is limited and can be overloaded, resulting in poor health
outcomes, particularly those related to mental illness like depression or cognitive deficits [2].

Stress not only affects the mental health status of an individual, but it is also characterized by a
physical response of the body that, depending on the type and length of exposure, may lead to short-term
effects (e.g., increased blood pressure, increased heart and respiration rates, increased alertness) [91],
or long-term effects (e.g., impaired hippocampal neurogenesis, cognitive and memory disorders) [92].
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The following sections summarize widely recognized theoretical models of stress and describe
possible physiological roles of magnesium in the stress response. Here, the term “stress model” refers
to a theoretical framework used to predict outcomes and to explain specific processes.

3.1. Neurobiological Stress and Allostatic Load Model

In the 1950s, Selye proposed the general adaptation syndrome model to describe stress as the
reaction of the body to emergency situations [93]. This theory divides the response to stressful stimuli
into three phases: (1) Alarm: Upon perceiving a stressor, the body reacts with a “fight-or-flight”
response, the sympathetic nervous system (SNS) is stimulated, and the body’s resources are mobilized
to meet the threat. (2) Resistance: The body resists and compensates as the parasympathetic nervous
system (PNS) attempts to return many physiological functions to normal levels, while the body
remains on alert and focuses resources against the stressor. (3) Exhaustion: If the stressor continues
beyond the body’s capacity, the resources are depleted and the body becomes susceptible to disease
(distress) [91,93].

A more contemporary concept, which better describes the cumulative impact of stressor exposure
on health outcomes, is that of allostasis. Allostasis is the process by which constant changes allow an
organism to achieve and maintain normal functions, thus reflecting the ability of the body to adapt
to daily situations like exercising or hunger, effectively [94]. However, this continual maintenance
costs the body energy and resources, and over time, may lead to symptoms of allostatic load—the
functional and structural damage caused by “the wear and tear” of the body’s resources in response
to stress [95]. Therefore, the response to a new stressor depends on the body’s resources available
following the previous stress response [96]. The allostatic load is characterized by a cumulative effect,
which becomes greatest when stress is chronic or intense [96].

The hypothalamic–pituitary–adrenal (HPA) axis and the autonomic nervous system (comprising
SNS and PNS) have been identified as the mediators of this neurobiological stress model [90,91,95]. First,
corticotrophin-releasing factor (CRF) is secreted from the paraventricular nucleus in the hypothalamus;
the subsequent secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary stimulates
the release of glucocorticoids (mainly cortisol) from the adrenal cortex [97]. Noradrenaline (NA) and
adrenaline are also released from the sympathetic nerves and the adrenal medulla, and together with
the glucocorticoids regulate the stress response [90,91]. Cortisol also interacts with the serotonergic
pathway, adjusting the release of serotonin (5-hydroxytryptamine or 5-HT) neurotransmitter in response
to acute or chronic stressors [98]. Serotoninergic neurons modulate the stress response either via direct
neurotransmission to the hypothalamus, or by stimulation of noradrenergic neurons [97]. In addition
to the regulation through feedback mechanisms, the HPA axis is also modulated by other central
systems, particularly by the inhibitory action of the γ-aminobutyric acid (GABA), and the excitatory
effect of glutamate [99].

In this neurobiological model, cortisol is a well-known mediator of the stress response.
The nocturnal cortisol urinary excretion in apparently healthy subjects reflects the basal tone of
the HPA axis [100]; conversely, the blood cortisol concentration measured in a challenging environment
is a sign of stress activity [101]. It has been shown that cortisol coordinates the central response to stress at
several levels [102], and indirectly influences mechanisms of neuroprotection [103]. Neurotrophic factor
production, represented by the brain-derived neurotrophic factor (BNDF), intervenes in allostasis
through protecting neurons [104]. Normally, BNDF promotes neuronal survival and plasticity [104];
however, changes in BNDF expression have been reported following exposure to stressful stimuli.
An increase of BNDF has been observed in response to moderate stress [105], whereas a decrease
has been associated with high levels of stress [106]. Furthermore, increasing evidence shows a link
between cortisol responses and oxidant elevation [107]. The accumulation of free radicals and other
reactive oxygen species is also a sign of allostatic load, resulting from the imbalance between cellular
metabolic activities and antioxidant defense mechanisms [108,109].
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Noteworthy, magnesium interacts with all these stress mediators [17,110–112], overall serving an
inhibitory function in the regulation and central neurotransmission of the stress response (details of
these interactions are summarized in chapter 6).

3.2. Generalized Unsafety Theory of Stress (GUTS) Model

Conventional theories of stress have historically focused on the assumption that stress is a response
to an actual environmental threat (either internal or external to the body), making it difficult to explain
the relation between stress and disease. In contrast, GUTS is a new psychological and cognitive
theoretical model proposed by Brosschot in 2016 [113] that revises and expands the stress theory by
focusing on safety instead of threat, and by including risk factors that have hitherto not been attributed
to stress [113]. Based on neurobiological and evolutionary evidence, GUTS hypothesizes that stressors
are not necessary for a chronic stress response to occur but the perception of an unsafe state is enough.
In GUTS, PNS is the key system controlling the stress response (particularly the vagus nerve and the
prefrontal cortex activity) [113]. Of note, preclinical data suggest that magnesium may be important
for the functionality of these central systems. An excess of magnesium or magnesium deficiency have
been shown to modulate the autonomic nervous system, but further research is still needed [114–116].

The GUTS model suggests that the default stress response can be chronically activated in various
situations, three of which are particularly susceptible to health risks. (1) Reduced body capacity:
In compromised physical conditions, e.g., obesity or aging, the brain perceives the body as inadequate
to be able to “fight-or-flight”, and therefore maintains a state of general alarm, or unsafety [117].
(2) Compromised social network: Being part of a group is a fundamental aspect of survival for social
animals and humans, and isolation is one of the main conditions in which safety is lacking [117].
Interestingly, there is evidence that patients suffering from metabolic syndrome [118] or congestive
heart failure [5] (both conditions of reduced body capacity as described in GUTS) exhibit lower
serum magnesium concentration. (3) Perceived aversive environment: In cases of specific stressors
(e.g., work stressors), a neutral daily environment (e.g., an office working environment) can be
perceived as unsafe [117]. The GUTS model suggests that repetitive negative thinking may result in
the impairment of key systems controlling the stress response [119]; however, the relationship between
general unsafety and magnesium status is to be elucidated yet.

4. Evidence of the Impact of Stress on Magnesium Homeostasis

Initially, the shift from intracellular to extracellular magnesium following a stressor exposure plays
a protective and regulatory role [90]. Normally, magnesium inhibits the glutamatergic transmission
while promoting GABA activity, resulting in a mostly inhibitory effect at the central level [42].
Magnesium also tends to diminish the stress response mediated by catecholamines and glucocorticoids.
However, a chronic stressor exposure may result in a depletion of various resources as described by
Selye, including magnesium [42,93]. The progressive loss of magnesium from the reservoir in bone can
eventually compromise its physiological inhibitory action and lead to an over-activation of the HPA
axis and neuronal hyperactivity [120]. The impact of stress on magnesium status has been extensively
investigated in both animal and human studies [42,121].

Pre-clinical evidence. Animal studies have shown a transient hypermagnesemia in the short-term
period after the exposure to acute stress stimuli [122–125]. A series of experiments conducted on
cats by Classen et al. showed that stimuli such as withdrawal of blood, infusion of catecholamines,
or potassium poisoning all caused an increase of blood magnesium concentration [122]. This increase
was not influenced by pre-treatment with an adrenergic blocking agent (e.g., reserpine), suggesting that
other mechanisms rather than catecholamines are responsible for the change in magnesium levels [122].
Similarly, a shift of magnesium from erythrocytes to serum was reported in different studies investigating
the effect of acute noise on magnesium-deficient guinea pigs [123] and rats. As a consequence, a net
renal excretion of magnesium occurs, leaving the animal magnesium deficient.
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Mild hypomagnesemia can be observed in response to mid- or long-term exposure to stress.
A study conducted on guide dog candidates at different levels of a training program (elementary,
intermediate, and advanced) showed the effects of temperature and physical stress on serum magnesium
levels. First, it was demonstrated that serum magnesium levels were significantly lower in winter than
in summer (average temperature was 6 and 29 ◦C, respectively), suggesting an impact of seasonality
on magnesium homeostasis. Thereafter, it was noticed that physical exercise had a greater impact
on serum magnesium levels of dog candidates in the elementary class compared to more trained
ones. These results were lastly confirmed by a third experiment, assessing both the impact of physical
stress and temperature on serum magnesium levels and finding that serum magnesium levels after
exercise were significantly lower in winter than in summer. [126]. The impact of physical stressors
was assessed also in another study conducted on rats. A greater serum magnesium reduction was
observed in those administrated with ethanol and then exposed to restraint stress, compared to
control rats facing the same restraint test but receiving water [127]. An additional study conducted by
Heroux et al. on rats fed with a magnesium-deficient diet and kept at low temperature (6 ◦C) for about
17 months found that the studied animals were capable of adapting to cold stress despite suboptimal
magnesium intake; initial signs of magnesium deficiency (including skin sores, reduced growth rate,
lower levels of magnesium in most organs) gradually disappeared after two months. However,
regardless this adaptation, the long-term stress resistance (measured as cold resistance at −20 ◦C) of
magnesium-deficient rats was reported to decline over time when compared to controls [128]. Lastly,
exposure to cold (2–5 ◦C) and a deficient dietary intake of magnesium significantly reduced plasma
magnesium in sheep, whereas no effect was observed in normally fed sheep [129].

Clinical evidence. To help elucidate the stress hormone-induced magnesium deficiency and its
clinical relevance, Whyte et al. investigated the effect produced by the infusion of adrenaline on plasma
magnesium concentrations [130]. They found that magnesium levels were significantly reduced not
only during the infusion time but also an hour after test cessation, without any sign of recovery [130].
A variety of tests have demonstrated that magnesium levels, both in serum and urine, are affected by
the exposure to stress stimuli. Significant reductions in plasma and total magnesium concentrations
were reported in a 3-month analysis on young adults exposed to either chronic or sub-chronic stressful
conditions (e.g., acts of intolerance or fear of military actions) [43]. A similar effect was also seen in a
study investigating the effect of temporary (one day) and chronic (one month) sleep deprivation on
magnesium levels; in a group of otherwise healthy men, chronic sleep restriction was associated with
greater reductions in erythrocyte magnesium concentrations [131]. University students during an exam
period reported an increase in anxiety that was also associated with an increased urinary excretion
of magnesium [44]. In a similar study conducted on college students during the 4 weeks following
an examination period, erythrocyte magnesium content was found to be significantly depleted [132].
Interestingly, the variations in blood and urine magnesium levels were confirmed by Mocci et al. who
studied the effect of noise on catecholamines and magnesium serum and urinary excretions on healthy
men [133]. Mocci and his study group also noted how the timing for the change to occur was very
different between the two variables, with serum magnesium increasing a few hours after the exposure
to the noise (probably reflecting extracellular flux immediately after the stress), and urine excretion
reaching a peak in a few hours but lasting up two days [133]. A similar result was reported by Ising et
al. on a study investigating the effect of traffic noise on workers’ performance. Under noise stress (7 h),
a decrease in erythrocyte magnesium levels was observed, followed by an increase of serum levels
and urine excretion of magnesium [134]. The impact of acute stress on transient hypermagnesemia
was noted also under physical stress. Short- and long-term exercise (20 min versus 1 h, respectively)
had a different influence on the plasma magnesium levels: an increase of plasma magnesium was
reported after short-term exercise but not after long-term exercise. However, after both physical tests,
magnesium levels dropped below the pre-exercise values [135]. A summary of the pre-clinical and
clinical evidence is shown in Table 4.
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Table 4. Summary of the pre-clinical and clinical evidence supporting the impact of stress on
magnesium homeostasis.

Evidence of the Impact of Stress on Magnesium Homeostasis

Population Tested Stress Stimulus Impact on Magnesium

Pre-clinical

Cats
(N = 30)

Withdrawal of blood; infusion of
catecholamines; potassium poisoning ↑Blood Mg [122]

Guinea pigs (41) Noise ↑Serum Mg, ↓Erythrocytes Mg [123]

Rats (88) Noise ↑Serum Mg, ↓Erythrocytes Mg [124]

Rats Noise ↓Serum Mg, ↓Erythrocytes Mg

Dogs Physical exercise, temperature ↓Serum Mg [126]
Rats Ethanol/Restraint stress ↓Serum Mg [127]
Rats Cold ↓Tissue content of Mg [129]

Sheep Dietary Mg restriction, cold ↓Plasma Mg [129]

Clinical

Adults (N = 8) Adrenaline infusion ↓Plasma Mg [130]

Young adults (N = 35) Chronic or sub-chronic
psychological stress ↓Plasma Mg [43]

Healthy men (N = 16) Chronic sleep deprivation ↓Erythrocyte Mg [131]
Young adults (N = 35) University exams ↑Urinary Mg [44]
Young adults (N = 30) University exams ↓Erythrocyte Mg [132]
Young adults (N = 25) Noise ↑Urinary Mg ↑Serum Mg [133]

Healthy men (56) Noise ↑Serum Mg, ↓Erythrocytes Mg;
↑Urinary Mg [134]

Healthy men Short- and long-term physical exercise ↑Plasma Mg [135]

Mg, magnesium; ↑, increase; ↓, decrease.

5. Evidence of the Impact of Magnesium Status on Stress Susceptibility

Pre-clinical evidence. The relationship between magnesium deficiency and stress-related behavior
is well documented. In 1986, Caddell et al. reported an increase of circulating catecholamines following
the exposure of magnesium-deficient rats to a noise stress test [136]. The relationship between low
serum magnesium concentrations and the increased release of catecholamines in the central nervous
system was then confirmed in studies conducted on mice selected for low (MGL) and high (MGH)
blood magnesium. The simple selection of genetic traits inducing low blood magnesium was found to
significantly affect the metabolism of NA but not that of other neurotransmitters [137]. MGL mice
not only showed higher NA levels (17% in the brain; 200% in urine) but also a more restless behavior
and higher rectal temperature, all signs of an exaggerated stress response [138]. In a different study
also conducted on MGL and MGH mice, both fed with the same magnesium-rich diet, the number of
stress-induced gastric ulcers through the immobilization test was higher in the magnesium-deficient
mice [139]. Besides the noradrenergic hyperactivity in basal magnesium deficiency conditions,
dietary magnesium restrictions have also been associated with an upregulation of the stress system
via increases in CRH and ACTH levels [140]. Experimental data indicate that magnesium-deficient
rats exhibit more anxiety- and depression-like behavior compared with controls [42,138]. For example,
in the light–dark test (often used to screen for anxiolytic and antidepressant drugs) [141], mice with
magnesium deficiency showed a net preference for the darker compartment [42,140,141]. Similarly,
in the forced swimming test, magnesium-deficient rats spent more time immobile compared with
their controls [142,143]. Dietary magnesium deficiency in laboratory animals was also associated with
stress-like behavior in the open field test. Rats with a reduced dietary magnesium content tended to
visit the bright and central area less frequently [142,143], even when motivated by the presence of food,
showing a psychological stress caused by the open space [140].

Clinical evidence. Results in human studies are consistent with animal findings and show low
magnesium status in stressed/depressed populations. In a study investigating the potential benefit
of magnesium supplementation in Russian women who suffered from chronic emotional stress,
Akarachkova et al. found that at baseline the majority of women were suffering from symptoms like
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irritability, fatigue, and sleep disorders, and 60% presented magnesium deficiency [144]. In other
studies, subclinical chronic magnesium deficiency was found in up to 45% of the stressed subjects
enrolled [78,145,146]. Nielsen et al. found that out of 96 American adults complaining of sleep
disorders, a potential source of stress, 58% were consuming less than the EAR for magnesium and
had higher levels of C-reactive protein (CRP), an indicator of inflammatory stress [145]. Lastly, it is
generally recognized that chronic stress and magnesium deficiency may influence an individual’s
susceptibility to depressive disorders [147]. In a group of Australian patients experiencing depression
and/or anxiety, the analysis of their nutrition status showed that 22% of participants did not meet
magnesium EAR. Furthermore, magnesium intake (expressed as % EAR) was negatively correlated
with stress, depression, and total Depression Anxiety Stress Scale (DASS) scores [148].

A summary of the pre-clinical and clinical evidence supporting a relation between magnesium
status and stress is shown in Table 5.

Table 5. Summary of the pre-clinical and clinical evidence supporting magnesium status on stress
susceptibility. a Only symptoms shown in ≥70% of women at baseline are reported.

Evidence of the Impact of Magnesium Status on Stress Susceptibility

Population Tested Mg Status Stress Stimulus Impact on Stress Mediator/Stress

Pre-clinical

Rats
(N = 84) Mg-deficient Noise ↑Catecholamines (NA, adrenaline,

dopamine) [136]
Mice

(N = 120) Mg-deficient Genetic selection ↑NA [137]

Mice
(N = 80) Mg-deficient Genetic selection; forced

swimming test; four-plate test ↑NA [138]

Mice
(N = 100) Mg-deficient Genetic selection;

immobilization test ↑Gastric ulcers [139]

Mice
(N = 20/test)

Dietary Mg
restriction

Hyperthermia; open field test;
light/dark test;

hyponeophagia test
↑CRH; ↑ACHT [140]

Mice Mg-deficient Light/dark test Depression-like behavior [42,140]

Rats Dietary Mg
restriction Forced swimming test Depression-like behavior [142,143]

Rats Dietary Mg
restriction Open field test Stress/anxiety [142,143]

Clinical

Women
(N = 100) Mg-deficient -

Chronic emotional stress;
irritability; fatigue; sleep

disturbance; headache a [144]
Adults

(N = 264) Mg-deficient - Severe stress [78,145,146]

Adults
(N = 100) Mg-deficient Poor sleep quality ↑CRP [145]

Adults
(N = 109) Mg-deficient - Depression/anxiety [148]

ACHTH, adrenocorticotropic hormone; CRH, corticotrophin-releasing hormone; CRP, C-reactive protein;
Mg, magnesium; NA, noradrenaline; ↑, increase.

6. Proposed Model for the Vicious Circle of Stress and Magnesium Deficiency

Over the years, a growing body of evidence has consistently shown that magnesium acts on
several key physiological steps involved in the response to stressful stimuli.

• Magnesium and HPA. 5-HT transmission: Magnesium directly enhances the interaction between
5-HT and its membrane receptor, and it promotes the cellular transmission of the serotoninergic
signal (Figure 2A) [90]. Additionally, magnesium is a cofactor of tryptophan hydroxylase,
the enzyme involved in 5-HT synthesis [90]. Glutamatergic transmission: Magnesium inhibits
the glutamate directly and indirectly by blocking the glutamate N-methyl-D-aspartate (NMDA)
receptor and by enhancing its reuptake in the synaptic vesicles through stimulation of the
sodium–potassium ATPase, respectively (Figure 2B) [42]. GABA transmission: A GABA-agonistic
activity of magnesium has been observed, although the mechanism has not yet been elucidated,
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(Figure 2B) [42]. Cortisol: Magnesium indirectly reduces the release of ACTH by modulating the
neurotransmission pathways, and therefore decreases cortisol levels in the body [42];

• Magnesium and neuroprotection. Studies on the antidepressant effects of magnesium have shown
the positive impact of this mineral on the expression of BNDF in the brain [149,150];

• Magnesium and oxidative stress. Magnesium may be involved in suppressing the production
of free radicals in various tissues including the brain [17], and several laboratory studies have
shown that magnesium-deficient animals are more at risk of oxidative stress [112,151].
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In response to a stressful stimulus, stress hormones are released, causing an increase of magnesium
extracellular levels [90]. As a consequence, higher magnesium concentrations are excreted through the
kidneys [133]. When the stressor persists over time, this mechanism may contribute to magnesium
cation depletion and deficiency [42,130], and trigger the stress and magnesium vicious circle as
illustrated in Figure 3.
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Figure 3. The vicious circle of stress and magnesium. GABAA-R, γ-aminobutyric acid-A receptor;
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nervous system, 5HT-R, 5-hydroxytryptamine receptor.

Comprehensively, both pre-clinical and clinical studies’ results point to the bi-directional
relationship between magnesium levels and stress: Magnesium deficiency can induce symptoms
and increase susceptibility to stress, and acute and chronic stress can precipitate magnesium
deficiency [10,104,106].

7. Magnesium Supplementation

Magnesium supplementation has proven benefits for the treatment of symptoms of psychological
daily stress (fatigue, irritability, sleep) [144]. It has been shown that subjects with mental and physical
stress can benefit from a daily intake of magnesium. Male students experiencing common stress factors
such as sleep deprivation, malnutrition, and a lack of physical activity, and receiving magnesium
250 mg/day for four weeks not only presented an increase in erythrocyte magnesium content but also a
reduction of serum cortisol [152]. Magnesium supplementation of 400 mg/day was associated with
a clear improvement of the heart rate variability, measured as an indicator of the parasympathetic
and vagal systems’ response to stress, in subjects who were asked to complete moderate muscle
endurance training once weekly [153]. The daily supplementation with 300 mg (combined or not
with vitamin B6, 30 mg) provided positive results on stress relief [154], particularly on subjects
who reported severe stress levels at baseline, with a reduction in Depression Anxiety Stress Scale
scores of up to 45% from baseline [154]. It is interesting to note that several studies investigating the
potential benefit of magnesium supplementation in populations with symptoms of stress reported a
subclinical chronic magnesium deficiency or a low magnesium status at baseline in the majority of
the subjects enrolled [37,78,144–146]. Nevertheless, despite several studies reporting an association
between magnesium deficiency and stress, the effect of magnesium supplementation on stress has
been less documented than its effects on depression [37,155] and anxiety disorders [156]; therefore,
further investigation is still needed on stress symptoms. A possible limiting factor to the performance
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of such studies could be the difficulty of setting up optimal experimental conditions for studying the
effect of stress; however, this challenge may be overcome in future analyses by focusing on well-defined
conditions (e.g., psychological stress), and by using robust and validated tools to assess stress (such as
DASS scores).

8. Conclusions: Implications in Terms of Dietary Magnesium Needs

Over the past decades, increasing evidence, as shown in the present narrative review,
has investigated and supported the link between magnesium deficiency and increased susceptibility to
stress disorders, and further suggested that stress itself can lead to magnesium depletion. Magnesium is
an essential element involved in reactions regulating the body’s stress response at several levels.
Severe magnesium deficiency is rare, but chronic latent deficiency appears to be common among
the general population and even more among those suffering from a number of chronic diseases
or stress [5]. Although the current intake of magnesium through our diet seems sufficient to avoid
overt signs of magnesium deficiency in the majority of the population, it might not be adequate to
provide optimal health and risk reduction of chronic diseases [5]. Stress is also an increasing condition
worldwide and its effects can negatively impact health outcomes. Noteworthy, magnesium intake has
been found negatively correlated with subjective stress in some populations [148], and magnesium
supplementation has shown benefits in stressed but otherwise healthy subjects [153,154]. Additionally,
magnesium intake is safe with limited side-effects in cases of chronic overconsumption [72].

To conclude, while there is good evidence from animal and human studies of the bi-directional
link between magnesium and stress, further research is needed to better understand the impact of
this correlation and the benefit of magnesium supplementation on general health. Additional studies
should apply standard methodologies (e.g., magnesium load test) to evaluate the magnesium status in
well-characterized stressed population. These studies would help to demonstrate the increased need
of magnesium supplementation during stress periods, and further strengthen our initial hypothesis.
Further, in line with the GUTS model, repetitive negative thinking could be considered as a cognitive
indicator of stress and evaluated in relation to blood magnesium levels in a cohort of subjects exposed
to chronic stress. Given the strong association of stress with mental and physical diseases, these studies
are fundamental to further support adequate magnesium dietary needs.
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