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Abstract

As a natural extension of the Kalman filter to systems subject to arbitrary unknown inputs, the Kitanidis filter has been
designed by one-step minimization of the trace of the state estimation error covariance matrix. In this technical communiqué, it
is shown that the Kitanidis filter is also optimal for the whole gain sequence in the sense of matrix positive definiteness, which
notably implies that the Kitanidis filter minimizes not only the trace criterion, but also the matrix spectral norm criterion.
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1 Introduction

The Kitanidis filter is a natural extension of the Kalman
filter to stochastic linear time varying (LTV) systems
subject to unknown inputs in the form of

xk+1 = Akxk +Bkuk + Ekdk + wk (1a)

yk = Ckxk + vk, (1b)

where xk ∈ Rn is the state, yk ∈ Rm the output, uk ∈
Rp the (known) input, dk ∈ Rq the unknown input,
wk ∈ Rn the state noise, vk ∈ Rm the output noise, and
Ak, Bk, Ck, Ek are matrices of appropriate sizes at each
discrete time instant k = 0, 1, 2, . . . .

The unknown input (or unknown disturbance) dk is a
totally arbitrary and unknown vector sequence.

State estimation while rejecting unknown inputs is usu-
ally called the unknown input observer problem (Yang
and Wilde, 1988; Darouach et al., 1994; Chen and
Patton, 1999). In the stochastic framework formulated
in (1), the optimal state estimation, in the sense of an
error covariance criterion subject to the unbiasedness
constraint, is given by the Kitanidis filter (Kitanidis,
1987). Such results are useful for robust prediction (Ki-
tanidis, 1987), for robust control (Ioannou and Sun,
1996), and for fault diagnosis (Chen and Patton, 1999).

The Kitanidis filter (Kitanidis, 1987) has been designed
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as follows. Among all recursive linear filters of the form

x̂k+1 = Akx̂k +Bkuk
+ Lk+1(yk+1 − Ck+1Akx̂k − Ck+1Bkuk), (2)

with the state estimate x̂k ∈ Rn, the filter gain matrix
Lk+1 ∈ Rn×m, and the filter error

x̃k , xk − x̂k, (3)

the Kitanidis filter, characterized by a particular gain
matrix sequence

L∗1:(k+1) = (L∗1, L
∗
2, . . . , L

∗
k+1), (4)

is the unbiased minimum variance filter, in the sense
that, at instant k+ 1, L∗k+1 is determined by solving the
optimization problem

L∗k+1 = arg min
Lk+1

Trace Cov(x̃k+1|L∗1:k, Lk+1) (5)

subject to the unbiaisedness constraint

E(x̃k+1|L∗1:(k+1)) = 0 (6)

for any unknown input sequence

d0:k = (d0, d1, d2, . . . , dk), (7)

where the dependence of the filter error x̃k+1 on the gain
sequence is indicated in the notations of error covariance
Cov(x̃k+1| · ) and error mean E(x̃k+1| · ).
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The covariance trace minimization (5) is a one-step op-
timization, in the sense that the trace of Cov(x̃k+1) is
minimized among the filters which were, up to instant
k, defined with the previously optimized gain sequence
L∗1:k. In other words, at instant k + 1, the optimization
is focused on the current gain matrix Lk+1 only, without
revising the past gain sequence L∗1:k. It was later con-
firmed in (Kerwin and Prince, 2000) that the trace of
the error covariance is indeed minimized by the Kitani-
dis filter among all unbiased linear causal filters.

The purpose of this Technical communiqué is to improve
the existing results with a stronger optimality in the
sense of matrix positive definiteness. The new result will
imply that, for any vector η ∈ Rn, the variance of the
linear form ηT x̃k+1 is minimized. This optimality is not
specific to a particular vector η, but holds simultaneously
for all η ∈ Rn. In this sense, the Kitanidis filter provides
the optimal estimation for any linear combination of
states, including each individual state component. It will
also be shown that the Kitanidis filter minimizes the
spectral norm of the error covariance. More details will
be given towards the end of Section 2, as corollaries of
the main result.

The Kitanidis filter is optimal among the class of un-
biased filters satisfying the unbiasedness constraint for
any unknown input sequence. The error dynamics of
such unbiased filters is totally decoupled from unknown
inputs. Besides such unbiased filters, there exist filters
incorporating different unknown input estimators. See
(Hsieh and Majidi, 2014; Majidi et al., 2018) for some ex-
amples. Such filters can outperform the Kitanidis filter
if the implemented unknown input estimator is appro-
priate to the actual unknown input. See also (Kong and
Sukkarieh, 2019) for a discussion about different filters.

It is well known that the Kalman filter has a least
squares interpretation (Gillijns et al., 2007; Rawlings
et al., 2017). It is also possible to derive the Kitanidis
filter following such an approach.

2 New optimality results

In this paper, For a real symmetric matrix M , the in-
equality M > 0 (M ≥ 0) means that M is (semi)-
positive definite. For two real symmetric matrices M,N
of the same size,M > N meansM−N > 0, andM ≥ N
means M −N ≥ 0. For a real matrix M , ‖M‖ denotes
its spectral norm, i.e., the matrix norm induced by the
Euclidean vector norm, which is equal to the largest sin-
gular value of the matrix. In is the n×n identity matrix.

Assumptions

(i) The initial state x0 ∈ Rn is a random vector of
mean x̄0 ∈ Rn and of covariance P0 > 0.

(ii) The noises wk and vk are white, of zero mean, in-
dependent of each other and of x0, and their co-
variance matrices E(wkw

T
k ) = Qk, E(vkv

T
k ) = Rk,

with Rk > 0, for all k ≥ 0.
(iii) The matrix product Ck+1Ek has a full column

rank, for all k ≥ 0.

Assumptions (i) and (ii) are like in the classical Kalman
filter theory, whereas Assumption (iii) ensures the in-
vertibility of some matrices involved in the Kitanidis fil-
ter.

The Kitanidis filter (Kitanidis, 1987) is given by

x̂k+1 = Akx̂k +Bkuk
+ L∗k+1(yk+1 − Ck+1Akx̂k − Ck+1Bkuk) (8)

with the filter gain L∗k+1 recursively computed as

Pk+1|k = AkPk|kA
T
k +Qk (9a)

Σk+1 = Ck+1Pk+1|kC
T
k+1 +Rk+1 (9b)

Γk+1 = Ek − Pk+1|kC
T
k+1Σ−1k+1Ck+1Ek (9c)

Ξk+1 = ET
k C

T
k+1Σ−1k+1Ck+1Ek (9d)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1Σ−1k+1Ck+1Pk+1|k

+ Γk+1Ξ−1k+1ΓT
k+1 (9e)

L∗k+1 = Pk+1|kC
T
k+1Σ−1k+1

+ Γk+1Ξ−1k+1E
T
k C

T
k+1Σ−1k+1. (9f)

At the initial instant k = 0, this filter is initialized as
x̂0 = x̄0, P0|0 = P0, with x̄0 ∈ Rn and P0 ∈ Rn×n being
respectively the mean and the covariance matrix of the
initial state x0.

The new optimality result of the Kitanidis filter in the
sense of the whole gain sequence is stated as follows.

Theorem 1 The Kitanidis gain sequence L∗1:(k+1) as

computed in (9) is optimal among all gain sequences
L1:(k+1) leading to an unbiased recursive linear filter (2),
in the sense that

Cov(x̃k+1|L1:(k+1)) ≥ Cov(x̃k+1|L∗1:(k+1)), (10)

for any gain sequence L1:(k+1) such that

E(x̃k+1|L1:(k+1)) = 0 (11)

for any unknown input sequence d0:k. 2

The inequality in (10) is in the sense of matrix positive
definiteness (see the notice at the beginning of this sec-
tion).

The proof of this theorem will be based on the following
lemma.

Lemma 1 Given integers q,m, n such that 0 < q ≤ m ≤
n and matrices Ψ ∈ Rm×n, Σ ∈ Rm×m, Ω ∈ Rm×q,
E ∈ Rn×q such that Σ is symmetric positive definite and
Ω has a full column rank. Then any matrix L ∈ Rn×m

satisfying the constraint

LΩ = E (12)

complies with the inequality

LΣLT − LΨ−ΨTLT ≥ L∗ΣLT
∗ − L∗Ψ−ΨTLT

∗ (13)
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with

L∗ = ΨT Σ−1 + (E −ΨT Σ−1Ω)(ΩT Σ−1Ω)−1ΩT Σ−1

(14)

which, like L, satisfies the constraint

L∗Ω = E. (15)

Proof of Lemma 1.

It is trivial to check that L∗ satisfies (15).

Some simple computations lead to

(L− L∗)Σ(L− L∗)T = LΣLT + L∗ΣL
T
∗ − L∗ΣLT − LΣLT

∗

and

L∗ΣL
T =

(
ΨT + (E −ΨT Σ−1Ω)(ΩT Σ−1Ω)−1ΩT

)
LT

= ΨTLT + (E −ΨT Σ−1Ω)(ΩT Σ−1Ω)−1ET .

Then

(L− L∗)Σ(L− L∗)T = LΣLT − LΨ−ΨTLT + Θ

where Θ contains terms independent of L. The matrix
Σ is assumed positive definite, then

LΣLT − LΨ−ΨTLT = (L− L∗)Σ(L− L∗)T −Θ

reaches its minimum −Θ when L = L∗. 2

Proof of Theorem 1.

Let us first show that the unbiasedness constraint (11)
holds regardless of the arbitrary unknown input se-
quence d0:k, if and only if the gain sequence L1:(k+1)

satisfies

(In − Lj+1Cj+1)Ej = 0 (16)

for all j = 0, 1, . . . , k and for all integer k ≥ 0.

For the linear filter (2) with any gain matrix Lk ∈ Rn×m,
it is straightforward to check from (1) and (2) that the
filter error x̃k, as defined in (3), satisfies

x̃k+1 = (In − Lk+1Ck+1)Akx̃k + (In − Lk+1Ck+1)Ekdk
+ (In − Lk+1Ck+1)wk − Lk+1vk+1. (17)

If L1:(k+1) satisfies (16), then the term involving dk dis-
appears from (17), yielding

x̃k+1 = (In − Lk+1Ck+1)Akx̃k
+ (In − Lk+1Ck+1)wk − Lk+1vk+1. (18)

According to Assumptions (i) and (ii), E(wk) = 0,
E(vk+1) = 0 and E(x̃0) = E(x0 − x̂0) = 0. It is then re-
cursively shown that E(x̃k+1|L1:(k+1)) = 0 for all k ≥ 0.
Hence (16) is a sufficient condition for (11).

On the other hand, if (16) is not satisfied, a sequence
d0:k such that E(x̃k+1|L1:(k+1)) 6= 0 can be built as fol-
lows. Let dj = 0 for j = 0, 1, . . . , (k − 1), and choose dk
such that (In−Lk+1Ck+1)Ekdk 6= 0 (such a dk exists be-
cause in this considered case (16) is not satisfied). It then
recursively follows from (17) that E(x̃k+1|L1:(k+1)) =
(In − Lk+1Ck+1)Ekdk 6= 0.

It is then proved that (16) is a necessary and sufficient
condition for L1:(k+1) to satisfy the unbiasedness con-
straint (11).

Therefore, in what follows, (16) will replace (11) as a
constraint on the gain sequence L1:(k+1).

Notice that x̃k, wk and vk+1 are pairwise indepen-
dent, then taking the mathematical expectations of the
squares of both sides of (18) yields

Cov(x̃k+1|L1:(k+1))

= (In − Lk+1Ck+1)AkCov(x̃k|L1:k)AT
k (In − Lk+1Ck+1)T

+ (In − Lk+1Ck+1)Qk(In − Lk+1Ck+1)T

+ Lk+1Rk+1L
T
k+1. (19)

The remaining part of the proof will be made by induc-
tion, first for k = 0, then recursively for any k > 0.

Equality (19) holds for all integer k ≥ 1 and any gain
sequence satisfying (16) with j ≤ k. The case with k = 0
is slightly different, because the initial error x̃0 = x0−x̂0
does not depend on any gain matrix, then Cov(x̃k|L1:k)
becomes simply Cov(x̃0) = P0|0, and (19) becomes

Cov(x̃1|L1) = (In − L1C1)A0P0|0A
T
0 (In − L1C1)T

+ (In − L1C1)Q0(In − L1C1)T + L1R1L
T
1 . (20)

= L1

[
C1

(
A0P0|0A

T
0 +Q0

)
CT

1 +R1

]
LT
1

− L1C1

(
A0P0|0A

T
0 +Q0

)
−
(
A0P0|0A

T
0 +Q0

)
CT

1 L
T
1

+A0P0|0A
T
0 +Q0. (21)

It is already shown that L1:(k+1) satisfying (11) satisfies
also (16). Apply Lemma 1 to (21) excluding the last two
terms independent of L1, with

L = L1

Ω = C1E0

E = E0

Σ = C1

(
A0P0|0A

T
0 +Q0

)
CT

1 +R1

Ψ = C1

(
A0P0|0A

T
0 +Q0

)
.

The constraint in (12) corresponds to (16) with j = 0.
The positive definiteness of Σ is due to Assumption (ii).
The full column rank of Ω is ensured by Assumption (iii).
The conditions of Lemma 1 are thus fulfilled. Then it is
straightforward (though tedious) to check that the ma-
trixL∗ resulting from the application of (14) in Lemma 1
coincides with the optimal gain L∗1 computed in (9).
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According to Lemma 1, under constraint (16) with j = 0,
the covariance matrix Cov(x̃1|L1) reaches its minimum
when L1 = L∗1, hence inequality (10) is proved for the
initial instant k = 0.

Now consider any integer k > 0.

For the proof by induction, assume, for any j ≤ k,

Cov(x̃j |L1:j) ≥ Cov(x̃j |L∗1:j). (22)

In particular, for j = k, it amounts to

Cov(x̃j |L1:k) ≥ Cov(x̃k|L∗1:k). (23)

Combine this inequality with equality (19), then

Cov(x̃k+1|L1:(k+1))

≥ (In − Lk+1Ck+1)AkCov(x̃k|L∗1:k)AT
k (In − Lk+1Ck+1)T

+ (In − Lk+1Ck+1)Qk(In − Lk+1Ck+1)T

+ Lk+1Rk+1L
T
k+1. (24)

= Lk+1

[
Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1

+Rk+1

]
LT
k+1

− Lk+1Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
−
(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1L
T
k+1

+AkCov(x̃k|L∗1:k)AT
k +Qk. (25)

It is already shown that L1:(k+1) satisfying (11) satisfies
also (16). Apply Lemma 1 to (25) except the last two
terms independent of Lk+1, with

L = Lk+1

Ω = Ck+1Ek

E = Ek

Σ = Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1 +Rk+1

Ψ = Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
.

The constraint in (12) corresponds to (16) with j = k.
The positive definiteness of Σ is due to Assumption (ii).
The full column rank of Ω is ensured by Assumption (iii).
The conditions of Lemma 1 are thus fulfilled. Moreover,
it is straightforward to check that the matrixL∗ resulting
from the application of (14) coincides with the optimal
gain L∗k+1 computed in (9) where Pk|k = Cov(x̃k|L∗1:k).

By applying Lemma 1, under constraint (16), the ex-

pression in (25) satisfies

Lk+1

[
Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1

+Rk+1

]
LT
k+1

− Lk+1Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
−
(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1L
T
k+1

+AkCov(x̃k|L∗1:k)AT
k +Qk

≥ L∗k+1

[
Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1

+Rk+1

]
L

∗T
k+1

− L∗k+1Ck+1

(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
−
(
AkCov(x̃k|L∗1:k)AT

k +Qk

)
CT

k+1L
∗T
k+1

+AkCov(x̃k|L∗1:k)AT
k +Qk (26)

= Cov(x̃k+1|L∗1:(k+1)), (27)

where the last equality is a particular case of (19), which
holds for any gain sequence satisfying (16), including
L∗1:(k+1).

Combining (24), (25), (26) and (27) then yields

Cov(x̃k+1|L1:(k+1)) ≥ Cov(x̃k+1|L∗1:(k+1)). (28)

By induction it is then concluded that (10) holds for all
integer k ≥ 0. 2

The following corollaries help to interpret this main re-
sult.

Corollary 1 For any vector η ∈ Rn, the linear form

ηTxk+1 of the state vector xk+1 is optimally estimated
by the Kitanidis filter in the sense that

E((ηT x̃k+1)2|L1:(k+1)) ≥ E((ηT x̃k+1)2|L∗1:(k+1)) (29)

for any gain sequence L1:(k+1) satisfying (11), and, in
particular, for all i = 1, 2, . . . , n,

E((x̃
(i)
k+1)2|L1:(k+1)) ≥ E((x̃

(i)
k+1)2|L∗1:(k+1)), (30)

where x̃
(i)
k+1 is the i-th component of the error vector x̃k+1.

2

In this result, the optimality is not specific to a particular
vector η, but holds simultaneously for all η ∈ Rn.

While the trace criterion like in (5) minimizes E[(x̃
(1)
k+1)2+

· · · + (x̃
(n)
k+1)2], the inequality in (30) is a stronger re-

sult, by showing that every individual term E[(x̃
(i)
k+1)2]

is minimized by the Kitanidis filter.

The estimation of linear combinations of states is usually
addressed with functional observers (Bezzaoucha et al.,
2017).
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Proof of Corollary 1.

As x̃k+1 has a zero mean value, its covariance

Cov(x̃k+1|L1:(k+1)) = E(x̃k+1x̃
T
k+1|L1:(k+1)).

For any vector η ∈ Rn, inequality (10) implies

ηTCov(x̃k+1|L1:(k+1))η ≥ ηTCov(x̃k+1|L∗1:(k+1))η, (31)

hence

ηTE(x̃k+1x̃
T
k+1|L1:(k+1))η ≥ ηTE(x̃k+1x̃

T
k+1|L∗1:(k+1))η,

which leads to (29) by noticing that ηT x̃k+1x̃
T
k+1η =

(ηT x̃k+1)2. 2

By choosing η to be the eigenvector ofCov(x̃k+1|L∗1:(k+1))

associated to its largest eigenvalue, then (31) leads to
the following result, where ‖ · ‖ denotes the matrix
spectral norm.

Corollary 2 The Kitanidis filter minimizes the spectral
norm of the error covariance matrix, i.e., Theorem 1
remains true if (10) is replaced by

‖Cov(x̃k+1|L1:(k+1))‖ ≥ ‖Cov(x̃k+1|L∗1:(k+1))‖.

3 Conclusion

It has been shown in this paper that, though the Kitani-
dis filter has been designed by one-step minimization of
the trace criterion, it is indeed optimal for the whole gain
sequence in the sense of matrix positive definiteness.
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