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Abstract

A dominating set D in a digraph is a set of vertices such that every vertex is either in D or has an in-
neighbour in D. A dominating set D of a digraph is locating-dominating if every vertex not in D has a
unique set of in-neighbours within D. The location-domination number γL(G) of a digraph G is the smallest
size of a locating-dominating set of G. We investigate upper bounds on γL(G) in terms of the order of G.
We characterize those digraphs with location-domination number equal to the order or the order minus one.
Such digraphs always have many twins: vertices with the same (open or closed) in-neighbourhoods. Thus,
we investigate the value of γL(G) in the absence of twins and give a general method for constructing small
locating-dominating sets by the means of special dominating sets. In this way, we show that for every twin-

free digraph G of order n, γL(G) ≤ 4n
5 + 1 holds, and there exist twin-free digraphs G with γL(G) = 2(n−2)

3 .
Improved bounds are proved for certain special cases. In particular, if G is twin-free and a tournament, or
twin-free and acyclic, we prove γL(G) ≤ dn2 e, which is tight in both cases.

Keywords: Digraphs, Dominating sets, Locating-dominating sets, Bounds

1. Introduction

A dominating set in a digraph G is a set D of vertices of G such every vertex not in D has an in-neighbour
in D. The domination number γ(G) of G is the smallest size of a dominating set of G. The area of domination
is one of the main topics in graph theory: see the two classic books [10, 11] on the subject. While there are
hundreds of papers on domination in undirected graphs, domination in digraphs is less studied; we refer to
the papers [8, 14, 15] for some examples. One particular variation of domination is the concept of location-
domination, introduced by Slater for undirected graphs in [19] (see also [17, 18]). For a set S of vertices of a
digraph G, two vertices x and y of V (G) \ S are located by S if there is a vertex of S that is an in-neighbour
of exactly one vertex among x and y. The set S is a locating set of G if it locates all the pairs of V (G) \ S
(but does not necessarily dominate the graph). Equivalently, every vertex not in S has a distinct set of
in-neighbours in S. The location number of a graph G is the size of a smallest locating set and is denoted
by loc(G). A set D of vertices of a digraph G is locating-dominating if it is both locating and dominating.
The location-domination number γL(G) of a digraph G is the smallest size of a locating-dominating set of G.
Note that γL(G)− 1 ≤ loc(G) ≤ γL(G), since at most one vertex is not dominated in a locating set.

Our goal is to investigate bounds on the location-domination number of digraphs. Such bounds are absent
from the literature; in fact, the only paper on location-domination in digraphs we are aware of is [3], which
deals with the computational complexity of the problem. Such bounds on digraphs have been studied for the
closely related concept of identifying codes in [7].
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We now introduce our terminology. We will assume that all the considered digraphs are loopless and
have no multiple arcs. A digraph G contains a set V (G) of vertices and a set A(G) of arcs, that are ordered
pairs of vertices. If there is an arc from v to w, we say that v is an in-neighbour of w, and that w is an out-
neighbour of v. The open in-neighbourhood and the open out-neighbourhood of a vertex v, denoted by N−(v)
and N+(v), respectively, are the set of in-neighbours of v and the set of out-neighbours of v, respectively.
Further, the closed in-neigbourhood of v is N−[v] = N−(v) ∪ {v} and the closed out-neigbourhood of v is
N+[v] = N+(v) ∪ {v}. A source is a vertex with no in-neighbours, and a sink is a vertex with no out-
neighbours. Two vertices are called twins if they have the same open in-neighbourhood or the same closed
in-neighbourhood. If two vertices x and y satisfy N−(x) = N−(y) ∪ {y}, they are called quasi-twins. See
Figure 1 for an illustration. A directed path is a sequence of vertices where each vertex has an arc to the
next vertex in the sequence. A directed cycle is a directed path where the first and the last vertices are the
same. An acyclic digraph is a digraph with no directed cyle. A tournament is a digraph in which there is
a unique arc between any pair of vertices. A tournament is transitive if it is acyclic. A digraph is called
strongly connected if there exists a directed path in both directions between every pair of vertices.

ba

(a) a and b are open twins.

ba

(b) a and b are quasi-twins.

ba

(c) a and b are closed twins.

Figure 1: Examples of twin vertices.

Perhaps the most classic result in domination of undirected graphs is the theorem of Ore [16] which states
that any undirected graph without isolated vertices has a dominating set of size at most half the order. Such
a theorem does not hold for the location-domination number of undirected graphs, for example complete
graphs and stars of order n have location-domination number n− 1, see [19]. Nevertheless, Garijo, González
and Márquez have conjectured in [9] that in the absence of twins, the upper bound of Ore’s theorem also
holds for the location-domination number of undirected graphs; they also proved that an upper bound of
roughly two thirds the order holds in this context (see [4, 5, 6] for further developments on this matter).

Therefore, it is natural to ask whether similar bounds exist in the case of locating-dominating sets of
digraphs. However, Ore’s theorem does not hold for digraphs. Indeed, not only every isolated vertex but
also every source of a digraph G belongs to any dominating set of G. For example, a star of order n with
n − 1 sources has domination number n − 1 (it is easy to see that this is the only digraph of order n with
no isolated vertices and domination number n − 1, see [12]). Lee showed (as part of a more general result)
in [14] that every source-free digraph G of order n has domination number at most d 2n3 e. Moreover, the
digraph of order n = 3k consisting of k vertex-disjoint directed triangles is source-free and has domination
number 2n

3 , so this bound is tight when n = 0 mod 3. Better bounds have been obtained for specific classes:
every tournament of order n has domination number at most dlog2 ne [15] (the order is tight for random
tournaments), and every strongly connected digraph of order n has domination number at most dn/2e [13]
(this is tight for directed cycles).

What happens for the location-domination number? A first question of interest is to determine which
digraphs have largest possible location-domination number. We address this question in Section 3, where we
describe the class of graphs of order n with location-domination number n − 1. Of course it includes stars
with n − 1 sources (that have domination number n − 1), bidirected complete graphs and bidirected stars
(that correspond to undirected graphs with location-domination number n− 1), but as we will see, there are
many more examples.

In Section 4, we devise a general technique to obtain small locating-dominating sets in twin-free digraphs.
This technique is a refinement of those used in [6, 9, 12]. We use this technique in Section 5 to show that every
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source-free and twin-free digraph of order n has a locating-dominating set of size at most 4n
5 . This bound is

improved to 3n
4 if moreover the digraph has no quasi-twins. By adding one to these bounds, they also hold

even in the presence of sources. In Section 2, we describe strongly connected twin-free and quasi-twin-free

digraphs of order n with location-domination number 2(n−2)
3 .

We then show in Section 6 that any tournament of order n has a locating-dominating set of size at most
dn2 e (this is tight for transitive tournaments and other examples).

In Section 7, we show that the same bound holds for twin-free acyclic digraphs (this is also tight, for
directed paths).

We address some preliminary considerations in Section 2 and conclude the paper in Section 8.

2. Preliminaries

We start with some useful propositions.
The following proposition generalizes a well-known fact about locating-dominating sets of undirected

graphs [19].

Proposition 1. Let G be a digraph with a set S of pairwise twins (open or closed) or quasi-twins. There
are at least |S| − 1 vertices of S in any locating-dominating set of G.

Proof. By contradiction, let D be a locating-dominating set that does not contain two mutual twins or quasi-
twins x and y. The vertices x and y have the same in-neighbourhood in V (G) \ {x, y}, and also in D. This
is a contradiction.

However, we note that, unlike twins, there cannot exist a set of three pairwise quasi-twins.

Proposition 2. Let x, y, z be three vertices. If x, y are quasi-twins and y, z are quasi-twins, then x, z cannot
be quasi-twins.

Proof. Suppose without loss of generality that we have the arc from x to y. There are two cases. If we
have the arc from z to y, then we must have both arcs from x to z and from z to x, so x and z cannot
be quasi-twins. If we have the arc from y to z, then we also have the arc from x to z. But then y is an
in-neighbour of z and not of x, so x and z cannot be quasi-twins.

We now present a family of twin-free digraphs Gk of order n that have location-domination number almost
2n
3 . The graph G3 is drawn in Figure 2.

Proposition 3. Let Gk be the strongly connected (hence, source-free) twin-free and quasi-twin-free digraph
of order n = 3k + 2 obtained from k vertex-disjoint directed triangles by adding a new vertex s that is an
out-neighbour of all vertices of each triangle, a vertex t that is an in-neighbour of all vertices of each triangle,

and an arc from s to t. Then, we have γL(Gk) = 2(n−2)
3 .

Proof. To see that γL(Gk) ≤ 2(n−2)
3 , consider the following locating-dominating set: take t, one vertex of

some directed triangle, and two vertices of all the other directed triangles (see Figure 2 for an example).

To see that γL(Gk) ≥ 2(n−2)
3 , consider a locating-dominating set D of Gk. First, each of the original

directed triangle contains a vertex of D, because otherwise the three vertices in this triangle are not located.
Second, there is at most one directed triangle that contains only one vertex of D, because otherwise in both
triangles there is a vertex only dominated by t, and they are not located. Finally, if some triangle contains
only one vertex of D, then t ∈ D because otherwise some vertex of the triangle is not dominated. So, in
total there are two vertices of D for each directed triangle. Since there are n−2

3 original directed triangles,
the proof is finished.
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Figure 2: A strongly connected twin-free and quasi-twin-free digraph of order n with location-domination number
2(n−2)

3
, with

a locating-dominating set in grey.

3. Characterizing digraphs with location-domination number n − 1

In this section, we characterize those digraphs with maximum possible location-domination and location
numbers.

For every digraph G of order n, any set of size n − 1 is a locating set, thus loc(G) ≤ n − 1. This is not
true for locating-dominating sets: consider a digraph with no arcs. However, this is the only such example:
if G has some arc, then it has a locating-dominating set of size at most n− 1 (consider the set obtained from
V (G) by removing the endpoint of one arbitrary arc).

We say that a vertex is universal if it is an in-neighbour of all other vertices. We first characterize
those digraphs of order n with loc(G) = n − 1 (of course, unless it has no arc, such a digraph also satisfies
γL(G) = n− 1).

Proposition 4. Let G be a digraph of order n. We have loc(G) = n− 1 if and only if every vertex is either
universal, or a sink.

Proof. Recall that loc(G) ≤ n − 1 always holds. If some vertex x has an out-neighbour y and there exists
another vertex z that is not an out-neighbour of x, then V (G) \ {y, z} is a locating set of G of size n − 2.
Thus, if loc(G) = n− 1, then every vertex in G is either universal or a sink.

On the other hand, suppose that every vertex of G is either universal or is a sink. Let U be the set of
universal vertices, and S, the set of sinks. Every vertex v is dominated by the set U ∪ {v}. Thus, if two
distinct vertices are not in a locating set L, they are both dominated exactly by the vertices in L ∩ U , a
contradiction. Thus we have |L| ≥ n− 1.

We call a digraph G a directed star if it has a special vertex that belongs to all the arcs, and there are no
isolated vertices (see Figure 3). In other words, the underlying undirected graph of G is a star.

Directed stars form another family of connected digraphs with large location-domination number.

Proposition 5. For any directed star G of order n ≥ 2, we have γL(G) = n− 1.

Proof. Let x be the centre of G (the vertex belonging to all arcs). Since n ≥ 2, there is at least one arc in
G, and so γL(G) ≤ n − 1. Let D be a locating-dominating set of G. Clearly, every source of G belongs to
D. If two neighbours of x do not belong to D, then they are not located. Thus, at most one neighbour of
x is missing from D. In the case where exactly one such vertex is not in D, in order to have this vertex
dominated, x must belong to D. This shows that γL(G) ≥ n− 1.
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x

Figure 3: A directed star, with a minimum locating-dominating set in grey.

The only connected undirected graphs of order n with location-domination number n − 1 are stars and
complete graphs [19] (seen as digraphs, they correspond to bidirected stars and bidirected complete graphs).
As we already mentioned, there are more digraph examples. We now characterize all of them.

Theorem 6. For a connected digraph G of order n ≥ 2, we have γL(G) = n − 1 if and only if at least one
of the following conditions holds:

(a) n = 3;

(b) G is a directed star;

(c) V (G) can be partitoned into three (possibly empty) sets S1, C and S2, such that S1 and S2 are inde-
pendent sets, C is a bidirected clique, and the remaining arcs in G are all the possible arcs from S1 to
C ∪ S2 and those from C to S2.

Proof. Assume first that n = 2 (then G is a directed star) or n = 3. If two vertices of G are not in some
locating-dominating set of G, then either these two are not located, or one of them is not dominated: a
contradiction. Thus, necessarily γL(G) = n− 1 and we may assume in the remainder that n ≥ 4.

By Proposition 5, (b) implies that γL(G) = n − 1. Next, assume that (c) holds. Then, G is obtained
by adding the set S1 to a digraph where all vertices are either universal (those in C) or sinks (those in S2).
Since all vertices in S1 are sources, they all belong to any locating-dominating set of G. Moreover, every
vertex in S2 ∪ C is dominated by all vertices in S1, that is, we need a locating set of G[C ∪ S2] in every
locating-dominating set of G. By Proposition 4, such a set has size exactly |C|+ |S2|−1, thus γL(G) = n−1.

We must now prove the converse: assume that γL(G) = n − 1 (and n ≥ 4). We must prove that (b) or
(c) holds.

Case 1. Suppose first that G contains some sources, and let S be the set of these sources. If there is a
vertex s in S and two vertices x and y of N+(S) (where N+(S) denotes the union of the out-neighbourhoods
of all vertices in S) that are located by s, then V (G) \ {x, y} is a locating-dominating set of G of size n− 2, a
contradiction. Thus all the vertices of S have the same neighbourhood and G contains all the arcs between
S and N+(S).

Consider now the subdigraph G′ of G induced by N+(S). If it has a locating set L′ of size |V (G′)| − 2
(assume that the two vertices x and y are those not in L′), then the set V (G) \ {x, y} would be a locating-
dominating set of G, a contradiction. Thus, we have loc(G′) = |V (G′)| − 1, and by Proposition 4 the
vertices of G′ can be partitioned into sinks of G′ (set S′) and universal vertices of G′ (set U ′). We let
R = V (G)\ (S∪S′∪U ′). If R is empty, we are done, because then G satisfies the condition (c), with S1 = S,
C = U ′ and S2 = S′. Thus, we assume that R is nonempty. If V (G) \ S contains an arc from vertex a to
vertex b ∈ R such that (S′ ∪ U ′) \ {a} is nonempty, then we could construct a locating-dominating set of G
of size n− 2 from V (G) by removing b and any vertex of (U ′ ∪ S′) \ {a}. Thus, R must be an independent
set, and if there is an arc from S′ ∪ U ′ to R, then |S′ ∪ U ′| = 1. But since R contains no sources, there is
necessarily an arc from S′ ∪ U ′ to R, and so |S′ ∪ U ′| = 1. But then, G is a directed star and (b) holds, so
we are done.

5



Case 2. Now, we assume that G has no sources. If every vertex is either universal or a sink, G satisfies
(c) (with S1 = ∅) and we are done. Thus, we may assume that there exists a vertex x with an out-
neighbour y, and a third vertex z that is not an out-neighbour of x. By assumption, V (G) \ {y, z} is not a
locating-dominating set; but since x locates y and z, it is a locating set, and it certainly dominates y. Thus,
V (G) \ {y, z} does not dominate z, that is, y is the only in-neighbour of z (recall that z has an in-neighbour
since G has no sources). Let R = V (G) \ {x, y, z}. If x had an out-neighbour t in R, then V (G) \ {t, z}
would be locating-dominating, a contradiction. Similarly, if x had an in-neighbour in R, then V (G) \ {x, z}
would be locating-dominating, a contradiction. If there is an arc from a vertex u to a vertex v inside R, then
V (G) \ {v, z} is a locating-dominating set of G, a contradiction. Thus R is an independent set. Now, if z has
no neighbour in R, G is a directed star with centre y, and we are done. Thus, z must have an out-neighbour
p in R. But now, V (G) \ {p, y} is locating-dominating, a contradiction. This completes the proof.

4. A general method to obtain locating-dominating sets of twin-free digraphs

Note that all graphs described in Section 3 of order n ≥ 4 have twins. What happens for twin-free
digraphs?

In this section, we propose a general method to obtain locating-dominating sets of twin-free digraphs,
based on special dominating sets. This method was used in [6] for the case of undirected graphs (a similar
argument was also used in [9]). It was adapted to digraphs in [12] for quasi-twin-free digraphs, and here we
extend it to all twin-free digraphs.

First we start with some definitions.

Definition 7. Let S be a set of vertices of a digraph G. The S-partition PS of V (G) \ S is the partition of
V (G) \S where two vertices are in the same part if and only if they have the same set of in-neighbours in S.

Given a vertex v ∈ S, an S-external private neighbour of v is a vertex outside S that is an out-neighbour
of v but of no other vertex of S in G.

Theorem 8. Suppose that G is a twin-free digraph of order n. Let S be a dominating set of G such that the
S-partition of V (G) \ S contains at least x · |S| parts (with 0 < x ≤ 1). Then, γL(G) ≤ 2x+1

3x+1n. Moreover, if

G is also quasi-twin-free, then γL(G) ≤ x+1
2x+1n.

Proof. Let PS = P1 ∪ . . . ∪ Pn1 ∪ Q1 ∪ . . . ∪ Qn2 be the S-partition of V (G) \ S, where P1, . . . , Pn1 are the
parts of size 1 and Q1, . . . , Qn2 are the parts of size at least 2.

We assume that S is maximal with the property that PS has at least x · |S| parts (this is ensured by
adding vertices to S while this property holds).

Now, we let D1 = S ∪
⋃

i Pi. We have the following property of D1.

Claim 8.A. Two vertices in V (G) \D1 are located by D1, unless they form a pair of quasi-twins.

Proof of claim. Clearly, if two vertices are in different parts of PS , they are located by some vertices in S.
Thus, by contradiction, let q1 and q2 be two vertices of V (G) \ D1 belonging to some part Qi0 of PS that
are not quasi-twins but are not located by D1. Since G is twin-free, there is a vertex q3 in V (G) \ S that
can locate q1 and q2: without loss of generality q3 is an in-neighbour of q1 but not q2. By our assumption
q3 /∈ D1. Now, consider S′ = S ∪ {q3} and the corresponding S′-partition PS′ of V (G) \ S′ (with n′1 and n′2
defined like before). Since q3 ∈

⋃
iQi, we have n′1 + n′2 ≥ n1 + n2 + 1 (because in PS′ , Qi0 has been split

into two parts). So n′1 + n′2 ≥ x|S|+ 1 ≥ x(|S|+ 1) = x|S′| (because x ≤ 1). This contradicts the choice of
S, which we assumed to be maximal with this property. (�)

Note that |D1| = |S| + n1. Since D1 is a dominating set, Claim 8.A shows that in the absence of quasi-
twins, D1 is locating-dominating. Next, we address the case of quasi-twins. We first prove the following
fact.

Claim 8.B. Any two pairs of quasi-twins in V (G) \D1 are disjoint.
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Proof of claim. Note that two quasi-twins x and y in V (G) \ S must belong to the same part of PS , since
they have the same in-neighbours in S. Let q1, q2, q3, q4 be four vertices in V (G) \D1 such that {q1, q2} and
{q3, q4} are two distinct pairs of quasi-twins (with q1 and q3 being in-neighbours of q2 and q4, respectively).
Assume by contradiction that the two pairs are not disjoint. Then, all the vertices in the two pairs belong
to the same part of PS . If q1 = q3, then q2 and q4 must be twins (because they cannot be quasi-twins by
Proposition 2), a contradiction. Similarly, if q2 = q4, then, because q1 and q4, and q3 and q4 are quasi-twins,
there must be an arc from q1 to q3 and an arc from q3 to q1. Thus, q1 and q3 are twins. Hence, we may assume
without loss of generality that q2 = q3. Then, we proceed similarly as in Claim 8.A: the set S′ = S ∪ {q2}
still satisfies the property that n′1 +n′2 ≥ x|S′|, contradicting the maximality of S. This proves the claim. (�)

Now, for each pair of quasi-twins in V (G) \D1, we add one of them to D1. By Claims 8.A and 8.B, the
resulting set D′1 is locating-dominating and has size at most |S|+ n1 + (n− |S| − n1)/2 = (n+ |S|+ n1)/2.

Consider now the set D2, of size n−n1−n2, consisting of V (G) without one (arbitrary) vertex from each
part of PS . It is clear that D2 is locating-dominating: all vertices of V (G) \D2 are located and dominated
by S.

We now assume that G has no quasi-twins: then D1 and D2 are two locating-dominating sets of G. If
|D2| ≤ x+1

2x+1n, we are done. So, assume that |D2| > x+1
2x+1n. We have |D2| = n − n1 − n2, so n1 + n2 <

(1− x+1
2x+1 )n = x

2x+1n. Recall that |S| ≤ n1+n2

x . Therefore,

|D1| = |S|+ n1

≤ |S|+ n1 + n2

≤ n1 + n2
x

+ (n1 + n2)

=

(
1

x
+ 1

)
(n1 + n2)

<

(
1

x
+ 1

)(
x

2x+ 1
n

)
=

x+ 1

2x+ 1
n ,

as desired.
If G has some quasi-twins, we use the locating-dominating sets D′1 and D2. Again, if |D2| ≤ 2x+1

3x+1n, we

are done. So, assume that |D2| > 2x+1
3x+1n. Then, n1 + n2 < (1− 2x+1

3x+1 )n = x
3x+1n. We obtain:

|D′1| ≤
|S|+ n+ n1

2

≤ |S|+ n+ n1 + n2
2

≤ n1 + n2
2x

+
n

2
+
n1 + n2

2

<
n

6x+ 2
+
n

2
+

x

6x+ 2
n

=
2x+ 1

3x+ 1
n ,

and the proof is finished.

5. Applying Theorem 8 to general twin-free digraphs

We first apply the method of Section 4 for source-free digraphs.

Proposition 9. Any source-free digraph G has a minimum-size dominating set S with at least |S|/2 distinct
parts in the S-partition of V (G) \ S.

7



Proof. Let S be a minimum-size dominating set. We choose S with a maximum number of parts in the
partition P(S) of V (G) \ S.

Let S1 be the set of vertices of S that have at least one S-external private neighbour. Next, we choose
S2 as a minimum-size set of vertices of S \ S1 that dominates all the vertices of (V (G) \ S) \N+(S1) (that
is, S2 dominates those vertices that are not in S and are not an S-external private neighbour of any vertex
in S). Note that S1 ∩ S2 = ∅ and S1 ∪ S2 dominates V (G) \ S. Finally, we let S3 = S \ (S1 ∪ S2).

Note that |S2| is at most the number of parts of P(S) containing vertices with at least two in-neighbours
in S, since a vertex of S suffices to dominate the vertices of each such part. Therefore, the number of parts
in P(S) is at least |S1|+ |S2|.

We will now show that we have |S1| + |S2| ≥ |S|/2, which would imply the statement. Towards a
contradiction, we assume that |S1|+ |S2| < |S|/2, that is, |S3| > |S|/2.

Then, no vertex x of S3 has an in-neighbour in S, for otherwise S \ {x} would be a dominating set,
contradicting the minimality of S. Since G is source-free, x has an in-neighbour in V (G) \ S. Let f(x) be
one arbitrary in-neighbour of x, and let S4 = {f(x) | x ∈ S3}. The function f is necessarily injective: if we
had f(x1) = f(x2) = y for two distinct vertices x1 and x2 of S3, then the set S \ {x1, x2} ∪ {y} would be a
smaller dominating set than S. Thus |S4| = |S3|.

Now, we let S′ = S1 ∪ S2 ∪ S4. Clearly, S′ is a dominating set of G of size |S|. Moreover, every vertex
x of S3 is an S′-external private neighbour of f(x). Thus, the partition P(S′) of V (G) \ S′ has at least |S3|
parts, which is more than |S|/2 = |S′|/2. This contradicts the choice of S.

Thus, as claimed, we have |S1|+ |S2| ≥ |S|/2, which concludes the proof.

We remark that the bound of Proposition 9 is tight by considering any digraph consisting only of vertex-
disjoint directed triangles.

We obtain the immediate consequence of Proposition 9 and Theorem 8.

Corollary 10. For any source-free and twin-free digraph G of order n, we have γL(G) ≤ 4n/5. If moreover
G is quasi-twin-free, then γL(G) ≤ 3n/4.

One can extend this result to twin-free digraphs with sources (note that there can only be one source,
since multiple sources would be mutual open twins).

Corollary 11. Let G be a twin-free digraph of order n ≥ 3. Then γL(G) ≤ 4n/5 + 1. If moreover G is
quasi-twin-free, then γL(G) ≤ 3n/4 + 1.

Proof. Let s be the unique source of G. Let I be the collection of all subsets N−(x) for x ∈ V (G). The set
I has order n and thus there is a non-empty subset X of V (G) \ {s} that is not in I, and thus X is not the
open in-neighbourhood of any vertex in G. Let G′ be the graph obtained from G in which we add all the
arcs between X and s. The graph G′ is now source-free and twin-free. By Corollary 10, there is a locating-
dominating set D′ of G′ of size at most 4n/5. Then D = D′ ∪ {s} is a locating-dominating set of G. Indeed,
all the vertices are dominated and two vertices not in D are still located by D′. Thus γL(G) ≤ 4n/5 + 1.

For the second part, we do the same reasonning but with I containing all the subsets N−[x] \ {s} and
N−(x) \ {s}, for x ∈ V (G). There are at most 2n such sets and thus again there is a nonempty set X such
that adding the arcs between x and s does not create twins or quasi-twins in G. The end of the proof is the
same as in the first part.

6. Tournaments

It is clear that there are no twins in tournaments. A weaker version of the method of Section 4 was
applied in [12], yielding the bound γL(T ) ≤ 5n/6 for any tournament T . This was proved by showing that
any tournament T has a dominating set S with at least |S| parts in the S-partition of V (T ) \ S.

Note that our strengthened version of this method yields the better bound γL(T ) ≤ 4n/5 + 1, via
Corollary 11.

Nevertheless, using a different technique, we next prove a much stronger bound, which, moreover, is tight.
We first prove this bound in transitive tournaments (for which it is actually the exact value).
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Proposition 12. For a transitive tournament T of order n, we have γL(T ) = dn2 e and loc(T ) = bn2 c.

Proof. Let V (T ) = {v1, . . . , vn} where vi has each vj with j > i as its out-neighbour. To see that γ(T ) ≤ dn2 e,
consider the dominating set containing all vi’s with i odd. Two vertices vi and vj (i < j) not in D are located
by vj−1. Now, let D be a locating-dominating set of T . We need v1 in D, otherwise it is not dominated.
Then, every two vertices vi, vi+1 are quasi-twins, thus by Proposition 1, one of them needs to be in D.
Consider the sets {vi, vi+1} with i even and i < n: they are disjoint, and each contains one vertex of D.
There are bn−12 c such sets, so we have

|D| ≥
⌊
n− 1

2

⌋
+ 1 =

⌈n
2

⌉
.

For locating sets, if n is odd, consider the set L that contains all vi’s with i even. Then L is a locating
set of size (n− 1)/2. Since loc(T ) ≥ γL(T )− 1, this set is optimal. If n is even, at least one vertex in any set
{vi, vi+1} with i odd must be in the locating set. This gives at least n/2 vertices and thus loc(T ) = γL(T ).

We now extend the upper bound to any tournament.

Theorem 13. For any tournament T of order n, we have γL(T ) ≤ dn/2e and loc(T ) ≤ bn/2c.

Proof. We prove the result by induction. By Proposition 12, this is true for any transitive tournament, and
in particular if n ≤ 2. Let n ≥ 3 and assume that this is true for any tournament of order k < n.

Let T be a tournamement of order n that is not transitive. We first find a locating set of size dn/2e.
Let x be any vertex. Let V0 = N−(x) and Vx = N+(x) be the {x}-partition of V (T ) \ {x}. Let n0 and

nx be the sizes of V0 and Vx, respectively. Let S0 and Sx be two optimal locating sets of the tournaments
induced by V0 and Vx, respectively. By induction, S0 and Sx have size at most bn0/2c and bnx/2c. Consider
the set S = S0 ∪Sx ∪{x}. It is a locating set of T since any pair u, v with u ∈ V0 and v ∈ Vx is located by x.
Its size is at most bn0/2c+ bnx/2c+ 1 which is equal to bn/2c if n0 or nx is odd. In this case we are done,
so we can assume that both n0 and nx are even and thus n is odd. Since we chose an arbitrary vertex x, one
can also assume that all the vertices have even out-degree and in-degree (if not, we are done).

Consider now two arbitrary vertices x and y with an arc from x to y. Let Vx, Vy, Vxy, V0 be the {x, y}-
partition of V \ {x, y} (Vx contains the vertices that have x but not y in their in-neighbourhood and the
other notations follow the same logic). As before, if one takes a minimum locating set in each part of the
partition and add x and y, one obtains a locating set of T . If there are three odd-sized sets among the four
sets, one obtains, using the induction hypothesis, a locating set of size at most bn/2c. Note that if Vxy has
odd size, then so does Vy since y has even out-degree and all its out-neighbours are in Vy or Vxy. Since the
total number of vertices is odd, there is another odd-sized set among V0 and Vx (which must actually be V0).
In total, there are three odd-sized sets among the sets of the partition and thus the locating set has size at
most bn/2c. Thus, one can assume that for any pair of vertices of T , the number of common out-neighbours
is even.

We now consider three vertices x, y and z that induce a directed triangle x→ y → z → x (this exists since
T is not transitive). Again, we consider the {x, y, z}-partition of V (T ) \ {x, y, z}, we consider a minimum
locating set of each part and we add x and y and z to obtain a locating set. If there are four odd-sized sets
in the partition, the obtained locating set has, by induction, size at most bn/2c. In fact, this is always the
case: if Vxyz (the vertices that have x, y and z as in-neighbours) is odd-sized, then Vxy is also odd-sized since
Vxy ∪Vxyz is exactly the set of common out-neighbours of x and y, which is even-sized. In the same way, Vyz
and Vxz are odd-sized and we are done. If Vxyz is even-sized, then using the same argument, Vxy, Vyz, Vxz
are also even-sized. But then, Vx ∪ Vxy ∪ Vxz ∪ Vxyz ∪ {y} is the out-neighbourhood of x and has even size.
Thus Vx is odd-sized, and similarly, Vy and Vz are also odd-sized. Since the order of T is odd, V0 must also
be odd-sized and we are done.

We now prove in a similar way that γL(T ) = dn/2e. If n is odd, this is clear since γL(T ) ≤ loc(T ) + 1 ≤
dn/2e by the previous result. Thus we assume that n is even. We first take an arbitrary vertex x and consider
the {x}-partition V0,Vx. If one takes a locating-dominating set for V0, a locating set for Vx and adds x, one
obtains a locating-dominating set. Since n is even, exactly one set among V0 and Vx has odd size. If |V0| is
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even, by induction, this gives a locating-dominating set of size at most |V0|/2 + (|Vx| − 1)/2 + 1 = n/2 and
we are done. Thus, one can assume that all the vertices have odd in-degree and even out-degree.

Consider now two arbitrary vertices x and y with an arc from x to y in T and the associated {x, y}-
partition. Taking a locating-dominating set for V0, locating sets for the three other parts and x and y gives
a locating-dominating set. If two sets of the partition that are not V0 are odd-sized, this gives a locating-
dominating set of size n/2, and we are done. So, we can assume that among Vx and Vxy, exactly one set is
odd-sized. Indeed, x has even out-degree and its out-neighbourhood is Vx ∪ Vxy ∪ {y}. Thus, if Vy is odd-
sized, we are done. Hence, we can assume that Vy is even-sized, which implies that Vxy is also even-sized. In
particular, we can now suppose that all pairs of vertices have a common out-neighbourhood that has even
size.

Finally, consider an oriented triangle x → y → z → x and the associated {x, y, z}-partition. As before,
by taking x, y, z, a locating-dominating set of V0 and locating sets in the seven other parts, we obtain
a locating-dominating set. Since n is even, there is an odd number of odd-sized sets in the partition. If
there are three odd-sized sets that are not V0, then the total locating-dominating set has size at most n/2
(indeed, if V0 is also odd-sized, then there will be a fourth odd-sized set that is not V0). As before, if Vxyz is
odd-sized, then Vxy, Vxz, Vyz are also odd-sized and we are done. If it is even-sized, since x, y and z have
even out-degree, we have Vx, Vy and Vz that are odd-sized and we are also done.

Thus, there is always a locating-dominating set of T of size dn/2e.

Transitive tournaments are not the only tight example. For an integer k ≥ 1, let Tk be the tournament
of order 3k obtained from a collection t1, . . . , tk of vertex-disjoint directed triangles, with arcs going from all
vertices of ti to all vertices of tj whenever i < j.

Proposition 14. The tournament Tk of order n = 3k satisfies γL(Tk) = dn/2e.

Proof. Let D be an optimal locating-dominating set of Tk. There must be at least one vertex of D in any ti,
otherwise the vertices of ti are not located. Furtheremore, there must be two vertices of D in t1 to dominate
the three vertices of t1.

Assume that there are two consecutive triangles, ti and ti+1, each with only one vertex in D. Let di and
di+1 be the vertices of D that are in ti and ti+1. Then, the out-neighbour of di in ti and the in-neighbor of
di+1 in ti+1 are not located, a contradiction.

Thus, there must be at least three vertices of D in any two consecutive triangles, and at least two vertices
of D in the first triangle, which gives a total of at least k + dk/2e = dn/2e vertices in D.

7. Twin-free acyclic digraphs

Twins generalize sources (since two sources are twins) but in a twin-free digraph we may have up to one
source. This allows us to consider twin-free acyclic digraphs (they have exactly one source) in this section.

We will need the following theorem of Bondy, rephrasesd for our context.

Theorem 15 (Bondy [2]). Let A, B be two disjoint sets of vertices in a digraph such that the vertices of B
have distinct in-neighbourhoods in A. Then, there is a subset L ⊆ A of size at most |B| − 1 such that the
vertices of B have distinct in-neighbourhoods in L.

Now we can prove the following. The proof technique is similar, but more complicated, as the one used
to prove the same bound for the domination number of twin-free digraphs in [12].

Theorem 16. If G is a twin-free acyclic digraph of order n, then γL(G) ≤ dn2 e.

Proof. Let s be the unique source. We partition the vertex set step by step. For i ≥ 0, the set Li contains
all sources in Gi = V (G) \

⋃
j<i Lj . Since G is acyclic and has only one source all the vertices are in some

Li. Let m be the last non-empty Li. See Figure 4 for a picture.
The following claims are a direct consequence of the construction.

Claim 16.A. Let v ∈ Li (i > 0). Then v has an in-neighbour in Li−1.
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Figure 4: The levels in the proof of Theorem 16.

Claim 16.B. There is no arc inside any set Li.

Claim 16.C. There is no arc from Lj to Li for j > i.

Now we construct a locating-dominating set D of G. For i = m, . . . , 1, we construct step by step subsets
Di of D. We will also define L′i = Li \

⋃
j>iDj , where at the beginning of the process (i = m) we let

L′m = Lm.
We will ensure that Di ∩ Li−1 dominates L′i, and Di locates the vertices of L′i.
Let P1, . . . , Pk be the Li−1-partition of L′i. In particular, vertices in this partition are twins with respect

to Li−1. For each j, let vj be any vertex of Pj . By Bondy’s theorem (Theorem 15), there is a set S of at
most k vertices in Li−1 that locates and dominates v1, . . . , vk.

Again by applying Bondy’s theorem, for any 1 ≤ j ≤ k, there is a set Sj of |Pj | − 1 vertices in G that

locates Pj . Note that the vertices of Sj belong to
⋃

j<i−1 Lj . Let Di = S ∪
⋃k

j=1 Sj . Then Di ∩ Li−1 = S
dominates L′i and Di locates L′i.

|Di| ≤ k +
∑k

j=1 (|Pj | − 1) = |L′i|.

Now we prove that D =
⋃m

i=1Di∪{s} is a locating-dominating set. The set D is a dominating set because
for any x out of D (x ∈ Li), x is dominated by Di ∩Li−1. It is also locating because if there are two vertices
u, v in Li, they are located by Di and if they are from different Li and Lj for j < i, u ∈ Li is located by its
in-neighbour in Li−1 ∩Di.

We now bound the size of D. We have |Di| ≤ |L′i| at each step i = m, . . . , 1 of the construction. Thus,
there are at most as many vertices in D′ =

⋃m
i=1Di as in V (G) \D′ (Di only contains vertices that are in

Lj with j < i, hence V (G) \ D is exactly the set of all vertices in the sets L′i). So, if D′ = D (that is, D′

contains s), we have |D| ≤ bn2 c. But if D′ does not contain s, we have in fact that there are at most as many
vertices in D′ as in V (G) \ (D′ ∪ {s}). Thus, |D′| ≤ bn−12 c and

|D| = |D′|+ 1

≤
⌊
n+ 1

2

⌋
=
⌈n

2

⌉
,

11



as wished.

The bound of Theorem 16 is best possible by considering directed paths (the proof of the following is
easy, so we omit it).

Proposition 17. For the directed path Pn of order n, we have γ(Pn) = γL(Pn) =
⌈
n
2

⌉
.

8. Conclusion

We conclude the paper with Table 1, summarizing the known upper bounds on the domination and
location-domination numbers for certain classes of digraphs.

class of digraphs γ γL

source-free
⌈
2n
3

⌉
[14] n− 1 [Prop 5]

twin-free and
⌈
2n
3

⌉
[14] ≤ 4n

5 [Cor 10] (≥ 2(n−2)
3 [Prop 3])

source-free

twin-free, source-free and
⌈
2n
3

⌉
[14] ≤ 3n

4 [Cor 10] (≥ 2(n−2)
3 [Prop 3])

quasi-twin-free

tournaments dlog2 ne [15]
⌈
n
2

⌉
[Thm 13, Props 12,14]

acyclic twin-free
⌈
n
2

⌉
[Thm 16, Prop 17]

⌈
n
2

⌉
[Thm 16, Props 12,17]

strongly connected
⌈
n
2

⌉
[13] n− 1 [Prop 5]

Table 1: Summary of known upper bounds for domination and location-domination numbers of digraphs, with references. Cells
with just one number correspond to tight bounds. For every other cell, we indicate the known upper bound and the size of the
largest known construction.

The main question arising from our results is whether every twin-free digraph of order n admits a locating-
dominating set of size 2n

3 . Also, it would be interesting to determine which are the tournaments and the
twin-free acyclic digraphs of order n with location-domination number exactly dn2 e.

We also ask whether Proposition 9 could be strengthened in the following sense: is it true that every
source-free digraph has a minimum-size dominating set S with |S|/2 vertices in S having an S-external
private neighbour? This would be best possible, and an analogue of a similar result from [1], which holds for
undirected graphs (with |S|/2 replaced with |S|). Moreover, we do not know whether Proposition 9 is tight
for strongly connected digraphs.
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[6] F. Foucaud, M. A. Henning, C. Löwenstein and T. Sasse. Locating-dominating sets in twin-free graphs.
Discrete Applied Mathematics 200:52–58:2016.

[7] F. Foucaud, R. Naserasr and A. Parreau. Characterizing extremal digraphs for identifying codes and
extremal cases of Bondy’s theorem on induced subsets. Graphs and Combinatorics 29(3):463–473, 2013.

[8] Y. Fu. Dominating set and converse dominating set of a directed graph. American Mathematical Monthly
75:861–863, 1968.

[9] D. Garijo, A. González and A. Márquez. The difference between the metric dimension and the deter-
mining number of a graph. Applied Mathematics and Computation 249:487–501, 2014.

[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater. Fundamentals of domination in graphs. Marcel Dekker,
Inc., New York, 1998.

[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater (editors), Domination in graphs: advanced topics,
Marcel Dekker, Inc., New York, 1998.

[12] S. Heydarshahi. Location-domination in twin-free graphs and digraphs. Master thesis, Université Paris
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