
HAL Id: hal-03041336
https://hal.science/hal-03041336

Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural coding of prior expectations in hierarchical
intention inference

Valerian Chambon, Philippe Domenech, Pierre Jacquet, Guillaume Barbalat,
Sophie Bouton, Elisabeth Pacherie, Etienne Koechlin, Chloé Farrer

To cite this version:
Valerian Chambon, Philippe Domenech, Pierre Jacquet, Guillaume Barbalat, Sophie Bouton, et al..
Neural coding of prior expectations in hierarchical intention inference. Scientific Reports, 2017, 7 (1),
pp.1278. �10.1038/s41598-017-01414-y�. �hal-03041336�

https://hal.science/hal-03041336
https://hal.archives-ouvertes.fr


1Scientific RepoRts | 7: 1278  | DOI:10.1038/s41598-017-01414-y

www.nature.com/scientificreports

Neural coding of prior expectations 
in hierarchical intention inference
Valerian Chambon1,2, Philippe Domenech3,4, Pierre O. Jacquet1,3, Guillaume Barbalat5, Sophie 
Bouton2, Elisabeth Pacherie1, Etienne Koechlin3 & Chlöé Farrer6

The ability to infer other people’s intentions is crucial for successful human social interactions. Such 
inference relies on an adaptive interplay of sensory evidence and prior expectations. Crucially, this 
interplay would also depend on the type of intention inferred, i.e., on how abstract the intention 
is. However, what neural mechanisms adjust the interplay of prior and sensory evidence to the 
abstractness of the intention remains conjecture. We addressed this question in two separate fMRI 
experiments, which exploited action scenes depicting different types of intentions (Superordinate 
vs. Basic; Social vs. Non-social), and manipulated both prior and sensory evidence. We found that 
participants increasingly relied on priors as sensory evidence became scarcer. Activity in the medial 
prefrontal cortex (mPFC) reflected this interplay between the two sources of information. Moreover, 
the more abstract the intention to infer (Superordinate > Basic, Social > Non-Social), the greater the 
modulation of backward connectivity between the mPFC and the temporo-parietal junction (TPJ), 
resulting in an increased influence of priors over the intention inference. These results suggest a critical 
role for the fronto-parietal network in adjusting the relative weight of prior and sensory evidence during 
hierarchical intention inference.

Understanding the behaviour of our conspecifics requires the ability to infer the underlying causes that motivate 
it. As the observed behaviour is directed at a specific goal, these causes are hidden rather than visible: intentions, 
like beliefs or desires, are states that cannot be directly observed. Thus, how one may infer them from mere obser-
vation, that is, from patterns of visible behaviour alone, has long been a matter of speculation1.

Intention inference can be viewed as an adaptive weighing of the sensory evidence available from an action 
scene (derived from the agent’s movement kinematics) and the observer’s prior expectations (about which inten-
tion is the most likely cause of what is observed, given past experience). For example, individuals rely more on 
their prior expectations as the amount of sensory evidence decreases, and vice versa2, 3. Crucially, this weighing 
also varies according to the type of intention to be inferred. Indeed, intentions can be differentiated depending on 
their degree of abstractness with regard to the action performed4–8. Intentions directed at simple motor goals (i.e., 
basic intentions) entail a low-degree of abstractness as a one-to-one mapping is assumed between the intention 
and the corresponding action. However, the relation between mental states and observable behaviour is usually 
more complex than a one-to-one correspondence9–11. Many-to-many mappings between intentions and actions 
are common. On the one hand, a given intention can often be realized by different actions (e.g., saving a docu-
ment by either clicking an item on a menu or typing a keyboard command). Conversely, a given action might be 
performed in order to achieve different intentions. For instance, the action of grasping a bottle can be directed at 
different abstract or superordinate goals (e.g., quenching one’s thirst vs. clearing the table) or, within a social con-
text, at different social goals (e.g., refilling one’s guest’s glass vs. taking the bottle away from the inebriated guest). 
With such complex mappings, observing the behaviour of a third-party is not enough to unambiguously infer her 
underlying intention, and perceptual experience needs to be further informed by prior knowledge1, 2. We showed 
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previously that the observer’s priors progressively gain priority over perceptual evidence as the mapping between 
the intention and the action becomes more complex, i.e. when having to infer more abstract intentions2, 3.

While this effect is well characterized at a behavioural level, little is known about how the brain integrates 
prior information and sensory evidence while inferring others’ intentions, and how it adjusts the respective 
weight of each source of information depending on the type of intention inferred (social vs. non-social, basic 
vs. superordinate). There is considerable empirical evidence that inferring other people’s intentions recruits the 
medial prefrontal cortex (mPFC), a key region of the so-called ‘mentalizing’ network12, 13. Thus, the mPFC is typ-
ically recruited in mentalizing tasks involving intentions with varying degrees of abstractness14, 15. These obser-
vations are consistent with numerous studies demonstrating a role for the medial prefrontal cortex (mPFC) in 
model-based inferences, i.e. inferences based on internal models of the environment, including prior beliefs about 
how people are likely to behave in a given context16. Thus, in social competitive settings, activity in the mPFC 
reflects agents’ beliefs about the actions of their opponents17, but also values inferred through recursive reason-
ing about other people’s strategy18, and the history of each opponent’s contribution in a game involving recur-
rent social transactions19. Interestingly, the ventral and dorsal parts of the mPFC would be differently involved 
depending on the social context of the task. Whereas activity in the ventral mPFC reflects the agent’s beliefs and 
value processing in general, activity in the dorsal mPFC would play a critical role in emulating other people’s 
choice values and preferences. These observations are in line with the hypothesis that specific brain mechanisms 
have evolved to represent the specific properties of social inference processes. The capacity of mPFC to host 
inner models of the world, and to draw inferences on the likelihood of hidden states predicted by these models 
(e.g. refs 20–22), provides a convincing mechanism to account for the influence of prior expectations on the 
intention-inference process. Importantly, this capacity to draw higher-order inference might be at the core of the 
“mentalizing” ability, i.e., the fundamental capacity to predict others’ behaviours based on their hidden mental 
states rather than from mere observation23.

According to this hypothesis, the increased top-down influence of intention priors on sensory processing 
when inferring abstract intentions could be accounted for by an increased influence of mPFC over posterior 
sensory cortices. This hypothesis is motivated by a number of studies on perceptual decision-making showing 
that prior expectations influence sensory processing through top-down filtering of activity in sensory cortices by 
mPFC24, 25. Under sensory ambiguity, strong priors modulate backward connectivity between prefrontal areas 
and associative cortices, including the temporo-parietal junction (TPJ), either contextually updating top-down 
expectations26 or reorienting attention toward model-based representations at the expense of external sensory 
evidence27. Interestingly, the TPJ is another key region of the “mentalizing” network (e.g. refs 28, 29). However, 
what information is specifically encoded in TPJ and mPFC, how they subserve the ability to think about other 
people’s mental states, and what their functional links within this network are, is still controversial26, 30, 31.

Building on these previous results, the purpose of this study was twofold. We first aimed to investigate: (i) 
whether mPFC activity reflects the balance between prior expectations and sensory evidence during inten-
tion inference; and second, (ii) whether top-down control of mPFC activity over posterior associative cortices 
accounts for increased reliance on prior expectations when inferring increasingly abstract intentions.

To investigate these issues, we adapted a series of tasks from Chambon et al.2, depicting action scenes of 
various complexity, achieving either ‘Basic’ or ‘Superordinate’ intentions, in ‘Non-Social’ or ‘Social’ settings 
(Fig. 1). Here, ‘Basic’ intentions are intentions directed at simple motor goals (e.g. grasping an object) whereas 
‘Superordinate’ intentions are directed at somewhat more abstract goals (e.g. quenching one’s thirst), the achieve-
ment of which typically involves the completion of a number of subgoals (e.g. grasping a glass, opening a tap, 
filling the glass, closing the tap, etc.). ‘Non-Social’ intentions refer to goals directed at an object whereas ‘Social’ 
intentions are directed at a third party2, 32, 33. In all four conditions, both sensory and prior information were 
systematically manipulated by: (i) varying the completeness of action sequences; and (ii) selectively increasing 
the probability of a particular intention occurring within the sequence (“likely” intention), at the expense of com-
peting intention types (“unlikely”), respectively (Supplementary Information, Figure S1). In each condition, we 
investigated the neural mechanism involved in mixing prior expectations and ongoing sensory evidence. Finally, 
we used connectivity analyses to test whether, and how, this mechanism adjusts to the level of abstractness of the 
intention to be inferred.

Results
Behavioural results. Participants were more accurate when inferring the “likely” intention in all conditions 
(i.e., the intention onto which participants had strong priors; main effect of prior: all F’s(1,17) > 4.64; all P < 0.04, 
all ηp

2 > 0.21). Performances increased with the amount of visuomotor evidence (all F’s(3,51) > 35.31; all 
P < 0.001, all ηp

2 > 0.67). This effect was significantly modulated by priors, in all conditions, with the preference 
for the “likely” intention increasing as the amount of visuomotor evidence decreased (visuomotor evi-
dence × prior interaction effect: all F’s(3,51) > 3.98; all P < 0.01, all ηp

2 > 0.18; post hoc Fisher, Basic and 
Superordinate, low, all p’s < 0.001; moderate, ns. and p = 0.002, respectively; other amounts ns.; Non-social and 
Social, low, p < 0.001 and p < 0.002, respectively; moderate, ns. and p < 0.001, respectively; high, ns., and p = 0.032, 
very high, ns., see Supplementary Information, Figure S2). Thus, participants overweighted priors more and more 
as visuomotor evidence became scarcer, which replicates our previous findings (e.g., refs 2, 3).

Then, we tested whether the type of intention would further modulate this prior-by-evidence interaction. To 
do so, we directly compared the effect of priors between intention types (Non-Social Basic vs. Non-Social 
Superordinate; Non-Social Basic vs. Social Basic, see ‘Behavioural analyses’). In Experiment 1, we found that par-
ticipants relied more on their priors to infer Superordinate intentions than to infer Basic intentions (4{evi-
dence} × 2{intention type} ANOVA, main effect of the type of intention: F(1,17) = 7.37, p = 0.015, ηp

2 = 0.30). 
Moreover, this overreliance on priors when inferring Superordinate intentions further increased when the 
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amount of visuomotor evidence decreased (visuomotor evidence × type of intention interaction effect: 
F(3,51) = 3.28, p = 0.027, ηp

2 = 0.16; post hoc Fisher: low, p < 0.001; moderate, p = 0.006, high, ns., very high, ns., 
Figure S2, top panel).

We replicated these effects in experiment 2 when comparing Non-Social Basic and Social Basic conditions. 
Participants relied more on their priors to infer Social Basic intentions than Non-Social Basic intentions (4{evi-
dence} × 2{intention type} ANOVA, main effect of the type of intention: (F(1,17) = 8.58, p < 0.01, ηp

2 = 0.33). The 
interaction between intention type and visuomotor evidence factor was close to significance (visuomotor evi-
dence × intention interaction effect, F(3,51) = 2.71, p = 0.054, ηp

2 = 0.13)–note that the same interaction effect was 
found significant in two previous studies2, 3. Participants’ priors tended to exert a greater influence on participants’ 
response in the Social condition, relative to the Non-Social condition, in both low, moderate, and high amounts of 
visuomotor evidence conditions (post hoc Fisher: low, p < 0.001; moderate, p < 0.001, high, p < 0.001, very high, 
ns., Figure S2, bottom panel). All these findings independently replicate our previous findings2, 3.

fMRI results. First, we investigated whether brain activity scaled with priors during the preparation phase 
(see Fig. 1, ‘Preparation’, and Fig. 2). We hypothesized that the type of intention to infer beforehand is likely 
to influence how action scenes are processed in the subsequent inference phase. To identify such prior-related 
anticipatory effects, we searched for brain regions whose BOLD activity was differentially modulated during the 
preparation phase by participant’s priors according to the type of intention to be inferred (Non-Social Basic vs. 
Non-Social Superordinate; Non-Social Basic vs. Social Basic). In experiment 1, participant’s priors correlated posi-
tively with BOLD activity during the preparation phase in the premotor cortex, extending into the supplementary 
motor area (SMA) (x, y, z = 27, 6, 51, T = 4.97), in the Superordinate vs. Basic condition (Fig. 3, top panel, and 
Supplementary Information, Table S1). In experiment 2, participant’s priors correlated positively with BOLD 
activity during the preparation phase in the dorsal anterior cingulate cortex (dACC) (x, y, z = 6, 39, 39, T = 4.44) 
in the Social vs. Non-Social condition (Fig. 3, bottom panel, Supplementary Information, Table S1). Note that, 
conversely, BOLD activity in the cerebellum correlated more with priors in the Non-Social vs. Social condition (x, 
y, z = −15, −45, −21, T = 4.47). We did not find common activations across the different intention types during 
the preparation phase.

Having found a behavioural interaction between participant’s priors and visuomotor evidence in all tasks, we 
searched for brain regions whose BOLD activity during the inference phase scaled with this interaction. We found 
that BOLD activity in the medial part of the prefrontal cortex (mPFC) correlated with the prior-by-evidence 
interaction in all conditions independently: Non-Social Basic and Non-social Superordinate intentions (exper-
iment 1, Basic: x, y, z = −6, 57, 0, T = 4.17; Superordinate: x, y, z = 6, 48, −6, T = 4.75; see Fig. 4A and B, left 
panel), and Non-Social Basic and Social Basic intentions (experiment 2, Non-Social: x, y, z = 3, 45, −6, T = 4.24; 
Social: x, y, z = 6, 54, 15, T = 4.67; see Fig. 4C and D, left panel). Note that we also found some brain regions whose 
BOLD activity only scaled with priors, in a way that was specific to each type of intention (see Supplementary 
Information, Figure S3, Table S1, and Supplementary Results).

Figure 1. Task design. Experiment 1: example trials from the Non-Social ‘Superordinate’ (A) and Non-Social 
‘Basic’ (B) tasks. Experiment 2: example trials from the ‘Non-Social’ Basic (B) and ‘Social’ Basic (C) tasks. 
Trials start with a fixation period (500–2500 ms), followed by a preparation phase (actor’s resting hand, or 
first-opponent’s move) that was randomly jittered between 1000 and 1500 ms. The following action sequence 
consisted of an actor performing a single manipulation of a meaningless object. Participants were asked to 
indicate the nature of this action by pressing the corresponding (left or right) response-box button within 
a 1500 ms time-window. In each task, the amount of visuomotor evidence conveyed by the action sequence 
was manipulated by varying its duration on 4 distinct levels–from 1480 ms (low) to 1880 ms (very high) after 
movement onset. Moreover, participant’s priors were manipulated by varying the probability of occurrence 
associated with each different intention (A: pattern 2 (s2); B: “transport” (T); C: “cooperate” (Co)). Note that the 
temporal structure of each trial, as well as the type of response required (rotate, or transport), are both strictly 
similar across all tasks.
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Then, we assessed whether BOLD activity in mPFC also predicted behavioural inter-subject variations in 
the interaction between priors and intention types. We reasoned that if mPFC was involved in adjusting the 
prior-evidence balance depending on the type of intention inferred, then we should observe a significant 
inter-subject correlation between the prior-by-evidence interaction effect estimated from our participant’s 
behaviour (β-behaviour), and from their neural data (β-neural). First, we estimated individually β-behaviour 
coefficient by fitting a logistic model of performances (including priors, amount of visuomotor evidence, and 
a prior-by-evidence interaction term, see Equation 2, ‘Behavioural analyses’) to each participant in each con-
dition. Second, we computed individual β-neural estimates by computing ROI-averaged estimates of the 
prior-by-evidence parametric regressor (see ‘Region-of-Interest Analyses’, and Fig. 2, ‘Parametric regressors’). 
In all conditions, we found that there was a significant inter-individual correlation between β-behaviour and 
β-neural extracted from the corresponding mPFC ROI (Basic: R = 0.46; Superordinate: R = 0.63; Non-Social: 
R = 0.39; Social: R = 0.55; all p’s < 0.01) (Fig. 4). This strongly suggests that mPFC plays a pivotal role in adjusting 
the balance between priors and visuomotor evidence depending on the type of intention inferred. Note that our 
analyses here focused on the evidence-by-prior interaction regressor, and that our parametric regressors were 
serially orthogonalized (1- evidence, 2- prior, 3- evidence-by-prior, see Methods), excluding most potential con-
founds of error monitoring or conflict when analysing the interaction regressor.

Connectivity results. Our behavioural prior-by-evidence interaction, as well as the sensitivity of the mPFC 
to the prior-evidence mix, may be accounted for by two distinct neural mechanisms: either the mPFC directly 
regulates activity in posterior associative areas that filter visuomotor evidence (‘top-down gaining control’ 
hypothesis, see ref. 34), or the prior-evidence mixture is altered directly within the inferential (frontal) process 
(“central executive control” hypothesis, see ref. 35).

To disentangle between these two alternative hypotheses, we performed whole-brain psycho-physiological 
analyses (PPI) to uncover the brain regions in which connectivity with mPFC increased depending on the type 
of intention. Inferring a Superordinate (vs. a Basic), or a Social (vs. a Non-Social), intention, specifically triggered 
an increase in the correlation between mPFC and right temporo-parietal junction (TPJ) BOLD activity (exper-
iment 1:45, −66, 25, T = 5.82; experiment 2:45, −69, 28, T = 4.82; see Fig. 5A and B, respectively). This suggests 
that mPFC adjusts the balance between prior and visuomotor evidence through a top-down effect on associa-
tive visual brain region, actuating an adaptive filter of incoming visual information, rather than by altering the 
prior-evidence mix directly within the inferential process.

Finally, using DCM, we tested whether the functional coupling between mPFC and TPJ may be tuned by 
early activity in ‘preparatory’ brain areas. Interestingly, such areas (SMA, dACC) were specifically found in 

Figure 2. Main General Linear Model (fMRI). The main GLM included 8 categorical and 8 parametric 
regressors. The 8 categorical regressors modelled the ‘preparation’ phase, the ‘inference’ phase, the ‘response’ 
phase, and control trials (not shown here), in both the Non-Social ‘Basic’1–4 and Non-Social ‘Superordinate’5–8 
tasks (2*4 regressors). Two parametric regressors were derived from the ‘preparation’ regressors to capture the 
modulation of BOLD activity by prior in Basic9 and Superordinate10 trials. Six additional parametric regressors 
were derived from the ‘inference’ regressors, to capture the modulation of BOLD activity by prior, visuomotor 
evidence, and their interaction, in Basic11–13 and Superordinate14–16 trials. Note that the structure of the GLM 
was strictly identical in Experiment 1 and 2.
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the Superordinate, but not the Basic, condition (experiment 1, Fig. 6, top panel), and in the Social, but not the 
Non-Social, condition (experiment 2, Fig. 6, bottom panel), suggesting that these ‘preparatory’ areas are specifi-
cally recruited when inferring more abstract intentions.

In both experiments 1 and 2, Bayesian family comparison showed that the exceedance probability (EP) was 
largest for the family assuming bilateral connections between ‘preparatory’ (SMA and dACC) and ‘inference’ 
(mPFC) regions, bilateral connections between mPFC and TPJ, and no connections between preparatory regions 
and TPJ (see Supplementary Information, Figure S4). Our PPI analysis demonstrated that more abstract inten-
tions increased the connectivity between mPFC and TPJ (Non-Social Superordinate > Non-Social Basic, Fig. 5A; 
Social Basic > Non-Social Basic, Fig. 5B). Furthermore, the DCM analysis suggested that this increased connec-
tivity is likely driven by modulations of the backward, but not the forward, connection between these two regions. 
Thus, in Experiment 1, the best-fitting model was the model assuming modulation of the backward connection 
between mPFC and TPJ by the intention type (Non-Social Superordinate > Non-Social Basic) and participant’s 
priors (EP: 75%, Fig. 7A), whereas only the intention type (Social Basic vs. Non-Social Basic) modulated the 
mPFC-TPJ backward connection in Experiment 2 (EP: 71%, Fig. 7B). In both experiments, the model with the 
intention type modulating the forward, but not the backward, connection between preparation (SMA, dACC) 
and mPFC regions also explained the data best.

Discussion
The present study aimed at investigating how the brain adjusts the balance between prior and sensory evidence 
when inferring intentions from the observation of others’ actions. In two distinct experiments, we manipulated: 
(i) the participants’ prior expectations regarding the underlying intention, (ii) the amount of visuomotor infor-
mation from the action scene, and (iii) the type of intention being inferred by selecting intentions with varying 
degrees of abstractness (i.e., Basic, Superordinate, and Social intentions).

Figure 3. Prior effect (%) as a function of visuomotor evidence (from low to very high). The greater the prior 
effect, the more participants respond toward the likely (i.e., biased) intention (see Material and Methods, 
“Behavioural analyses”). Top panel: experiment 1, comparing Non-Social ‘Basic’ vs. Non-Social ‘Superordinate’ 
intentions; Bottom panel: experiment 2, comparing ‘Non-Social’ Basic vs. ‘Social’ Basic intentions. The prior-by-
evidence interaction is significant in both experiments. Three-stars: P < 0.001; two-stars: P < 0.01.

http://S4
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The mPFC encodes the prior-by-evidence interaction. The behavioural results reported here rep-
licate all the findings of our previous study: participants tended to rely progressively more on their priors as 
the amount of visuomotor evidence decreased, and vice versa2, 3, 36. This interaction was further modulated by 
the ‘type’ of intention to be inferred, with participant’s prior experience prevailing over sensory evidence when 
inferring (Non-Social) Superordinate vs. (Non-Social) Basic intentions, and Social (Basic) vs. Non-Social (Basic) 
intentions. Thus, the more abstract the intention was (i.e., the more the visual input was ambiguous with respect 
to the underlying intention), the greater the influence of priors on participants’ inference. Additionally, we now 
show that the medial prefrontal cortex (mPFC) encodes this interaction between sensory and prior information. 
Activity in this region increased with the strength of participants’ expectations about a third-party intention, and 
this increase was more pronounced as the quantity of visuomotor evidence decreased. Importantly, the neural 
interaction between priors and sensory evidence in the mPFC correlated within participants with the interaction 
estimated from their behaviour (see Fig. 4, scatterplots). Moreover, the interaction between prior and sensory 
evidence found in the mPFC was further modulated by the type of intention inferred, with the most abstract 
intentions showing the strongest interaction effects (i.e. Superordinate and Social intentions; see “β-neural” on 
Fig. 4). Taken together, our results show that activity in the mPFC scales with the prior-by-evidence mix, and 
that the weight assigned to each source of information within that mix further depends on the abstractness of the 
intention.

These findings are consistent with previous fMRI studies showing that inferring intentions from the obser-
vation of others’ actions is associated with an increased activity in the mPFC (e.g. refs 14, 37–40), which belongs 
to a “mentalizing network” to infer others’ goals and beliefs12, 28, 29, 41. In the present study, mPFC activity was 
found to guide intention inference, based on participant’s prior expectations, regardless of the scope (Basic, 

Figure 4. Event-related response in the medial prefrontal cortex (mPFC) reflects individual tendency to rely on 
priors as visuomotor evidence decreases. Left panel: in the mPFC, parametric response to priors as a function of 
visuomotor evidence for each type of intention (Non-Social Basic: x, y, z = −6, 57, 0; Non-Social Superordinate: 
x, y, z = 6, 48, −6; Non-Social Basic: x, y, z = 3, 45, −6; Social Basic: x, y, z = 6, 54, 15). We rendered our map 
using an uncorrected threshold of P < 0.001 (level of significance used for inference, red voxels) and thresholds 
of P < 0.005 and P < 0.05 (orange and yellow voxels) to show the full extent of the activations. Right panel: 
scatter plots of correspondence between individual β-behaviour and β-neural estimates of the prior-by-evidence 
interaction. For each participant, the two estimates link modulation of choice probability by visuomotor 
evidence and event-related responses in mPFC (See Material and Methods). Individual differences in 
β-behaviour estimates of the prior-by-evidence interaction were predicted by individual differences in β-neural 
extracted from individual mPFC ROIs. Higher β-behaviour estimates directly reflect the strength of visuomotor 
evidence over choice probability, with participants showing greater reliance on their priors as the amount of 
evidence decreases. Inserted charts in A, B, C, and D, show value of the β-neural coefficient in each task.
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Superordinate) and target (Social, Non-social) of the intention. This observation accords with previous findings 
showing increased activation of the mPFC in conditions where the intention cannot be unambiguously inferred 
from a noisy or incomplete action scene, and prior knowledge is required to complement the sensory evidence 
available29.

In the present study prior information was manipulated on a trial-by-trial basis by increasing the probability 
of one intention (likely intention) over other potential intentions (unlikely intention). The correlation we found 
in the mPFC between the behavioral and the neural prior-by-evidence interaction (Fig. 4, scatterplots) suggests 
that this area does balance the weight of prior expectations and of incoming sensory information from action 
scenes. These results are in strong agreement with a recent study showing that activity in the mPFC represents 
and integrates past knowledge and current sensory information about reward probability42. In this study, the 
neural representation of prior and sensory information in the mPFC also reflected behavioural changes in the 
weight assigned to these different sources of information, depending on their current reliability. Although the 
task used by Ting et al. was a lottery decision task manipulating reward probabilities, coordinates of the mPFC 
in their study were very close to ours. This suggests that evaluating others’ intentions may depend on the same 
elementary computations involved in model-based decision-making. The mPFC was indeed found to be involved 
in several tasks concerned with value processing and social learning (see ref. 43), with a possible segregation 
between the ventral and dorsal parts of the area, respectively (ref. 28, for review). Thus, activity in the dorsal 
part of the mPFC might play a critical role in emulating other people’s choice values and preferences44 whereas 
a network comprising the ventral mPFC/medial orbito-frontal cortex represents the expected value of a choice 
both in social and non-social (i.e., experiential) contexts45. Moreover, activity in the mPFC correlates with both 
agents’ beliefs about the actions of their opponents in a competitive learning paradigm17 and with values inferred 
from reasoning about other people’s strategy18 as well as with the history of each opponent’s contribution in a 
game involving recurrent social transactions19. It is of note that coordinates of our mPFC activation were more 
dorsal in the social than in the non-social conditions (see Fig. 4, left panel), which fits particularly well with the 

Figure 5. Analyses of functional connectivity between mPFC and TPJ in both experiments. (A) PPI of mPFC 
and right TPJ for a single subject in Experiment 1: Non-Social Superordinate intentions, relative to Non-Social 
Basic intentions, led to significantly increased connectivity between both regions. Measurements during 
inference of Non-Social Superordinate intentions: white circles; measurements during inference of Non-Social 
Basic intentions: black circles. Mean-corrected activity in right TPJ is displayed as a function of mean-corrected 
activity in mPFC. Condition-specific regression slopes, bsup (Superordinate) and bbas (Basic). (B) PPI of mPFC 
and right mPFC for a single subject in Experiment 2: Social Basic intentions, relative to Non-Social Basic 
intentions, led to significantly increased connectivity between both regions. Measurements during inference 
of Social Basic intentions: white circles; measurements during inference of Non-Social Basic intentions: black 
circles. Mean-corrected activity in right TPJ is displayed as a function of mean-corrected activity in mPFC. 
Condition-specific regression slopes, bsoc (Social) and bnsoc (Non-Social). In A and B, the difference between 
regression slopes constitutes the PPI (all P’s < 0.001, all T’s = 4.82).
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results reported in these studies. Finally, pharmacological inhibition of mPFC in rats disrupts the valuation of 
potential outcomes when they have to be inferred from an internal model, but not when they have been directly 
experienced21. Collectively, these studies yield robust and convincing evidence for the pivotal role of the mPFC 
in model-based inference; that is, in generating expectations derived from higher-order representations, whether 
these expectations concern the structure of the task environment (e.g. refs 46, 47), inferred values (e.g. ref. 21), 
social preferences45, or higher-order beliefs about other people’s mental states and attitudes (e.g. ref. 23). Our find-
ings add to this literature by showing that the mPFC is also involved in adjusting the expectations about others’ 
intentions given the sensory evidence currently available.

The type of intention changes the coupling between mPFC and TPJ. The mPFC belongs to a 
broader network including posterior brain regions, such as the temporo-parietal junction (TPJ). In this network, 
the mPFC has been found to encode predictions about other people’s behaviour, while signals updating these 
expectations on the basis of the actual outcomes experienced have been found both in the mPFC and the TPJ17, 23.  
In line with these observations, our connectivity analyses revealed that activity in the medial PFC significantly 
correlated with activity in the right temporo-parietal junction (rTPJ). Crucially, activity in the mPFC and the 
rTPJ co-varied more tightly in these conditions where, precisely, participants’ priors exerted a stronger influence 
on their responses. Thus, increased functional connectivity between mPFC and rTPJ was observed in trials where 
sensory evidence was scarcer, but remarkably also when inferring more abstract intentions, with the link between 
mPFC and rTPJ being stronger when inferring Superordinate, relative to Basic, intentions, and when inferring 
Social, relative to Non-Social, intentions. This stronger link specifically accounted for the increased influence of 
priors on the inference process in these conditions showing complex intention-to-action mappings (see Fig. 5).

The right TPJ is well known for the role it plays in the hierarchical processing of sensory information. Activity 
in rTPJ adjusts the gain of sensory information to enhance or attenuate its role on subsequent processing34, 48. 
Thus, a lowering of rTPJ activity suggests that sensory evidence is more strongly discounted, presumably by alter-
ing responsiveness of TPJ neurons and/or modulating the shape of their tuning curves (ref. 24, for a review). In 
the present study, we speculate that the link between mPFC and rTPJ could account for the inhibitory influence 
of medial prefrontal areas on the temporo-parietal junction. Such inhibitory influence would promote internal 
predictions over incoming sensory evidence, hence preventing the subject from being distracted by external, 
potentially task-irrelevant, evidence34, 49. Our DCM analyses further showed that expectations generated within 
the mPFC flowed backward to the TPJ (Fig. 7). This observation fits well with a predictive coding account, which 
assumes that information encoded in higher hierarchy is then sent back to lower levels of the cortical hierar-
chy where relevant information is encoded5, 6. As suggested above, there is strong evidence that TPJ is part of a 
larger network involved in decoding others’ intentions40, 50–52 and might be responsible for implementing predic-
tive judgments about other people’s behaviours13, 29, 41. The recruitment of the TPJ is thus also consistent with a 

Figure 6. Parametric modulation of BOLD activity by participant’s priors during the preparation phase, for 
each type of intention. Top panel: Non-Social ‘Superordinate’ vs. Non-Social ‘Basic’ intentions (experiment 
1); significant clusters were found in right and medial SMA. Bottom panel: ‘Social’ Basic vs. ‘Non-Social’ Basic 
intentions (experiment 2); significant cluster was found in the dorsal ACC. Color bar indicates t-statistic value.
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role for this region in updating internal models of others’ intention based on the current sensory input derived 
from the action scene26. Importantly, the current findings further suggest that the updating of internal models 
within the TPJ is further driven by expectations generated within the mPFC, whose influence is in turn flexi-
bly adjusted depending on the type of intention inferred (Non-Social Superordinate > Non-Social Basic, Social 
Basic > Non-Social Basic).

Inferring others’ intentions is likely to be influenced by sensory evidence derived from the agent’s movement 
kinematics (e.g. ref. 53) as well as by the context within which an action is performed1, 11. In the present study con-
textual information was provided to the subjects prior to observing the actor’s movement (see Fig. 1, ‘preparation’ 
phase). Different brain regions were found during this preparation phase, depending on whether the upcoming 
scene was of a social nature (two actors mutually interacting) or not (a single actor reaching for objects). More 
specifically, our DCM analyses showed an increased connectivity between these preparatory regions and the 
mPFC in conditions with complex intention-action mappings (i.e., Superordinate and Social conditions), but not 
in conditions where the inference was straightforward given the observation (i.e., Basic conditions of Experiments 
1 & 2). We speculate that these regions play the role of early input into the mPFC to regulate its influence over TPJ. 
Thus, while activity elicited in the SMA, in the preparation phase of the Superordinate task, would represent prior 

Figure 7. Dynamic causal modeling of connectivity between preparation and inference regions. The first 
eigenvariate of BOLD from SMA (Experiment 1) or dACC (Experiment 2), mPFC and TPJ clusters, was 
extracted at subject-specific coordinates within 8-mm spheres around individually defined activation maxima. 
For the winning family (not shown here, see Supplementary Information, Figure S4), eight models tested 
whether the intention type (INT) modulated the forward connection between preparation (SMA or dACC) 
and mPFC regions, and whether the intention type (INT) or participant’s priors (PE), or both, modulated the 
forward or the backward connections between mPFC and TPJ (see ‘DCM analysis procedure’). In all models, 
there were bilateral intrinsic connections between preparation and mPFC regions, and between mPFC and 
TPJ regions. Bayesian model comparison was used to compute the exceedance probability for each of the 
eight models. All connections and their values are shown for the best-fitting model. A: Basic vs. Superordinate 
intentions (Experiment 1). The exceedance probability was largest for model #4, where the intention type 
(INT) modulated the forward connection between SMA and mPFC, and where both intention type (INT) and 
priors (PE) modulated the backward, but not the forward, connection between mPFC and TPJ. B: Non-Social 
vs. Social intentions (Experiment 2). The exceedance probability was largest for model #3, where the intention 
type modulated the forward connection between dACC and mPFC and the backward, but not the forward, 
connection between mPFC and TPJ.

http://S4
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expectations about the forthcoming action (Fig. 6, top), activity of the dorsal ACC in the social condition may 
account for the influence of the first player’s move (e.g., cooperate) over predictions made by the observer about 
the second player’s intention (e.g., defect) (Fig. 6, bottom). A wealth of research has shown that the SMA plays a 
role in maintaining action representations (e.g. refs 54, 55), whereas neurons in the dACC would play a critical 
role in predicting an opponent’s intention to defect or cooperate based on prior interactions56. Crucially, both 
the SMA and the dACC activity correlated with the strength of participant’s expectations during the preparation 
phase –prior to accumulating evidence from the action scene–, and then flowed forward to mPFC (Fig. 7A,B). We 
speculate that preparatory activity in these regions may be responsible for the increased influence of either super-
ordinate or social-specific priors over the intention inference, through driving early context-dependent changes 
in the subsequent coupling between mPFC and TPJ.

Mistaking other people’s intentions: the “disconnection” syndrome. To conclude, we found that 
intention inference increasingly relied on priors when sensory evidence gets scarcer, through context-dependent 
modulations of backward connectivity between prefrontal and associative sensory cortices. Complementing this, 
increased feedforward connectivity could in turn help consolidating or invalidating these priors in the mPFC, 
depending on whether the current sensory evidence is as expected (see Fig. 7)57, 58. A well-documented obser-
vation is that internal expectations are updated through prediction-error signalling, i.e., by a signal generated 
when current sensory evidence does not match the subject’s expectations59. Importantly, a failure in this update 
mechanism could lead to drawing abnormal inferences about other people’s intentions, hence to inducing (and 
possibly consolidating) delusional beliefs about others’ mental states, as in some of the so-called “positive symp-
toms” of schizophrenia60–62. Our results further suggest that this may be particularly true when inferring abstract 
intentions, which cannot be unambiguously inferred from simply decoding sensory evidence. Thus, delusional 
beliefs about others’ intentions would more likely be formed and maintained as the observed behaviour is driven 
by abstract intentions. Indeed, abstract intentions stand to action in a many-to-one relation (e.g., “grasping a 
bottle” may denote very different intentions: refilling one’s guest’s glass vs. taking the bottle away from the inebri-
ated guest) (see ref. 11). Hence, abstract intentions tend to be less constrained (i.e., confirmed or disconfirmed) 
by currently observed behaviour and more dependent on internal (and potentially delusional) representations. 
According to this hypothesis, the occurrence, and severity, of the delusional belief would be predicted by the 
abstractness (i.e., the level of representation) of the belief content itself. At a neural level, an impaired communi-
cation between prefrontal and posterior sensory cortices could in turn account for the emergence and persistence 
of delusional beliefs in schizophrenia, as well as for the severity of mentalizing impairments in this condition 
(e.g. refs 63–66). Tackling such impairments in the light of a hierarchical model of action representation would 
constitute a promising follow-up to the current work.

Materials and Methods
Participants. Eighteen right-handed participants (9 females and 9 males aged 24–54 years, laterality score 
mean = 0.88, S.D. = 0.3167) were enrolled in the study. They had no history of neurological or psychiatric condi-
tions, no contraindications to MRI, and normal or corrected-to-normal vision. They provided written informed 
consent prior to each experiment. The experimental protocol was performed with approval of the local Ethical 
Committee (CPP SUD-EST IV, no. B80631-60) and in accordance with the Declaration of Helsinki (World 
Medical Association, 2008).

Experimental design. The study was adapted from Chambon et al.2, 3, and consisted of two experiments car-
ried out on successive days (order balanced across participants): an experiment depicting Basic and Superordinate 
intentions in a non-social setting (Experiment 1), and an experiment depicting Non-Social and Social basic inten-
tions (Experiment 2) (Fig. 1). Both experiments required the participant to infer the intention of one or two actors 
manipulating non-meaningful objects. Our aim was to dissociate the specific contribution of sensory evidence 
and prior expectations to the intentional inference process by varying independently the amount of visuomotor 
evidence conveyed by action scenes, and the probability of occurrence associated with each intention, respectively 
(see below).

Both experiments consisted of a training session (outside the scanner) followed by four runs. Each run 
included two experimental phases: an induction phase, followed by a testing phase (see Supplementary 
Information, Figure S1). The induction phase consisted of 36 action sequences conveying one very high amount 
of visuomotor evidence (1880 ms after movement onset) to allow the participants to clearly distinguish the differ-
ent intentions being enacted. The testing phase consisted of 108 interleaved trials in which action sequences were 
shortened to convey three different amounts of visuomotor evidence (low, moderate, or high–i.e., 1480, 1560, or 
1640 ms after movement onset, respectively; see ref. 2, Supplementary Information, Text S1, for the selection and 
control of these amounts). Prior expectations were manipulated by increasing the probability that one intention 
(the likely intention, 66% of the trials) was performed to the detriment of the other one (the unlikely intention, 
33%). This bias was randomly assigned so that each type of intention was equally biased across participants. Each 
video clip was presented only once to prevent any influence of memorized kinematic parameters on participants’ 
performances (72 unique videos per intention and amount of sensory evidence).

In experiment 1, video clips depicted an actor’s naked arm manipulating (rotating or transporting) a rectan-
gular cube (Fig. 1A,B). Two types of intentions could be attributed to the actor: Non-Social ‘Basic’ intentions 
(rotating vs. transporting the cube), or Non-Social ‘Superordinate’ intentions (building a particular geometrical 
pattern of cubes by either rotating or transporting a cube).

In the Non-Social ‘Basic’ intention trials, video clips showing a resting hand positioned in front of a cube 
(1000–1500 ms; ‘preparation’ phase), followed by a reaching-and-grasping movement aiming at either transport-
ing or rotating the cube (1480–1880 ms; ‘action’ phase), were displayed. After a delay (central fixation point on 
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a black screen displayed for 500 to 1000 ms, uniformly jittered), two letters (T for ‘transporting’, R for ‘rotating’) 
were randomly displayed on the left and right sides of a central fixation dot. Participants indicated their belief 
regarding the actor’s intention by pressing the corresponding response-box button held in their right hand (left or 
right button, time limit: 1500 ms, Fig. 1B) as quickly and accurately as possible. Finally, a central fixation point on 
a black background was displayed until the next trial (500 to 2500 ms).

In the Non-Social ‘Superordinate’ intention condition, the video clip also began with the actor’s hand resting 
next to a target cube. However, two additional cubes were already placed on the table to sketch an incomplete 
geometrical pattern. Then, the actor performed a reaching-and-grasping movement aimed at either transporting 
or rotating the target cube. Critically, in this condition, the basic action of rotating or transporting the target-cube 
corresponded to the completion of one of two possible cube patterns, so that each trial was characterized by the 
superordinate intention to build a cube pattern rather than by the basic action being performed (i.e., p1, p2, see 
Fig. 1A). Then, the participants indicated their belief on the actor’s intention by pressing one of two response but-
tons (T for ‘transporting’, R for ‘rotating’), just as in the “basic intention” condition. To ensure that (1) participants 
were biased towards the superordinate intention itself (the global geometrical pattern) and not merely towards the 
action performed by the actor (rotating or transporting), and (2) that the incomplete pattern was not predictive 
of the simple action performed, different patterns were used so that each final pattern could be constructed either 
from a ‘transport’ or a ‘rotate’ action.

Experiment 2 was identical to experiment 1, with the exception that we substituted the non-social “superordi-
nate intention” condition with a social “basic intention” condition, in which we assessed the participants’ beliefs 
on whether an actor rotating or transporting a cube meant her action to be socially cooperative, or not.

In this Social Basic condition, participants observed two actors engaged in a social game, in which they either 
cooperated by coordinating their actions in order to achieve a shared goal, or defected by refusing to coordinate 
their actions (Fig. 1C). Taking turns, the actors could either transport the closest cube to the middle column of 
a 3-by-2 grid (cooperation), or rotate it so that it stayed in place (defection). Trials in the ‘Social’ condition had 
the same overall structure as non-social trials: the first actor’s action was entirely disclosed to the participants, 
whereas the second actor’s action was made incomplete by varying the video clip duration across the trials (1480, 
1560, 1640, or 1880 ms after onset of the second actor’s action). After a delay (central fixation point on a black 
screen displayed for 500 to 1000 ms, uniformly jittered), two letters (T for ‘transporting’, R for ‘rotating’) were 
randomly displayed on the left and right sides of a central fixation dot. Participants indicated their belief over the 
actor’s social intention (i.e. cooperation or defection) by pressing the corresponding response-box button held in 
their right hand (left or right button, time limit: 1500 ms, Fig. 1C) as quickly and accurately as possible. Note that 
the second actor’s social intention either differed from that of the first actor (i.e., the first actor defected and the 
second cooperated, or the first actor cooperated while the second defected) or it mirrored the first actor’s inten-
tion (i.e., both actors cooperated or defected). This second type of response strategy is known as a “tit-for-tat” 
(TFT) strategy. Social intentions are intentions that aim at modulating other people’s actions, or conversely that 
are modified by the relational structure in which the action takes place. Defection and cooperation are two para-
digmatic modalities of interacting with other people, which can be combined to produce different paradigmatic 
social situations (‘tit-for-tat’ –mirroring one’s partner’s intention–, ‘altruism’ –always cooperating–, ‘egoism’ or 
‘free-riding’ –always defecting)2, 68, 69. In this sense, “tit-for-tat” intentions (e.g., cooperation if previous coopera-
tion, defection if previous defection) are paradigmatic social intentions.

In situations of iterative cooperation, a TFT strategy is known to frequently be more intuitive and successful 
than alternative strategies, such as “always cooperating”, “always defecting” or “acting randomly”68–70. We thus 
chose to experimentally strengthen this existing a priori bias by increasing the probability that the second actor 
adopts a TFT strategy, i.e., uses a strategy that mirrors their opponent’s. For the whole session, the probability that 
the second actor responded tit-for-tat was therefore increased so that, on average, she was more likely to coop-
erate (rather than defect) if the first actor had previously cooperated, and to defect (rather than cooperate) if the 
first actor had previously defected. Biasing the second actor’s strategy in this way ensured that participants paid 
attention to the whole action sequence, since to successfully predict the intentions of an actor using a TFT strat-
egy it is essential to take into account what the first actor has done. Furthermore, using a TFT bias also prevented 
participants from giving stereotyped responses (e.g. always responding ‘cooperate’ or ‘defect’)2.

Finally, “control” trials were randomly interleaved within both experiments to control for brain activity related 
to eye movements. In these trials, participants judged the identity of two coloured patches (either red or blue) 
successively displayed. The temporal structure of these trials mimicked that of non-control trials. A first coloured 
patch was displayed for 500–2500 ms at the top of the screen (same duration as preparation phase), then, a sec-
ond patch was displayed for 1480–1880 ms at the bottom of the screen (same duration as action phase). After a 
delay (central fixation point on a black screen displayed for 500 to 1000 ms, uniformly jittered), two letters (Y for 
‘yes’–identical–, N for ‘No’–different) were randomly displayed on the left and right sides of a central fixation 
dot. Participants indicated whether they thought that both patches were identical by pressing the corresponding 
response-box button held in their right hand (left or right button, time limit: 1500 ms) as quickly and accurately 
as possible. Patch colors were identical in half of the trials.

Video clips. Video clips were recorded using a digital camera (Sony®- HDR-SR7), and were tailored using the 
software Adobe Premiere®. Stimuli were back-projected onto a screen (refresh rate, 60 Hz) using Presentation® 
software (Neurobehavioral Systems, www.neurobs.com). Participants viewed the stimuli through a mirror placed 
above the MRI head coil. All the “non-social” video clips were performed by the same actor, and only featured her 
naked arm. Similarly, the “social” video clips were all performed by the same two actors and only featured their 
naked arms.

http://www.neurobs.com
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Behavioural analyses. Analysis of variance. Percentage of correct responses were analysed within 
each task (Basic, Superordinate, Non-Social, Social) using four 2 × 4 repeated-measures ANOVAs with prior 
(likely versus unlikely intention) and amount of visuomotor evidence (low, moderate, high, and very high) as 
within-subjects factors. Moreover, in order to directly compare the effect of participants’ priors between types 
of intention (Basic, Superordinate, Non-Social, Social), a score reflecting this “prior effect” was also calculated 
for each subject in each task. This score was obtained by subtracting the percentage of correct responses for 
the likely intention from those of the unlikely one, for each amount of visuomotor evidence. We then input 
this “prior effect” score into two 4 × 2 repeated-measures ANOVAs with amount of visuomotor evidence (low, 
moderate, high, and very high) and type of intention ([Basic vs. Superordinate] OR [Non-Social vs. Social]) as 
within-subjects factors.

Logistic model. Participants’ priors were quantified for each task separately using a simple Bayesian learning 
scheme (ideal Bayesian observer) in which all marginal and conditional probability estimates were updated after 
each new event35. Our ideal Bayesian observer was initialized with flat prior distributions at the beginning of 
each task (i.e., Basic, Superordinate, Non-Social, and Social) (Supplementary Information, Figure S5). However, 
because it is unlikely that participants would process information equally from the beginning of the task until the 
end of the 288 action scenes, we modelled their limited memory capacity by including a term (the memory decay 
parameter α) that weighted down past events (i.e., past intentions). For each new event et, presented at time step 
t, current values of the marginal probability of the event i are defined in the following way:
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where p is the position of a particular intention backwards from time step t, αi
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intention i at position p, and u(t) a binary function indicating whether one particular intention (u(t) = 1) or 
its alternative (u(t) = 0) was performed at time step t. For α = 1 (ideal observer), there is no information loss 
and all past intentions are weighted equally, while for α > 1 (real observer), past intentions are discounted 
(Supplementary Information, Figure S6). The parameter α was fit by minimizing the least-square given the data 
(Correct Responses, CR), such that

β β β β ε= + + + +×logit CR( ) (2)prior evidence prior evidence0

where the standardized parameter estimates βprior and βevidence represent the independent contribution of par-
ticipant’s priors and visuomotor evidence to the prediction of CR, respectively (i.e., the slope between correct 
responses and priors or evidence). The resulting weighted probability estimates were then used as parametric 
“prior” regressors in the GLM.

Note that we could also have represented the participant’s priors with a simpler, binary variable (1 for likely, 
−1 for unlikely intention, which is equivalent to a simple frequency-based scheme, i.e., 66% vs. 33%). Our ration-
ale for using a Bayesian learner naturally derives from our task design. Indeed, we explicitly instructed the par-
ticipants that there were only two possible choices and only one correct answer. Hence, when one option was 
deemed correct, the other one was necessarily being deemed incorrect. Priors for the unlikely intention generally 
decreased when priors for the likely intention increased, suggesting that participants did have priors about the 
task structure (e.g., there’s a “likely” and an “unlikely” state), and learned from these priors rather than from mere 
observation only (Supplementary Figure S5).

fMRI acquisition. Images were collected using a Siemens 3 T whole-body and radio frequency coil scanner. 
We acquired 290 T2*-weighted echo-planar functional volume per participant over each run. Each volume com-
prised 26 coronal slices acquired continuously over 2.5 s (TE = 60 ms; flip angle = 90, thickness: 4 mm, 10% gap; 
in-plane matrix size: 64 × 64; voxel size: 3 × 3 × 3 mm3) were acquired per volume. A high-resolution T1-weighted 
anatomical image (MP-RAGE: TR = 1970 ms; TE = 3.93 ms; T1 = 1100 ms; resolution: 1 × 1 × 1 mm3; matrix size: 
256 × 256) was collected for each subject. Head motions were minimized using foam padding and headphones 
with earplugs were used to dampen the scanner noise.

fMRI data preprocessing. fMRI data were pre-processed and analysed using using SPM8 software 
(Wellcome Department of Imaging Neuroscience, University College London, UK, http://www.fil.ion.ucl.ac.uk/
spm/). The first five volumes of each run were removed to allow for T1 equilibrium effects. All functional volumes 
were realigned using a six-parameters rigid body transformation to correct for head motions. Functional and 
structural images were coregistered, and normalized into a standard MNI space (Montreal Neurological Institute 
template). Functional data were then smoothed with an 8-mm full-width-at-half-maximum Gaussian kernel, and 
processed using a 128 s high-pass filter.

We included realignment parameters in all statistical analyses as covariates to model out potential non-linear 
motion-related artifacts (second degree polynomial expansion). Then, we checked data for electronic, and 
rapid-movements artifacts using the ArtRepair toolbox (http://cibsr.stanford.edu/tools/human-brain-project/
artrepair-software.html). Artifacted volumes were substituted by linear interpolation between contiguous vol-
umes, deweighted and explicitly modelled in the following statistical analyses. Estimated head movements were 
small compared to voxel size (<1 mm), and less than 5% of the volumes were excluded due to rapid head move-
ments (>1.5 mm/s).
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fMRI data analysis. Whole-brain statistical parametric analyses were performed using a two-stage 
random-effect approach. We estimated independently the model parameters from each subject’s dataset, and 
then made population inferences based on the parameter inter-subject variance. Regressors of interest were con-
structed by convolving functions representing the events with the canonical hemodynamic response function. 
GLMs from experiments 1 and 2 were fit separately.

Categorical regressors. In each experiment and for each type of intention (expt. 1: Non-Social Basic and 
Non-Social Superordinate; expt. 2: Non-Social Basic and Social Basic), four categorical regressors (“prepara-
tion regressor”, “inference regressor”, “motor regressor”, “control regressor”) were used to model trial events (see 
Fig. 2, “Main General Linear Model”). (1) For both Non-Social Basic and Non-Social Superordinate intentions, 
we defined the “preparation” phase as the time interval during which the actor’s hand was at rest, whereas in the 
Social Basic intention task this phase was defined as the time interval during which the first actor performed the 
action. The first regressor (referred to as the “preparation regressor”) modelled this interval as 1–1.5-s-long box-
car function time locked to the onset of the resting hand (non-social conditions), or to the onset of the first oppo-
nent’s action (social condition). (2) The “inference” phase was defined as the interval between movement onset 
and the appearance of the response screen. The “inference regressor” modelled this interval as a boxcar function 
convolved with the duration of the actor’s movement until the response screen, time locked on the movement 
onset. (3) A “control regressor” was defined to model brain activity during control trials (see “Experimental 
Design”, above). This control phase was modelled as a boxcar function convolved with the duration of the trial, 
time locked on the first colour-patch onset. (4) The last categorical regressor modelled the motor response asso-
ciated with the button press, and was modelled as a Dirac function using the timing of the button press as onset. 
Thus, our model explicitly separated the motor-related activity from the inference-related activity.

Parametric regressors. A parametric regressor (referred to as “prior regressor”) was added to both the “prepa-
ration” and “inference” categorical regressors in order to capture the modulation of BOLD activity by partici-
pant’s priors. Moreover, two additional parametric regressors were added to the “inference” categorical regressor 
to account for modulation of BOLD signal by the three amounts of visuomotor evidence displayed during the 
testing phases (referred to as “evidence regressor”), and by the interaction effect between prior and visuomotor 
evidence (referred to as “interaction regressor”). 

 (1) Evidence regressor. Parameters of the “evidence regressor” were defined according to the four durations ma-
nipulated during the task (1 = low, 2 = moderate, 3 = high, and 4 = very high durations).

 (2) Prior regressor. Participants’ priors were calculated for each task separately using a simple Bayesian learn-
ing scheme (see Equation 1, ‘Behavioural analyses’, ‘Logistic model’). Parameters of this “prior regressor” 
were defined by standardized parameter estimates βprior from the logistic model (see ‘Logistic model’, 
Equation 2).

 (3) Interaction regressor. Parameters of the “interaction regressor” were defined by the interaction of the pa-
rameter estimates βprior and βevidence (i.e., βprior×evidence–see Equation 2).

These parametric regressors were hierarchically orthogonalized in the following order: evidence, prior, 
evidence-by-prior interaction.

To summarize, each GLM’s experiment included 16 task regressors, 8 of which were categorical and 8 par-
ametric. In Experiment 1, categorical regressors modelled BOLD activity related to: preparation in Basic1 and 
Superordinate5 trials; inference in Basic2 and Superordinate6 trials; control task in Basic3 and Superordinate7 
trials; and motor response in Basic4 and Superordinate8 trials as well (Fig. 2). In addition, 8 hierarchically orthog-
onalized parametric regressors were added to account for the effect of participant’s priors on brain activity during 
the preparation phase in both Basic9 and Superordinate10 trials, and to account for the effect of priors, the effect 
of visuomotor evidence, and their interaction, on brain activity during the inference phase in both Basic11–13 and 
Superordinate14–16 trials. The structure of the GLM in Experiment 2 (‘Non-Social’ Basic and ‘Social’ Basic inten-
tions) was strictly identical to that of Experiment 1.

Finally, scanning series and head motion parameters estimates (translation in x, y, z; roll, pitch, yaw) were 
included as covariates of no interest in the design matrix. We identified brain activations showing significant con-
trasts of parameter estimates with a voxel-wise (P < 0.001, uncorrected) and cluster-wise (P < 0.05, uncorrected) 
significance threshold.

Region-of-Interest Analyses. We extracted individual ROI-averaged estimations of the prior-by-evidence 
parametric effect (β-interaction effect between priors and visuomotor evidence), referred to as “interaction 
regressor” in our GLM (see Fig. 2). Individual β extraction used a leave-one-out approach to prevent circular-
ity biases in the following post-hoc ROI-based inferences71. To do so, we built–for each participant and each 
prior-by-evidence contrast–a ROI of mPFC by computing a statistical map (p < 0.001, voxelwise) from the whole 
group minus the participant himself, and intersected functional clusters from our GLM with a 6-mm-radius 
sphere centred on individual cluster’s peak voxel using the MarsBaR toolbox (v0.38, http://marsbar.sourceforge.
net).

Psycho-physiological interaction analysis. Having found a brain region (medial prefrontal cortex, 
mPFC) whose activity scaled with participants’ priors across all types of intention, we performed connectivity 
analyses (PPI) to assess (1) whether the mPFC might guide posterior brain regions that filter incoming visuomo-
tor evidence; and (2) whether mPFC coupling with these brain regions changed depending on the type of inten-
tion to be inferred (Basic vs. Superordinate; Non-Social vs. Social). The first principal component of individual 
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time series was extracted from a sphere (6-mm radius) centred on the group-level coordinates of the mPFC 
cluster, in each condition. These “physiological” time series were deconvolved with the canonical haemodynamic 
response function72, multiplied by a parameter encoding the relevant “psychological” contrast (e.g., 1 for priors 
in Basic trials, −1 for priors in Superordinate trials), and reconvolved to form a “psychophysiological interaction” 
(PPI) regressor. Using these PPI regressors, we characterized the brain regions whose connectivity with mPFC 
was stronger in Superordinate than in Basic trials, or stronger in Social than in Non-Social trials, and conversely. 
Group-level statistical inferences were performed with a threshold of p < 0.05 (clusterwise) familywise error cor-
rected across the whole brain (voxelwise threshold: p < 0.001 uncorrected).

Dynamic Causal Modelling (DCM) analysis procedure. Different brain regions were engaged during 
the ‘preparation phase’ depending on the type of intention to be inferred. We performed a Dynamic Causal 
Modeling analysis (DCM) to test whether these ‘preparatory’ brain activities may primarily input the mPFC, 
and–in turn–drive the changes observed in its coupling with the temporo-parietal junction (TPJ) engaged during 
the inference phase.

To perform DCM, we used the following categorical and parametric regressors from each experiment’s GLM 
as driving inputs or bilinear modulators: (1) Preparation regressor (input), (2) Inference regressor (input), (3) 
parametric modulation of the inference regressor by participant’s priors (bilinear modulator), (4) intention type 
(bilinear modulator) (see GLM’s description in Fig. 2). Specifically, the goal of this analysis was to investigate: 
(1) the type of intrinsic connection between regions found during the preparation phase (SMA and dACC) and 
regions engaged during intention-inference (mPFC and TPJ); and (2) whether these intrinsic connections were 
modulated by participant’s priors, intention types, or both. Thus, within each experiment, we first specified 5 
anatomically relevant model families that differed from each other in whether preparation regions and inference 
regions share forward, backward, or bilateral connections, or none. Across these 5 families, connections were 
progressively removed from a fully connected network to a minimal network where only a forward connection 
between preparation and mPFC regions subsisted (Supplementary Information, Figure S4). Intrinsic connec-
tions were selected based on documented anatomical connectivity between the regions involved (“preparation”, 
“inference”, “PPI”), with stronger connectivity profiles and privileged fiber pathways between SMA and mPFC, 
and between mPFC and TPJ30, 31. Within the winning family, all models included bilateral connections between 
mPFC and TPJ, as well as bilateral connections between preparatory regions and mPFC. We then investigated 
modulation of these specific connections by priors (PE), intention type (INT), and/or their interaction (PE*INT), 
resulting in 8 different models within each family. We fitted the 40 resulting models (5{families} × 8{models per 
family}) for each subject and each experiment separately. Then, using a hierarchical Bayesian approach, we com-
pared all the model families against each other by computing their exceedance probability. Here, the exceedance 
probability of a model family is the likelihood that it explains the data better than any other model family included 
in the comparison. We also used Bayesian model comparison to compare all individual models across subjects 
within the winning family. Input’s entry points were kept constant across all model families (see Supplementary 
Information, Figure S4).

References
 1. Csibra, G. Action mirroring and action understanding: an alternative account. In: Sensorimotor foundations of higher cognition: 

Attention and performance XXII (Haggard P., Rossetti Y., Kawato M. eds), pp. 435–480 (Oxford: Oxford UP, 2008).
 2. Chambon, V. et al. What are they up to? The role of sensory evidence and prior knowledge in action understanding. Plos ONE 6, 

e17133 (2011a).
 3. Chambon, V. et al. Mentalizing under influence: abnormal dependence on prior expectations in patients with schizophrenia. Brain 

134, 3725–38 (2011b).
 4. Hamilton, A. F. & Grafton, S. T. Goal representation in human anterior intraparietal sulcus. J Neurosci 26, 1133–7 (2006).
 5. Kilner, J. M., Friston, K. J. & Frith, C. D. Predictive coding: an account of the mirror neuron system. Cogn Process 8, 159–66 (2007a).
 6. Kilner, J. M., Friston, K. J. & Frith, C. D. The mirror-neuron system: a Bayesian perspective. Neuroreport 18, 619–23 (2007b).
 7. Kilner, J. M. More than one pathway to action understanding. Trends Cogn Sci 15, 352–7 (2011).
 8. Ondobaka, S., de Lange, F. P., Wittmann, M., Frith, C. D. & Bekkering, H. Interplay Between Conceptual Expectations and 

Movement Predictions Underlies Action Understanding. Cereb Cortex 25, 2566–73 (2015).
 9. Csibra, G. & Gergely, G. ‘Obsessed with goals’: functions and mechanisms of teleological interpretation of actions in humans. Acta 

Psychol. 124, 60–78 (2007).
 10. Jacob, P. The tuning-fork model of human social cognition: a critique. Consciousness and Cognition 18, 229–43 (2009).
 11. Jacob, P. & Jeannerod, M. The motor theory of social cognition: a critique. Trends Cogn Sci. 9, 21–5 (2005).
 12. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 7, 268–77 (2006).
 13. van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum Brain Mapp. 30, 829–58 (2009).
 14. Ciaramidaro, A. et al. The intentional network: how the brain reads varieties of intentions. Neuropsychologia 45, 3105–13 (2007).
 15. de Lange, F. P., Spronk, M., Willems, R. M., Toni, I. & Bekkering, H. Complementary systems for understanding action intentions. 

Curr. Biol 18, 454–457 (2008).
 16. Domenech, P. & Koechlin, E. Executive control and decision-making in the prefrontal cortex. Current Opinion in Behavioral Sciences 

1, 101–106 (2015).
 17. Zhu, L., Mathewson, K. E. & Hsu, M. Dissociable neural representations of reinforcement and belief prediction errors underlie 

strategic learning. Proc Natl Acad Sci USA 109, 1419–24 (2012).
 18. Coricelli, G. & Nagel, R. Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proc Natl Acad Sci USA 106, 

9163–8 (2009).
 19. Bault, N., Pelloux, B., Fahrenfort, J. J., Ridderinkhof, K. R. & van Winden, F. Neural dynamics of social tie formation in economic 

decision-making. Soc Cogn Affect Neurosci. 10, 877–84 (2014).
 20. Karlsson, M. P., Tervo, D. G. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. 

Science 338, 135–9 (2012).
 21. Jones, J. L. et al. Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 338, 953–6 (2012).
 22. Yoshida, K., Saito, N., Iriki, A. & Isoda, M. Representation of others’ action by neurons in monkey medial frontal cortex. Current 

Biology 21, 249–53 (2011).

http://S4
http://S4


www.nature.com/scientificreports/

1 5Scientific RepoRts | 7: 1278  | DOI:10.1038/s41598-017-01414-y

 23. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. Neural correlates of mentalizing-related computations during strategic interactions 
in humans. Proc Natl Acad Sci USA 105, 6741–6 (2008).

 24. Summerfield, C. & de Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat Rev 
Neurosci. 15, 745–56 (2014).

 25. O’Callaghan, C., Kveraga, K., Shine, J. M., Adams, R. B. Jr. & Bar, M. Predictions penetrate perception: Converging insights from 
brain, behaviour and disorder. Conscious Cogn. 16, 30082–4 (2016).

 26. Geng, J. J. & Vossel, S. Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37, 2608–20 
(2013).

 27. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 
58, 306–24 (2008).

 28. Bzdok, D. et al. Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci. 7, 232 (2013).
 29. van Overwalle, F. & Baetens, K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. 

Neuroimage 48, 564–84 (2009).
 30. Mars, R. B. et al. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas 

participating in different cortical networks. Cereb Cortex 22, 1894–903 (2012).
 31. Mars, R. B., Sallet, J., Neubert, F. X. & Rushworth, M. F. Connectivity profiles reveal the relationship between brain areas for social 

cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci USA 110, 10806–11 (2013).
 32. Pacherie, E. The content of intentions. Mind and Language 15, 400–432 (2000).
 33. Pacherie, E. The phenomenology of action: a conceptual framework. Cognition 107, 179–217 (2008).
 34. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3, 201–15 

(2002).
 35. Domenech, P. & Dreher, J. C. Decision threshold modulation in the human brain. J Neurosci 30, 14305–17 (2010).
 36. Jacquet, P. O., Chambon, V., Borghi, A. M. & Tessari, A. Object affordances tune observers’ prior expectations about tool-use 

behaviors. PLoS One 7, e39629 (2012).
 37. Walter, H. et al. Understanding intentions in social interaction: the role of the anterior paracingulate cortex. J Cogn Neurosci. 16, 

1854–63 (2004).
 38. den Ouden, H. E., Frith, U., Frith, C. & Blakemore, S. J. Thinking about intentions. Neuroimage 28, 787–96 (2005).
 39. Ciaramidaro, A., Becchio, C., Colle, L., Bara, B. G. & Walter, H. Do you mean me? Communicative intentions recruit the mirror and 

the mentalizing system. Soc Cogn Affect Neurosci. 9, 909–16 (2014).
 40. Becchio, C., Cavallo, A., Begliomini, C., Sartori, L., Feltrin, G. & Castiello, U. Social grasping: from mirroring to mentalizing. 

NeuroImage 61, 240–248 (2012).
 41. Ansuini, C., Cavallo, A., Bertone, C. & Becchio, C. Intentions in the brain: The unveiling of Mister Hyde. The Neuroscientist 21, 

126–135 (2015).
 42. Ting, C. C., Yu, C. C., Maloney, L. T. & Wu, S. W. Neural Mechanisms for Integrating Prior Knowledge and Likelihood in Value-

Based Probabilistic Inference. J Neurosci 35, 1792–805 (2015).
 43. Behrens, T. E., Hunt, L. T. & Rushworth, M. F. The computation of social behavior. Science 324, 1160–4 (2009).
 44. Nicolle, A. et al. An agent independent axis for executed and modeled choice in medial prefrontal cortex. Neuron 75, 1114–21 

(2012).
 45. Behrens, T. E., Hunt, L. T., Woolrich, M. W. & Rushworth, M. F. Associative learning of social value. Nature 456, 245–9 (2008).
 46. Hampton, A. N., Bossaerts, P. & O’Doherty, J. P. The role of the ventromedial prefrontal cortex in abstract state-based inference 

during decision making in humans. J Neurosci. 26, 8360–7 (2006).
 47. Summerfield, C. & Koechlin, E. A neural representation of prior information during perceptual inference. Neuron 59, 336–47 

(2008).
 48. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and 

ventral attention systems. Proc Natl Acad Sci USA 103, 13560–13560 (2006).
 49. Burgess, P. W., Dumontheil, I. & Gilbert, S. J. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci 

11, 290–8 (2007).
 50. Carter, E. J., Hodgins, J. K. & Rakison, D. H. Exploring the neural correlates of goal-directed action and intention understanding. 

Neuroimage 54, 1634–42 (2011).
 51. Abu-Akel, A. & Shamay-Tsoory, S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia 49, 2971–84 

(2011).
 52. Canessa, N. et al. The neural bases of social intention understanding: the role of interaction goals. PLoS One 7, e42347 (2012).
 53. Becchio, C., Manera, V., Sartori, L., Cavallo, A. & Castiello, U. Grasping intentions: from thought experiments to empirical evidence. 

Frontiers in Human Neuroscience 6, 117 (2012).
 54. Picard, N. & Strick, P. L. Imaging the premotor areas. Curr Opin Neurobiol 11, 663–72 (2001).
 55. Stadler, W. et al. Predicting and memorizing observed action: differential premotor cortex involvement. Hum Brain Mapp. 32, 

677–87 (2011).
 56. Haroush, K. & Williams, Z. M. Neuronal prediction of opponent’s behavior during cooperative social interchange in primates. Cell 

160, 1233–45 (2015).
 57. Rahnev, D., Lau, H. & de Lange, F. P. Prior expectation modulates the interaction between sensory and prefrontal regions in the 

human brain. J Neurosci. 31, 10741–8 (2011).
 58. Law, C. T. & Gold, J. I. Reinforcement learning can account for associative and perceptual learning on a visual-decision task. Nat 

Neurosci. 12, 655–663 (2009).
 59. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu Rev Neurosci. 23, 473–500 (2000).
 60. Corlett, P. R., Krystal, J. H., Taylor, J. R. & Fletcher, P. C. Why do delusions persist? Front Hum Neurosci 3, 1–9 (2009).
 61. Fletcher, P. C. & Frith, C. D. Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat 

Rev Neurosci. 10, 48–58 (2009).
 62. Chambon, V. et al. Reply: The Bayesian equation and psychosis. Brain 135, e218 (2012).
 63. Ciaramidaro, A. et al. Schizophrenia and autism as contrasting minds: neural evidence for the hypo-hyper-intentionality hypothesis. 

Schizophr Bull. 41, 171–9 (2015).
 64. Eack, S. M., Wojtalik, J. A., Newhill, C. E., Keshavan, M. S. & Phillips, M. L. Prefrontal cortical dysfunction during visual perspective-

taking in schizophrenia. Schizophr Res. 150, 491–7 (2013).
 65. Barbalat, G. et al. Impaired hierarchical control within the lateral prefrontal cortex in schizophrenia. Biological Psychiatry 70, 73–80 

(2011).
 66. Das, P., Calhoun, V. & Malhi, G. S. Mentalizing in male schizophrenia patients is compromised by virtue of dysfunctional 

connectivity between task-positive and task-negative networks. Schizophr Res 140, 51–8 (2012).
 67. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971).
 68. Axelrod, R. The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration (New Jersey: Princeton 

University Press, 1997).
 69. André, J. B. & Day, T. Perfect reciprocity is the only evolutionarily stable strategy in the continuous iterated prisoner’s dilemma. J 

Theor Biol. 247, 11–22 (2007).



www.nature.com/scientificreports/

1 6Scientific RepoRts | 7: 1278  | DOI:10.1038/s41598-017-01414-y

 70. Chambon, V., Farrer, C., Pacherie, E., Jacquet, P. O., Leboyer, M. & Zalla, T. Reduced sensitivity to social priors during action 
prediction in adults with autism spectrum disorders. Cognition 160, 17–26 (2017).

 71. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double 
dipping. Nat Neurosci. 12, 535–40 (2009).

 72. Gitelman, D. R., Penny, W. D., Ashburner, J. & Friston, K. J. Modeling regional and psychophysiologic interactions in fMRI: the 
importance of hemodynamic deconvolution. Neuroimage 19, 200–207 (2003).

Acknowledgements
V.C. was supported by a research grant from the Fyssen Foundation, by ANR-10-LABX-0087 IEC, ANR-10-
IDEX-0001-02 PSL* (program “Investissements d’Avenir”), and ANR-16-CE37-0012-01. C.F., E.P., and E.K. were 
supported by a grant from the Agence Nationale de la Recherche (ANR-ZR81). P.O.J. was supported by a Post-
doctoral Study Grant of the Fyssen Foundation. E.K. was supported by a European Research council Advanced 
Research Grant (ERC-2009-AdG #250106) and a scientific award from the Bettencourt-Schueller Foundation. We 
thank Geeta Reddy for her help in proofreading the final draft of the article.

Author Contributions
V.C., P.D., E.P., E.K. and C.F. designed the experiment. V.C., P.O.J. and G.B. collected the data. V.C., P.D., P.O.J., 
G.B., S.B. and C.F. analysed the data. V.C. prepared the figures. V.C., P.D., E.P. and C.F. wrote the first draft of the 
manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-01414-y
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1038/s41598-017-01414-y
http://creativecommons.org/licenses/by/4.0/

	Neural coding of prior expectations in hierarchical intention inference

	Results

	Behavioural results. 
	fMRI results. 
	Connectivity results. 

	Discussion

	The mPFC encodes the prior-by-evidence interaction. 
	The type of intention changes the coupling between mPFC and TPJ. 
	Mistaking other people’s intentions: the “disconnection” syndrome. 

	Materials and Methods

	Participants. 
	Experimental design. 
	Video clips. 
	Behavioural analyses. 
	Analysis of variance. 
	Logistic model. 

	fMRI acquisition. 
	fMRI data preprocessing. 
	fMRI data analysis. 
	Categorical regressors. 
	Parametric regressors. 

	Region-of-Interest Analyses. 
	Psycho-physiological interaction analysis. 
	Dynamic Causal Modelling (DCM) analysis procedure. 

	Acknowledgements

	Figure 1 Task design.
	Figure 2 Main General Linear Model (fMRI).
	Figure 3 Prior effect (%) as a function of visuomotor evidence (from low to very high).
	Figure 4 Event-related response in the medial prefrontal cortex (mPFC) reflects individual tendency to rely on priors as visuomotor evidence decreases.
	Figure 5 Analyses of functional connectivity between mPFC and TPJ in both experiments.
	Figure 6 Parametric modulation of BOLD activity by participant’s priors during the preparation phase, for each type of intention.
	Figure 7 Dynamic causal modeling of connectivity between preparation and inference regions.




