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Abstract
The electronic, and magnetic properties of the magnetoelectric solid GaFeO3 are investigated

within the generalized gradient approximation including the Hubbard interaction (U) on the lo-

calized d orbitals of iron. It was found that using an on-site U=8 eV describes consistently the

experimental results. The origin of ferrimagnetism was attributed to the cationic site disorders.

The density of states at the iron sites, in a octahedral geometry, show that the occupied eg states

are below the t2g states in contradiction with the crystal-field splitting obtained by a point charge

model. However for the unoccupied states the ab initio data agree qualitatively with the model,

showing the complexity of the electron-electron interaction in GaFeO3. The computed electric po-

larization of the system as a function of the temperature in the linear regime shows a monotonic

decreasing trend. To determine the nature of the magnetoelectric coupling, the computed electric

polarization as a function of the rotation of the magnetization axis indicate that the magnetoelectric

effect observed experimentally could not have been due to a direct coupling between the electric and

magnetic order parameters. Finally the calculated x-ray absorption and x-ray magnetic circular

dichroism spectra for the disordered system is shown to be in good agreement with experiment.
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I. INTRODUCTION

Magnetoelectric materials are multiferroic materials, which have coupled magnetic and

electric ferroic order parameters. This type of coupling in materials was speculated by Curie

[1, 3] as early as in 1894. However, due to the difficulty of combining magnetic and electric

ferroic orders in materials, this field was not pursued further. The first theoretical prediction

of the magnetoelectric coupling was done by Dzyaloshinskii [4] in 1959 for chromium oxide,

and was soon observed by Astrov [5] in 1960.

The cross-play of the ferroic properties has motivated further research into potential tech-

nological applications, especially those where the electric properties are controlled with

magnetic fields or vice versa [6]. Few materials have been reported to show a sizeable

magnetoelectric effect, among which gallium ferrite (Ga2−xFexO3 or GFO) appears to be of

considerable significance due to the coexistence and coupling of a magnetization and electric

polarization at room temperature [7].

The first gallium ferrite crystals, Ga2−xFexO3 with 0.7 ≤ x ≤ 1.4, were synthesized

by Remeika in 1959, and were described as a ferromagnetic-piezoelectric material [8]. The

structural characterization of GFO was determined by Wood, who found the crystallographic

space group to be Pc21n [9]. This was confirmed by Abrahams et al. in 1965, with the

lattice constants a = 8.7512 ± 0.00008 Å, b = 9.3993 ± 0.00003 Å and c = 5.0806 ± 0.0002

Å [10]. There are four different cationic sites occupied by Fe and Ga cations: three irreg-

ular (distorted) octahedral sites (Fe1, Fe2 and Ga2) and a regular tetrahedral site (Ga1)

oriented along the b-axis. The oxygen anions are positioned in six different sites in a double

hexagonal compact arrangement (Fig. 1).

Other studies [11–13] were carried out to probe the magnetic structure and magnetoelec-

tric characteristics of GFO. However, it was in 1965 that Frankel et al. using Mössbauer

spectroscopy, showed a ferrimagnetic order with magnetic moments aligned almost along

the c-axis, instead of a canted antiferromagnetic order [14]. Both cationic sites Ga1 and

Fe1 are antiferromagnetically coupled to the Ga2 and Fe2 sites, which should result in a

net antiferromagnetic configuration for Fe composition x = 1. The presence of ferrimag-

netism without the presence of a canted antiferromagnetic configuration hints at a possible
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FIG. 1. (Color online) GaFeO3 unit cell with Fe, Ga and O atoms in yellow, red and blue respec-

tively.

existence of site disorder. In 2004, Arima et al. found that the GFO preparation method

influenced the magnetic transition temperature, which were likely caused by the change in

the Ga/Fe occupations at the four cationic sites [15]. The origin of ferrimagnetism was

interpreted as follows – the magnetic Fe cations at the Ga1 and Fe1 sites adopt a magnetic

orientation antiparallel to the magnetic cations at the Ga2 and Fe2 sites through a super-

exchange mechanism mediated through the oxygen anions as described in Ref. [16]. Since,

the amount of Fe at the Fe2 and Ga2 sites is larger than that at the Fe1 and Ga1 sites,

there is a net non-zero magnetic moment along the c-axis (parallel to the magnetic moment

on Fe2). They also demonstrated experimentally that the magnetic transition temperature

could be tuned with the Fe/Ga ratio and it increased with Fe content to room temperature

for x ≥ 1.1. In addition, a large linear magnetoelectric effect was measured for GFO single

crystals, which was one order of magnitude larger than the value reported for Cr2O3.

In 2006, Kim et al. reported a large orbital moment in GFO [17]. This was unusual be-

cause Fe in GaFeO3 has a formal valence of +3 (half-filled d5 configuration), for which the

orbital moment is expected to be zero. The mechanism behind the orbital moment could
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help provide a better understanding of the magnetoelectric coupling in this material.

Despite several experimental studies [11–15, 17], very few theoretical reports investigating

the properties of GFO are present in literature [16, 18–21]. It is therefore important to ask

what is the most appropriate method for the determination of the electronic structure of a

large band-gap magnetic insulator? There are of course many accurate methods, such as

the dynamical meanfield theory(DMFT) [22], or DMFT starting form a GW calculation, the

socalled DMFT+GW [23], but those methods are computationally prohibitive for materials

with many atoms per unit cell. One of the most interesting method, which provides quanti-

tative results, without the high CPU cost, is the so called LDA+U method [24]. Indeed, it

has been shown that this method is capable of providing accurately the electronic properties

of materials with localized orbitals, such as transition-metal oxides, without high compu-

tational costs [24–26]. The only issue with this method, is how to choose the Hubbard U

parameter for a material? Anisomov and coworkers [24–26] have shown that the U parameter

can be determined for each material by constrained DFT calculation. In general, for oxides

the values of U are shown to be large, but nevertheless can reproduce photoemission, BIS

[25], valence bands of oxygen Kα x-ray emission, and X-ray photoemission [26]. Other cal-

culations have shown that for CoO not only the band gap and the spin and orbital moments

are reproduced , but also the magnetic-anisotropy energy and the orientation of the mag-

netic moment of CoO under strain caused by silver or MnO substrates [27]. However, Rödl

and coworkers [28] claim that may be smaller values of U should be used for oxides. They

showed that for a smaller value of U , the LDA+U is in agreement with a GW calculation

when starting from hybrid HSE functional (GW+HSE), provided that the LDA+U band gap

is increased by hand (the so-called scissor operator) to achieve agreement with GW+HSE

results. However, the latter results are not in better agreement with experiment compared

with the LDA+U results for higher values of U in the literature. One can indeed check that

the results of photoemission of NiO of Refs. 25 and 26 are in much better agreement with

experiment than those of Ref. 28. Since we don’t want to adjust the band gap of GFO by

hand, we have chosen in this paper to follow the prescription of Anisimov et coworkers and

use a higher value of U to describe the band gap and the magnetic properties of GFO. In

addition, our previous LDA+U results [18] with higher value of U described correctly the

band gaps and the magnetic properties of GFO with excess iron up to 40%. Nevertheless,

the results of Rödl and coworkers are interesting, and might suggest to combine the GW
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method and LDA+U to describe better the short and long range exchange and correlation

potential as already performed in the GW+DMFT method [23].

Early density-functional theory (DFT) calculations carried out on the ideal structure

revealed a stable antiferromagnetic state with zero net spin and orbital moments [29]. Han

et al. also showed that the energy difference between an ideal GFO structure and a struc-

ture with an Fe interchanged with the Ga2 site can be as small as 1 meV per unit cell,

thereby implying that this kind of site disorder is highly probable and in accord with the

presence of Fe at the Ga2 sites reported in experiments [29]. With the help of first-principle

calculations, Roy et al. showed that the site disorders are not favored in the ground state

and that available thermal energy at room temperature (kT ∼ 25 meV) is of the order of

the energy difference for the Fe2-Ga2 site disorder, hinting towards the role of thermally

induced defects [30]. The same group calculated the electronic structure and the Born

effective charges, which showed a largely ionic character of the Ga/Fe-O bonds and a lack

of significant anomaly in the Born effective charges [31]. In 2012, Stoeffler calculated the

electric polarization of the system to be −25µC/cm2, an order of magnitude larger than

the value estimated by Arima et al. [15, 32] along the b-axis. In the same year, Hatnean et

al. reported a weak dependence of the Ga/Fe disorder and the magnetic transition temper-

ature on the growth conditions, in contrast to a strong dependence reported by Arima et

al. [15, 33]. They also reported that the disorder affected magnetic excitations, evidenced

through the damped spin waves.

To elucidate the above magnetoelectric properties of bulk GFO, we performed ab initio

studies, under different approximations, including spin-orbit coupling, to probe the elec-

tronic, magnetic and magnetoelectric properties for the iron concentration, x = 1. Our

analyze of the electronic properties for the structure with cationic site disorders provided

the origin of ferrimagnetism and a good comparison with the experimental results by Hat-

nean et al. [33]. Our investigation of the magnetoelectric effects in the ideal structure by

changing the direction of the magnetic field shows that the coupling between magnetiza-

tion and the electric polarization is weak contrary to the experimental results. Finally the

crystal-field splitting is understood and analyzed in terms of our ab initio calculations and

a point charge model. Our calculations for the x-ray absorption spectra (XAS) and x-ray

magnetic circular dichroism (XMCD) spectra for a disordered system for comparison with
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the spectra obtained by Kim et al. [17] showing that the disordered structure used is correct.

Our paper is organized as follows, in the second section we briefly describe the details of

our DFT calculations used to obtain the electronic and magnetic properties of GFO. In the

third section we give first the electronic and magnetic properties of ideal GFO and then the

same properties with site disorder to determine the origin of the ferrimagnetism and at the

end of this section we address the crystal-field splitting and compare our ab initio results

to a point charge model. In the fourth section we analyze the magnetoelectric properties of

GFO and their temperature dependence in the ideal structure by changing the direction of

the magnetic field. In the fifth section we present our calculations for the XAS and XMCD

spectra for a disordered system and compare them to the experimental spectra of Kim et

al. [17].

II. METHOD OF CALCULATIONS

Our DFT calculations were carried out using the VASP package [34, 35]. We used

the projector augmented wave basis set [36, 37] and the exchange-correlation functional

was described using the local density approximation (LDA) as parameterized by Perdew

and Zunger [38], and the generalized gradient approximation (GGA) as parameterized by

Perdew, Becke and Ernzerhof [39, 40]. We used k-point mesh of 7 × 7 × 9 in the Brillouin

zone, which is required to converge the ground state energy and the magnetocrystalline

anisotropy energy to within 10 µeV [18]. For the plane wave cut-off, a value of 550 eV

was used and the convergence criterion for the electronic self-consistent loop for the total

energy was set to 10 µeV. Both LDA and GGA underestimate the energy band gap and

magnetic moments of GFO as compared to the experimental values. This failure of LDA

and GGA is known in correlated systems like transition metal oxides [41–43]. To accurately

account for the strong on-site Coulomb interaction among the localized Fe 3d electrons, we

used the rotationally invariant approach introduced by Lichtenstein et al., represented by

the Hubbard-like term U and the exchange term J [44]. This led to an improvement of

the ground state properties of GFO. Based on an earlier theoretical study, the value of J

was set to 0.9 eV [18]. In this work, two specific values of U were used, U = 4 and 8 eV,

chosen so as to probe the ground state properties as well as the hybridization of the localized

orbitals with the remaining delocalized states. The spin-orbit coupling (SOC) was included

6



in some of our calculations as implemented in VASP to improve the magnetic properties of

the system [45] and to calculate the x-ray magnetic circular dichroism.

To study the origin of ferrimagnetism in GFO, the ionic occupancies provided by Hatnean

et al. were used [33]. In addition, a simple predictive model was developed that allowed us

to compute the net spin and orbital magnetic moments in a disordered structure with the

help of the cationic occupancies. The predictions of this model were then compared with

the values obtained by the ab initio calculations and experiment.

For the crystal-field analysis, the global frame `,m-site-projected basis set were rotated

to the local octahedral or tetrahedral frame of reference to better understand the symme-

tries of the eg and t2g sub-orbitals. The rotation was first defined directly using the Euler

angles and the real spherical harmonics (also known as the cubic harmonics) and then

implemented in the VASP code. To study the effect of crystal-field and hybridization on the

eg-t2g splitting on the octahedral Fe sites, both values of U were used. The eg-t2g splitting

was modeled using a point-charge model, where the potential of the oxygen ligands was

expanded in terms of spherical harmonics in the octahedral center. Such a model allowed us

to determine the effect of the ligand on the splitting of iron 3d states. The diagonalization

of this matrix, using the cubic harmonics basis set, gave us the eg-t2g splitting which we

discussed and compared to our ab initio calculations.

The electric polarization of GFO was computed as implemented in the VASP code [46–51].

The preliminary calculations were done with the aim to study the temperature dependent

electric polarization on a path between the experimental positions at 4 K and 230 K pro-

vided by Arima et al. [15], and to recover the polarization calculations done previously

[32]. This initial calculations were extended to probe the magnetoelectric effect, where the

magnetization axis was rotated for different angles along the c-b plane.

7



III. ELECTRONIC AND MAGNETIC PROPERTIES OF GFO

A. Ideal bulk GFO

In this section, we present the electronic and magnetic properties of ideal GFO. The

lattice parameters and the atomic positions were based on the values reported by Arima et

al. [15], which were obtained with neutron diffraction studies at 4 K. The values obtained at

230 K were used in the later magnetoelectric studies. The lattice parameters are a = 8.719

Å, b = 9.368 Å and c = 5.067 Å. The atoms were not relaxed since the parameters were

obtained from experiment. Previous calculations have shown that atomic relaxations do not

change significantly the experimental positions [18]. Two values of U were used for the Fe

3d orbitals: 4 eV and 8 eV, for both LDA and GGA, to improve the ground state properties

like the energy band gap and magnetic moments. The calculations including the SOC

does not significantly affect the physical properties of interest, but allows us to compute the

orbital magnetic moments and XMCD and are of importance for the magnetoelectric effects.

To understand the electronic structure, we plot the total electronic density of states

(DOS) in Fig. 2. When the value of U under both LDA and GGA is increased, the Fe 3d

orbitals become more localized and the upper and lower Hubbard bands are split further.

This is in accordance with the Hubbard model, where higher values of U tend to localize

the d orbitals. Increasing the U value beyond 8 eV will eventually produce the electronic

structure of an isolated Fe atom. Also, it should be noted that under both LDA and GGA,

though the value of U = 8 eV gives good values of the energy band gap and the spin magnetic

moments, the hybridization of the Fe 3d orbitals with the 2p orbitals of the neighboring O

atoms is drastically reduced and may not be physical. Since no photoemission data are

available to compare with our DOS, we used the value of U that best describes the observed

properties like the energy band gap and the magnetic moments, i.e. U = 8 eV. The values

for these properties are tabulated in Table I.

It can be seen that value of U = 8 eV for LDA+U and GGA+U yields an energy band

gap in good agreement with experiment and an improvement in the prediction of the mag-

netic moment for the Fe2 site. However, the magnetic moment at the Fe1 site does not

agree with experiment. As is shown in the subsequent section, this discrepancy arises due
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FIG. 2. (Color online) GGA+U and LDA+U calculated total DOS for GFO for U = 4 and 8 eV.

Property Expt. LDA GGA

Hubbard U (eV) 4 8 4 8

Energy band gap (eV) 3.2 [52] 1.5 3.0 2.0 3.2

Spin magnetic moment Fe1 (µB) -3.9 [15] -4.02 -4.41 -4.10 -4.44

Spin magnetic moment Fe2 (µB) 4.5 [15] 4.02 4.41 4.10 4.44

Orbital magnetic moment (µB) - ±0.027 ±0.020 ±0.022 ±0.017

TABLE I. Energy band gap (in eV) and spin and orbital moments of the Fe cations in GFO for

different U in LDA+U and GGA+U , compared to experiment.

to the partial iron occupancy at the Fe1 site, which was estimated experimentally to be

84%. Assuming a spin moment at 84% of −4.44 µB gives us a value of −3.73 µB, which

is closer to experiment. In addition, we notice that the orbital moments decrease with an

increase in the value of U . This is not surprising as the higher values of U localize the Fe 3d

electrons more, thereby reducing their hybridization and thus, their orbital moments. Kim
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et al. [17] had performed X-ray magnetic circular dichroism (XMCD) experiments at the Fe

L23-edges of GFO and found a net orbital magnetic moment of 0.017µB at a temperature

of 190 K. Assuming that the individual spin and orbital magnetic moments behave as their

total magnetization curves, we estimate the net orbital magnetic moment to be 0.034 µB at

4 K. They estimate their Fe occupancy at the Ga1, Ga2, Fe1 and Fe2 sites to be 0, 0.35,

0.825 and 0.825 respectively. Assuming that the Ga1 and Ga2 moments are parallel to the

Fe1 and Fe2 sites respectively, we obtain net orbital moments of 0.007 µB and 0.006 µB

for the LDA+U and GGA+U respectively, which are much smaller than experiment. This

level of discrepancy is known to be present in LDA/GGA methods and there is no general

solution to improve the theoretical orbital moments [53].

B. Origin of Ferrimagnetism in GFO

It is important to point out that the net magnetization obtained theoretically in GFO is

zero and hence, we always obtain a perfect antiferromagnetic system. To explain the origin

of ferrimagnetism, we performed ab initio calculations to simulate cationic site disorder

effects in the smallest possible unit cell. There are three ways that a material with an

antiferromagnetic ordering may be ferrimagnetic:

1. The individual magnetic moments are not the same on the two antiferromagnetic sites,

thereby giving a net non-zero magnetic moment. Such behavior is seen in magnetite,

Fe3O4, where there are two Fe states, Fe+2 and Fe+3, which have different moments,

and thus give rise to a ferrimagnetic system [54]. In the case of GFO, the Fe ionic

state on the cationic sites is Fe+3.

2. The individual magnetic moments are canted towards a particular direction and give

rise to a non-zero magnetic moment along that direction. GFO was thought to be

ferrimagnetic due to this reason [12, 13], but the experimental observation by Frankel

et al. [14] showed that the easy axis of magnetization is along the c-axis.

3. Site disorder in an antiferromagnetic system, where a magnetic atom is replaced with a

non-magnetic atom, would leave an uncompensated magnetic moment and the system

appears to be ferrimagnetic. Experimental observations on GFO indicate that the Ga
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and Fe atoms tend to swap places with a preference for the Ga2 site [15]. This might

produce an uncompensated moments and hence a ferrimagnetic ground state.

To explain the origin of ferrimagnetism in GFO, we investigated the third possibility

concerning site disorder. This is not an easy task because each experimental paper on

GFO describes different Fe occupancies at the cationic sites, as can be noticed in the few

examples shown in Table II. Moreover, given a set of occupancies, it is not computationally

practical to consider larger supercells or even every possible atomic arrangement in the unit

cell. However, all experiments show that there is a higher preference of Fe occupying the

Ga2 site over the Ga1 site. This could be due to the fact that the Ga1 site is tetrahedral,

which would require further investigation to confirm. In addition, the Fe occupancies at

the Fe1 and Fe2 sites seem to be identical in all cases. For these reasons, we consider

exactly one such case, where the Fe occupancies are as those provided by Hatnean et al.

[33], with Fe@Ga1 = 0 and are possible to simulate in the same cell as earlier. There are

obviously many more cells that provide the same occupancies, but those were not considered.

Arima et al. [15] Hatnean et al. [33] Kim et al. [17]

Fe@Fe1 0.84 0.75 0.825

Fe@Fe2 0.83 0.75 0.825

Fe@Ga1 0.10 0.00 0.000

Fe@Ga2 0.24 0.50 0.350

TABLE II. Different Fe occupancies at cationic sites in GFO from different experimental data.

Before we present our results, it might be important to first understand the magnetic

coupling between the different cationic sites. Given that the Fe1 and Fe2 sites are antiferro-

magnetically coupled, we have two possible cases for the coupling between the Fe sites and

the Ga sites:

1. Case 1: Fe1 is antiferromagnetically coupled to Ga1 and Fe2 is antiferromagnetically

coupled to Ga2.

2. Case 2: Fe1 is antiferromagnetically coupled to Ga2 and Fe2 is antiferromagnetically

coupled to Ga1.
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FIG. 3. (Color online) Unit cell simulating a disordered configuration to understand the origin of

ferrimagnetism in GFO.

A calculation using the occupancies provided in Table II and the magnetic moments

for both cases provides us with a net magnetization. Comparing this with the magnetic

moments obtained in the corresponding experiments [15, 17, 33] indicates that the second

case is more likely. Using the occupancies as reported by Hatnean et al. and the magnetic

moments of 4.5 µB for Fe, we get the magnetic moments at the Fe1, Fe2 and Ga2 (since

the occupation at Ga1 is zero) as -3.375, +3.375 and +2.250 µB, respectively, as compared

to the corresponding experimental values of -4.0, +3.5 and +2.7 µB. It should be noted

that this calculation helps understand the origin of ferrimagnetism in GFO intuitively and

does not consider hybridization effects and exchange mechanisms beyond those mentioned,

and hence may not be accurate. The disordered unit cell that was used in our ab initio

calculation is given in Fig. 3. Table III shows our average site magnetization results with ab

initio techniques and compares them to the experimental and the simple calculation results.

The table shows that the ab initio super cell site disorder calculations agree relatively

well with experiment. Note that the experimental values are different from those in table I
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U = 4 eV U = 8 eV

mS/morb (µB) Expt. [33] Disorder Average Disorder Average

mS@Fe1 -4.0 -3.01 -3.09 -3.34 -3.38

morb@Fe1 -0.017 -0.017 -0.012 -0.013

mS@Fe2 3.5 3.08 3.09 3.35 3.38

morb@Fe2 0.018 0.017 0.014 0.013

mS@Ga1 0.0 0.0 0.00 0.00 0.00

morb@Ga1 0.0 0.00 0.00 0.00 0.00

mS@Ga2 2.7 2.05 2.06 2.24 2.26

morb@Ga2 0.011 0.011 0.009 0.008

TABLE III. Ab initio spin (mS) and orbital (morb) averaged magnetic moments per site for a disor-

dered GFO (Disorder) compared with experiment and simple calculation based on site occupations

(Average) as given in the middle column of table II.

since they are from different experiments. We have a disagreement of −0.665 µB and 0.457

µB for the magnetic moments on the Fe1 and Ga2 sites. However, the magnetic moment

on the Fe2 site is in good agreement with experiment as well as the net magnetization,

which differs from experiment by −0.619 µB per unit cell. Moreover, the simple calculation

scheme described earlier is a very good indicator of the site magnetization as compared to

the ab initio results. These results are similar to those obtained by Roy et al. [19], who

predicted that the individual Fe1 and Fe2 moments do not change by a large amount with

respect to the perfect structure. However, they observed that the Fe ion at the Ga2 site

has a relatively lower moment of 4.11 µB, in contrast to our observed moment of 4.486 µB.

The corresponding individual moments of the Fe ion at the Ga2 sites based on experimental

average values of 2.7 µB are 5.4 µB, which does not seem likely considering that the maxi-

mum magnetic moment Fe can possess is 5 µB. The same is true for the value of −4.0 µB

reported for the Fe1 site, which corresponds to individual moments of −5.33 µB based on

the iron occupancy of 0.75. The net magnetic moment obtained is about 10 µB per unit cell,

and thus, we infer that the origin of ferrimagnetism in GFO is due to cationic site disorders.

When we compare the ground state energies between the ideal structure in Fig. 1 and the
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disordered structure in Fig. 3, we obtain a difference of 231 meV (∼ 2700 K), which is lower

than the sum of the predicted values of 25 meV and 400 meV for the Fe2-Ga2 and Fe1-Ga2

disorders respectively as reported by Roy et al. [19].

FIG. 4. (Color online) Comparison of the total DOS for the ideal and disordered structures of GFO

for U= 8 eV. Similar results are obtained for U=4 eV.

To study the changes in the electronic structure we plot the total DOS for the ideal

and disordered structures in Fig. 4. The figure shows that the two systems are similar

in their electronic structure and energy band gaps. Additionally, our calculations indicate

that the orbital moments for Fe remain parallel to the corresponding spin moments with

a magnitude of 0.017 µB. Thus, the net orbital magnetization in the system is 0.034 µB

with a direction parallel to the next spin magnetization. Since we considered Fe at the

octahedral Fe1, Fe2 and Ga2 sites only, the similarity of DOS and magnitudes of the spin

and orbital magnetic moments indicate that the octahedral sites all behave similarly. It

might be of interest to study the electronic structure of Fe at the tetrahedral Ga1 site.
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Another point that should be made is that the ions were not relaxed and the net forces on

the individual atoms increased by a factor of 3 as compared to those in the ideal structure.

Performing ionic relaxations might reduce the ground state energy of the disordered system

to the point where the thermal energy (∼ 1000-1500 K) available during synthesis of the

experimental samples might be sufficient to cause cationic disorders. These cationic site

disorders are statistical and might require larger supercells and more swappings, leading

to impractical computational requirements. These are the reasons why ionic relaxations or

further investigation of different site disorders were not carried out.

C. Crystal-Field Analysis – Theory, Implementation and Results

Crystal-field theory helps describe the splitting of the electron orbitals of an atom, usu-

ally a d or f cation, in the presence of a Coulomb potential generated by neighboring

atoms, usually anions. This model has been very successful in analyzing d and f splitting

for different magnetic orders and when combined with molecular orbitals, has successfully

explained spin crossover phenomena, where the energy gap of the splitting can be of the

order of the pairing energy between the electrons [55]. In GFO we have two types of crystal-

field environments in the system – octahedral and tetrahedral. An Fe ion at the center

of these environments would be influenced by six and four O anions, respectively, and the

splitting of the degenerate 3d orbitals of Fe would reflect this interaction. In the case of

an octahedral environment, the electrons of the anions are closer to the the dz2 and dx2−y2

orbitals of Fe and away from the dxy, dyz and dxz orbitals. The strong electron-electron

repulsion would lead to a splitting of the five d-orbitals into two sub-shells, called t2g,

consisting of the dxy, dyz and dxz orbitals, and eg consisting of the dz2 and dx2−y2 orbitals,

with the former being lower in energy due to a lower electron repulsion compared to the

latter. For a tetrahedral environment, the eg orbitals tend to be lower in energy than

the t2g orbitals due to their relative proximity to the anion p-orbitals. This effect which

is purely due to the crystal geometry and can be schematically visualized as shown in Fig. 5.

Two important details should be pointed out here, firstly, that the eg and t2g orbitals are

described using real spherical harmonics, also known as cubic harmonics, and secondly, that
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FIG. 5. (Color online) Crystal-field splitting of 3d orbitals in octahedral and tetrahedral fields

these are defined through their m quantum number, i.e. the eigenvalue of the L̂z operator,

and depend on the coordinate system. The second point is visualized in Fig. 5 in the refer-

ence frame. If the coordinate system is not as shown in the figure, up to a rotation of π/2,

then the d-orbitals obtained would be a superposition of the maximally split sub-orbitals

and can not be clearly defined as eg and t2g. To obtain the effect of the crystal-field on

the eg and t2g DOS we need either to rotate the real spherical harmonics from the global

coordinate system to the local one or make a passive rotation of the coordinate system

to align the anions appropriately. We thus have a rotation matrix for the real spherical

harmonics analogous to the rotation matrix for the Cartesian coordinate system. Using ab

initio techniques, there are at least two ways this can be achieved.

In the first approach, we rotated the crystal structure completely for a cation under study,

wherein the wave functions obtained would describe the crystal-field splitting on the given

cation appropriately. Such an approach can be used effectively for certain cases only, for

example, if there is one cation in a molecular system. In general, however, a crystal does

not consist of only one cation surrounded by anions in a given crystal geometry, and thus,

the rotations that need to be performed for different cations might be many and different.

In the second approach, we rotated the projected spherical harmonics of the cation under
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study. This can be done during the same self-consistent cycle and is computationally faster

since only the local orbitals are rotated. We have implemented this feature VASP, the details

of which are presented in Appendix B). We present below our results for the octahedral

cationic Fe1 site in GFO.
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FIG. 6. (Color online) Crystal-field effect on the Fe1 eg (black) and t2g (red) DOS using GGA+U

method for U= 4 eV (upper panel) and 8 eV (lower panel).

The crystal-field analysis was performed on all the Fe sites in GFO. Fig. 6 shows the

d-projected density of states of an Fe1 atom in GFO, which are similar to all the other Fe

sites. The SOC was included in the calculations, which were done using the GGA functional

with the Hubbard U = 4 (top) and 8 eV (bottom). The eg and t2g orbitals are shown in

black and red, respectively. We observe that for both values of U , the occupied 3d states

are split clearly with the eg orbitals lower in energy than the t2g. The splitting between

the unoccupied states seem to depend upon the value of U , and thus the hybridization,

with the eg orbitals slightly lower in energy than the t2g for U = 8 eV, and the t2g orbitals

clearly lower in energy for U = 4 eV. Since the Fe1 site (and Fe2 and Ga2 sites as well)

is an octahedral site, the results obtained for the occupied states contradict the splitting

expected for octahedral sites.
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FIG. 7. (Color online) Effect of SOC and U on the the spin polarized (positive values spin up and

negative values spin down) Fe1 eg (black) and t2g (red) DOS

Using the crystal-field splitting, it is possible to probe the filling of d-orbitals and un-

derstand why Fe in GFO possesses a non-zero orbital magnetic moment and why the spin

magnetic moment of Fe is less than 5 µB. To do so, we plot the (`,m, s)-projected DOS

of the 3d electrons of the same atom in Fig. 7. Also shown are the effects of the SOC

on the DOS. This is an Fe1 site which is why the majority spins are of spin-down nature.

Moreover, there are some spin-up states, mainly of t2g character, which belong to the neigh-

boring oxygen atoms. These states oppose the moments on the Fe sites and create a small

non-zero orbital moment and reduce the spin magnetic moment from its maximum value of

5 µB. This would indicate that the bonding between the Fe and O ions in GFO has a par-

tial covalent character. As a result of this covalent character, certain spin-polarized states

should be present on the oxygen ions. Our calculations indeed agree with this prediction,

indicating small spin magnetic moments between 0.010 µB and 0.087 µB for U = 4 eV, and
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between 0.008 µB and 0.065 µB for U = 8 eV on the oxygen atoms. These values are more

affected by the level of hybridization controlled by U than the SOC. We thus conclude that

increasing the value of U drives the Fe system to a +3 state and that the bonding between

the Fe and O atoms is partially ionic. Furthermore, our results show that this bonding is

not influenced by the SOC, with the exception of creating a non-zero orbital moment. The

conclusions drawn here support the calculations done by Ibrahim and Alouani [18], where

they obtained Bader charges of +1.63 to +1.73 on the Fe atoms depending on U , instead of

+2 as expected for an ionic crystal, and concluded a partial ionic bonding.

To understand the mechanism causing a tetrahedral-type splitting in an octahedral envi-

ronment, a point-charge model was developed, in which the effects of hybridization can be

fully neglected. Such a model would help us understand the eg-t2g splitting obtained for the

two different values of U . Qualitatively, the electrons in the model can only interact through

the Coulomb interaction with the neighboring negatively charged oxygen ions. With this

requirement in mind, we assumed ionic charges of +3 on the central atom and −2 on the

neighboring atoms forming the octahedron. For maintaining consistency between the ab

initio calculation and the point-charge model, the octahedron was oriented in the same way

as in the rotated frame of reference, i.e. with the octahedral arms aligned maximally along

the axes. We then rewrite the Coulomb potential felt at the central atom in terms of the

spherical harmonics as [56],

V (r) =
6∑
i=1

qi
|r −Ri|

= 4π
6∑
i=1

qi

∞∑
`=0

∑̀
m=−`

(−1)m
1

2`+ 1
Y−m` (r̂)Ym` (R̂i)

r`<
r`+1
>

, (1)

where qi = Ce2 is an effective charge of electron-electron interaction, which describe the

interaction of the ligand effective charge of Ce with an electron of charge e in the 3d. Here

we set the effective charge on the neighboring ligand atoms to two, which corresponds to

that of O2− in GFO. The Ym` is the spherical harmonics, and Ri is the distance vector

connecting the central atom to the ligand i. Note that the local reference frame is centered

on the iron atom and its axes are along the ligands if the octahedron is perfect. Since the

octahedron is deformed, the local frame is optimized to reduce the angles betweenRi and the

corresponding axis (see appendix A for details). The spherical angles θ and ϕ of the vector

Ri are then obtained in this optimized reference frame to compute the cubic harmonics

Ym` (R̂i). Using the above expression, we can calculate the matrix elements Mm,m′′ of the
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ligand’s potential between the central iron 3d orbitals as,

Mm,m′′ = 〈φ`=2Ym`=2|V |φ`=2Ym
′′

`=2〉

= 4π
6∑
i=1

qi
∑
`,m′

(−1)m+m′

2`+ 1
R`
i Ym

′

` (R̂i)

∫
Y−m2 (r̂)Y−m′

` (r̂)
r`<
r`+1
>

(φ2(r))
2 Ym′′

2 (r̂) dr,

(2)

where φ2(r) is the radial function corresponding to the Fe 3d orbitals. The above expression

contains a product of three spherical harmonics and their integration, which can be simplified

using the Gaunt coefficients, which in terms of the Wigner 3-j symbols are,

Mm,m′′ =5
6∑
i=1

qi
∑
`,m′

(−1)m+m′

√
4π

2`+ 1

 2 2 `

0 0 0

 2 2 `

m′′ −m −m′

 Ym′

` (R̂i)

×

 1

R`+1
i

Ri∫
0

r`+2(φ2(r))
2dr +R`

i

∞∫
Ri

(φ2(r))
2

r`−1
dr

 ,

(3)

where

 j1 j2 j3

m1 m2 m3

 are the Wigner 3-j symbols linked to the Clebsch-Gordon coefficients

as,  j1 j2 j3

m1 m2 m3

 =
(−1)j1−j2−m3

√
2j3 + 1

〈j3,−m3|j1,m1; j2,m2〉. (4)

The Wigner 3-j symbols are used for their symmetry properties, which allow us to restrict

the summation over `,m′ in Eq. (3) to ` = 0, 2, 4 and m′ = m′′ −m.

Eq. (3) can be computed directly using the atomic 3d wave function φ2 of Fe as obtained

by an all electron atomic program, however in our case since the crystal field is an empirical

method used here only to understand our ab initio calculations, we rewrote the matrix

elements in terms of the hydrogen-like radial function for the 3d orbitals, corresponding to

the 3d orbitals of Fe. Instead of using the atomic number Z = 26 we used an effective

Z? = 6.25 as suggested by the so called Slater’s rules [57]. According to Slater, electrons

within the same group of 3d electrons shield 0.35 charge, whereas electrons with lower orbital

groups shield 1 charge. For iron the total shielding experienced by a 3d electron is 19.75

charges, which led to Z? = 6.25. The electrons in the higher 4s orbital do not contribute

to the shielding of the nucleus of iron. The use of the hydrogenoid wave function led to the
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following matrix elements:

Mm,m′′ =
Z?

216a0

6∑
i=1

qi
∑
`=0,2,4

∑
m′

(−1)m+m′Ym′

` (R̂i)

√
4π

2`+ 1

 2 2 `

0 0 0

 2 2 `

m′′ −m −m′

 ,

×
(

1

S`+1
i

γ(l + 7, Si) + S`i Γ(6− l, Si)
)

(5)

where Si = 2Z?Ri

3a0
, and where a0 = 4πε0

me2
is the Bohr radius. Here γ(l, x) and Γ(l, x) are,

respectively, the lower and upper incomplete gamma functions. They can be calculated

recursively as γ(l, x) = −x`−1e−x+(l−1)γ(l−1, x) and Γ(l, x) = x`−1e−x+(l−1)Γ(l−1, x)

starting from γ(1, x) = 1− e−x and Γ(1, x) = e−x,

For the 3d orbitals, we have five m values and thus, M is a 5× 5 matrix. Note that the

spin degrees of freedom are not included. This is justified by the fact that Fe in GFO has

essentially a +3 ionic charge and a large band gap, where the states of one spin interact

mainly among themselves than with the other spin states. However, if one wishes to include

the spin quantum number and the SOC, it can be done using a 10 × 10 matrix, where the

off-diagonal 5 × 5 matrices would contain the couplings (exchange, SOC) between the two

spin states.

Before diagonalizing the matrix M , we made a unitary transformation from the spherical

harmonics to cubic harmonics, so that the ensuing eigenvectors are directly expressed as a

linear combination of eg and t2g states. We set the order of the cubic harmonics basis as

t2g (xy, yz, and zx) and then eg (3z2− r2, x2− y2). The new matrix to diagonalize U †MU

is directly in the cubic harmonics basis set, where U is the unitary transformation between

the cubic and spherical harmonics.

The results were calculated for the same Fe1 atom as described in Fig. 6, and are plotted

in Fig. 8 together with the weight of each eigenvector. The figure shows that there is

very low mixing of the eg and t2g orbitals. We obtain a similar behavior as obtained for

the unoccupied spin-up states using the ab initio splittings, with the t2g orbitals lower in

energy than the eg orbitals, but not for the occupied spin-down states. Since the point-

charge model is essentially based on unscreened Coulomb interaction with point-like ionic

neighbors without hybridization, the crystal-field splitting of each t2g or eg orbital arises

only from the distorted octahedral environment. There are at least two inferences we can
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FIG. 8. (Color online) Point-charge model crystal-field splitting of the 3d states of iron in the FeO6

octahedron environment in GFO into eg and t2g states. The different colors represent the weight

in percent for each of the basis functions of the eg and t2g symmetries. The total weight for each

state adds to 100%.

draw from the results obtained in this section,

• The conventional meaning of eg and t2g orbitals is valid because the crystal-field split-

ting is in agreement with what is expected (Fig. 5). However, even though it repro-

duces the splitting of the spin-up DOSs, it does not agree with eg and t2g splitting of

the occupied spin-down of the Fe1 atom (see Fig. 6).

• Although the octahedral environment is so distorted, it resulted only on slight splitting

of the two eg and three t2g as seen in Fig. 8. However the crystal-field splitting between

the eg and t2g of 1.6 eV is in agreement with the ab initio results for the empty states

of 1 eV (for U = 4 eV) but less with the DOSs for U= 8 eV.

While the first point seems right, it is possible to distinguish clearly the eg and t2g orbitals

of the unoccupied states of the ab initio calculation of 1 eV (for U = 4 eV) as well as the

point-charge model 1.6 eV, due to the low mixing of the orbitals. However for the occupied

spin-down states, the point charge model failed completely, as it can not explain how the eg

states become lower than the t2g. One can not just assume that the spin-up and spin-down

DOSs are rigidly split by 8 eV (for U= 4 eV) and 11 eV (for U= 8 eV) by the exchange
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interaction. The hybridization between the oxygen p states and the iron eg and t2g is key

for understanding the physics of GFO beyond the point-change model.

As indicated above, the second point is less intuitive. Even though the Fe central atom

is displaced away from the center causing a high amount of distortion of the octahedral

environment, as was first shown in an earlier work [18], it resulted only in small splitting

and a small mixing of the eg and t2g orbitals.

The point-charge model is not an exact model and can only provide a qualitative under-

standing of the crystal-field splitting for systems which are mainly ionic and the hybridization

between the central atom orbitals and neighboring ligands is low. As the amount of hy-

bridization increases (lowering of U), the model is less appropriate to study the orbital

splitting behavior, since the neighboring ions can no longer be considered as fully ionic or

point-charge like. However, the point-charge model remains useful and is often used for

estimating the splitting of the d or f orbitals.

IV. MAGNETOELECTRIC PROPERTIES

GFO has been known as a ferrimagnetic and ferroelectric material, i.e. it contains a

spontaneous magnetization and a spontaneous electric polarization. Additionally, these two

ferroic orders have been known to be coupled to one another [8, 11–13, 15, 58]. However,

a theoretical understanding of the mechanism driving this coupling is missing and until

recently, even the electric polarization of the GFO system was not computed using ab initio

techniques [31, 32]. With an aim of understanding the coupling between the magnetic and

electric ferroic orders, we performed ab initio calculations for the electric polarization and

its dependence on the magnetization direction as implemented in VASP [46–51].

A. Temperature Dependence of Electric Polarization

To simulate a temperature dependence, we assume a linear interpolation of the atomic

positions and lattice vectors between those at 4 K and 230 K. The initial (at 4 K) and final

(at 230 K) positions were measured with neutron diffraction patterns by Arima et al. and

are given in Table IV. It can be observed from this data that there is very little change in
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the atomic positions and the lattice vectors, for example, change in volume is less than 0.2

%, and thus, we can work in the linear regime between these temperatures.

To simplify work in the linear regime, we defined a parameter λ between 0 and 1 defining

the temperature and positions at 4 K and 230 K respectively. For example, the temperature

is then defined as,

T (λ) = 4 + (230− 4)λ (6)

λ was varied in steps of 0.1 and we calculated the electric polarization for the atomic

positions at these points. Since the initial and final positions are obtained from experi-

ment, the ionic relaxation was not carried out. Additionally, the electric polarization is

multi-valued differing by integral values of the polarization quanta [49, 59]. To resolve this,

it is necessary to calculate the polarization on a path connecting the non-polar structure

(centrosymmetric) and the polar structure (non-centrosymmetric). As a result, the electric

polarization values were already manipulated based on the method developed by Stoeffler

[32], who had performed the calculation for the GFO structure at 4K along a polarization

lattice branch connecting the corresponding non-polar and polar structures.

The absolute values of the electric polarization for the ideal system as a function of

temperature are shown in Fig. 9. The polarization vector is aligned along the negative

y-axis, with a magnitude of about 23.5 µC/cm2, close to the value of 25 µC/cm2 as re-

ported by Stoeffler [32]. It is seen that as the temperature increases, the magnitude of the

polarization decreases. This is expected since increase in temperature leads to an increase

of the inter-atomic distances, which causes hybridization to decrease and electrons to be

more localized near the parent atom and the bonding becomes less ionic. Since the electric

polarization is a measure of how far apart the charges are, a localization of electrons near

the ions implies a lowering of the magnitude of the electric polarization.

This can be understood with the help of Fig. 10, which shows the electronic and ionic

components of the electric polarization in GFO. The polarization is plotted along the posi-
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Site 4 K 230 K

x y z x y z

Ga1 0.1500 0.0000 0.1781 0.1501 0.0000 0.1761

Ga2 0.1593 0.3073 0.8106 0.1597 0.3067 0.8091

Fe1 0.1538 0.5831 0.1886 0.1525 0.5827 0.1893

Fe2 0.0346 0.7998 0.6795 0.0351 0.7992 0.6787

O1 0.3228 0.4262 0.9716 0.3223 0.4260 0.9740

O2 0.4864 0.4311 0.5142 0.4877 0.4313 0.5168

O3 0.9979 0.2022 0.6541 0.9963 0.2008 0.6521

O4 0.1593 0.1974 0.1480 0.1593 0.1961 0.1475

O5 0.1695 0.6717 0.8437 0.1715 0.6714 0.8410

O6 0.1736 0.9383 0.5166 0.1725 0.9379 0.5153

TABLE IV. Experimental positions in units of the lattice parameters of GFO ions at 4 K and 230

K with a = 8.71932 Å, b = 9.36838 Å and c = 5.06723 Å at 4 K and a = 8.72569 Å, b = 9.37209

Å and c = 5.07082 Å at 230 K. [15]

tive y-axis, which is why the net polarization is negative. The ionic part of the polarization

increases in magnitude with temperature. Since, the ionic part of the polarization is the

sum of the dipole moments per unit cell, an increase of temperature would drive the atoms

apart, thereby increasing the dipole moments and thus, the electric polarization.

The electronic part of the polarization also increases with temperature, however in the

opposite direction, due to the sign of the charge. If we consider that the Wannier centers

of the electrons are located at the positions of the ions, then increasing the temperature

would drive the ions apart and the Wannier centers, hence increasing the polarization.

However, if this were the only factor, we would expect no change in the net polarization

since the ionic positions and the Wannier centers would be driven apart by exactly the

same amount. The other factor is the electron hybridization, which decreases with increase

in the inter-atomic distances. As a result of this, the electronic density becomes more

localized and the bonding becomes more ionic, which increases the electric polarization.

Since the electronic polarization and the ionic polarization are in opposition, the net polar-
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FIG. 9. (Color online) Calculated electric polarization in GFO as a function of temperature. The

dashed line is a linear fit.
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FIG. 10. (Color online) Electronic (black circles), ionic (red stars) and net (blue pluses) electric

polarizations in GFO as a function of temperature

ization, parallel to the ionic polarization, reduces in magnitude with increase in temperature.
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B. Rotation of Magnetization Direction

The electric polarization obtained in the previous subsection are in good agreement

with what was found by earlier theoretical studies [32]. Recent experimental studies [60]

were performed on Ga2−xFexO3 with x = 1.1, which indicate polarization values around 33

µC/cm2, not very far from ours. These confirmations support our calculations and allow us

to study magnetoelectric effects in GFO. Magnetoelectric effects form a class of phenomena

that arise due to the coupling between the magnetic and electric ferroic orders, which are the

ferrimagnetic and ferroelectric orders in GFO. In our work, we probe the effect of rotation

of the magnetization axis on the electric polarization.

There are two types of magnetoelectric effects – direct and indirect. The direct magneto-

electric effect arises from the SOC, that couples the spin and the lattice. When an external

magnetic field is applied, the electrons move to a different ground state that causes the elec-

tronic polarization to change. This effect does not require the ionic positions to change and

is a direct consequence of the external magnetic field, hence the term direct. On the other

hand, the indirect magnetoelectric effect is a consequence of the external magnetic field

moving the ions and altering the volume of the cell, thus changing the electric polarization.

This effect is also called the magnetostrictive magnetoelectric effect. Based on experiments

conducted in the 1960’s, it was hypothesized that the magnetoelectric effects observed in

GFO are due to the indirect mechanism [12]. However, in the 1990’s, Popov et al. indicated

that the direct mechanism is responsible for the observed magnetoelectric effects in GFO

[61]. In spite of the unresolved problem for over half a century, there has been no systematic

theoretical study trying to probe this phenomenon to the best of our knowledge.

We begin by rotating the magnetization axis in the y-z plane, starting from the +z-axis,

the original configuration, to the −z-axis through the +y-axis. Rotation of the magnetiza-

tion axis is akin to rotation of the moments such that they remain parallel (or anti-parallel)

to the magnetization axis. Since we can not include external magnetic fields in our cal-

culation, we fix the moments along a rotated magnetization axis to simulate a saturation

external magnetic field in the y-z plane that will rotate the moments in the same way. By

maintaining an antiferromagnetic system, we assume that the exchange energy, i.e. the
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energy to overcome the antiferromagnetic coupling between the Fe ions, is always higher

than the energy of the corresponding external magnetic field. To check whether the direct

mechanism is responsible for the observed magnetoelectric effects, the calculations were

performed keeping the ions fixed. As a result, any change in the electric polarization is due

to the change in the electronic polarization only.
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FIG. 11. (Color online) Change in the electric polarizations along the y- and z-axes in GFO as a

function of rotation of the magnetization axis

Fig. 11 shows the change of the electric polarization along the y- and z-axes in GFO.

While a clear pattern exists in both curves, the change is less than 0.4 nC/cm2, five orders

of magnitude lower than the spontaneous electric polarization determined in the previous

subsection at 23.5 µC/cm2. Moreover, it is very hard to measure these small values ex-

perimentally. Thus, quantitatively speaking, the direct mechanism is far from sufficient

to explain the magnetoelectric effects in GFO. The indirect mechanism on the other hand

might be the main cause for the observed magnetoelectric effects. This is supported by

the temperature dependence calculation results, where the volume change of about 0.2 %

caused the electric polarization to change by about 0.6 µC/cm2 or 2.5 %.

To properly determine the main mechanism for the magnetoelectric effects, it is hence
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important to perform similar calculations while allowing the unit cell volume and ionic

positions to change, which might be very expensive since GFO is a relatively large system.

These calculations can be done by performing only a volume relaxation to minimize the

computational effort, and have not yet been carried out to the best of our knowledge.

V. CALCULATION OF XAS AND XMCD

X-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD)

are excellent methods for probing the electronic and magnetic structure of materials. These

methods have been under intense study, both theoretically and experimentally [62–71]. With

XAS and XMCD, it is possible to obtain element-specific structure and magnetization. The

chemical selectivity of each core orbital of any atomic species in a material is what makes

XAS and XMCD more capable of characterizing magnetic systems than traditional magnetic

techniques. This property is used to study magnetism in 3D, 2D and 1D systems. XMCD

originates from the coupling between the photon helicity (±~) and the atomic magnetic

moments, thereby creating a difference between the absorption cross sections measured with

respect to the magnetization axis for left and right circularly polarized light. Under the

PAW scheme, the x-ray absorption σ at frequency ω for a given polarization µ is given by

[72]

σµ(ω) =
4πα~3

m2ω

∑
M,n,k,s

∣∣∣∣∣ ∑
p,`,m,m′

CJ,M
`′,m′;1/2,s

C`′,m′

1,µ;`,m

C`′,0
1,0;`,0

〈`′, 0|∇0|p, `, 0〉P
n,k,s

p,`,m

∣∣∣∣∣
2

δ(~ω − εnks + εJM),

(7)

where, p is the projector index, `, m are the angular momentum and magnetic quantum

numbers for the valence states, `′, m′ are those for the core states, J , M is the core spin-

orbit-split quantum numbers and CJ1,M1

J2,M2;J3,M3
= 〈J1,M1|J2,M2; J3,M3〉 are the Clebsch-

Gordon coefficients. P n,k,s

p,`,m are the projectors in the PAWmethod represented in the complex

spherical harmonics basis (see Ref. [72] for details of our implementation).

The calculated L2,3 XAS edges and XMCD for GFO with disorder and for U = 8 EV are

provided in Fig. 12. The theoretical and experimental spectra for the individual circularly

left and right polarized light were not discernible, indicating that the system is essentially
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FIG. 12. (Color online) Calculated left and right circularly polarized L2,3-edges at the Fe1 site (left)

and averaged (right) XAS and XMCD of Fe in disodred GFO, calculated for U = 8 eV, compared

to experiment[17].

antiferromagnetic. Indeed we observe that the two curves are very close to each other.

The computed XAS was then averaged and then normalized to match the experimental L3

highest peak, and the L2-peak was shifted by the 13 eV spin-orbit splitting of the 2p1/2 and

2p3/2 core states in agreement with the position of the experimental counterpart.

Fig. 12 shows that the experimental peaks exhibit multiplet splitting. This behavior

occurs generally in 3d and 4f oxides and compounds because the 3d or 4f electrons are

strongly correlated and localized. DFT is a single-particle picture and fails to correctly

account for the splitting of localized orbitals, but overall the calculated DFT spectra are

in good agreement with experiment. The multiplet splitting can be described using atomic

multiplet models [73].

The XMCD signal was also computed after normalizing the XAS and shows a dichroism

indicating a net magnetic moment in the system. The sum rules [67, 68] were used to

compute the average orbital and spin moments per Fe atom in the system and are shown
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Magnetic Moment Theory Experiment [17]

ms 0.777 0.870

morb 0.008 0.017

TABLE V. Calculated iron-site averaged orbital morb and spin ms moments (in units of µB) from

the XMCD sum rules compared to the experimental results [17]

in Table V. The number of holes was set to 5, since Fe in GFO has an official ionic charge

of +3, which amounts to a half-filled 3d shell. The computed spin moment agrees well with

experiment, while the orbital moment is underestimated by a factor of 2. Note however that

the sum rules should in principle provide the same average magnetic moment per iron atom

as the direct ab initio calculation. However, the ab initio calculation for U = 4 and 8 eV (see

table III) show that the spin magnetic moment per iron atom are respectively 1.06 and 1.13

µB, and the average orbital moment of 0.006 and 0.0055 µB. Thus the sum rules produced an

error of -38% for the spin moment and +45% increase for the orbital moment. These types

of error due to the use of the XMCD sum rules are well documented in the literature [69].

Additional source of errors could also be due to the fact that the PAW 2p core state is frozen

and the basis set includes only the augmentation region contribution. If the experimental

errors form the sum rules are the same as for the calculated values then the experimental spin

moment per atom should be 1.4 µB in agreement with the experimental averaged moment

per iron atom of 1.2 µB as produced from table III. As for the average experimental orbital

moment, taken into account the sum rule errors, it is expected to be 0.011 µB, which is

twice the theoretical value. Note that, as indicated above, DFT underestimates the orbital

moment by a factor of two [53]. In conclusion, the overall agreement with experiment is

satisfactorily, since without any site disorder GFO will not exhibit any XMCD signal.

VI. DISCUSSION

In this work, we presented the results of our ab initio calculations on GFO. To correctly

account for the strongly correlated 3d electrons the LDA+U model was used, where we
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found that the value of U = 8 eV best reproduced the experimental values of the energy

band gap and the site magnetizations. We also found that the inclusion of the SOC did

not change the electronic properties drastically and allowed us to obtain a non-zero orbital

moment in GFO.

By performing site disorder studies based on cationic occupancies we confirmed earlier

hypotheses attributing these disorders to the cause of ferrimagnetism in the system. The

difference between the ground state energies of the ideal and disordered systems is below

what was previously estimated and much closer to the thermal energy available during

synthesis of the system. This indicates that site disorder can not be completely controlled

using current synthesis methods. Further studies using excess-Fe might provide clues to

better control the electronic and magnetic properties, in spite of the site disorders, to help

the development of practical devices.

To understand the magnetic ordering of the Fe sites, we implemented the crystal-field

analysis in VASP. For the octahedral Fe sites, we obtained the t2g states below the eg states

as expected from an octahedral splitting. However, this model calculation was found to be

in contradiction with our ab initio results as shown in Fig. 6 for the occupied states. This

shows that the ab initio interactions are more complex than these given by a point charge

model. As stated in crystal-field section, the hybridization between the oxygen p states and

the iron eg and t2g states is key for understanding the physics of GFO beyond the point-

change model. Indeed when the extended oxygen p state inter the Fe augmentation region

it is decomposed in the local spherical harmonics and looks like a d state. This makes the

interpretation of the Fe d states very difficult as it is partly composed of oxygen states. We

also showed that the chemical bonding between Fe and oxygen is partly covalent, thereby

explaining the non-zero orbital moment and supporting earlier Bader charge calculations.

This doesn’t say that iron is not in Fe3+, it only claims that the oxygen O2−Wannier function

is very extended, i.e., the two electrons gained by the oxygen are more spread contrary to

the assumed formal charge picture like, for example, in NaCl.

In addition, we presented our results for the linear temperature dependence of the electric

polarization. The polarization has a monotonic decay which could be explained with the

simple model of reduction of hybridization due to increase of inter-atomic distances. This

was interpreted by separating the electronic and ionic parts of the electric polarization.
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We also presented the results of our direct magnetoelectric studies, where we rotated

the magnetization axis to simulate a rotation of the moments due to an external field while

keeping the ions and cell volume fixed. The maximum change in the electric polarization

was under 0.4 nC/cm2, and indicates that the direct mechanism fails to explain the observed

magnetoelectric effects in GFO. To truly find the cause of these effects, one must perform

similar studies of the electric polarization by allowing the cell volume to change due to the

change of the magnetization axis, i.e. a magnetostriction induced polarization.

Finally, we presented the results for the calculation of the XAS and XMCD for the Fe

L2,3-edges in GFO. The theoretical and experimental spectra match, indicating that most

of the features are captured by the calculations. The lack of multiplets in the theoretical

curves indicate the shortcoming of the single-particle picture, and further work needs to be

done to capture them using ab initio techniques. The sum rules for the spin moments are in

good agreement, and similar studies can be carried out for GFO with different site disorders

for comparing theoretical calculations with experiment.

VII. CONCLUSIONS AND PERSPECTIVES

In summary, the results for the ab initio calculations on GFO performed under the

LDA+U and GGA+U approximations with SOC were presented. The value of U=8 eV

best reproduced the experimentally observed values of the energy band gap and the site

magnetizations. U was shown to push the 3d electrons away from the Fermi level and thus

played an important role in the electron hybridization. The inclusion of SOC did not affect

the electronic structure of the system. Cationic site disorder studies were then performed

using experimental cationic occupancies, which reproduced the experimentally observed fer-

rimagnetism. The energy difference was shown to be closer to the thermal energy available

during synthesis, thereby indicating difficulty of site disorder control.

We have implemented the crystal-field analysis in VASP and used it to show that the

tetrahedral-like splitting of the Fe occupied eg and t2g DOS obtained in the ab initio calcu-

lation can not be explained by a point-charge interaction. Indeed, the interaction between

the oxygen ligands and the Fe d states is very complex and it beyond the simple point-charge
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model, as the hybridization plays a key role in the eg and t2g splitting. This is in agreement

with the partly covalent bonding between Fe and O, and explain the origin of the non-zero

orbital moment.

We then presented the linear temperature dependence of the electric polarization, which

has a monotonic decay explained as separation of the ions with temperature. Then, we ro-

tated the magnetization axis of the system to simulate a rotation of the magnetic moments

under an external field. By fixing the ions and cell volume, the direct magnetoelectric effect

was computed. The values obtained were very small indicating that the indirect mechanism

(magnetostrictive induced polarization) might be the main cause for the observed magneto-

electric effects in GFO.

Finally, we calculated the XAS and XMCD for the Fe L2,3-edges in GFO with site disorders

and compared them with experiment. We found good agreement with experiment for the

spectra as well as the sum rules.

As perspectives for the system, it would be fruitful to study excess-Fe along with cationic

site disorders to better control the electronic and magnetic properties of GFO. The crystal-

field analysis can be redone on the Ga sites, both octahedral and tetrahedral, to understand

the magnetic ordering of disordered systems. Magnetoelectric effects of the indirect nature

can be studied to help understand the coupling between the ferroic orders. The methods

developed here can also be applied to other multiferroic systems, such as Cr2O3 or BiFeO3.
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Appendix A: Implementation of Crystal-Field Rotation

Rotation of the real spherical harmonics can be done in two ways – firstly by rotating

the spherical harmonics using the Wigner D-matrices and then rewriting them as the real

spherical harmonics, and secondly by rotating the real spherical harmonics directly by using

the rotation matrix of the coordinate system. The Wigner D-matrices are well described

by Bradley and Cracknell and the interested reader is directed to their work [74]. In our

implementation, the second method is used.

Our implementation involves rotation of the d-orbitals following a rotation R̂(α, β, γ)

of the Cartesian coordinate system. Thus, we have a 5 × 5 rotation matrix Â(α, β, γ)

corresponding to rotations about the z-, x- and z-axes by the Euler angles α, β and γ

respectively. The matrix elements aij of Â in terms of the matrix elements Rij of R̂ are

derived by writing the rotated real spherical harmonics, Y`m in terms of the rotated Cartesian

coordinates (x′, y′, z′) and then rewriting these in terms of a superposition of the original

real spherical harmonics Y`m. To demonstrate this, we provide one example of obtaining the

transformation for m = −2. The rest of the rotated real spherical harmonics are derived in

Appendix B.

Consider a generalized 3× 3 Cartesian rotation matrix R̂ which then gives us,

r′i =
∑
j

Rijrj. (A1)

We define the corresponding 5 × 5 rotation matrix Â for the real spherical harmonics with

` = 2, and by manipulating the indexes aij, we can write Y`m(r̂′) =
∑
m′
amm′Y`m′(r̂). If we

write out the full form of the real spherical harmonics with r′i =
∑

j Rijrj and use |r′| = |r|,

we have, 

Y2,−2(r̂)

Y2,−1(r̂)

Y2,0(r̂)

Y2,1(r̂)

Y2,2(r̂)


=



1
2

√
15
π
xy
r2

1
2

√
15
π
yz
r2

1
4

√
5
π
2z2−x2−y2

r2

1
2

√
15
π
zx
r2

1
4

√
15
π
x2−y2
r2


. (A2)
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The matrix elements aij are derived in Appendix B. Two solutions for matrix elements

of the form ai3 are obtained. This is due to the fact that we have six quadratic terms

(x2, y2, z2, xy, yz, zx) and only five coefficients amm′ for a given m. However, we have shown

that these two solutions are identical for rotations along each Cartesian axis and since every

general rotation can be represented as rotations along the different axes, these two solutions

are also identical for any general rotation.

The first step of our implementation is determination of the crystal-field geometry, since

the final positions after rotation depend on the geometry (see Fig. 5). To distinguish

between the octahedral and tetrahedral geometries, we first find the nearest neighbors and

sort them by their distances. If the distance of the furthest away neighbor is over 35% of the

closest, the crystal-field geometry is most likely tetrahedral. If this condition is not met, we

determine the angles between the ‘arms’ of the octahedron. If these angles are within 35%

of π/2, then the crystal-field is most likely octahedral. The reason we keep the relative angle

and distance conditions to 35% is to include highly distorted octahedral configurations like

those in GFO.

Once the crystal-field geometries are determined, we perform appropriate rotations about

the z-, x- and z-axes by the Euler angles α, β and γ by setting the z-axis along along the

direction where the angle formed between the central cation and its oxygen neighbors is

the closest to π. These angles are obtained by using trigonometric relations between the

final and initial positions. The final positions are ‘known’ since the neighbors of the cation

have an arrangement as shown in Fig. 5. For an octahedral field, the six neighbors lie on

the arms of the new coordinate system with the cation at the origin and their positions

are along (±1, 0, 0), (0,±1, 0) and (0, 0,±1). In the case of a tetrahedral field, the four

neighbors lie at the four vertexes of the two long diagonals in a cube with the cation at

its center and the sides parallel to the axes of the new coordinate system. The positions

are along
(

1√
3
, 1√

3
, 1√

3

)
,
(
− 1√

3
, 1√

3
,− 1√

3

)
,
(
− 1√

3
,− 1√

3
, 1√

3

)
and

(
1√
3
,− 1√

3
,− 1√

3

)
. For a

distorted octahedron, once the z-axis is set, as indicated above, the x and y axes are set by

choosing the average angles between the cation and its two by two oxygen neighbors that

approach best π/2.

For rotating the locally site projected wave functions, only the Euler angles to reach
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the final positions are required and not the final positions themselves. However, the final

positions help us understand the amount of distortion in the geometry, and are important

while developing the point-charge model, where the Coulomb potential due to the anions is

expanded as a series of spherical harmonics. The all-electron wave function in the projector

augmented wave basis (PAW) is given as,

|n,k, s〉 = ˜|n,k, s〉+
∑
p,`,m

(
|p, `,m〉 − ˜|p, `,m〉

)
P nks
p`m , (A3)

where ˜|n,k, s〉 is the pseudo-wave function for band n, wave vector k and spin s. |p, `,m〉

and ˜|p, `,m〉 are the partial and pseudo-partial waves corresponding to projector type p,

angular momentum quantum number ` and magnetic quantum number m. P nk
p`m are the

projector coefficients. In this equation, SOC is not included, which is why the spin quantum

number s appears explicitly. The inclusion of SOC is trivial and does not affect the final

results in our work. The local site projected DOS is defined within the augmentation region,

where the all-electron wave function is given only by the partial waves as,

|n,k, s〉 =
∑
p,`,m,s

P nks
p`m |p, `,m〉. (A4)

When the Cartesian reference frame is rotated, the new real spherical harmonics maintain

their ` quantum number and the total DOS for a given ` remains unchanged. Hence, we

have,

|Ψnk
` 〉 =

∑
p,m,s

P nks
p`m |p, `,m〉 =

∑
p,m,s

P
nks

p`m|p, `,m〉, (A5)

where the ‘barred’ objects are the rotated quantities. To find how the new projector coef-

ficients transform, we express the rotated real spherical harmonics in terms of the original

basis set. This is trivial since the radial functions do not change, and only the spherical

harmonics are rotated. Thus,

|p, `,m〉 =
∑
m′

amm′|p, `,m′〉. (A6)

When we substitute this in Eq. (A5), we get,

|Ψnk
` 〉 =

∑
p,m,s

P
nks

p`m|p, `,m〉 =
∑
p,m,s

P
nks

p`m

∑
m′

amm′|p, `,m′〉

=
∑
p,m′,s

(∑
m

amm′P
nks

p`m

)
|p, `,m′〉 =

∑
p,m′,s

P nks
p`m′ |p, `,m′〉.

⇒ P nks
p`m =

∑
m′

am′mP
nks

p`m′ or P
nks

p`m =
∑
m′

a?mm′P nks
p`m .

(A7)
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Thus, the rotation matrix for the new projector coefficients is the complex conjugate of

the Â rotation matrix. However, we are dealing with the real spherical harmonics, whose

rotation matrices are completely real (see Appendix B). This implies that both the new

projector coefficients and the real spherical harmonics transform using the same rotation

matrix Â.

The implementation was done with the intention of studying the splitting of the eg and t2g

orbitals of a 3d cation in an octahedral or a tetrahedral environment. It is capable of handling

distortions of up to 35 % in terms of the arm lengths or angles, as well as handling non-

spin-polarized, spin-polarized and relativistic-spin-polarized electron wave functions. Our

implementation is available as a Fortran90 module for VASP users.

Appendix B: Derivation of Rotation Matrices for d-states

Rotation causes a change of the Cartesian coordinates as,

r′ = R̂r. (B1)

The prime and bar indicate rotated variables, observables, basis, etc. r = (x, y, z) and R̂ is

any general rotation matrix along a given axis.

Let us assume that the real spherical harmonics for a given ` can be expressed in terms

of a rotated real spherical harmonics set for the same `. That is,

Y`m(r̂′) = AY`m(r̂), (B2)

where we denote the rotation matrix as A = (aij), we have a 5×5 matrix for ` = 2. If we write

out the full form of the spherical harmonics using Eq. A2 and using r′)2 = r2, by multiplying

out this matrix and expanding the primed coordinates in terms of unprimed (i.e. by using

equation (B1)), we can compare the coefficients on the right and left sides of the equation

to represent aij in terms of Rmn. Note that we have six polynomials (x2,y2,z2,xy,yz,zx) but

we wish to represent only 5 coefficients. This implies that we have a double solution for one

coefficient. Indeed, if we follow through the calculation, we get two solutions for every ai3.

Below is the list of all the elements of matrix A:
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1. m′ = −2:

a11 = R11R22 +R12R21

a12 = R12R23 +R13R22

a13 =
√

3R13R23 = −
√

3(R11R21 +R12R22)

a14 = R11R23 +R13R21

a15 = R11R21 −R12R22.

2. m′ = −1:

a21 = R21R32 +R22R31

a22 = R22R33 +R23R32

a23 =
√

3R23R33 = −
√

3(R21R31 +R22R32)

a24 = R23R31 +R21R33

a25 = R21R31 −R22R32.

3. m′ = 0:

a31 =
1√
3

(2R31R32 −R11R12 −R21R22)

a32 =
1√
3

(2R32R33 −R12R13 −R22R23)

a33 =
1

2
(2R2

33 −R2
13 −R2

23) = −1

2
(2R2

32 −R2
12 −R2

22 + 2R2
31 −R2

11 −R2
21)

a34 =
1√
3

(2R31R33 −R11R13 −R21R23)

a35 =
1√
3

(2R2
31 −R2

11 −R2
21 − 2R2

32 +R2
12 +R2

22).

4. m′ = 1:

a41 = R31R12 +R32R11

a42 = R32R13 +R33R12

a43 =
√

3R33R13 = −
√

3(R31R11 +R32R12)

a44 = R33R11 +R31R13

a45 = R31R11 −R32R12.
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5. m′ = 2:

a51 = R11R12 −R22R22

a52 = R12R13 −R23R23

a53 =

√
3

2
(R2

13 −R2
23) = −

√
3

2
(R2

11 −R2
21 +R2

12 −R2
22)

a54 = R13R11 −R23R21

a55 =
1

2
(R2

11 −R2
21 −R2

12 +R2
22).

We now derive the form of A for rotations about each of the Cartesian axes. Since any

rotation can always be represented in terms of rotations about the Cartesian axes, Rz, Ry

and Rx, the A matrices can be used for all cases. As is shown, the double solution obtained

for ai3 are always identical and thus, all rotations of the spherical harmonics can also be

represented in terms of Az, Ay and Ax.

We begin by considering a rotation about the z-axis. In the real spherical harmonics

basis, R̂z(θ)→ Az(θ). The R matrix in Cartesian basis is,

Rz(θ) =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (B3)

It can be easily verified that the double solutions for ai3 are in fact identical for this case

(and for the following two cases as well). Thus, the Az(θ) matrix is,

Az(θ) =



cos 2θ 0 0 0 sin 2θ

0 cos θ 0 sin θ 0

0 0 1 0 0

0 − sin θ 0 cos θ 0

− sin 2θ 0 0 0 cos 2θ


. (B4)

We now consider a general rotation about the y-axis. In the real spherical harmonics
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basis, R̂y(θ)→ Ay(θ). The R matrix in Cartesian basis is,

Ry(θ) =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (B5)

The Ay(θ) matrix is,

Ay(θ) =



cos θ sin θ 0 0 0

− sin θ cos θ 0 0 0

0 0 1
2
(3 cos2 θ − 1) −

√
3
2

sin 2θ
√
3
2

sin2 θ

0 0
√
3
2

sin 2θ cos 2θ −1
2

sin 2θ

0 0
√
3
2

sin2 θ 1
2

sin 2θ 1
2
(1 + cos2 θ)


. (B6)

Just like with the R matrices, the A matrices can be multiplied in the order of rota-

tions. This is a faster way to generate the net rotation matrix since the individual matrices

are simpler. One can of course, first create a net R matrix by multiplying the individual

R matrices and then using the A matrix element definitions to create the A matrix, i.e.

AZ−Y−Z(α, β, γ) = Az(γ)Ay(β)Az(α). The order is important since matrix multiplication is

not commutative. In our implementation, we use the AZ−Y−Z(α, β, γ) matrix directly after

computing the Euler angles α, β and γ of each octahedron.
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