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LONG-TIME CORRELATIONS FOR A HARD-SPHERE GAS

AT EQUILIBRIUM

THIERRY BODINEAU, ISABELLE GALLAGHER, LAURE SAINT-RAYMOND, SERGIO SIMONELLA

Abstract. It has been known since Lanford [22] that the dynamics of a hard-sphere gas is
described in the low density limit by the Boltzmann equation, at least for short times. The
classical strategy of proof fails for longer times, even close to equilibrium.

In this paper, we introduce a weak convergence method coupled with a sampling argument
to prove that the covariance of the fluctuation field around equilibrium is governed by the
linearized Boltzmann equation globally in time (including in diffusive regimes). This method
is much more robust and simpler than the one devised in [4] which was specific to the 2D
case.
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1. Introduction

The goal of this paper is to study the dynamical fluctuations of a hard sphere gas at
equilibrium in the low density limit. The equilibrium is described by a Gibbs measure, which
is a product measure up to the spatial exclusion of the particles, and stationary under the
microscopic dynamics.

A major challenge in statistical physics is to understand the long time behavior of the
correlations even in an equilibrium regime. Our goal is to prove that the fluctuations are
described in the low density limit by the fluctuating Boltzmann equation on long kinetic
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times. The present paper provides a first step of this program, by characterizing the evolution
of the covariance of the fluctuations on such time scales.

Time correlations are expected to evolve deterministically as dictated by the linearized
Boltzmann equation. At the mathematical level, such a result can be regarded as a variant
of the rigorous validity of the nonlinear Boltzmann equation, which was first obtained for
short times in [22] (see also [19, 28, 9, 13, 25, 10, 14, 15]). In fact the same method as in [22],
combined with a low density expansion of the invariant measure, was applied in [30] to prove
the validity of the linearized Boltzmann equation. The result in [30] suffered however from
the same time restriction of the nonlinear case, in spite of the fact that the solution to the
linearized Boltzmann equation is globally well defined.

This limitation was finally overcome in [4], in the case of a two-dimensional gas of hard
disks. The method of [4] used, in particular, that the canonical partition function is uniformly
bounded in two space dimensions. For d ≥ 3 the limit is however more singular, as the
accessible volume in phase space is exponentially small. The goal of the present paper is to
present a much more robust method, based on weak convergence and on a duality argument,
which does not depend on dimension. Our analysis is quantitative and the validity holds for
arbitrarily large kinetic times, even slowly diverging. Hence a hydrodynamical limit can be
also obtained in the same way as in [4], but we shall not repeat this discussion here.

The weak convergence method discussed in this paper allows actually to construct the
limit of higher order moments of the fluctuation field and show their asymptotic factorization
according to the Wick rule, providing a central limit theorem and thereby completing the
program. This result, which requires a nontrivial combination with the cumulant techniques
developed in [5, 6], will be presented in a companion work [2].

1.1. The hard-sphere model. The microscopic model consists of identical hard spheres of
unit mass and of diameter ε. The motion of N such hard spheres is governed by a system of

(vε
i )

′

(
vε
j

)′

vε
i

vε
j

Figure 1. Transport and collisions in a hard-sphere gas. The square box represents
the d-dimensional torus.

ordinary differential equations, which are set in DN := (Td × Rd)N where Td is the unit d-
dimensional periodic box: writing xεi ∈ Td for the position of the center of the particle
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labeled i and vεi ∈ Rd for its velocity, one has

(1.1)
dxεi
dt

= vεi ,
dvεi
dt

= 0 as long as |xεi (t)− xεj(t)| > ε for 1 ≤ i 6= j ≤ N ,

with specular reflection at collisions:

(1.2)
(vεi )

′ := vεi −
1

ε2
(vεi − vεj) · (xεi − xεj) (xεi − xεj)(

vεj
)′

:= vεj +
1

ε2
(vεi − vεj) · (xεi − xεj) (xεi − xεj)

 if |xεi (t)− xεj(t)| = ε .

The sign of the scalar product (vεi − vεj) · (xεi − xεj) identifies post-collisional (+) and pre-

collisional (−) configurations. This flow does not cover all possible situations, as multiple
collisions are excluded. But one can show (see [1]) that for almost every admissible initial con-
figuration (xε0i ,v

ε0
i )1≤i≤N , there are neither multiple collisions, nor accumulations of collision

times, so that the dynamics is globally well defined.

We are not interested here in one specific realization of the dynamics, but rather in a
statistical description. This is achieved by introducing a measure at time 0, on the phase
space we now specify. The collections of N positions and velocities are denoted respectively
by XN := (x1, . . . , xN ) in TdN and VN := (v1, . . . , vN ) in RdN , we set ZN := (XN , VN )
in (Td × Rd)N , with ZN = (z1, . . . , zN ). Our fundamental random variable is the time-
zero configuration, consisting of the initial positions and velocities of all the particles of the
gas

(
zε0i
)
i

= (xε0i ,v
ε0
i )i in the phase space

DεN :=
{
ZN ∈ DN /∀i 6= j , |xi − xj | > ε

}
.

The particle dynamics ZεN = (zε1, . . . , z
ε
N ) solution of the hard-sphere flow (1.1)-(1.2) with

random initial data Zε0N , evolves in DεN (and it is well defined with probability 1). Actually, to
avoid spurious correlations due to a given total number of particles, we shall consider a grand
canonical state: the total number of particles is itself a random variable, which we will denote
by N . The particle configuration is therefore ZεN = (zε1, . . . , z

ε
N ), distributed according to

the equilibrium measure as follows. The probability density of finding N particles in ZN is
given by

(1.3)
1

N !
M ε
N (ZN ) :=

1

Zε
µNε
N !

1DεN (ZN )M⊗N (VN ) , for N = 0, 1, 2, . . .

with µε > 0 (typical number of particles) tuned as explained below,

(1.4) M(v) :=
1

(2π)
d
2

exp
(
−|v|

2

2

)
, M⊗N (VN ) :=

N∏
i=1

M(vi) ,

and the partition function given by

(1.5) Zε := 1 +
∑
N≥1

µNε
N !

∫
TdN×RdN

∏
i 6=j

1|xi−xj |>ε

( N∏
i=1

M(vi)

)
dXN dVN .

In the following the probability of an event A with respect to the Gibbs measure (1.3) will
be denoted Pε(A), and Eε will be the expected value.

In the low density regime, referred to as the Boltzmann-Grad scaling, the density (average

total number) of particles is tuned by the parameter µε := ε−(d−1), ensuring that the mean
free path between collisions is of order one [16]. With this choice of µε, (1.3)-(1.5) imply
indeed that N (distributed according to a quasi-Poisson process) satisfies

lim
ε→0

Eε (N ) εd−1 = 1 ,
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and the fraction of volume occupied by the spheres ∼ Eε (N ) εd goes to zero. Furthermore,
the volume covered by a particle (with velocity of order 1) in a unit of time is O

(
εd−1

)
.

Hence the above scaling relation implies that the typical free flight time between collisions is
of order 1, as well as the mean free path. If the particles are distributed according to the Gibbs

(x, v)

ε

Figure 2. The collision cylinder of diameter ε has volume proportional to εd−1|v|τ ,
where τ is the time of free flight.

measure (1.3)-(1.5), the limit ε→ 0 provides then an ideal gas with velocity distribution M .

1.2. The linearized Boltzmann equation. Out of equilibrium, if the particles are initially
identically distributed according to a smooth, sufficiently decaying function f0, e.g. according
to a grand canonical density

(1.6)
µNε
N !

1DεN (ZN )
(
f0
)⊗N

(ZN )

(generalizing (1.3)), then in the Boltzmann-Grad limit µε → ∞, the average behavior is
governed for short times by the Boltzmann equation [22]∂tf + v · ∇xf =

∫
Rd

∫
Sd−1

(
f(t, x, w′)f(t, x, v′)− f(t, x, w)f(t, x, v)

)(
(v − w) · ω

)
+
dω dw ,

f(0, x, v) = f0(x, v)

where the velocities (v′, w′) are defined by the scattering law

(1.7) v′ := v −
(
(v − w) · ω

)
ω , w′ := w +

(
(v − w) · ω

)
ω .

At equilibrium, the convergence holds for all times since the Gibbs measure (1.3)-(1.5)
is invariant under the microscopic flow (1.1)-(1.2) and M is a stationary solution to the
Boltzmann equation. In particular, the empirical density defined by

(1.8) πεt :=
1

µε

N∑
i=1

δzεi (t)

concentrates on M : for any test function h : D→ R and any δ > 0, t ∈ R,

(1.9) Pε
(∣∣∣πεt (h)− Eε

(
πεt (h)

)∣∣∣ > δ
)
−−−−→
µε→∞

0 .

It is well-known that the Boltzmann equation dissipates entropy, contrary to the original
particle system (1.1)-(1.2) which is time reversible. Thus some information is lost in the
Boltzmann-Grad limit, and describing the fluctuations is a first way to capture part of this
lost information. As in the standard central limit theorem, we expect these fluctuations to
be of order 1/

√
µε. We therefore define the fluctuation field ζε by

(1.10) ζεt
(
h
)

:=
√
µε

(
πεt (h)− Eε

(
πεt (h)

))
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for any test function h. This process ζε has been studied for short times in [5, 6] and was
proved to solve a fluctuating equation. Here we focus on the time correlation

(1.11) Covε(t, g0, h) := Eε
(
ζε0(g0)ζεt (h)

)
.

Before stating our main result, let us define the linearized Boltzmann operator

Lg := −v · ∇xg +

∫
Rd×Sd−1

M(w) ((v − w) · ω)+

[
g(v′) + g(w′)− g(v)− g(w)

]
dω dw

which is well-defined in the space L2
M , denoting for 1 ≤ p <∞

(1.12) LpM :=
{
g : Td × Rd → R , ‖g‖LpM :=

(∫
Td×Rd

|g|pMdxdv
) 1
p
<∞

}
.

Theorem 1.1 (Linearized Boltzmann equation). Consider a system of hard spheres at
equilibrium in a d-dimensional periodic box with d ≥ 3. Let g0 and h be two functions in L2

M .
Then, in the Boltzmann-Grad limit µε → ∞, the covariance of the fluctuation field (ζεt )t≥0

defined by (1.11) converges on R+ to

∫
Mg(t)hdxdv where g ∈ L∞t (L2

M ) is the solution of

the linearized Boltzmann equation

(1.13) ∂tg = Lg ,

with g|t=0 = g0.

Remark 1.1. It is classical that there is a unique solution to the linearized Boltzmann equa-
tion, which is bounded globally in time in L2

M (see e.g. Section 7 in [9]).

The limit is stated for any fixed time t > 0, however one can choose t ∈ [0, θ] with θ

diverging slowly with ε, as o
(
(log | log ε|)1/4

)
. As shown in Section 2, in the case of smooth

data h, g0 ∈W 1,∞(D) there holds for any τ � 1� θ

sup
t∈[0,θ]

∣∣∣∣Covε(t, g0, h)−
∫
Mg(t)hdxdv

∣∣∣∣ ≤ C‖h‖W 1,∞‖g0‖W 1,∞

(
(θ3τ)1/2 + (Cθ)2θ/τ ε

1
8d

)
.

In particular, the hydrodynamical limits hold true leading to the acoustic equations and Stokes-
Fourier equations, as explained in [4]. Theorem 1.1 is a consequence of this estimate by a
density argument (see Section 2).

Remark 1.2. The same result as Theorem 1.1 was proved in dimension 2 in [4] with a
different, more technical and less robust strategy. The proof presented here could be adapted
to the two-dimensional case, at the price of slightly more intricate geometric estimates (see
Appendix B), but we choose not to deal with this case.

Remark 1.3. Previous work on the (more general) nonequilibrium setting (1.6) has led to
construct the Gaussian limiting fluctuation field for short times by using cumulant expan-
sions [26, 25, 5, 6]. For further discussions on the fluctuation theory of the hard sphere gas
we refer to these references, as well as to [12, 27, 28]. By combining cumulant techniques
and the weak convergence method of the present paper, we can actually derive the fluctuating
Boltzmann equation at equilibrium for long times (see the companion paper [2]).

1.3. Strategy and overview. Let us explain now our strategy in a very informal way,
referring to Section 2 below for the technical details. Our goal is to construct the limit
of Covε(t, g0, h) as µε → ∞. We will therefore compute expectations of observables of the
following type:

(1.14) µεEε (πε0(g0)πεt (h)) .
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A classical way to proceed ([30, 26]) is to introduce the nonequilibrium measure obtained
from the invariant measure by perturbing it with the sum

∑
i g0

(
zε0i
)

Eε

(( N∑
i=1

g0

(
zε0i
))

πεt (h)

)
=: Eg0

ε (πεt (h)) .

To compute expectations of the empirical measure πεt (h) under this nonequilibrium measure,
one transports the nonequilibrium measure along the microscopic dynamics, and then takes
its one-dimensional projection Gε1(t) :

(1.15)

∫
Gε1(t, z)h(z)dz = Eg0

ε (πεt (h)) .

This leads to consider the whole family of finite-dimensional projections Gεk(t) of the trans-
ported measure, namely the so-called correlations functions defined by

(1.16)

∫
Gεk(t, Zk)hk(Zk)dZk = Eg0

ε

 1

µkε

∑
(i1,...,ik)

hk(z
ε
i1(t), . . . , zεik(t))

 , k = 1, 2, . . .

for arbitrary test functions hk, where (i1, . . . , ik) are k-tuples of particle labels. In fact, these
functions satisfy an infinite hierarchy of coupled linear equations, referred to as the BBGKY
hierarchy; see e.g. [12] for the particular application to fluctuation fields.

The explicit, iterated (Duhamel) solution to this hierarchy is the basic formula in the proof
of Lanford [22], and in most of the mathematical literature on the Boltzmann-Grad limit.
Its main drawback is the above-mentioned time restriction, coming from too many terms in
the iterated formula. This is ultimately due to the fact that we are unable to take advantage
of cancellations between gain and loss terms, and this is true even in our equilibrium setting
(as pointed out in [30]).

In this paper, we propose to take advantage in a more systematic way of the invariance of
the Gibbs measure, in particular exploiting the symmetry between g0 and h in formula (1.14).
The general idea is to use the Duhamel iteration of the BBGKY hierarchy, which correlates
configurations at time 0 with configurations at time t, only when the number of collisions
is under control. In other cases, we would like to identify locally a pathological behavior
(typically a set B of trajectories with an anomalously large number of collisions), and prove
that the contribution of this bad set B to the covariance is negligible. To do this we use a time
decoupling (and the invariance of the Gibbs measure), as in the following Cauchy-Schwarz
estimate

(1.17)
∣∣∣Eε(ζε0(g0) ζεt (h) 1B

)∣∣∣ ≤ Eε (1B)1/4 Eε
(
(ζε0(h)4

)1/4 Eε ((ζε0(g0)2
)1/2

.

In order to implement this intuition, we will actually proceed iteratively, by using the
Duhamel formula on elementary (small) time intervals. There are then two main ingredients:

(i) suitable stopping rules on collision processes. We will use a refined version of the
sampling procedure introduced in [3, 4] (and reminiscent of those explained in [11] in a
quantum setting). In essence, one checks trajectories locally in each time interval, and stops
at tstop ∈ (0, t) when a pathological behavior is found; see Section 2.4 for details.

(ii) a weak convergence argument relating the Duhamel expansion and some geometric
representation of the correlations. The issue here is to introduce geometric constraints on the
trajectories of finite subsets of particles, using as integration variables the configurations of
particles at time tstop, and characterizing locally the pathological sets. This representation,
which will be discussed in Section 2.3, is the key tool to rewrite remainder terms as an expec-
tation over symmetric sets of pathological trajectories, allowing an effective time decoupling
(see Eq. (2.19) below).



LONG-TIME CORRELATIONS FOR A HARD-SPHERE GAS AT EQUILIBRIUM 7

The paper is organized as follows. In Section 2 we setup our strategy, introduce several
error terms and list the corresponding estimates. Section 3 contains a general bound in
a L2-norm (based on cluster expansion), which is then used in Sections 4, 5, 6 to control the
principal part and the error terms. The required geometric estimates on recollision sets are
discussed in an appendix, restricting this part for brevity to d ≥ 3.

Acknowledgements.
We thank the anonynmous referee for a careful reading of the manuscript, and many useful
comments. This work was partially supported by ANR-15-CE40-0020-01 grant LSD.

2. Proof of Theorem 1.1. Main steps

2.1. Reduction to smooth mean free data. Let us first prove that, without loss of
generality, we can restrict our attention to functions g0, h satisfying

(2.1)

∫
Mg0dz =

∫
Mhdz = 0 .

We start by noticing that there is a constant cε such that for all h ∈ L2
M ,

(2.2) Eε
(
πεt (h)

)
= cε

∫
D
M(v)h(z)dz .

Indeed

Eε
(
πεt (h)

)
=

1

Zε
∑
n≥1

µn−1
ε

(n− 1)!

∫
Dεn
M⊗n(Vn)h(z1) dZn

=

∫
dz1M(v1)h(z1)

( 1

Zε
∑
p≥0

µpε
p!

∫
Dpε
dZ̄p

∏
1≤i≤p

1|x1−x̄i|>εM
⊗p(V̄p)

)
= cε

∫
D
M(v)h(z)dz

using the translation invariance. Expanding the exclusion condition
∏

1≤i≤p 1|x1−x̄i|>ε − 1

actually leads to cε = 1 +O(ε) but this fact will not be used in the following.

Denoting by 〈·〉 the average with respect to the probability measure Mdvdx, and set-
ting ĝ := g − 〈g〉, we get according to (2.2),

Eε
(
πεt (ĝ0)

)
= Eε

(
πεt (ĥ)

)
= 0 .

Now, shifting g0 and h by their averages boils down to recording the fluctuation of the total
number of particles (in the grand canonical ensemble)

Covε(t, g0, h) = Covε(t, ĝ0, ĥ)+〈g0〉Eε
(
ζε(1)ζεt (ĥ)

)
+〈h〉Eε

(
ζε(1)ζε0(ĝ0)

)
+〈h〉〈g0〉Eε

(
ζε(1)2

)
,

where we used the time independent field ζε(1) = 1√
µε

(
N−Eε(N )

)
. Using the time invariance

of the Gibbs measure, the time evolution of Covε is unchanged

∂t Covε(t, g0, h) = ∂t Covε(t, ĝ0, ĥ)

and the result follows from (1.13) and the fact that for all functions h1 and h2 in L2
M∫

M(Lĥ1)ĥ2 dxdv =

∫
M(Lh1)h2 dxdv .

It will be also useful in the following to work with functions g0 and h with additional
smoothness (namely assuming g0 Lipschitz in space, and both functions to be in L∞ and
not only L2

M ). For this we notice that we can introduce sequences of smooth, mean free
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functions (gα0 )α>0 and (hα)α>0 approximating g0 and h in L2
M as α → 0. By the Cauchy-

Schwarz inequality there holds for all mean free functions h1 and h2 in L2
M

Covε(t, h1, h2) = Eε
(
ζε0(h1)ζεt (h2)

)
≤ Eε

(
ζε0(h1)2

) 1
2 Eε

(
ζεt (h2)2

) 1
2 ,

which is bounded uniformly (for small ε) by virtue of the a priori estimate (see [28] or
Remark 3.3 below)

(2.3) ∀h ∈ L2
M , Eε

(
ζεt (h)2

) 1
2 ≤ C‖h‖L2

M
, C > 0 .

In particular ∣∣∣Covε(t, g0, h)− Covε(t, g
α
0 , h

α)
∣∣∣ −→ 0 , α→ 0 ,

uniformly in ε. In the following, we therefore assume that g0 and h are mean free and smooth.

2.2. The Duhamel iteration. For any test function h : D→ R, let us compute

Eε
(
ζε0(g0)ζεt (h)

)
=

1

µε
Eε

(( N∑
i=1

g0

(
zεi (0)

))( N∑
i=1

h
(
zεi (t)

)))
.

Thanks to the exchangeability of the particles, this can be written

(2.4) Eε
(
ζε0(g0)ζεt (h)

)
=

∫
Gε1(t, z)h(z) dz

where Gε1 is the one-particle correlation function

Gε1(t, z1) :=
1

µε

∞∑
p=0

1

p!

∫
Dp
dz2 . . . dz1+pW

ε
1+p(t, Z1+p) ,

and W ε
N (t) is defined as follows. At time zero we set

(2.5)
1

N !
W ε0
N (ZN ) :=

1

Zε
µNε
N !

1DεN (ZN )M⊗N (VN )
N∑
i=1

g0(zi) ,

and W ε
N (t) solves the Liouville equation

(2.6) ∂tW
ε
N + VN · ∇XNW

ε
N = 0 on DεN ,

with specular reflection (1.2) on the boundary |xi− xj | = ε. We actually extend W ε
N by zero

outside DεN .
As a consequence, to prove Theorem 1.1 we need to prove that Gε1(t) converges for all times

to Mg(t), where g solves the linearized Boltzmann equation (1.13) with initial datum g0.

Similarly for any test function hn : Dn → R, one defines the n-particle correlation function

Gεn(t, Zn) :=
1

µnε

∞∑
p=0

1

p!

∫
Dp
dzn+1 . . . dzn+pW

ε
n+p(t, Zn+p)(2.7)

so that

Eε

 1

µnε

( N∑
i=1

g0

(
zεi (0)

))( ∑
(i1,...in)

hn
(
zεi1(t), . . . , zεin(t)

)) =

∫
Gεn(t, Zn)hn(Zn) dZn .

Here and below we use the shortened notation for n-tuples∑
(i1,...,in)

=
∑

i1,...,in∈{1,...,N}
ij 6=ik, j 6=k

.
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Remark 2.1. From the explicit structure of the Gibbs measure, the following uniform bound
is derived in [30] (see also Lemma 6.1 below)

|Gεn(0, Zn)| ≤ CnM⊗n (Vn) ‖g0‖∞
for some constant C > 0 independent of ε. However, one is unable to propagate this initial
estimate in time improving the rough a priori bound |Gεn(t, Zn)| ≤ µεC

nM⊗n (Vn) ‖g0‖∞ .
For this reason, the theorem of Lanford cannot be applied iteratively to reach arbitrary times
in this close-to-equilibrium setting; see [30] for details.

Using the Liouville equation (for fixed ε), we obtain that the one-particle correlation func-
tion Gε1(t, x1, v1) satisfies

(2.8) ∂tG
ε
1 + v1 · ∇x1G

ε
1 = Cε1,2G

ε
2

where the collision operator comes from the boundary terms in Green’s formula (using the
reflection condition to rewrite the gain part in terms of pre-collisional velocities):

(2.9)

(Cε1,2G
ε
2)(x1, v1) :=

∫
Gε2(x1, v

′
1, x1 + εω, v′2)

(
(v2 − v1) · ω

)
+
dωdv2

−
∫
Gε2(x1, v1, x1 + εω, v2)

(
(v2 − v1) · ω

)
− dωdv2 ,

with as in (1.7)

v′1 = v1 − (v1 − v2) · ω ω , v′2 = v2 + (v1 − v2) · ω ω .

Similarly, we have the following evolution equation for the n-particle correlation function :

(2.10) ∂tG
ε
n + Vn · ∇XnGεn = Cεn,n+1G

ε
n+1 on Dεn ,

with specular boundary reflection as in (2.6). This is the well-known BBGKY hierarchy
(see [8]), which is the elementary brick in the proof of Lanford’s theorem for short times.
As Cε1,2 above, Cεn,n+1 describes collisions between one “fresh” particle (labelled n + 1) and

one given particle i ∈ {1, . . . , n}. As in (2.9), this term is decomposed into two parts according
to the hemisphere ±(vn+1 − vi) · ω > 0:

Cεn,n+1G
ε
n+1 :=

n∑
i=1

Cε,in,n+1G
ε
n+1

with

(Cε,in,n+1G
ε
n+1)(Zn) :=

∫
Gεn+1(Z〈i〉n , xi, v

′
i, xi + εω, v′n+1)

(
(vn+1 − vi) · ω

)
+
dω dvn+1

−
∫
Gεn+1(Zn, xi + εω, vn+1)

(
(vn+1 − vi) · ω

)
− dω dvn+1 ,

where (v′i, v
′
n+1) is recovered from (vi, vn+1) through the scattering laws (1.7), and with the

notation

Z〈i〉n := (z1, . . . , zi−1, zi+1, . . . , zn) .

Note that performing the change of variables ω 7−→ −ω in the pre-collisional term gives rise
to

(Cε,in,n+1G
ε
n+1)(Zn) :=

∫ (
Gεn+1(Z〈i〉n , xi, v

′
i, xi + εω, v′n+1)−Gεn+1(Zn, xi − εω, vn+1)

)
×
(
(vn+1 − vi) · ω

)
+
dω dvn+1 .

Since the equation on Gεn involves Gεn+1, obtaining the convergence of Gε1 requires under-
standing the behavior of the whole family (Gεn)n≥1. A natural first step consists in obtaining
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uniform bounds. Denote by Sεn the group associated with free transport in Dεn (with specular
reflection on the boundary). Iterating Duhamel’s formula

Gεn(t) = Sεn(t)Gε0n +

∫ t

0
Sεn(t− t1)Cεn,n+1G

ε
n+1(t1) dt1

we can express formally the solution Gεn(t) of the hierarchy (2.10) as a sum of operators
acting on the initial data :

(2.11) Gεn(t) =
∑
m≥0

Qεn,n+m(t)Gε0n+m ,

where we have defined for t > 0

(2.12)
Qεn,n+m(t)Gε0n+m :=

∫ t

0

∫ t1

0
· · ·
∫ tm−1

0
Sεn(t− t1)Cεn,n+1S

ε
n+1(t1 − t2)Cεn+1,n+2

. . . Sεn+m(tm)Gε0n+m dtm . . . dt1

and Qεn,n(t)Gε0n := Sεn(t)Gε0n .

Let us sketch how an a priori L∞ bound can be derived from the series expansion (2.11).
We say that a belongs to the set of (ordered, signed) collision trees A±n,m if a = (ai, si)1≤i≤m
with labels ai ∈ {1, . . . , n+i−1} describing which particle collides with particle n+i, and with
signs si ∈ {−,+} specifying the collision hemispheres. Each elementary integral appearing
in the operator Qεn,n+m thus corresponds to a collision tree in A±n,m with m branching points,
involving a simplex in time (t1 > t2 > · · · > tm). If we replace, for simplicity, the cross-
section factors by a bounded function (cutting off high energies), we immediately get that
the integrals are bounded, for each fixed collision tree a ∈ A±n,m, by

‖Gε0m+n‖∞
(Ct)m

m!
≤ ‖g0‖L∞Cn+m

0

(Ct)m

m!

(see Remark 2.1). Since |A±n,m| = 2m(m+n−1)!/(n−1)!, summing over all trees gives rise to

a bound Cn+mtm‖g0‖L∞ . The series expansion is therefore uniformly absolutely convergent
only for short times. In the presence of the true cross-section factor, the result remains valid
(with a slightly different value of the convergence radius), though the proof requires some
extra care [21, 22].

2.3. Pseudo-trajectories and symmetric expectations. In Lanford’s strategy described
above, the number of collisions m is not under control a priori and this is the reason for the
short time of validity of the result in [30]. To extend the convergence for long times, it is
therefore crucial to control the number of collisions. The idea is to introduce a sampling, apply
Lanford’s strategy on elementary time intervals, and discard terms corresponding locally to
too many collisions. For this, we shall use a geometric interpretation of the expansion (2.11)-
(2.12), which we introduce next.

2.3.1. Pseudo-trajectories. (see e.g. [6]) For all parameters (ti, ωi, vn+i)i=1,...,m with ti > ti+1

and all collision trees a ∈ A±n,m, one constructs pseudo-trajectories on [0, t]

Ψε
n,m = Ψε

n,m

(
Zn, (ai, si, ti, ωi, vn+i)i=1,...,m

)
iteratively on i = 1, 2, . . . ,m as follows (denoting by Zεn+i(τ) the coordinates of the pseudo-
particles at time τ ≤ ti, and setting t0 = t):

• starting from Zn at time t,
• transporting all existing particles backward on (ti, ti−1) (on Dεn+i−1 with specular

reflection on the boundary),
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• adding a new particle labeled n + i at time ti, at position xεai(ti) + εsiωi and with
velocity vn+i,
• applying the scattering rule (1.7) if si > 0.

We discard non admissible parameters for which this procedure is ill-defined; in particular we
exclude values of ωi corresponding to an overlap of particles (two spheres at distance strictly
smaller than ε) as well as those such that ωi ·

(
vn+i−vεai(t

+
i )
)
≤ 0. In the following we denote

by Gεm(a, Zn) the set of admissible parameters.

Definition 2.2. We call creation the addition of a new particle n+i at time ti (with scattering
or without).

We call recollision a collision between pre-existing particles corresponding to a configuration
in ∂Dεn+i−1 for some time in (ti, ti−1). In particular, a recollision does not involve a fresh
(just created) particle in the backward pseudo-trajectory.

With these notations, one gets the following geometric representation of the correlation
function Gεn :

Gεn(t, Zn) =
∑
m≥0

∑
a∈A±n,m

∫
Gεm(a,Zn)

dTmdΩmdVn+1,n+m

×

(
m∏
i=1

si

((
vn+i − vεai(t

+
i )
)
· ωi
)

+

)
Gε0n+m

(
Zεn+m(0)

)
,

where (Tm,Ωm, Vn+1,n+m) := (ti, ωi, vn+i)1≤i≤m.

In the following we concentrate on the case n = 1 since as explained above, it is the key
to studying the covariance of the fluctuation field: our goal is indeed to study∫

dz1G
ε
1(t, z1)h(z1) =

∑
m≥0

Im

where

Im :=
∑
m≥0

∫
dz1h(z1)

(
Qε1,1+m(t)Gε01+m

)
(z1) .

Since we would like to control the collision process independently of the structure of the
initial data, it is useful to define a “dual” operator Qε∗1,1+m(t)

(2.13)

∫
dz1h(z1)

(
Qε1,1+m(t)Gε01+m

)
(z1) =

∫
dZ1+m

(
Qε∗1,1+m(t)h(z1)

)
Gε01+m (Z1+m) .

By this procedure, pathological behaviors may be identified directly at the level of the test
function Qε∗1,1+m(t)h(z1). This corresponds to changing integration variables, in such a way
that the standard Duhamel iterated formula on the left hand side assumes a more practical
(and more symmetric) geometric representation, in terms of trajectories evolving forward in
time.

2.3.2. The duality argument in the absence of recollisions. Let us assume momentarily that
there is no recollision in the pseudo-dynamics. Denoting by Qε01,1+m the restriction of Qε1,1+m

to pseudo-trajectories without recollision, and recalling the series expansion (2.11), we there-
fore focus in this paragraph on

I0 :=
∑
m≥0

I0
m :=

∑
m≥0

∫
dz1h(z1)Qε01,1+m(t)Gε01+m .
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Let us fix the integer m ≥ 0. Expanding the collision operators leads to

I0
m =

∑
a∈A±1,m

∫
Pa
dz1h(z1)dTmdΩmdV2,m+1

(
m∏
i=1

si

((
v1+i − vεai(t

+
i )
)
· ωi
)

+

)
Gε01+m

(
Zε1+m(0)

)
,

where Pa is the subset of D × ([0, t] × Sd−1 × Rd)m such that for any z1, (ti, ωi, v1+i)1≤i≤m
in Pa, the associate pseudo-trajectory is well-defined and satisfies the requirements that as
time goes from t to 0, there are exactly m creations according to the collision tree a, and no
recollision. Recall that a tree a encodes both the labels of the colliding particles (namely 1+ i
and ai) and the signs si prescribing at each creation if there is scattering or not.

Given a tree a ∈ A±1,m, consider the change of variables, of range Ra:

(2.14)
(
z1, (ti, ωi, v1+i)1≤i≤m

)
∈ Pa 7−→ Zε1+m(0) ∈ Ra .

Definition 2.3. We call forward flow the reconstruction of the dynamics on [0, t] starting
from the configuration Zε1+m(0).

In the forward dynamics, two particles are said to encounter if they find themselves at dis-
tance ε leading to a creation or a recollision in the corresponding backward pseudo-dynamics.

In the case without recollision, if we start from some Z1+m ∈ Ra at time 0, we can recon-
struct the forward dynamics on [0, t] by removing at each encounter the particle with highest
index, and possibly scattering the other colliding particle according to the sequence (sm−i+1)i.
The collision parameters (ti, ωi, v1+i)1≤i≤m are thus uniquely defined. This proves that the
change of variables (2.14) is injective. Note that the knowledge of the sequence (ai) is not
useful in this construction.

From the encounter condition

xεi+1(ti)− xεai(ti) = xεi+1(ti+1)− xεai(ti+1) + (ti − ti+1)(vεi+1(t+i+1)− vεai(t
+
i+1)) = εsiωi

we deduce that

dxi+1dvi+1 =
1

µε

((
v1+i − vεai(t

+
i )
)
· ωi
)

+
dtidωidvi+1 .

Thus the jacobian of the change of variable (2.14) can be computed recursively

1

µmε

m∏
i=1

((
v1+i − vεai(t

+
i )
)
· ωi
)

+
.

Denoting by zε1(t, Z1+m) the configuration of particle 1 at time t starting from Z1+m ∈ Ra
at time 0, one can therefore write

I0
m =

∑
a∈A±1,m

µmε

∫
Ra
dZ1+mG

ε0
1+m(Z1+m)h

(
zε1(t, Z1+m)

) m∏
i=1

si .

Note that the restriction to Ra implies that Z1+m is configured in such a way that the
encounters will take place in a prescribed order (first 1 + m with am, then m with am−1,
etc.). This is related to the symmetry breaking in the iterated Duhamel formula. Usually
this symmetry breaking is not an issue since we work with L∞ estimates on correlation
functions, and therefore L1 bounds on test functions. But here we intend to work with
different estimates (see (1.17)), and it is important to keep the symmetry as much as possible.
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Using the exchangeability of the initial distribution, we therefore symmetrize over the labels
of particles and set

(2.15) Φ0
m+1(Zm+1) :=

µmε
(m+ 1)!

∑
σ∈Sm+1

∑
a∈A±1,m

h
(
zεσ(1)(t, Zσ)

)
1{Zσ∈Ra}

m∏
i=1

si

where Sm+1 denotes the permutations of {1, . . . ,m+ 1}, and

Zσ = (zσ(1), . . . , zσ(m+1)) .

Remark 2.4. Note that the change of variables(
σ, z1, (ti, ωi, v1+i)1≤i≤m

)
7−→ Zε1+m(0)

is almost injective : it suffices to prescribe two sequences of m signs to fix the label of the
particle to be removed at each encounter, and the possible scattering, to reconstruct the
pseudo-dynamics. We therefore expect the different terms of the sum with respect to per-
mutations σ in (2.15) to have essentially disjoint supports, and therefore the L2 norm of the

symmetrized function Φ0
m+1(Zm+1) to be smaller by a factor

√
(m+ 1)! than the original

function µmε
∑

a∈A±1,m
h
(
zε1(t, Z1+m)

)
1{Z1+m∈Ra}

∏m
i=1 si.

By definition, Φ0
m+1 encodes m independent constraints of size t/µε (the size of the cylinder

spanned by each particle between two collisions) corresponding to the creations in the pseudo-
dynamics on [0, t], so we expect∫

|Φ0
m+1(Zm+1)|M⊗(m+1)(Vm+1)dZm+1 ≤ ‖h‖L∞(D)C(Ct)m

for some C > 0. In order to estimate

(2.16) I0
m =

∫
dZm+1G

ε0
m+1(Zm+1)Φ0

m+1(Zm+1) ,

the key idea is now to use the Cauchy-Schwarz inequality to decouple the initial fluctuation
from the dynamics on [0, t]: indeed, setting

(2.17) Eε(Φ0
m+1) = Eε

 1

µm+1
ε

( ∑
(i1,...im+1)

Φ0
m+1

(
zεi1 , . . . , z

ε
im+1

))
and introducing the centered variable

(2.18) Φ̂0
m+1 (ZεN ) :=

1

µm+1
ε

∑
(i1,...im+1)

Φ0
m+1

(
zεi1 , . . . , z

ε
im+1

)
− Eε(Φ0

m+1) ,

we have

(2.19)

∑
m≥0

Eε
(

Φ̂0
m+1 (ZεN )

N∑
i=1

g0

(
zεi
))

:=
∑
m≥0

Eε
(
µ

1
2
ε Φ̂0

m+1 ζ
ε
0(g0)

)
≤ Eε

(
(ζε0(g0))2

)1/2 ∑
m≥0

Eε
(
µε

(
Φ̂0
m+1

)2 )1/2
,

and I0 differs from the above quantity by a small error coming from the subtraction of the
average (which will be shown to be negligible).

One important step in this paper will be the estimate of the last expectation in (2.19). It
requires to expand the square and to control the cross products using the clustering structure
of Φ̂0

m+1(Zm+1)Φ̂0
m+1(Z ′m+1). This will be achieved in Proposition 3.1.
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At this stage, the weak convergence method does not seem to be much better than the
Lanford’s method, since we expect an estimate of the form

|I0
m| ≤ C(Ct)m ,

which diverges as m → ∞ despite the fact that it does not even take into account pseudo-
dynamics involving recollisions, for which the change of variables (2.14) is not injective.

However, since the duality argument “decouples” the dynamics and the initial distribution,
it will be easier to introduce additional constraints on the dynamics. Typically we will require
that

• the total number m of collisions remains under control (much smaller than | log ε|);
• the number of recollisions per particle is bounded, in order to control the defect of

injectivity in (2.14).

Hence our strategy is to apply the above explained argument at a suitably defined stopping
time, as introduced in the following section.

2.4. Sampling. As in [4], we introduce a pruning procedure to control the number of terms
in the expansion (2.11) as well as the occurrence of recollisions. We shall rely on the geometric
interpretation of this expansion: to have a convergent series expansion on a long time (0, θ)
with θ � 1, we shall stop the (backward) iteration whenever one of the two following condi-
tions is fulfilled:

• super-exponential branching : on the time interval
(
θ−kτ, θ− (k− 1)τ

)
, with τ � 1

to be tuned, the number nk of created particles is larger than 2k;

• recollision : on the time interval
(
θ− (k−1)τ −rδ, θ− (k−1)τ − (r−1)δ

)
with δ � τ

to be tuned, there is at least one recollision.

Note that this sampling is more involved than in [4] since we essentially stop the iteration as
soon as there is one recollision in the pseudo-dynamics : this will be used to apply the duality
argument. Note also that both conditions (controlled growth and absence of recollision) have
to be dealt with simultaneously: it is indeed hopeless to control the number of recollisions if
the number of collisions can be much larger than | log ε|.

The principal part of the expansion will correspond to all pseudo-trajectories for which

the number of created particles on each time step
(
θ − kτ, θ − (k − 1)τ

)
, for 1 ≤ k ≤ θ/τ ,

is smaller than 2k, and for which there is no recollision. Recalling that Qε0n,n+m denotes
the restriction of Qεn,n+m to pseudo-trajectories without recollision, and setting K := θ/τ
and Nk = 1 + · · ·+ nk, we thus define the main part of the expansion as

(2.20) Gε,main
1 (θ) :=

∑
(nk≤2k)k≤K

Qε01,N1
(τ) . . . Qε0NK−1,NK

(τ)Gε0NK .

In order to prove that Gε1 − G
ε,main
1 is small, we will use the duality argument discussed in

Section 2.3.2, which requires an a priori control on the number of recollisions allowed in the
dynamics.

This means that we do not work with arbitrary realizations of the hard-sphere dynamics:
we rather condition the measure to avoid atypical configurations, defined as follows. Given
an integer γ ∈ N, we call microscopic cluster of size γ a set G of γ particle configurations
in Td × Rd such that (z, z′) ∈ G × G if and only if there are z1 = z, z2, . . . , z` = z′ in G such
that

|xi − xi+1| ≤ 3
√
γVδ , ∀1 ≤ i ≤ `− 1 ,

where V ∈ R+ is related to an energy truncation. To fix ideas, we choose from now on

(2.21) ε� τ � 1� θ �
(

log | log ε|
)1/4

and γ = 4d , V = | log ε| , δ = ε1− 1
2d .
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Definition 2.5. Given γ ∈ N, we define the set Υε
N as the set of initial configurations Zε0N ∈

DεN such that for any integer 1 ≤ k ≤ θ/τ and any integer r ∈ [0, τ/δ], the configuration at
time θ − (k − 1)τ − rδ satisfies

∀1 ≤ j ≤ N , |vj | ≤ V ,

and any microscopic cluster of particles is of size at most γ.

Thus the main contribution to the Duhamel expansion will be given by the restriction to
configurations in Υε

N . For this reason, we introduce the tilted measures

(2.22) W̃ ε
N = W ε

N 1ΥεN

and the corresponding correlation functions
(
G̃εn
)
n≥1

defined as in (2.7).

Remark 2.6. For the measure supported on Υε
N , it is easy to see that on the time inter-

val
(
θ − (k − 1)τ − rδ, θ − (k − 1)τ − (r − 1)δ

)
, two particles from different clusters will not

be able to recollide. Indeed the total energy of each microscopic cluster is at most γV2/2 so
that the variation of the relative distance between two particles from different clusters is at
most 2

√
γ Vδ, which prevents any collision.

Now recall that K = θ/τ and Nk = 1+· · ·+nk (where nk is the number of created particles
on the interval

(
θ − kτ, θ − (k − 1)τ

)
in the backward dynamics), and let us set R := τ/δ.

Defining

Qrec
n,n+m := Qεn,n+m −Qε0n,n+m

the restriction of Qεn,n+m to pseudo-trajectories which have at least one recollision, we can

write the following decomposition of G̃ε1:

(2.23) G̃ε1(θ) = Gε,main
1 (θ)−Gε,clust

1 (θ) +Gε,exp
1 (θ) +Gε,rec

1 (θ)

with

Gε,clust
1 (θ) :=

∑
(nk≤2k)k≤K

Qε01,N1
(τ) . . . Qε0NK−1,NK

(τ) (Gε0NK − G̃
ε0
NK

) .

The term

Gε,exp
1 (θ) :=

K∑
k=1

∑
(nj≤2j)j≤k−1

∑
nk>2k

Qε01,N1
(τ) . . . Qε0Nk−1,Nk

(τ)G̃εNk(θ − kτ)

is the error encoding super-exponential trees. The term Gε,rec
1 (θ) encodes the occurrence of a

recollision. We denote by nrec
k ≥ 0 the number of particles added on the time step

(
θ − (k −

1)τ − rδ, θ− (k− 1)τ − (r− 1)δ
)

(on which by definition there is a recollision), and by n0
k :=

nk−nrec
k the number of particles added on the time step

(
θ− (k−1)τ − (r−1)δ, θ− (k−1)τ

)
(on which by definition there is no recollision). We then define

Gε,rec
1 (θ) :=

K∑
k=1

∑
(nj≤2j)j≤k−1

R∑
r=1

∑
nk≥0

∑
n0
k+nrec

k =nk

Qε01,N1
(τ) . . . Qε0Nk−2,Nk−1

(τ)

◦Qε0Nk−1,Nk−1+n0
k
((r − 1)δ)Qrec

Nk−1+n0
k,Nk−1+n0

k+nrec
k

(δ)G̃εNk(θ − (k − 1)τ − rδ) .
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2.5. Analysis of the remainder terms. Recall that our aim is to compute the integral
in (2.4). By definition,
(2.24)

Eε
(
ζε0(g0)ζεθ(h)

)
=

∫
Gε,main

1 (θ)h(z) dz −
∫
Gε,clust

1 (θ)h(z) dz + Eε
(
1cΥεN ζ

ε
0(g0)ζεθ(h)

)
+

∫
Gε,exp

1 (θ)h(z) dz +

∫
Gε,rec

1 (θ)h(z) dz .

The first two remainder terms consist essentially in measuring the cost of the constraint
on Υε

N . They are easily shown to be small thanks to the invariant measure: the following
proposition is proved in Section 6.1.

Proposition 2.7 (Cost of the conditioning). With the previous choices (2.21) of parameters,
the conditioning is negligible in the sense that

(2.25) Pε
(c

Υε
N
)
≤ θ εd.

In particular,

(2.26)

∣∣∣∣∫ dz1G
ε,clust
1 (θ, z1)h(z1)

∣∣∣∣ ≤ C‖h‖L∞(D)‖g0‖L∞(D)(Cθ)
2θ/τ (θε)1/2 ,∣∣Eε(1cΥεN ζε0(g0)ζεθ(h)

)∣∣ ≤ C‖h‖L∞(D)‖g0‖L2
M

(θεd)1/4 .

Furthermore, there holds

(2.27)
∣∣∣Eε (ζε0(g0)1ΥεN

) ∣∣∣ ≤ C‖g0‖L2
M

(θεd)1/2 .

It remains to study Gε,exp
1 (θ) and Gε,rec

1 (θ). For these two terms we use the a priori L2

control on fluctuations, and thus rework the duality argument of Paragraph 2.3.2. The
following proposition is proved in Section 4 thanks to the quasi-orthogonality estimates of
Section 3 and the clustering estimates of Section 4, the extra smallness coming from the
assumption that the tree becomes superexponential on a short time interval of size τ .

Proposition 2.8 (Superexponential trees). If θ, τ are chosen such that

(2.28) lim
µε→∞

θ3τ = 0 ,

then ∣∣∣∣∫ dz1G
ε,exp
1 (θ, z1)h(z1)

∣∣∣∣ ≤ C‖h‖L∞(D)‖g0‖L2
M

(θ3τ)1/2 .

The possibility of recollisions makes the analysis of Gε,rec
1 more intricate : it is however

possible to revisit the arguments of Section 4, to gain smallness thanks to the presence of a
recollision on a time interval of size δ. The following proposition is proved in Section 5.

Proposition 2.9 (Recollisions). Under the previous scaling conditions,∣∣∣∣∫ dz1G
ε,rec
1 (θ, z1)h(z1)

∣∣∣∣ ≤ C‖h‖L∞(D)‖g0‖L2
M

(Cθ)2θ/τ ε
1
8d .

To conclude the proof of the main theorem, it remains to study the convergence of the
principal part.

Proposition 2.10 (Principal part). Under the previous scaling assumptions, there holds∣∣∣∣∫ Gε,main
1 (θ, z)h(z) dz −

∫
M(v) g(θ, z)h(z) dz

∣∣∣∣ ≤C‖h‖L∞(D)‖g0‖L∞(D)

(
ε1/2(Cθ)2θ/τ + θτ

)
+ C‖h‖L∞(D)‖∇xg0‖L∞(D)(Cθ)

2θ/τ ε ,

where g is the solution of the linearized Boltzmann equation (1.13) with initial datum g0.
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The proof of this proposition is the content of Section 6.2.

Collecting this together with the decomposition (2.24) and the previous propositions, The-
orem 1.1 is proved, provided that the scaling assumptions are compatible. The conver-
gence holds globally in time, i.e. for any finite θ and even for very slowly diverging θ =
o
(
(log | log ε|)1/4

)
. Choosing for instance

(2.29) τ = (θ2 log | log ε|)−1/2 ,

we check that

(2.30) lim
µε→0

θ

τ log | log ε|
= 0 and lim

µε→∞
θ3τ = 0 ,

so that (2.28) is satisfied and all remainders converge to 0. �

3. Quasi-orthogonality estimates

To control the remainders associated with super exponential branching Gε,exp
1 (θ) and rec-

ollisions Gε,rec
1 (θ), we shall follow the strategy presented in Section 2.3.2 using a duality

argument. More precisely, in order to use the L2 estimate (2.3) on the initial fluctuation
field ζε0(g0), we need to establish L2 estimates on the associate test functions ΦNk , see (2.17)-
(2.19). We prove here a general statement which will be applied to the superexponential case
in Section 4, and to the case of recollisions in Section 5.

In the following we denote for i < j

Zi,j := (zi, zi+1, . . . , zj) .

Proposition 3.1. Let ΦN be a symmetric function of N variables satisfying

sup
xN∈Td

∫
|ΦN (ZN )|M⊗N (VN ) dXN−1dVN ≤ CNρ0(3.1)

sup
x2N−`∈Td

∫
|ΦN (ZN )ΦN (Z`, ZN+1,2N−`)|M⊗(2N−`)(V2N−`) dX2N−`−1dV2N−`(3.2)

≤ CN µ`−1
ε

N `
ρ` , ` = 1, . . . , N ,

for some C, ρ0, ρ` > 0. Define the mean Eε(ΦN ) and the centered variable Φ̂N as in (2.17)-

(2.18). Then there is a constant C̃ > 0 such that

(3.3) |Eε(ΦN )| ≤ C̃Nρ0

and

(3.4) Eε
(
µεΦ̂

2
N

)
≤ C̃N

N∑
`=1

ρ` +O
(
C̃Nρ2

0ε
)
.

Remark 3.2. Properties (3.1) and (3.2) will come from the fact that the ΦNk are sums of
elementary functions of size µNk−1

ε in L∞, supported on dynamical clusters. These clusters
can be represented by minimally connected graphs with Nk vertices, where each edge has a
cost in L1 of the order of O(θ/µε). In order to compute the L1 norm of tensor products, we
will then extract minimally connected graphs from the union of two such trees, which provides
independent variables of integration. Additional smallness (encoded in the constants ρ0, ρ`)
will come from the conditions that there are recollisions, or that many creations of particles
are localized in a small time interval (see Sections 4 and 5).
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Proof. We start by computing the expectation

(3.5)

Eε(ΦN ) =
1

µNε
Eε
( ∑

(i1,...,iN )

ΦN

(
zεi1 , . . . , z

ε
iN

))
=

1

Zε
∑
p≥0

∫
dZN+p

µpε
p!

1DεN+p
(ZN+p)M

⊗(N+p)(VN+p)ΦN (ZN ) .

This expression will be estimated by expanding the exclusion condition on ZN+p = (ZN , Z̄p)
using classical cluster techniques. We will consider ZN as a block represented by one vertex,
and (z̄i)1≤i≤p as p separate vertices. We denote by d(y, y∗) the minimum relative distance
(in position) between elements y, y∗ ∈ {ZN , z̄1, . . . z̄p}. We then have

1DεN+p
(ZN+p) = 1DεN (ZN )

∏
y,y∗∈{ZN,z̄1,...z̄p}

y 6=y∗

1d(y,y∗)>ε

= 1DεN (ZN )
∑

σ0⊂{1,...,p}

1Dε|σ0|
(Z̄σ0)ϕ(ZN , Z̄σc0)

where σ0 is a (possibly empty) part of {1, . . . , p}, σc0 is its complement, and where the
cumulants ϕ are defined as follows

(3.6)
ϕ(ZN , Z̄σ) :=

∑
G∈C1+|σ|

∏
(y,y∗)∈E(G)

(−1d(y,y∗)≤ε) ,

denoting by Cn the set of connected graphs with n vertices, and by E(G) the set of edges of
such a graph G. By exchangeability of the background particles, we therefore obtain

(3.7)

Eε(ΦN ) =
1

Zε

∑
p0≥0

µp0
ε

p0!

∫
M⊗p01Dεp0

(Z̄p0)dZ̄p0


×
∑
p1≥0

µp1
ε

p1!

∫
M⊗(N+p1)ϕ(ZN , Z̄p1)1DεN (ZN )ΦN (ZN )dZNdZ̄p1

=
∑
p1≥0

µp1
ε

p1!

∫
M⊗(N+p1)ϕ(ZN , Z̄p1)1DεN (ZN )ΦN (ZN )dZNdZ̄p1 ,

where in the last step we used the definition of the grand canonical partition function Zε.
A powerful tool to sum cluster expansions of exclusion processes is the tree inequality due

to Penrose ([23], see also [20]) estimating sums over connected graphs in terms of sums over
minimally connected graphs. It states that the cumulants defined by (3.6) satisfy

(3.8)
∣∣ϕ(ZN , Z̄p1)

∣∣ ≤ ∑
T∈T1+p1

∏
(y,y∗)∈E(T )

1d(y,y∗)≤ε ,

where T1+p1 is the set of minimally connected graphs with 1 + p1 vertices.
The product of indicator functions in (3.8) is a sequence of p1 constraints, confining the

space coordinates to balls of size ε centered at the positions XN , x̄1, . . . x̄p1 . We rewrite it
as a constraint on the positions xN , x̄1, . . . x̄p1 (recalling that XN is considered as a block,
meaning that the relative positions inside it are fixed). Integrating the indicator function
with respect to X̄p1 provides a factor Cp1Nd1εdp1 where d1 is the degree of the vertex XN

in T . Then, using (3.1) to integrate with respect to XN−1, VN provides a factor CNρ0.
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It is classical (see for instance [6, Lemma 2.4.1] for a proof) that the number of minimally
connected graphs with specified vertex degrees d1, . . . , d1+p1 is given by

(3.9) (p1 − 1)!/

1+p1∏
i=1

(di − 1)! .

Therefore, combining (3.7) and (3.8), we conclude that there exists C ′ > 0 such that

(3.10) |Eε(ΦN )| ≤ CNρ0

∑
p1≥0

(C ′εdµε)
p1

∑
d1,...,dp1+1≥1

Nd1∏p1+1
i=1 (di − 1)!

 ,

from which (3.3) follows by taking ε small enough and using the fact that using the series
expansion of the exponential∑
d1,...,dp1+1≥1

Nd1∏p1+1
i=1 (di − 1)!

=
∑
d1≥1

Nd1

(d1 − 1)!

∑
d2≥1

1

(d2 − 1)!
· · ·

∑
dp1+1≥1

1

(dp1+1 − 1)!
= NeNep1 .

In order to establish (3.4), we note that

(3.11) Eε
(
µεΦ̂

2
N

)
=

1

µ2N−1
ε

Eε

( ∑
(i1,...,iN )

ΦN

(
zεi1 , . . . , z

ε
iN

)
)2

− µε(Eε(ΦN )
)2

and first expand the square

Eε

( ∑
(i1,...,iN )

ΦN

(
zεi1 , . . . , z

ε
iN

))2


= Eε

 ∑
(i1,...,iN )

ΦN

(
zεi1 , . . . , z

ε
iN

) ∑
(i′1,...,i

′
N )

ΦN

(
zεi′1
, . . . , zεi′N

) .

There are two configurations of (different) particles labelled by (i1, . . . , iN ) and (i′1, . . . , i
′
N ),

with a certain number ` of particles in common, ` = 0, 1, . . . , N . Using the symmetry of the
function ΦN , we can choose i1 = i′1, i2 = i′2, . . . , i` = i′` as the common indices and we find
that

(3.12)

Eε

( ∑
(i1,...,iN )

ΦN

(
zεi1 , . . . , z

ε
iN

))2

 =

N∑
`=0

(
N

`

)2

`!

× Eε
( ∑

(ik)k∈{1,...,2N−`}

ΦN

(
zεi1 , . . . , z

ε
iN

)
ΦN

(
zεi1 , . . . , z

ε
i`
, zεiN+1

, . . . , zεi2N−`
))
,

where the combinatorial factor
(
N
`

)2
comes from all possible choices for sets A and A′

in {1, . . . N}, with |A| = |A′| = `, corresponding to the positions of the common indices
in both N -uplets. The factor `! is due to all possible bijections between A and A′, corre-
sponding to the permutations of the repeated indices.

Next we treat separately the cases ` = 0 and ` 6= 0.
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Step 1. The case when all indices are different ` = 0. Let us compute

(3.13)

1

µ2N−1
ε

Eε
( ∑

(i1,...,i2N )

ΦN

(
zεi1 , . . . , z

ε
iN

)
ΦN

(
zεiN+1

, . . . , zεi2N
))

=
µε
Zε
∑
p≥0

∫
dZ2N+p

µpε
p!

1Dε2N+p
(Z2N+p)M

⊗(2N+p)(V2N+p)ΦN (ZN )ΦN (ZN+1,2N ) .

Dynamical constraints encoded

in ΦN (ZN) and ΦN (Z ′
N)

Cluster expansion of the exclusion

in the invariant measure

XN

X ′
N

σc0

x̄1

x̄2

x̄3

x̄4

x̄5

Figure 3. Cluster expansion of the exclusion when ZN and Z ′N are disjoint. The
red graph is a minimally connected graph on XN (blue graph), X ′N (green graph)
each seen as one vertex and σc

0 = {1, 2, 3, 4, 5}. This graph encodes 6 constraints,
independent from the dynamical constraints encoded in ΦN (ZN ) and ΦN (Z ′N ); these
dynamical constraints on XN and X ′N are represented by two (minimally connected)
graphs with N vertices, which corresponds more or less to the situations treated in
Sections 4 and 5 (see Remark 3.2).

We can proceed as in the proof of (3.3) by expanding the exclusion condition on Z2N+p =
(ZN , Z

′
N , Z̄p) (see the red part in Figure 3) and considering ZN and Z ′N as blocks represented

each by one vertex. We then have

1Dε2N+p
(Z2N+p) = 1DεN (ZN )1DεN (Z ′N )

∑
σ0⊂{1,...,p}

1Dε|σ0|
(Z̄σ0)

[
ϕ(ZN , Z

′
N , Z̄σc0)

+
∑

σ∪σ′=σc0
σ∩σ′=∅

ϕ(ZN , Z̄σ)ϕ(Z ′N , Z̄σ′)
]

where σ0, σ, σ
′ are (possibly empty) parts of {1, . . . , p}, and where we use (3.6) and

ϕ(ZN , Z
′
N , Z̄σ) :=

∑
G∈C2+|σ|

∏
(y,y∗)∈E(G)

(−1d(y,y∗)≤ε) .
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By exchangeability of the background particles, we therefore obtain (as in (3.7))
(3.14)
µε
Zε
∑
p≥0

µpε
p!

∫
M⊗(2N+p)1Dε2N+p

(ZN , Z
′
N , Z̄p)ΦN (ZN )ΦN (Z ′N )dZNdZ

′
NdZ̄p

=
∑
p1≥0

µp1+1
ε

p1!

∫
M⊗(2N+p1)ϕ(ZN , Z

′
N , Z̄p1)1DεN (ZN )1DεN (Z ′N )ΦN (ZN )ΦN (Z ′N )dZNdZ

′
NdZ̄p1

+ µε

( ∑
p1≥0

µp1
ε

p1!

∫
M⊗(N+p1)ϕ(ZN , Z̄p1)1DεN (ZN )ΦN (ZN )dZNdZ̄p1

)2
.

The last term is equal to µε (Eε(ΦN ))2 by (3.7), therefore it cancels out in the computation
of (3.11).

The second line in (3.14) is treated as before. By the tree inequality∣∣ϕ(ZN , Z
′
N , Z̄p1)

∣∣ ≤ ∑
T∈T2+p1

∏
(y,y∗)∈E(T )

1d(y,y∗)≤ε ,

we reduce to p1 + 1 constraints confining the space coordinates to balls of size ε cen-
tered at the positions XN , X

′
N , x̄1, . . . x̄p1 , which we can rewrite as a constraint on the posi-

tions xN , x
′
N , x̄1, . . . x̄p1 (recalling that XN and X ′N are considered as blocks, meaning that

the relative positions inside each one of these blocks are fixed). Integrating the indicator

function with respect to X̄p1 , xN , x
′
N provides a factor Nd1+d2εd(p1+1) where d1 and d2 are

the degrees of the vertices XN and X ′N in T . Then, using (3.1) to integrate with respect

to XN−1, X
′
N−1, VN , V

′
N provides a factor

(
CNρ0

)2
. We conclude that the second line in (3.14)

is bounded by

(3.15)
(
CNρ0

)2 ∑
p1≥0

(C ′εdµε)
p1+1

∑
d1,...,dp1+2≥1

Nd1+d2∏p1+2
i=1 (di − 1)!

 = O(C̃Nρ2
0ε)

and it follows that

(3.16)

1

µ2N−1
ε

Eε
( ∑

(i1,...,i2N )

ΦN

(
zεi1 , . . . , z

ε
iN

)
ΦN

(
zεiN+1

, . . . , zεi2N
))

= µε (Eε(ΦN ))2 +O(C̃Nρ2
0ε) .

Step 2. The case when some indices are repeated. For ` ∈ [1, N ] given, we consider

1

µ2N−1
ε

Eε
( ∑

(ik)k∈{1,...2N−`}

ΦN

(
zεi1 , . . . , z

ε
iN

)
ΦN

(
zεi1 , . . . , z

ε
i`
, zεiN+1

, . . . , zεi2N−`
))

=
µ1−`
ε

Zε
∑
p≥0

µpε
p!

∫
dZ2N+p−`1Dε2N+p−`

(Z2N+p−`)M
⊗(2N+p−`)(V2N+p−`)ΦN (ZN )ΦN (Z ′N )

denoting ZN = (Z`, Z`+1,N ), Z ′N = (Z`, ZN+1,2N−`) and Z̄p = Z2N−`+1,2N−`+p.
This expression is of the same form as (3.5), but ΦN (ZN ) is replaced by ΦN (ZN )ΦN (Z ′N )

which is a function of 2N − ` particle variables. It can be therefore estimated in exactly the
same way, by considering Z2N−` as one block since the dynamical constraints will provide a
cluster structure on Z2N−`. Note that taking ` = 0 in this computation does not reduce to the
case treated in Step 1, since XN and X ′N were considered there as two vertices, meaning that
one additional clustering constraint came from the exclusion (one more red edge in Figure 3
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Dynamical constraints encoded

in ΦN (ZN) and ΦN (Z ′
N), when

Cluster expansion of the exclusion

in the invariant measure

XN

X ′
N

σc0

x̄1

x̄2

x̄3

x̄4

x̄5

ZN and Z ′
N have ` = 2 common vertices

Figure 4. Cluster expansion of the exclusion when ZN and Z ′N have ` common ele-
ments. The constraints imposed by ΦN (ZN ) and ΦN (Z ′N ) are no longer independent,
and the 2(N −1) dynamical constraints will be replaced by 2N − `−1 “independent”
dynamical constraints (by extracting from the blue and green graphs a minimally
connected graph). In this case X2N−` is considered as one vertex for the exclusion
expansion.

than in Figure 4). The role of the cluster estimate (3.1) is now played by (3.2) and this leads
to (see (3.10))

(3.17)

1

µ2N−1
ε

Eε
( ∑

(ik)k∈{1,...2N−`}

ΦN

(
zεi1 , . . . , z

ε
iN

)
ΦN

(
zεi1 , . . . , z

ε
i`
, zεiN+1

, . . . , zεi2N−`
))

≤ CN ρ`
N `

∑
p1≥0

(C ′εdµε)
p1

∑
d1,...,dp1+1≥1

(2N − `)d1∏p1+1
i=1 (di − 1)!

 ≤ C̃Nρ`N−` .
Combining (3.11), (3.12), (3.16) and (3.17) we conclude that

(3.18) Eε
(
µεΦ̂

2
N

)
≤ µε (Eε(ΦN ))2 +O(C̃Nρ2

0ε) +

N∑
`=0

(
N

`

)2

`! C̃Nρ`N
−` − µε (Eε(ΦN ))2

and, remarking that `! ≤ N `, this leads to (3.4) by enlarging the constant C̃. �

Remark 3.3. For N = 1 and Φ1 = h ∈ L2
M , one has Eε

(
µεΦ̂

2
1

)
= Eε

(
ζε(h)2

)
. A simple

corollary of the above proof leads then to (2.3).

4. Clustering estimates

In this section we prove Proposition 2.8. We consider∫
Gε,exp

1 (θ)h(z) dz =
K∑
k=1

∑
(nj≤2j)j≤k−1

∑
nk≥2k

∫
dz h(z)Qε01,N1

(τ) . . . Qε0NK−1,NK
(τ) G̃εNK (θ−kτ) ,

corresponding to pseudo-trajectories satisfying the following constraints :

(i) there are nj particles added on the time intervals (θ − jτ, θ − (j − 1)τ) for j ≤ k,
(ii) there is no recollision on (tstop, θ).
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Each term of the sum will be estimated by using Proposition 3.1. Introducing the nota-
tion tstop := θ − kτ , we set

(4.1) Ink :=

∫
h(z1)Qε01,N1

(τ) . . . Qε0Nk−1,Nk
(τ)G̃εNk(tstop)dz1

where 1 ≤ k ≤ K is fixed, as well as the set nk = (nj)1≤j≤k of integers. Given a collision

tree a ∈ A±1,Nk−1, we will use, as explained in (2.14), the injectivity of the change of variables

(4.2)
(
z1, (ti, ωi, v1+i)1≤i≤Nk−1

)
7−→ ZεNk(0) ∈ Ra,nk ,

where the configurations in Ra,nk are obtained by pseudo-trajectories satisfying (i)(ii) when
the addition of new particles is prescribed by the collision tree a.

We can thus write

Ink =

∫
ΦNk(ZNk) G̃εNk(tstop, ZNk) dZNk ,

with

(4.3) ΦNk(ZNk) :=
µNk−1
ε

Nk!

∑
σ∈SNk

∑
a∈A±1,Nk−1

h
(
zεσ(1)(θ, Zσ)

)
1{Zσ∈Ra,nk}

Nk−1∏
i=1

si .

Using same the notation as (2.18), we set

(4.4) Φ̂N (ZεN ) :=
1

µNε

∑
(i1,...iN )

ΦN

(
zεi1 , . . . , z

ε
iN

)
− Eε(ΦN ) ,

so that Ink becomes

Ink = Eε
(
µ1/2
ε Φ̂Nk

(
ZεNk(tstop)

)
ζε0(g0) 1ΥεN

)
+ µ1/2

ε Eε (ΦNk)Eε
(
ζε0(g0)1ΥεN

)
,(4.5)

where the indicator function on Υε
N stands for the restriction on the microscopic cluster sizes

and on the velocities (recall Definition 2.5). Applying the Cauchy-Schwarz inequality, as
in (2.19), leads to the following upper bound

(4.6)
|Ink | ≤ Eε

(
(ζε0(g0))2

)1/2
Eε
(
µε

(
Φ̂Nk

(
ZεNk(tstop)

))2 )1/2

+ µ1/2
ε |Eε (ΦNk)Eε

(
ζε0(g0)1ΥεN

)
|

which can be estimated by Proposition 3.1. To do this, we are going to check, in Lemmas 4.1
and 4.2 stated below, that ΦNk satisfies the assumptions (3.1) and (3.2) of Proposition 3.1.
The last term involving the expectation will be negligible thanks to estimate (2.27) of Propo-
sition 2.7.

Lemma 4.1. There exists C > 0 such that

(4.7) sup
xNk∈T

d

∫ ∣∣ΦNk(ZNk)
∣∣M⊗Nk(VNk) dXNk−1dVNk ≤ C

Nk‖h‖L∞(D)θ
Nk−1−1τnk .

Lemma 4.2. There exists C > 0 such that, for any ` = 1, . . . , Nk,

(4.8)
sup

x2Nk−`∈T
d

∫ ∣∣ΦNk(ZNk)ΦNk(Z`, ZNk+1,2Nk−`)
∣∣M⊗(2Nk−`)(V2Nk−`) dX2Nk−`−1dV2Nk−`

≤ CNkµ`−1
ε N−`k ‖h‖

2
L∞(D) θ

2Nk−`−1−nkτnk .

Assuming those lemmas are true, let us complete the estimate of Ink . Applying the quasi-
orthogonality estimates of Proposition 3.1 to ΦNk , we obtain the bounds

Eε(ΦNk) ≤ CNk‖h‖L∞(D)θ
Nk−1−1τnk
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and

Eε
(
µε

(
Φ̂Nk

(
ZεNk(tstop)

)2) ≤ ‖h‖2L∞(D)

(
Nk∑
`=1

CNkθ2Nk−`−1−nkτnk + εθ2(Nk−1−1)τ2nk

)
.

As noted in Remark 2.4, thanks to the symmetrization and the quasi-orthogonality of the
supports in (4.3), we gain a factor Nk!.

Starting from (4.6), and using (2.3) to control Eε
(

(ζε0(g0))2
)1/2

and (2.27) of Proposi-

tion 2.7 to control Eε
(
ζε0(g0)1ΥεN

)
, we finally get

(4.9)

|Ink | ≤ C
Nk‖g0‖L2

M
‖h‖L∞(D)

(( Nk∑
`=1

θ2Nk−`−1−nkτnk + εθ2(Nk−1−1)τ2nk
)1/2

+ θNk−1− 1
2 τnk µ1/2

ε εd/2
)

≤ ‖g0‖L2
M
‖h‖L∞(D)(Cθ)

Nk−1+nk/2 τnk/2

since ε� τ � 1 ≤ θ.
To complete Proposition 2.8, we will show that the contribution of the superexponential

trees is negligible. The superexponential trees are such that Nk−1 ≤ 2k ≤ nk, this leads to

|Ink | ≤ ‖h‖L∞(D)‖g0‖L2
M

(Cθ)Nk−1+nk/2 τnk/2 ≤ ‖h‖L∞(D) ‖g0‖L2
M

(Cθ3τ)nk/2.(4.10)

The parameters θ, τ satisfy (2.28) so we can sum over (nj)j≤k and the series is controlled by

(4.11)
∣∣∣ ∫ dz1G

ε,exp
1 (θ, z1)h(z1)

∣∣∣ ≤ ‖h‖L∞(D)‖g0‖L2
M

K∑
k=1

2k
2
(Cθ3τ)2k−1

.

The proof of Proposition 2.8 is complete. �

Before proving Lemmas 4.1 and 4.2, let us introduce some notation. For any positive
integer N , we shall denote as previously by TN the set of trees (minimally connected graphs)
with N vertices. We further denote by T ≺N the set of ordered trees. A tree T≺ ∈ T ≺N is
represented by an ordered sequence of edges (qi, q̄i)1≤i≤N−1.

Proof of Lemma 4.1. For each configuration ZNk , there exist at most 4Nk−1 different (σ, a)
such that Zσ ∈ Ra,nk . Indeed at each encounter between two particles in the forward flow,
the particle which disappears has to be chosen, as well as a possible scattering. To fix these
discrepancies, we introduce two sets of signs s̄i and si which determine respectively which
particle should be removed (say s̄i = + if the particle with largest index remains, s̄i = −
if it disappears) and whether there is scattering (si = +) or not (si = −). Note that the
signs (si)1≤i≤Nk−1 are encoded in the tree a while (s̄i)1≤i≤Nk−1 are known if σ is given. If we
prescribe the set SNk−1 := (si, s̄i)1≤i≤Nk−1, then the mapping(

a, σ, z1, (ti, ωi, v1+i)1≤i≤Nk−1

)
7−→ Zεσ(tstop)

restricted to pseudo-trajectories compatible with SNk−1, is injective. Recalling (4.3) for the
definition of ΦNk , this leads to

(4.12)
∣∣ΦNk(ZNk)

∣∣ ≤ ‖h‖L∞(D)
µNk−1
ε

Nk!

∑
SNk−1

1{ZNk∈RSNk−1
} ,

where RSNk−1
is the set of configurations such that the forward flow compatible with SNk−1

exists, and with the constraints respecting the sampling (we drop the dependence of the sets
on nk, not to overburden notation).
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We are now going to evaluate the cost of the constraint ZNk ∈ RSNk−1
for a given SNk−1.

For this it is convenient to record the encounters in the forward dynamics in an ordered
tree T≺ = (qi, q̄i)1≤i≤Nk−1: the first encounter, in the forward flow starting at configura-
tion ZNk at time 0, is between particles q1 and q̄1 at time τ1 ∈ (tstop, θ), and the last en-
counter is between qNk−1 and q̄Nk−1 at time τNk−1 ∈ (τNk−2, θ). An example is depitcted in
Figure 5. Notice that compared with the definition of (backward) pseudo-trajectories, since
we follow the trajectories forward in time we choose an increasing order in the collision times
(namely τi = tNk−i). This leads to

(4.13)
∣∣ΦNk(ZNk)

∣∣ ≤ ‖h‖L∞(D)
µNk−1
ε

Nk!

∑
SNk−1

∑
T≺∈T ≺Nk

1{ZNk∈RT≺,SNk−1
} ,

where RT≺,SNk−1
is the set of configurations such that the forward flow compatible with the

couple (T≺,SNk−1) exists, and with the constraints respecting the sampling. Actually note
that for a fixed SNk−1, the above sum over ordered trees corresponds to a partition, meaning
that for any given ZNk , at most one term is non zero.

Given such an admissible tree T≺ let us define the relative positions at time tstop

x̂i := xqi − xq̄i .

Given the relative positions (x̂s)s<i and the velocities VNk , we fix a forward flow with en-
counters at times τ1 < · · · < τi−1 < θ. By construction, qi and q̄i belong to two forward
pseudo-trajectories that have not interacted yet. In other words, qi and q̄i do not belong to
the same connected component in the graph Gi−1 := (qj , q̄j)1≤j≤i−1.

θ 1

1 4 3 2
tstop 5

5

2 3

1

423

4

1

T≺

Figure 5. In the figure on the left, an example of a pseudo-trajectory with Nk = 5.
The associate graph T≺ is depicted on the right. For instance there holds G2 =
{(2, 5)(3, 4)} and (q3, q̄3) = (2, 3).

Inside each connected component, relative positions are fixed by the previous constraints,
and one degree of freedom remains. Therefore we are going to vary x̂i so that an encounter
at time τi ∈ (τi−1, θ) occurs between qi and q̄i (moving rigidly the corresponding connected
components). This encounter condition defines a set BT≺,i(x̂1, . . . , x̂i−1, VNk).

Definition 4.3. We say that the sets (BT≺,i)i≤Nk−1 are sequentially independent if for all i
the set BT≺,i is defined by constraints depending only on x̂1, . . . , x̂i−1, VNk .

The particles qi and q̄i move in straight lines, therefore the measure of this set can be
estimated by

|BT≺,i| ≤
C

µε
|vεqi(τ

+
i−1)− vεq̄i(τ

+
i−1)|

∫
1τi≥τi−1dτi
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and there holds

(4.14)
∑
qi,q̄i

|BT≺,i| ≤
C

µε

(
V 2
Nk

+Nk

)
Nk

∫
1τi≥τi−1dτi .

Hence by Fubini’s theorem∑
T≺∈T ≺Nk

∫
dX̂Nk−1

Nk−1∏
i=1

1BT≺,i ≤
∑

T≺∈T ≺Nk

∫
dx̂11BT≺,1

∫
dx̂2 · · ·

∫
dx̂Nk−11BT≺,Nk−1

≤
(
C

µε

)Nk−1 (
V 2
Nk

+Nk

)Nk−1
NNk−1
k

∫ θ

tstop

dτ1 · · ·
∫ θ

τNk−2

dτNk−11nk

(4.15)

where 1nk is the constraint on times respecting the sampling in (4.1). Retaining only the
information that nk times are in the interval (tstop, tstop + τ) and the other Nk−1 − 1 times
are in (tstop + τ, θ), we get by integrating over these ordered times an upper bound of the
form

(4.16)
τnk

nk!

θNk−1−1

(Nk−1 − 1)!
≤ 2Nk−1

(Nk − 1)!
τnk θNk−1−1 .

Up to a factor CNk , the factorial (Nk−1)! compensates the factor NNk
k in (4.15). Furthermore,

for any K,N and dimension D > 0

(4.17) sup
V ∈RD

{
exp

(
− 1

8
|V |2

)
(|V |2 +K)N

}
≤ CNeK NN .

After integrating the velocities with respect to the measure M⊗Nk , we deduce from the

previous inequality that the term
(
V 2
Nk

+Nk

)Nk
leads to another factor of order NNk

k which

is compensated, up to a factor CNk , by the Nk! in (4.12). Combining all these estimates, we

deduce that

∫
dX̂Nk−1dVNk

∣∣ΦNk

∣∣M⊗Nk can be bounded from above uniformly with respect

to the one remaining parameter which takes into account the translation invariance of the
system: for clarity, we have decided arbitrarily that the remaining degree of freedom is
indexed by the variable xNk . This completes the proof of Lemma 4.1. �

Proof of Lemma 4.2. The proof is similar to the one of the previous lemma, however, we
have to analyse now the dynamical constraints associated with two configurations ZNk =
(Z`, Z`+1,Nk) and Z ′Nk = (Z`, ZNk+1,2Nk−`) sharing ` particles. For each configuration, we fix

the parameters coding the encounters SNk−1 = (si, s̄i)1≤i≤Nk−1 and S′Nk−1 = (s′i, s̄
′
i)1≤i≤Nk−1.

By analogy with formula (4.12), we get

(4.18)

∣∣ΦNk(ZNk)ΦNk(Z`, ZNk+1,2Nk−`)
∣∣

≤ ‖h‖2L∞(D)

(
µNk−1
ε

Nk!

)2 ∑
SNk−1

S′
Nk−1

1{ZNk∈RSNk−1
}1{Z′Nk∈RS′

Nk−1
} .

We consider the forward flows of each set of particles ZNk and Z ′Nk starting at time tstop. Both
dynamics evolve independently and each one of them should have exactly Nk − 1 encounters
to be compatible with an ordered tree as the ones used in the proof of Lemma 4.1. As the
configurations ZNk and Z ′Nk share ` particles in common, strong correlations are imposed in

order to produce a total of 2(Nk−1) encounters. For our purpose, it is enough to relax these
constraints and to record only 2Nk−`−1 (sequentially independent) “clustering encounters”
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which will be indexed by an ordered graph T ′′≺ with 2Nk − ` − 1 edges, as well as relative
positions (x̂i)1≤i≤2Nk−`−1 at time tstop.

1 2 3 4 5 1 2 3 4′ 5′ 

15
θ

tstop

1
3

2

45

4′ 

5′ T′ ′ ≺

1

4

5
2

3
4′ 5′ 

1

25
3

4

6

Figure 6. In the figure on the left, an example of 2 pseudo-trajectories sharing
` = 3 particles with Nk = 5. The graph T≺ associated with the left pseudo-trajectory
starting from Z5 is depicted by the bended grey edges ordered according to the en-
counter times. The complete tree T ′′≺ is built starting from T≺ to which two additional
straight edges (numbered 5 and 6) have been added to connect 4′ and 5′.

The ordered graph T ′′≺ is constructed as follows. As in the proof of Lemma 4.1, we de-
note by T≺ the ordered tree corresponding to the forward flow of ZNk , and by (τi)1≤i≤Nk−1

and (x̂i)1≤i≤Nk−1 the corresponding encounter times and relative positions. The first Nk − 1
edges (qi, q̄i)1≤i≤Nk−1 of the graph T ′′≺ are the edges of the ordered tree T≺, so that T≺ is fully
embedded in T ′′≺ (this prescribes the constraints on the particles ZNk). The last Nk− ` edges
in T ′′≺ will record the additional constraints on the remaining particles ZNk+1,2Nk−` which are
involved in the dynamics of Z ′Nk (see Figure 6).

The edges (qi, q̄i)Nk≤i≤2Nk−` are added as follows, keeping only the clustering encounters
in the forward dynamics of Z ′Nk , i.e. the encounters associated with edges which are not
creating cycles in the graph :

• the first clustering encounter is the first encounter in the forward flow of Z ′Nk involving

at least one particle with label in [Nk + 1, 2Nk − `]. We denote by (qNk , q̄Nk) the
labels of the colliding particles and by τNk the corresponding time. We also define the
ordered graph GNk = (qj , q̄j)1≤j≤Nk . Note that on Figure 6, the graph G5 is made of
two components {1, 2, 3, 4, 5} and {4′, 5′}.
• for Nk + 1 ≤ i ≤ 2Nk − ` − 1, the i-th clustering encounter is the first encounter

(after τi−1) in the forward flow of Z ′Nk involving two particles which are not in the
same connected component of the graph Gi−1. By construction at least one of these
particles belongs to ZNk+1,2Nk−`. We denote by (qi, q̄i) the labels of the colliding
particles and by τi the corresponding time. We also define the ordered graph Gi =
(qj , q̄j)1≤j≤i.

By this procedure, we end up with a tree T ′′≺ := (qi, q̄i)1≤i≤2Nk−`−1 with no cycles (nor
multiple edges). We define as above the relative positions x̂i := xqi − xq̄i .

Note that the sequence of times (τi)1≤i≤2Nk−`−1 is only partially ordered. Indeed the
times τ1 < · · · < τNk−1 associated with ZNk are ordered, and the same applies to the
times τNk < · · · < τ2Nk−`−1 associated with the clustering encounters in Z ′Nk but they
are not mutually ordered. Nevertheless, this is not a problem since the only important
point is that the sets (BT ′′≺,i)1≤i≤2Nk−`−1, defined as in the proof of Lemma 4.1, only depend
on x̂1, . . . , x̂i−1, V2Nk−`. When i ≥ Nk, this is less obvious than in the previous case since in
the construction of T ′′≺ some encounters (those in the forward flow of Z ′Nk leading to cycles)
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have been left out, so one needs to check that the corresponding trajectories before time τi
can be reconstructed knowing only x̂1, . . . , x̂i−1, V2Nk−`.

By construction, for i ≥ Nk, the two particles (qi, q̄i) which encounter at time τi belong
to two different connected components Ci−1(qi) and Ci−1(q̄i) of the dynamical graph Gi−1.
The trajectory of qi in the pseudo-trajectory of Z ′Nk up to time τi depends only

• on the relative positions (x̂j)(qj ,q̄j)∈Ci−1(qi) at tstop

• and on any root of Ci−1(qi), for instance the position xqi of qi at tstop.

The same holds for the trajectory of q̄i. We can therefore write the colliding condition
by moving rigidly the two connected components Ci−1(qi) and Ci−1(q̄i), which provides as
previously a condition on x̂i.

From this point, we can proceed exactly as in the previous lemma and the sets BT ′′≺,i satisfy
the same estimates as before:

(4.19)

∑
T ′′≺

∫
dX̂2Nk−`−1

2Nk−`−1∏
i=1

1BT ′′≺,i

≤
(
C

µε

)2Nk−`−1 (
V 2
Nk

+Nk

)Nk−1
NNk−1
k

(
(V ′Nk)2 +Nk

)Nk−`NNk−`
k

×
∫ θ

tstop

dτ1 . . .

∫ θ

τNk−2

dτNk−11nk ×
∫ θ

tstop

dτNk . . .

∫ θ

τ2Nk−`−2

dτ2Nk−`−1 .

Notice that the first Nk − 1 ordered time integrals correspond to the constraints in the

tree T≺ and are estimated from above by 2Nk−1

(Nk−1)!τ
nk θNk−1−1 as in (4.16). The sampling

in (4.1) is omitted for the remaining times which are simply constrained to satisfy the ordering
conditions τNk < · · · < τ2Nk−`−1 ≤ θ, so that∫ θ

tstop

dτ1 · · ·
∫ θ

τNk−2

dτNk−11nk ×
∫ θ

tstop

dτNk · · ·
∫ θ

τ2Nk−`−2

dτ2Nk−`−1

≤ 2Nk−1

(Nk − 1)!
τnk θNk−1−1 × θNk−`

(Nk − `)!
≤ CNk

(Nk − `)!(Nk − 1)!
τnk θ2Nk−`−1−nk .

Plugging this estimate in (4.19), we deduce that

∑
T ′′≺

∫
dX̂2Nk−`−1

2Nk−`−1∏
i=1

1BT ′′≺,i

≤
(
C

µε

)2Nk−`−1

τnk θ2Nk−`−1−nk
(
V 2
Nk

+Nk

)Nk−1 (
(V ′Nk)2 +Nk

)Nk N−`k .

We conclude as in the proof of Lemma 4.1 by integrating with respect to velocities V2Nk−`,
and by using the prefactor (Nk!)

−2 from (4.18) to compensate, up to a factor CNk , the

divergence N2Nk
k coming from (4.17). Lemma 4.2 is proved. �

5. The cost of non-clustering constraints

In this section we prove Proposition 2.9 showing that, compared to the previous section,
the presence of a recollision produces extra smallness as µε goes to infinity. Let us recall the
setup: the term Gε,rec

1 (θ) encodes pseudo-trajectories with no recollision and sub-exponential
growth in the first k−1 time intervals of length τ ; and the first recollision in the smaller time
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interval
(
tstop, tstop + δ) with tstop := θ − (k − 1)τ − rδ. Recall that

(5.1)
Gε,rec

1 (θ) :=

K∑
k=1

∑
(nj≤2j)j≤k−1

R∑
r=1

∑
nk≥0

∑
n0
k+nrec

k =nk

Qε01,N1
(τ) . . . Qε0Nk−2,Nk−1

(τ)

◦Qε0Nk−1,Nk−1+n0
k
((r − 1)δ)Qrec

Nk−1+n0
k,Nk−1+n0

k+nrec
k

(δ)G̃εNk(tstop)

corresponds to pseudo-trajectories such that

(i) the number of new particles added respectively on the time intervals
(
θ− jτ, θ− (j−

1)τ
)

,
(
θ− (k− 1)τ − (r− 1)δ, θ− (k− 1)τ

)
and

(
tstop, tstop + δ

)
are nj ≤ 2j , n0

k and

nrec
k ,

(ii) there is no recollision on the interval (tstop + δ, θ) and at least one on (tstop, tstop + δ).

Furthermore because of the conditioning, we also know that at tstop, each velocity |vi| (1 ≤
i ≤ Nk) is less than V, and the configuration has no microscopic cluster of more than γ
particles.

We set nk := ((nj)1≤j≤k−1, n
0
k, n

rec
k , r) and

(5.2)
Irec
r,nk

:=

∫
h(z1)Qε01,N1

(τ) . . .

. . . Qε0Nk−1,Nk−1+n0
k
((r − 1)δ)Qrec

Nk−1+n0
k,Nk−1+n0

k+nrec
k

(δ)G̃εNk(tstop) .

The idea is therefore to combine the argument of the previous section, with a geometric
estimate on the strong constraint characterizing the recollision event, which will bring a
small factor in ε.

As above we shall use a duality argument in order to write an expression of the type

Irec
r,nk

=

∫
Φrec
Nk

(ZNk)G̃εNk(tstop, ZNk)dZNk .

Recall however that recollisions have been defined in the context of pseudo-trajectories, which
by construction (see Section 2.3) correspond to following the flow of (pseudo)-particles back-
wards in time. On the other hand the duality argument requires studying the flow forward
in time, and this produces two difficulties. First, defining this forward flow uniquely is not
possible if the number of recollisions for each particle is not known, so a new parameter needs
to be introduced to track this number. Second, we shall need to understand the effect on the
forward flow of the presence of a recollision in the (backward) pseudo-trajectories: it will be
responsible for the presence of a cycle in the (forward) trees we shall construct.

Let us start by writing Irec
r,nk

in dual form. The presence of recollisions requires introducing
additional parameters to recover the injectivity of the change of variables (2.14). On the
time interval (tstop + δ, θ), the situation is the same as in the previous section since there are
no recollisions by definition. On (tstop, tstop + δ) however, the construction of the forward
dynamics starting from a configuration ZNk is more intricate since there is at least one
recollision. The important fact is that the number of recollisions is under control. We have
seen that particles from different microscopic clusters cannot collide on (tstop, tstop + δ) (see
Remark 2.6). Therefore, each particle may interact at most with γ−1 particles on this small
interval. Furthermore, there cannot be any recollision due to periodicity as Vδ � 1. Since
the total number of collisions for a system of γ hard spheres in the whole space is finite (see
Theorem 1.3 in [7] or [18]) say at most Kγ , each particle in a pseudo-trajectory cannot have
more than Kγ =

∑γ
`=2 K` recollisions during the short amount of time δ. This crude upper

bound on the number of recollisions takes into account the fact that the number of particles
in a cluster may vary due the creation of new particles. We then associate with each particle
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i an index κi (less than Kγ) which is zero at time θ and increased by one each time the
particle undergoes a recollision in the backward pseudo-dynamics. We denote by KNk the
set of recollision indices (κi)1≤i≤Nk at time tstop.

Given a collision tree a ∈ A±1,Nk−1, this new set of parameters enables us to recover the lost

injectivity, by applying the following rule to reconstruct the forward dynamics (see Figure 7).
At each encounter between two particles,

• if the two particles have a positive index, then it corresponds to a recollision in
the backward pseudo-dynamics, and the recollision index of each particle has to be
decreased by one in the forward flow,
• if one of the particles has zero index, then it corresponds to a creation in the backward

pseudo-dynamics. In the forward flow, a particle must disappear: its label, and the
possible scattering of the other colliding particle are prescribed by the collision tree
a.

Note that the disappearing particle should have zero index, else the trajectory is not admis-
sible.

θ

tstop

tstop + δ

1 2 3 4 5 6

κ1 = 0
κ2 = 2
κ3 = 3
κ4 = 2
κ5 = 2
κ6 = 1

2 3 4 6

Figure 7. Example of pseudo-trajectory with recollisions in the time interval
(tstop, tstop + δ). The associated forward flow is determined thanks to the recolli-
sion indices at time tstop, listed on the right.

Finally let us define, for each a and each KNk in {0, . . . ,Kγ}Nk , the set Rrec
KNk

,a,nk
of

configurations compatible with pseudo-trajectories satisfying (i)(ii) and such that the addition
of new particles is prescribed by the collision tree a and recollisions between particles are
compatible with KNk . Then the change of variables, as in (2.14),(

z1, (ti, ωi, v1+i)1≤i≤Nk−1

)
7−→

(
ZεNk(tstop),KNk

)
of range {

(ZNk ,KNk) ∈ DεNk × {0, . . . ,Kγ}
Nk , ZNk ∈ R

rec
KNk

,a,nk

}
is injective (of course not surjective).

So we can now write

Irec
r,nk

=

∫
Φrec
Nk

(ZNk)G̃εNk(tstop, ZNk)dZNk
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where

(5.3) Φrec
Nk

(ZNk) :=
µNk−1
ε

Nk!

∑
σ∈SNk

∑
a∈A±1,Nk−1

∑
KNk

h(zεσ(1)(θ))1{Zσ∈Rrec
KNk

,a,nk
}

Nk−1∏
i=1

si .

Note that as in (2.15), we have enforced the symmetry of the particles which was lost in the

Duhamel formulation (see Remark 2.4). Proceeding as in (4.4), we define Φ̂rec
Nk

by substracting
the mean and rewrite Irec

r,nk
as an expectation

Irec
r,nk

= Eε
(
µ1/2
ε Φ̂rec

Nk

(
ZεN (tstop)

)
ζε0(g0) 1ΥεN

)
+ µ1/2

ε Eε
(
Φrec
Nk

)
Eε
(
ζε0(g0)1ΥεN

)
.

Following (4.6), a Cauchy-Schwarz inequality implies

|Irec
r,nk
| ≤ Eε

(
(ζε0(g0))2

)1/2
Eε
(
µε

(
Φ̂rec
Nk

(
ZεN (tstop)

))2 )1/2
+ µ1/2

ε Eε
(
Φrec
Nk

)
Eε
(
ζε0(g0)1ΥεN

)
.

As in (4.9), this can be estimated by Proposition 3.1 and using (2.27), once we check that Φrec
Nk

satisfies the assumptions (3.1) and (3.2) of Proposition 3.1. This is the purpose of the following
two lemmas.

Lemma 5.1. There exists C > 0 such that for d ≥ 3,

(5.4)
sup

xNk∈T
d

∫ ∣∣Φrec
Nk

(ZNk)
∣∣M⊗Nk(VNk) dXNk−1dVNk

≤ CNk‖h‖L∞(D)δ
max(1,nrec

k )τ (n0
k−1)+ (Vθ)2d+4 θNk−1−1ε| log ε| .

Lemma 5.2. There exists C > 0 such that, for any ` = 1, . . . , Nk and for d ≥ 3,

(5.5)

sup
x2Nk−`∈T

d

∫ ∣∣Φrec
Nk

(ZNk)Φrec
Nk

(Z`, ZNk+1,2Nk−`)
∣∣

×M⊗(2Nk−`)(V2Nk−`) dX2Nk−`−1dV2Nk−`

≤ CNkµ`−1
ε N−`k ‖h‖

2
L∞(D) δ

max(1,nrec
k ) τ (n0

k−1)+ (Vθ)2d+4 θ2Nk−`−1−nkε| log ε| .

Assuming these lemmas are true, let us conclude the proof of Proposition 2.9. Thanks to
Proposition 3.1 and using (2.27), there holds with the scaling choices from (2.21)

|Irec
r,nk
| ≤ CNk‖h‖L∞(D)‖g0‖L2

M

[
ε

1
2 | log ε|

( Nk∑
`=1

θ2Nk−`−1−nk
)1/2

(Vθ)d+2δ
1
2

max(1,nrec
k )τ

1
2

(n0
k−1)+

+ ε| log ε|(Vθ)2d+4θNk−1δmax(1,nrec
k )τ (n0

k−1)+ (µεε
d)1/2

]
.

Using the choices (2.21) on the parameters we get

(5.6) |Irec
r,nk
| ≤ ε

1
2 | log ε| ‖h‖L∞(D)‖g0‖L2

M
(Cθ)Nk−1+nk/2(Vθ)d+2δ

1
2

max(1,nrec
k ) τ

1
2

(n0
k−1)+ .

Finally we are in position to sum over all parameters (recall (5.1) and (5.2)). We find after
summation over n0

k and nrec
k , then r ≤ τ/δ (which corresponds to the cutting of each interval

of size τ into R = τ/δ pieces) and finally (nj)j<k and k,∣∣∣∣∫ dz1G
ε,rec
1 (θ)h(z1)

∣∣∣∣ ≤ τ

δ
(Vθ)2d+4

( K∑
k=1

2k
2
)

(Cθ)2Kδ
1
2 ε

1
2 | log ε| ‖h‖L∞(D)‖g0‖L2

M

≤ (Cθ)2Kε1/8d ‖h‖L∞(D)‖g0‖L2
M
,

as δ = ε1− 1
2d by (2.21). This ends the proof of Proposition 2.9. �
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Proof of Lemma 5.1. We shall follow the method of the previous section, by introducing the
set of signs SNk−1 = (si, s̄i)1≤i≤Nk−1, with (si, s̄i) characterizing the i-th creation (namely
whether there is scattering or not, and which particle remains). Then if SNk−1,KNk are
prescribed, the mapping

(5.7)
(
a, σ, z1, (ti, ωi, v1+i)1≤i≤Nk−1

)
7−→ (Zεσ(tstop))

is injective and we infer that∣∣Φrec
Nk

(ZNk)
∣∣ ≤ ‖h‖L∞(D)

µNk−1
ε

Nk!

∑
KNk

,SNk−1

1{ZNk∈R
rec
KNk

,SNk−1
} .

We have definedRrec
KNk

,SNk−1
as the set of configurations such that the forward flow compatible

with KNk ,SNk−1 exists, and with the constraints and conditionings listed in (i)-(ii)-(iv)-(v),
page 29.

Now let us fix KNk ,SNk−1, and evaluate the cost of the constraint that ZNk ∈ Rrec
KNk

,SNk−1
.

For this we start by splitting the sum according to ordered trees T≺ = (qi, q̄i)1≤i≤Nk−1 encod-
ing the “clustering encounters” as in the previous section: the first encounter in the forward
flow is necessarily clustering, say between particles q1 and q̄1 at time τ1 ∈ (tstop, tstop + δ).
Clustering encounters are then defined recursively : the i-th clustering encounter is the
first encounter after time τi−1 involving two particles which are not in the same connected
component of the collision graph Gi−1 = (qj , q̄j)j≤i−1. We then denote by (qi, q̄i) the col-
liding particles and by τi the corresponding colliding time. The last clustering encounter
is between qNk−1 and q̄Nk−1 at time τNk−1 ∈ (τNk−2, θ). By construction (recall (i) and
(ii) above) we know that there are at least max(1, nrec

k ) clustering encounters in the inter-
val (tstop, tstop +δ), and at least nrec

k +n0
k clustering encounters in the interval (tstop, tstop +τ).

This leads to

(5.8)
∣∣Φrec

Nk
(ZNk)

∣∣ ≤ ‖h‖L∞(D)
µNk−1
ε

Nk!

∑
KNk

,SNk−1

∑
T≺∈T ≺Nk

1{ZNk∈R
rec
T≺,KNk

,SNk−1
} ,

where Rrec
T≺,KNk

,SNk−1
is the set of configurations such that the forward flow compatible

with T≺,KNk ,SNk−1 exists, and again with the above constraints and conditioning.
Notice that, since the pseudo-trajectories involve recollisions, the clustering encounters of

the forward dynamics do not coincide in general with the creations in the backward dynamics
(see Figure 8). Furthermore, the construction of T≺ is such to exclude cycles, so that the
graph is minimally connected. On the other hand the graph encoding all encounters has more
than (Nk − 1) edges, which means that there will be at least one non clustering encounter in
the forward dynamics (see Figure 8): it will be taken into account to gain some smallness.

To begin, we proceed exactly as in the proof of Lemma 4.1. Given an admissible tree T≺,
the relative positions (x̂s)s<i and the velocities VNk , we can vary x̂i so that an encounter at
time τi ∈ (τi−1, θ) occurs between qi and q̄i and thus define the set BT≺,i(x̂1, . . . , x̂i−1, VNk)
of measure

(5.9) |BT≺,1| ≤
C

µε
|vq1 − vq̄1 |δ

and for i > 1

(5.10) |BT≺,i| ≤
C

µε
|vεqi(τ

+
i−1)− vεq̄i(τ

+
i−1)|

∫
1τi≥τi−1dτi ,

recalling the sampling (i)-(ii). The point now is to use the fact that the existence of a non
clustering encounter (which would produce a first cycle in the graph encoding all encounters)
strengthens one of these conditions. Given an ordered tree T≺, the occurrence of a cycle
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Figure 8. In the pseudo-trajectory (with Nk = 6) represented on the left figure, a
recollision occurs between 5, 6 in the time interval [tstop, tstop+δ]. Therefore the graph
encoding all encounters is not minimal, and it has at least one cycle (or multiple edge).
The time ordering of the clustering and non clustering encounters is represented by the
circled numbers and the edges are added dynamically following the forward dynamics,
i.e. starting from tstop. As a consequence, the recollision between 5, 6 in the backward
pseudo-dynamics becomes the first clustering encounter in the forward dynamics and
the non clustering encounter is identified with the dashed edge (1, 6) occurring close

to time θ.

is thus parametrised by an edge (q, q̄) and an index c such that τcyc ∈ [τc, τc+1]. Then,
proceeding as in (4.15) we see that

(5.11)

∑
T≺∈T ≺Nk

∫
dX̂Nk−11cycle

Nk−1∏
i=1

1BT≺,i

≤
∑

T≺∈T ≺Nk

∑
q,q̄

∑
c≤Nk

∫
dx̂11BT≺,1

∫
dx̂2 · · ·

∫
dx̂Nk−11BT≺,Nk−1

1cycle defined by (q, q̄), c .

As shown in Appendix B, the cycle imposes strong geometric constraints on the history of
these particles, which produce the estimate

(5.12)

∑
T≺∈T ≺Nk

∫
M⊗Nk(VNk) dVNk

∫
dX̂Nk−11cycle

Nk−1∏
i=1

1BT≺,i

≤
(
C

µε

)Nk−1

(Vθ)2d+4N3
kC

NkNNk
k NNk−1

k

∫ tstop+δ

tstop

dτ1 · · ·
∫ θ

τNk−2

dτNk−1ε| log ε|1nk ,

recalling that 1nk is the constraint on times respecting the sampling in formula (5.1), with
possibly 3 time integrals missing due to the iterated use of Propositions B.2 and B.3. Inte-
grating over the simplex in time, we finally obtain (5.4). Lemma 5.1 is proved.

�

Proof of Lemma 5.2. The proof combines arguments from the proofs of Lemmas 4.2 and 5.1.
Our starting point is the estimate

(5.13)
∣∣Φrec

Nk
(ZNk)

∣∣ ≤ ‖h‖L∞(D)
µNk−1
ε

Nk!

∑
KNk

,SNk−1

1{ZNk∈R
rec
KNk

,SNk−1
} .

Let us fix two families (KNk ,SNk−1) and (K′Nk ,S
′
Nk−1) and consider a configuration Z2Nk−`

such that ZNk ∈ Rrec
KNk

,SNk−1
and Z ′Nk = (Z`, ZNk+1,2Nk−`) ∈ Rrec

K′Nk
,S′Nk−1

.
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We consider the forward flows of each set of particles ZNk and Z ′Nk starting at time tstop.
Both dynamics evolve independently and each one of them should have at least one non
clustering encounter. As in the proof of Lemma 5.1 we denote by T≺ the ordered tree
corresponding to the clustering encounters of ZNk , and by (τi)1≤i≤Nk−1 and (x̂i)1≤i≤Nk−1 the
corresponding times and relative positions. Recall that the non clustering encounter on the
dynamics of ZNk strengthens one of the clustering constraint.

Starting from this ordered minimally connected tree T≺ with Nk vertices, we construct
an ordered minimally connected tree with 2Nk − ` vertices by the same procedure as in the
proof of Lemma 4.2. The edges (qi, q̄i)Nk≤i≤2Nk−` are added by keeping only the “clustering
encounters” in the forward dynamics of Z ′Nk :

• the first clustering encounter is the first encounter in the forward flow of Z ′Nk involving

at least one particle with label in [Nk + 1, 2Nk − `]. We denote by (qNk , q̄Nk) the
labels of the colliding particles and by τNk the corresponding time. We also define
the ordered graph GNk = (qj , q̄j)1≤j≤Nk ,
• for Nk + 1 ≤ i ≤ 2Nk − ` − 1, the i-th clustering encounter is the first encounter

(after τi−1) in the forward flow of Z ′Nk involving two particles which are not in the

same connected component of the graph Gi−1. We denote by (qi, q̄i) the labels of
the colliding particles and by τi the corresponding time. We also define the ordered
graph Gi = (qj , q̄j)1≤j≤i.

By this procedure we end up with a tree T ′′≺ := (qi, q̄i)1≤i≤2Nk−`−1 with no cycles (nor multiple
edges). We define as above the relative positions x̂i := xqi − xq̄i .

Necessary conditions to have ZNk ∈ Rrec
KNk

,SNk−1
and Z ′Nk ∈ R

rec
K′Nk

,S′Nk−1
can be expressed

recursively in terms of the collision sets (BT ′′≺,i)1≤i≤2Nk−`−1 :

• the sets BT ′′≺,i only depend on x̂1, . . . , x̂i−1, V2Nk−` for any i ≤ 2Nk−`−1 (see Lemma

4.2),
• one set of (BT ′′≺,i)1≤i≤Nk−1 has some extra smallness due to the existence of a non

clustering encounter in the dynamics of ZNk (see Lemma 5.1).

We therefore end up with the estimate

(5.14)

∑
T ′′≺

∫
dX̂2Nk−`−1dV2Nk−`M

⊗(2Nk−`)
2Nk−`−1∏

i=1

1BT ′′≺,i

≤
(
C

µε

)2Nk−`−1

(Vθ)d+1δmax(1,nrec
k ) τ (n0

k−1)+ θ2Nk−`−1−nk ε| log ε|(Nk)
2Nk−`.

Summing over all possible (KNk ,SNk−1) and (K′Nk ,S
′
Nk−1), we obtain the expected estimate.

Lemma 5.2 is proved. �

6. Conclusion of the proof: convergence results

6.1. The cost of the conditioning. This section is devoted to the proof of Proposition 2.7.
To prove (2.25), we evaluate the occurence of a microscopic cluster of size larger than γ

under the equilibrium measure. This can be estimated by considering the event that γ + 1
particles are located in a ball of diameter 3γ3/2 Vδ.

Pε
(
there is a cluster larger than γ at time 0

)
≤ Eε

 ∑
(i1,...,iγ+1)

1{i1, . . . , iγ+1 are in a cluster}


≤ Cµγ+1

ε

(
γ3/2 Vδ

)dγ
.
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In the set cΥε
N a cluster should appear (at least) at one of the θ/δ time steps. In a similar

way, the occurence of a large velocity is given by

Pε
(
there is a velocity larger than V at time 0

)
≤ Eε

(∑
i1

1{i1 has a velocity larger than V}

)

≤ C|V|d−2µε exp

(
−1

2
|V|2

)
,

which is much smaller with our choice V = | log ε|.
Thus we get by a union bound

(6.1) Pε
(c

Υε
N
)
≤ CγθVdγµγ+1

ε δdγ−1 .

Finally (2.25) follows from the choice of parameters (2.21).

Let us now note that the measure restricted to Υε
N can be decomposed as

Eε
(
ζε0(g0)1ΥεN

)
= Eε (ζε0(g0))− Eε

(
ζε0(g0)1cΥεN

)
= −Eε

(
ζε0(g0)1cΥεN

)
,

where we used that Eε (ζε0(g0)) = 0. Applying the Cauchy-Schwarz inequality, we get by (2.3),
(6.1) and the choice of parameters (2.21) that

(6.2)
∣∣∣Eε (ζε0(g0)1ΥεN

) ∣∣∣ ≤ Eε
(
ζε0(g0)2

)1/2Pε(cΥε
N
)1/2 ≤ C‖g0‖L2

M
(θεd)1/2 .

This completes (2.27).

Next we use the Hölder inequality to get∣∣Eε(1cΥεN ζε0(g0)ζεθ(h)
)∣∣ ≤ Pε

(c
Υε
N
)1/4 Eε

(
ζε0(g0)2

)1/2 Eε
(
ζε0(h)4

)1/4
.

Recall that h is in L∞. Combining (6.1) with the bounds in Proposition A.1 on the moments
of the fluctuation field, we get∣∣Eε(1cΥεN ζε0(g0)ζεθ(h)

)∣∣ ≤ C ‖h‖L∞(D)‖g0‖L2
M

(θεd)1/4 .

We turn now to proving the estimate on

∫
dz1G

ε,clust
1 (θ, z1)h(z1). Proceeding as in (4.4)-

(4.5), we get∫
dz1G

ε,clust
1 (θ, z1)h(z1)

=
∑
nk

Eε
(
µ1/2
ε Φ̂NK

(
ZεN (0)

)
ζε0(g0) 1cΥεN

)
+
∑
nk

µ1/2
ε Eε (ΦNK )Eε

(
ζε0(g0)1cΥεN

)
,

where ΦNK is conditioned on the sampling nk with sub-exponential trees and no recollisions
in (0, θ). Applying the Hölder inequality to bound the first term and (6.2) leads to∣∣∣∣∫ dz1G

ε,clust
1 (θ, z1)h(z1)

∣∣∣∣ ≤Pε(cΥε
N
)1/4 Eε

(
ζε0(g0)4

)1/4 ∑
nk

Eε
(
µε

(
Φ̂NK

(
ZεN (0)

))2)1/2

+ C‖g0‖L2
M

(θεd)1/2
∑
nk

µ1/2
ε Eε (ΦNK ) .
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Since g0 belongs to L∞, the moments of the fluctuation field can be bounded by Proposi-
tion A.1. Thus the previous term is estimated as in (4.9) and we find thanks to (6.1)∣∣∣∣∫ dz1G

ε,clust
1 (θ, z1)h(z1)

∣∣∣∣ ≤ C(θεd)1/4‖g0‖L∞(D)‖h‖L∞(D)

∑
(nk≤2k)k≤K

(Cθ)NK

+ C(θεd)1/2‖g0‖L2
M
‖h‖L∞(D)µ

1/2
ε 2K

2
(Cθ)2K+1

≤ C ‖h‖L∞(D)‖g0‖L∞(D)(θε)
1/2 2K

2
(Cθ)2K+1

.

Using the scaling K = θ/τ , this concludes the proof of Proposition 2.7. �

6.2. Convergence of the principal part. In this section, we prove Proposition 2.10. This
is based on classical arguments relying on L∞ estimates. We shall refer to the literature for
details.

To begin, the limit initial data is identified thanks to the following classical lemma: we
refer to [30, 13, 24]. We set

(6.3) G0
n(Zn) := M⊗n(Vn)

n∑
i=1

g0(zi) , n ≥ 1 .

Lemma 6.1. There exists a positive constant C such that, for any n ∈ N,∣∣(Gε0n −G0
n

)
(Zn) 1Dεn (Xn)

∣∣ ≤ CnM⊗n (Vn) ε‖g0‖∞ ,

when ε is small enough.

Next we define formally a limit hierarchy, and identify its solution with the solution
of the linearized Boltzmann equation (1.13). To do so we introduce Boltzmann pseudo-
trajectories Ψ1,m on (0, θ), constructed as follows. For all z1, all parameters (ti, ωi, vn+i)i=1,...,m

with ti > ti+1 and all collision trees a ∈ A±1,m (denoting by Zm+1(τ) the coordinates of the

particles at time τ ≤ tm)

• start from z1 at time t and, by iteration on i = 1, 2, . . . ,m,
• transport all existing particles backward on (ti, ti−1) (on Di),
• add a new particle labeled i+ 1 at time ti, at position xai(ti) and with velocity v1+i,
• apply the scattering rule (1.7) if si > 0.

We then set

(6.4) G1(θ) :=
∑
m≥0

Q1,m+1(θ)G0
m+1 , n ≥ 1

where Q1,m+1 is the Boltzmann hierarchy operator

Q1,m+1(θ)G0
m+1 :=

∑
a∈A±1,m

∫
dTmdΩmdV2,1+m

×

(
m∏
i=1

si

((
v1+i − vai(t+i )

)
· ωi
)

+

)
G0
m+1

(
Zm+1(0)

)
.

Similarly we define

Gn(θ) :=
∑
m≥0

Qn,n+m(θ)G0
n+m ,
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where

Qn,n+m(θ)G0
n+m :=

∑
a∈A±n,m

∫
dTmdΩmdVn+1,n+m

×

(
m∏
i=1

si

((
vn+i − vai(t+i )

)
· ωi
)

+

)
Gε0n+m

(
Zn+m(0)

)
.

The following result is due to [30] (see also Section 1.1.3 in [4]). It identifies G1 to the
solution Mg(θ) of the linearized Boltzmann equation (1.13) with data g0. We recall (see for
instance [16, 17]) that there is a unique solution Mg to (1.13) as soon as g0 is bounded, which
remains bounded for all positive times.

Lemma 6.2. The solution G1(θ) of (6.4) with initial data (6.3) is equal to the solution Mg(θ)
of the linearized Boltzmann equation (1.13) with data g0. Furthermore, the n-particle corre-
lation function Gn(t, Zn) is given by the following explicit expression for any n ≥ 1

(6.5) ∀t ≥ 0, Gn(t, Zn) := M⊗n(Vn)
n∑
i=1

g(t, zi) .

To prove Proposition 2.10, it now remains to prove that

lim
ε→0

∫
Gε,main

1 (θ, z)h(z) dz =

∫
G1(θ, z)h(z) dz , ∀θ ∈ R+ .

Following the decomposition (2.23) of Gε1(θ), we write G1(θ) as

G1(θ) = Gmain
1 (θ) +Gexp

1 (θ) ,

where the main part is given by

Gmain
1 (θ) :=

∑
(nk≤2k)k≤K

Q1,N1(τ) . . . QNK−1,NK (τ)G0
NK

,

and the superexponential part by

Gexp
1 (θ) :=

K∑
k=1

∑
(nj≤2j)j≤k−1

∑
nk>2k

Q1,N1(τ) . . . QNK−1,NK (τ)GNK (θ − kτ) .

This remainder term is controlled as in [3, 4] using the explicit form (6.5) of the correlation
functions GNK . Since the solution g(t) of the linearized Boltzmann equation (1.13) remains
in L∞ for all positive times, the correlation functions GNK are also in L∞ at any time.
Therefore∣∣∣∣∫ Gexp

1 (θ, z)h(z) dz

∣∣∣∣ ≤ C‖g0‖L∞(D)‖h‖L∞(D)

∑
k≥1

2k
2
(Cθτ)2k ≤ C‖g0‖L∞(D)‖h‖L∞(D)θτ .

Recalling the principal part

Gε,main
1 (θ) =

∑
(nk≤2k)k≤K

Qε01,N1
(τ) . . . Qε0NK−1,NK

(τ)Gε0NK ,

we notice that the differences in this formula with respect to Gmain
1 (θ) are due to:

1) the initial data Gε0NK vs.G0
NK

;

2) the fact that pseudo-trajectories Ψε
1,m are constrained to the set of parameters avoid-

ing recollisions, and also to the set Gεm(a, Z1) ;
3) the fact that (at creations) particles in Ψε

1,m collide at distance ε while in Ψε
1,m they

collide at distance 0.
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These errors are controlled as in [22]. First, we borrow an argument from [25] and define ΨE
1,m

an auxiliary pseudo-trajectory defined exactly as Ψ1,m, with the only difference that particle
i + 1 is created at position xai(ti) + εsiωi (this is sometimes called the Boltzmann-Enskog
pseudo-trajectory). Correspondingly, we can define QE1,m+1 exactly as Q1,m+1, with Ψ1,m

replaced by ΨE
1,m. By definition, ΨE

1,m and Ψ1,m have identical velocities and the positions
cannot differ more than mε. In particular at time zero we have that the euclidean norm of
the difference |ZENk(0)− Z0

Nk
(0)| is bounded by

(6.6) |ZENk(0)− Z0
Nk

(0)| ≤ N
3
2
k ε .

Next, we can simplify the integral in Gε,main
1 by removing the constraint in point 2) above.

Let Oε be the complement of the set of parameters in 2). Clearly the pseudo-particles
in ΨE

1,m can overlap (they can reach distance strictly smaller than ε). However in absence of
recollisions and overlaps, the auxiliary pseudo-trajectory coincides with the BBGKY pseudo-
trajectory ΨE

1,m = Ψε
1,m. We can therefore replace Ψε

1,m by ΨE
1,m in the geometric represen-

tation for Gε,main
1 . The contribution of Oε to QE1,1+m is bounded by a quantitative version of

Lanford’s argument: following [25], one can show that there is a constant α ∈ (0, 1) (which
can actually be chosen arbitrarily close to 1) such that∣∣∣ ∑

a∈A±1,m

∫
Oε
dz dTmdΩmdV2,1+m h(z)

×
m∏
i=1

si

((
v1+i − vEai(t

+
i )
)
· ωi
)

+
G0

1+m

(
ZE1+m(0)

)∣∣∣ ≤ ‖h‖L∞(D)‖g0‖L∞(D)ε
α (Cθ)m .

Using this after Lemma 6.1, and controlling the error (6.6) thanks to the Lipschitz norm
of g0, we conclude that∣∣∣∣∫ (Gε,main

1 (θ)−Gmain
1 (θ)

)
h(z) dz

∣∣∣∣ ≤ ‖h‖L∞(D)

(
εα‖g0‖L∞(D) + ε‖∇xg0‖L∞M

) ∑
nk≤2k

k≤K

(Cθ)NK+1

which leads to Proposition 2.10 since α may be chosen arbitrarily close to 1. �

Appendix A. Lp a priori estimates

For the sake of completeness, we state below some estimates on the moments of the fluc-
tuation field under the equilibrium measure. These bounds follow from a standard cluster
expansion approach (see e.g. [29]).

Recall that the functional spaces LpM was introduced in (1.12).

Proposition A.1. Let h be a function in LpM . For ε small enough, the moments of the
fluctuation field are bounded:

(A.1)
∣∣∣Eε((ζε0(h)

)p)∣∣∣ ≤ Cp‖h‖pLPM , 1 ≤ p <∞ ,

where the positive constant Cp depends only on p

Proof. The proof is based on the same algebraic manipulations used in Section 3 to estimate
mean and variance of test functions; we repeat them here for moments of arbitrary order
of ζε0 . After expanding the product of fluctuation fields in (A.1), we organize the sums by
grouping particles with common indices. Then we proceed to compute the expectations under
the Gibbs measure, by using a cluster expansion of the exclusion condition. This leads to the
exact decomposition (A.5) below, which implies (A.1) thanks to the tree inequality.
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Since the time is always zero in this proof, let us drop the indices 0 from now on. By
definition of ζε and πε and abbreviating |σ| = s, |σ′| = s′, |λj | = `j etc., we have that

Eε
((
ζε(h)

)p)
= µp/2ε

∑
σ∪σ′={1,...,p}

σ∩σ′=∅

(−Eε (πε(h)))s
′
Eε ((πε(h))s)

= µp/2ε

∑
σ∪σ′={1,...,p}

σ∩σ′=∅

µ−sε (−Eε (πε(h)))s
′
Eε

∑
λ∈Pσ

∑
(i1,...,i`)

∏̀
j=1

h`j
(
zεij

)
where Pσ indicates the set of partitions of σ. In the second line we have arranged the s
sums over particles encoded in (πε(h))s according to the repeated indices: there are ` ∈ [1, s]
different particles and the partition λ = {λ1, . . . , λ`} specifies how many test functions are
assigned to each particle.

In terms of the correlation functions (Gε,eq
k )k≥1 of the equilibrium measure (1.3), whose

definition (1.16) we recall:∫
Gε,eq
k (Zk)hk(Zk)dZk = Eε

 1

µkε

∑
(i1,...,ik)

hk(z
ε
i1(t), . . . , zεik(t))

 ,

the previous formula reads
(A.2)

µp/2ε

∑
σ∪σ′={1,...,p}

σ∩σ′=∅

∑
λ∈Pσ

µ−s+`ε

(
−
∫
dz̃ h(z̃)Gε,eq

1 (z̃)

)s′ ∫
dZ`

∏̀
j=1

h`j (zj)G
ε,eq
` (Z`)

= µp/2ε

∑
σ∪σ′′={1,...,p}

σ∩σ′′=∅

∑
λ∈P∗σ

∑
σ′⊂σ′′

(−1)s
′
µ−s+`ε

(∫
dz̃ h(z̃)Gε,eq

1 (z̃)

)s′

×
∫
dZ̃s′′−s′ dZ` h

⊗(s′′−s′)
(
Z̃s′′−s′

) ⊗̀
j=1

h`j (Z`) G
ε,eq
`+s′′−s′

(
Z`, Z̃s′′−s′

)
denoting by P∗σ the set of partitions of σ without singletons. The equality comes from the
renaming of variables

σ′ ∪ {λi ; |λi| = 1} → σ′′

s′ + #{λi ; |λi| = 1} → s′′

λ \ {λi ; |λi| = 1} → λ

`−#{λi ; |λi| = 1} → `

.

In (A.2), we adopt the convention of using the symbol z̃ for variables which correspond to a
single test function h, and z for variables which correspond to a power of test functions h`j .

We use now the cluster expansion of the correlation functions, see e.g. Eq. (8.1.18) in [6]:

(A.3)

Gε,eq
k (Zk) =

∑
ρ∈P{1,...,k}

r∏
i=1

gε,eq
ri (Zρi) ,

gε,eq
r (Zr) = M⊗r (Vr)

∑
p≥0

µpε
p!

∫
M⊗p

(
V̄p
)
ϕ
(
z1, . . . , zr, Z̄p

)
dZ̄p , r ≥ 1

where the cumulant ϕ, defined similarly to (3.6), is supported on connected graphs on r + p
points. Note that at leading order correlation functions are tensor products of gε,eq

1 = Gε,eq
1 .
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We recall that the tree inequality (3.8) implies the estimate

(A.4) |gε,eq
r (Zr)| ≤M⊗r (Vr)

∑
p≥0

∑
T∈Tr+p

µpε
p!

∫
dZ̄pM

⊗p (V̄p) ∏
(y,y∗)∈E(T )

1d(y,y∗)≤ε ,

denoting by d(y, y∗) the minimum relative distance (in position) between elements y, y∗

in {z1, . . . , zr, z̄1, . . . z̄p}. This bound will be useful below.
Inserting the expansion (A.3) inside (A.2), we will show that the terms with singletons

disappear. First we notice that, for each partition ρ, the last line in (A.2) factorizes into r =
|ρ| independent integrals:

Eε
((
ζε(h)

)p)
= µp/2ε

∑
σ∪σ′′={1,...,p}

σ∩σ′′=∅

∑
λ∈P∗σ

∑
σ′⊂σ′′

∑
ρ∈Pλ∪(σ′′\σ′)

(−1)s
′
µ−s+`ε

(∫
dz̃ h(z̃) gε,eq

1 (z̃)

)s′

×
r∏
i=1

∫
dZ̃r2

i
dZr1

i
h⊗r

2
i

(
Z̃r2

i

) ⊗
λj∈ρ1

i

h`j
(
Zr1

i

)
gε,eq
ri

(
Zr1

i
, Z̃r2

i

)
,

where ri = |ρi| = r1
i +r2

i , r
1
i = |ρ1

i |, r2
i = |ρ2

i | with ρ1
i = ρi∩λ and ρ2

i =
(
ρ1
i

)c
(the complement

of ρ1
i in ρi). For r1

i = 0, r2
i = 1 the last line reduces to a singleton factor

∫
h gε,eq

1 . This
suggests to rename again the summation variables as follows:

σ′ ∪ {ρi ; r1
i = 0, r2

i = 1} → σsing

{1, . . . , p} \ σsing → σ∗

{ρi ; r1
i > 0 or r2

i > 1} → ρ∗

,

with cardinalities ssing, s∗, r∗ respectively. In this way, σ, λ and ρ∗ determine a nested
partition of σ∗: we first choose σ ⊂ σ∗ and λ ∈ P∗σ; and secondly we take a partition ρ∗

of λ ∪ (σ∗ \ σ). This partition is characterized by the fact that ρ∗i contains at least two
indices in {1, . . . , p}. We will indicate by λ ↪→∗ ρ∗ the sum over such nested partitions (the ∗
reminding us of the constraint excluding singletons). By Fubini we get that

Eε
((
ζε(h)

)p)
= µp/2ε

∑
σ∗∪σsing={1,...,p}

σ∗∩σsing=∅

∑
σ⊂σ∗

∑
λ∈P∗σ
λ↪→∗ρ∗

∑
σ′⊂σsing

(−1)s
′
µ−s+`ε

(∫
dz̃ h(z̃) gε,eq

1 (z̃)

)ssing

×
r∗∏
i=1

∫
dZ̃r∗2i

dZr∗1i
h⊗r

∗2
i

(
Z̃r∗2i

) ⊗
λj∈ρ∗1i

h`j
(
Zr∗1i

)
gε,eq
r∗i

(
Zr∗1i

, Z̃r∗2i

)
,

= µp/2ε

∑
σ∗∪σsing={1,...,p}

σ∗∩σsing=∅

∑
λ∈Pσ∗
λ↪→∗ρ∗

∑
σ′⊂σsing

(−1)s
′
µ−s

∗+`
ε

(∫
dz̃ h(z̃) gε,eq

1 (z̃)

)ssing

×
r∗∏
i=1

∫
dZr∗i

⊗
λj∈ρ∗i

h`j
(
Zr∗i
)
gε,eq
r∗i

(
Zr∗i
)
,

where in the second equality we eliminated the sum over σ by removing the constraint on λ.

Now the sum over σ′ ⊂ σsing can be performed first. Since
∑

σ′⊂σsing (−1)s
′

= δσsing,∅, we
conclude that

(A.5) Eε
((
ζε(h)

)p)
= µ−p/2ε

∑
λ∈P{1,...,p}

∑
ρ:λ↪→∗ρ

µ`ε

r∏
i=1

∫
dZri

⊗
λj∈ρi

h`j (Zri) g
ε,eq
ri (Zri)



LONG-TIME CORRELATIONS FOR A HARD-SPHERE GAS AT EQUILIBRIUM 41

where the sums run over nested partitions of {1, . . . , p} with ρi containing at least two indices
in {1, . . . , p}.

Observe that (A.5) is factorized in r integrals, each of which can be bounded by Hölder’s
inequality:∣∣∣∣∣∣

∫
dZri

⊗
λj∈ρi

h`j (Zri) g
ε,eq
ri (Zri)

∣∣∣∣∣∣ ≤
∏
λj∈ρi

(∫
dZri |h|

∑
λj
`j

(zri) |gε,eq
ri | (Zri)

)`j/∑λj
`j

.

Moreover by (A.4) and Fubini,∫
dZri |h|

∑
λj∈ρi

`j
(zri) |gε,eq

ri | (Zri) ≤
∫
dzri |h|

∑
λj
`j

(zri)M(vi)

×
∑
p≥0

∑
T∈Tri+p

µpε
p!

∫
dZri−1dZ̄pM

⊗ri−1+p
(
Vri−1, V̄p

) ∏
(y,y∗)∈E(T )

1d(y,y∗)≤ε

and the last line of the previous formula is estimated exactly as in Section 3 by ri!C
riεd(ri−1)

for some C > 0, uniformly in zri for ε small enough. On the other hand, the term in the first
line produces a factor

‖h‖
L

∑
`j

M

≤ C ′p ‖h‖LpM
for some pure constant C ′p depending only on p (and not on the partition). From this we
deduce that∣∣∣∣∣∣

∫
dZri

⊗
λj∈ρi

h`j (Zri) g
ε,eq
ri (Zri)

∣∣∣∣∣∣ ≤ ri!Criεd(ri−1)
(
C ′p ‖h‖LpM

)∑
λj∈ρi

`j
.

Hence ∣∣∣Eε((ζε(g)
)p)∣∣∣ ≤ µ−p/2ε

(
C ′p ‖h‖LpM

)p ∑
λ∈P{1,...,p}
ρ:λ↪→∗ρ

µ`ε

r∏
i=1

ri!C
riεd(`−r) .

Bounding roughly µ`εε
d(`−r) ≤ µ`εµ−`+rε ≤ µp/2ε , we arrive to the estimate (A.1). �

Appendix B. Geometric estimates

In this section, we complete the proof of Lemmas 5.1 and 5.2 and show how the presence of
a cycle due to a non-clustering encounter leads to an additional constraint, producing extra
smallness and leading to (5.12) and (5.14).

We first give some technical definitions to identify this additional constraint, then state
the geometric estimates and finally deduce (5.12) from (5.11) (the argument is the same
for (5.14)).

We recall that in deriving (5.11) an ordered tree T≺ has been constructed, following the
forward dynamics. The definitions that follow relate to some particular edges in the tree. In a
forward trajectory, encounters are of two types: with annihilation of a particle (corresponding
to a creation in the backward pseudo-trajectory) or without (corresponding to a recollision
in the backward pseudo-trajectory). Moreover in the first case, the surviving particle can be
deflected or not. By deflection we mean here that the particle undergoes a non-zero variation
of velocity.

Definition B.1. We call parent p of a group of particles (qk)k at time τ the p-th edge with
the largest p such that one of the particles (qk)k is deflected at τp ≤ τ . If such a parent does
not exist, then we set τp := tstop.



42 THIERRY BODINEAU, ISABELLE GALLAGHER, LAURE SAINT-RAYMOND, SERGIO SIMONELLA

We define the connector k of two particles (q, q̄) the index of the first edge realizing a
connected path between q and q̄.

The tutor j of two particles (q, q̄) at time τ is the largest j with τj ≤ τ such that j is either
the parent at time τ or the connector of (q, q̄).

Recall that the construction of the admissible tree T≺ in the proof of Lemma 5.1 is such to
exclude cycles, so that the graph T≺ is minimally connected, whereas the graph encoding all
encounters has more than Nk−1 edges. Consider the first encounter in the forward dynamics
creating a cycle (or multiple edge) in the graph encoding all encounters. Let (q, q̄) be the edge
realizing the cycle and τcyc the corresponding time. The cycle will impose a constraint on the
tutor j of (q, q̄) at τcyc, and integrating on the relative position x̂j as in the proof of Lemma
4.1 will produce the required additional smallness. The following proposition quantifies this
smallness, which is different depending on whether the tutor is the parent or not.

Proposition B.2. Assume that d ≥ 3. Let q and q̄ be the labels of the two particles involved
in the first cycle, at time τcyc, and let j (resp p, k) be the tutor (resp. parent, connector)
of (q, q̄) at time τcyc, as defined in Definition B.1. Then, denoting by wq, wq̄, wqj , wq̄j the

velocities of q, q̄, qj , q̄j at τ+
j−1, one has if the tutor is a parent p

(B.1)

∫
1Cycle with tutor j = p 1BT≺,j dx̂j ≤

C

µε
(Vθ)d

×
(Vε| log ε|1q 6=q̄j
|wq − wq̄j |

+
Vε| log ε|1q̄ 6=q̄j
|wq̄ − wq̄j |

+
Vθ
µε

)
,

where q̄j is the label of the colliding particle, and if the tutor is a connector k but not a parent

(B.2)

∫
1Cycle with tutor j = k > p 1BT≺,j dx̂j ≤

C

µε
(Vθ)d+1

×

∑
ζ

1sin(wq−wq̄ ,ζ)≤ε + (Vθ)d min
(

1,
ε1(q,q̄) 6=(qj ,q̄j)

sin
(
wq − wq̄, wqj − wq̄j

))


where the sum runs over ζ ∈ Zd \ {0} contained in the ball of radius Vθ.

The above proposition uses the tutor to gain some smallness from the strong geometric
constraint. However, the estimates in (B.1)-(B.2) lead to singularities in the relative velocities.
Those singularities have to be integrated out either by using available parents (if any) or
by using the Gaussian measure of the velocity distribution at time tstop. The following
proposition summarises the different possibilities.

Proposition B.3. (i) Let q 6= q̄ be two particles of velocities wq, wq̄ with parent `. Let ζ ∈
Zd \ {0}. Then one has that

(B.3)

∫ (
Vε| log ε|
|wq − wq̄j |

+ 1sin(wq−wq̄j ,ζ)≤ε

)
1BT≺,` dx̂` ≤

C

µε
Vε| log ε|

(
δ1`=1 + θ1`6=1

)
.

(ii) Let q, q̄, qj , q̄j be particles with velocities wq, wq̄, wqj , wq̄j and parent ` (say deflecting q),
such that (q, qj) and (q̄, q̄j) belong to different connected components of the dynamical graph.

(B.4)

∫
min

(
1,

ε1{q,q̄}6={qj ,q̄j}

sin
(
wq − wq̄, wqj − wq̄j

))1BT≺,`dx̂` ≤
C

µε
Vε| log ε| (δ1`=1 + θ1`6=1)

×
(

1 +
θV1(q,qj) encounter at τ`

|uq + uqj − (wq̄j + wq̄)|
+
θV1q=qj1q̄ 6=q̄j
|wq̄ − wq̄j |

)
,

denoting by u the pre-collisional velocities.
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(iii) Let q, q̄, qj , q̄j be particles with velocities wq, wq̄, wqj , wq̄j such that (q), (qj) and (q̄, q̄j)
belong to different connected components of the dynamical graph. Let ` be the first parent
of q, q̄, qj , q̄j deflecting only one particle of the group.

(B.5)

∫
Vε| log ε|

|wq + wqj − (wq̄j + wq̄)|
1BT≺,` dx̂` ≤

C

µε
Vε| log ε|

(
δ1`=1 + θ1`6=1

)
.

(iv) For q 6= q̄, ζ ∈ Zd \ {0}
(B.6)∫

M(wq)M(wqj )M(wq̄)M(wq̄j )
(Vε| log ε|
|wq − wq̄|

+
Vε| log ε|

|wq + wqj − wq̄ − wq̄j |

+ 1sin(wq−wq̄ ,ζ)≤ε + min
(

1,
ε1(q,q̄)6=(qj ,q̄j)

sin
(
wq − wq̄, wqj − wq̄j

)))dwqdwqjdwq̄dwq̄j ≤ C Vε| log ε| .

Notice that if the parent lies in the time interval (tstop, tstop + δ), then the estimates are
strengthened by a factor δ.

Propositions B.2 and B.3 are proved below. We now explain how to apply these local
propositions iteratively, by using the time ordering prescribed by the dynamical graph, so that
the singularities are progressively reduced leading finally to an upper bound of order ε| log ε|.
We recall Inequality (5.11):

∑
T≺∈T ≺Nk

∫
dX̂Nk−11cycle

Nk−1∏
i=1

1BT≺,i

≤
∑

T≺∈T ≺Nk

∑
q,q̄

∑
c≤Nk

∫
dx̂11BT≺,1

∫
dx̂2 · · ·

∫
dx̂Nk−11BT≺,Nk−1

1cycle defined by (q, q̄), c .

Now we integrate the constraints iteratively with the additional integrals of Propositions B.2
and B.3 which act on local parameters thanks to the time ordering. More precisely we proceed
as follows.

• We bound the inner integrals one by one up to the step j given by the tutor of the
cycle. At this step, we apply Proposition B.2.
• We continue by estimating the integrals at steps j − 1, j − 2, . . . up to the step ` (if

any) defined as the parent in Proposition B.3, items (i) or (ii) (depending on the term
to be treated in (B.1)-(B.2)). At step `, we apply (B.3) or (B.4) respectively. Notice
that we are left with singularities involving the groups of particles in the right hand
side of (B.4).
• We continue by estimating the integrals at steps `−1, `−2, . . . until we possibly find

a parent of the latter group of particles, as defined in Proposition B.3, items (i) or
(iii) (respectively for the third and the second term in (B.4)). We then apply (B.3)
or (B.5) respectively.
• We continue by estimating the integrals up to step 1. If we have not found enough

parents, we may be left with singularities as in the right-hand side of (B.1)-(B.2)
or (B.4). By integrating the velocities with respect to the measure M⊗Nk , such
singularities are dealt with by (B.6) and (4.17).

This proves (5.12).

Now let us prove Propositions B.2 and B.3. The cycle at time τcyc is triggered by a tutor j
involving an edge (qj , q̄j). Notice that the tutor can involve the particles (q, q̄) themselves.
Below, we are going to distinguish the different cases in the definition of tutor (either j = p
or j = k > p) as well as a series of subcases to integrate the singularities.
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Proof of Proposition B.2.

Case 1a : j = p is the parent of q, q̄.

This is the case of a direct, periodic cycle, in which the last deflection of q, q̄ in the
forward dynamics before τcyc involves both particles q and q̄ at time τj (in this case q = qj
and q̄ = q̄j). In addition to the condition x̂j ∈ BT≺,j which encodes the encounter (recall
that x̂j := xqj − xq̄j = xq − xq̄), we obtain the following condition for a cycle

εωj + (vq − vq̄) (τcyc − τj) = εωcyc + ζ with ζ ∈ Zd \ {0} , ωcyc ∈ Sd−1 ,

and vq − vq̄ = wq − wq̄ − 2(wq − wq̄) · ωj ωj

where, by definition, vq, vq̄ are the velocities at time τ+
j , wq, wq̄ are the velocities at time τ+

j−1,
and ωj is the impact parameter at the encounter. We deduce from the first relation that vq−vq̄
has to be in a small cone Kζ of opening ε, which implies by the second relation that ωj has

to be in a small cone Sζ of opening ε. Note that the additional parameter ζ ∈ Zd \ {0} takes

into account the periodic structure of the domain Td. Since the velocities are bounded by V,
it will be enough to consider the parameter ζ in the box [−Vθ,Vθ]d.

Using the local change of variables x̂j 7→ (εωj , τj), it follows that∫
1Cycle with j = p, (q, q̄) = (qj , q̄j)1BT≺,j dx̂j ≤ Cε

d−1θ
∑
ζ

∫
1ωj∈Sζ

(
(wq − wq̄) · ωj

)
+
dωj

≤ Cε2(d−1) (θV)d+1

since there are at most (θV)d possibilities for the ζ’s.

Case 1b : j = p is the parent of q = qj and q̄ 6= q̄j.

τcyc

τj

q q̄j q̄ qq̄j q̄

1

2
3

q

q̄j q̄

12 q q̄q̄j

Figure 9. Two simple situations corresponding to Case 1b. The non clustering
encounter between (q, q̄) is triggered by a previous deflection between q = qj and q̄j
which is not equal to q̄. The parameter x̂j has to be be tuned so that the encounter
between q, q̄j leads as well to the recollision. The corresponding graphs with a cycle
are depicted below.
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In this case (see Figure 9), a third particle is involved in the process, as q is deflected by
an encounter with q̄j 6= q̄ at time τj (which implies necessarily that j ≥ 2). By definition of
the cycle, the connector k of (q, q̄) is such that τk < τcyc. Then by definition of the tutor,
one has j ≥ k so that at time τ+

j−1

• either q and q̄ are already in the same connected component;
• or q̄j and q̄ are already in the same connected component.

The encounter at τj is encoded by the condition x̂j = xq − xq̄j ∈ BT≺,j , and we can
strenghten this condition thanks to the cycle. The new condition will be written as a new
constraint between x̂j := xqj − xq̄j = xq − xq̄j , τj and ωj , which is different in both cases but
can be estimated in the same way.

Case 1b.a) – If q and q̄ are already in the same connected component, then we write that
in addition to the condition x̂j = xq − xq̄j ∈ BT≺,j ,

(B.7)

(
xq(τj−1)− xq̄(τj−1)

)
+ (wq − wq̄)(τj − τj−1) + (vq − wq̄)(τcyc − τj) = εωcyc + ζ ,

with ζ ∈ Zd and vq = wq − (wq − wq̄j ) · ωj ωj
where we recall that vq is the velocity at time τ+

j and wq, wq̄j and wq̄ = vq̄ are the velocities

of q, q̄j and q̄ at time τ+
j−1 (and therefore at time τ−j ). Since q and q̄ are already in the same

connected component, their relative distance at τ+
j−1 and the velocities are fixed by x̂1, . . . x̂j−1

and the velocities at tstop. Condition (B.7) therefore expresses a new constraint between x̂j , τj
and ωj .

Case 1b.b) – If q̄ and q̄j are already in the same connected component, then their relative
distance at τ+

j−1 and the velocities are fixed by x̂1, . . . x̂j−1 and the velocities at tstop. Then,
in addition to the condition x̂j = xq − xq̄j ∈ BT≺,j which encodes the encounter at τj , we
obtain
(B.8)(

xq̄j (τj−1)− xq̄(τj−1)
)

+ (wq̄j − wq̄)(τj − τj−1) + (vq − wq̄)(τcyc − τj) = εωcyc − εωj + ζ ,

with ζ ∈ Zd and vq = wq − (wq − wq̄j ) · ωj ωj
with the same notations as in (B.7) for the precollisional and postcollisional velocities.

The first equations in (B.7)(B.8) restate

(B.9) vq − wq̄ =
1

δτcyc

(
ωcyc−ωj1Case 1b.b) + δx⊥ + δτjwrel

)
, δτcyc :=

τcyc − τj
ε

where

• for (B.7) the relative velocity is wrel := wq − wq̄ and

δx :=
1

ε

(
xq(τj−1)− xq̄(τj−1)− ζ

)
=: δx⊥ + τ∗wrel

δx⊥ ⊥ wrel and δτj :=
1

ε
(τj − τj−1 + τ∗) .

In this case there is no term ωj ;
• for (B.8) the relative velocity is wrel := wq̄j − wq̄,

δx :=
1

ε

(
xq̄j (τj−1)− xq̄(τj−1)− ζ

)
=: δx⊥ + τ∗wrel

δx⊥ ⊥ wrel and δτj :=
1

ε
(τj − τj−1 + τ∗) .

Note that, by definition

|wrelτ∗| ≤ |δx| ≤
C

ε
⇒ |wrelδτj | ≤

CVθ
ε
·
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The recollision will be easier to achieve if δx is small, however this cannot happen (for a
large amount of time) if the relative velocity wrel is large enough, as the particles will drift
far apart when τj changes. In the following, we will integrate over the time τj recalling

that dx̂j = εd−1((wq − wq̄j ) · ωj)+dωjdτj .

Subcase (i) : Suppose that |wrelδτj | ≥ 4. We get from (B.9) that

(vq − wq̄)δτcyc = ωcyc−ωj1Case 1b.b) + δx⊥ + wrelδτj .

Thus the triangular inequality implies

1

2δτcyc
|wrelδτj | ≤ |vq − wq̄| ,

from which we deduce
1

δτcyc
≤ 4V
|wrelδτj |

·

By (B.9), vq−wq̄ belongs to a cylinder R of main axis δx⊥+wrelδτj and of width 4V/|wrelδτj |.
Then, vq has to be both in the sphere of diameter [wq, wq̄j ] (by the second equation in (B.7))

and in the cylinder wq̄ + R (by (B.9)). This imposes a strong constraint on the deflection
angle ωj in (B.7)(B.8), which has to belong to a union of at most two spherical caps. The
maximal solid angle is obtained in the case when the cylinder is tangent to the sphere (see

Figure 10). It is always less than Cd min(1, (η/R)(d−1)/2) denoting by η the width of the
cylinder, and by R = 1

2 |wq − wq̄j | the radius of the sphere.

θ ≤ θmax ≤ C
(
η
R

)1/2

η

R

θmax

Figure 10. Intersection of a cylinder and a sphere. The maximal solid angle
is obtained in the case when the cylinder is tangent to the sphere. It is always
less than Cd min(1, (η/R)(d−1)/2).

Thus ωj has to belong to a union of spherical caps Sζ , of solid angle less than∫
1ωj∈Sζdωj ≤ C

(
V

|δτjwrel||wq − wq̄j |

)(d−1)/2

.

Note that we can always replace the power (d− 1)/2 by 1 since we know that the left-hand
side is bounded by |Sd−1|. Therefore∫

1ωj∈Sζ ((wq − wq̄j ) · ωj)+dωjdτj ≤ CV
∫

min(

(
ε

|τjwrel|

)
, 1)dτj .

Subcase (ii) : if |wrelδτj | < 4, we have a strong constraint on δτj and we do not need any
additional constraint on ωj .
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Thus, it follows that∫
1j parent of q with q̄ 6= q̄j1BT≺,jdx̂j ≤

C

µε
(Vθ)d

ε| log ε|V
|wrel|

,

which concludes the proof of (B.1).

Case 2a : j = k > p is the connector of (q, q̄) 6= (qj , q̄j) but not its parent.

The situation when q (or q̄) is deflected at time τj has already been dealt with in case
1. We will therefore assume that q and q̄ are not deflected at time τj (see Figures 11-12 for
situations when this can happen).

τcyc

τj

q qq̄j q̄ q̄q̄jqj

Figure 11. Two simple situations corresponding to Case 2. In the picture on the
left, only three particles are involved and q̄j is annihilated in the encounter with q at
time τj (j ≥ 2). The picture on the right depicts another possible situation, where 4
particles are involved as q, q̄ are both different from qj , q̄j (j ≥ 3).

4

1

2
3

q

q̄j q̄ 1

2

3

q

q̄j q̄

qj

Figure 12. Graphs associated to the pseudo-trajectories in Figure 11. Non clus-
tering encounters are represented by dashed lines.

In this case, the velocities vq = wq and vq̄ = wq̄ are constant on [τ+
j−1, τcyc]. Moreover

by definition of the tutor, we know that q̄ and q̄j (resp. q and qj) belong to the same con-
nected component of the graph T≺ at time τ+

j−1. As the corresponding connected components

move rigidly with respect to x̂j , we notice that the relative distances xq(τj−1) − xqj (τj−1)
and xq̄(τj−1)− xq̄j (τj−1) are independent of x̂j . The dynamical constraints state

(B.10)
xq(τj−1)− xq̄(τj−1) + (τcyc − τj−1)(wq − wq̄) = ε ωcyc + ζcyc

xqj (τj−1)− xq̄j (τj−1) + (τj − τj−1)(wqj − wq̄j ) = ε ωj + ζj .

Writing

xq(τj−1)− xq̄(τj−1) = x̂j +
(
xq(τj−1)− xqj (τj−1)

)
+
(
xq̄j (τj−1)− xq̄(τj−1)

)
,
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it follows that x̂j has to be in the intersection R of two cylinders of axis wq−wq̄ and wqj−wq̄j ,
and width ε. The volume of this intersection is at most

(B.11) |R| ≤ 1

µε
min(Vθ,

ε

sin Ω
)

where Ω is the angle between wq − wq̄ and wqj − wq̄j . This proves (B.2).

Case 2b : j = k > p is the connector of (q, q̄) = (qj , q̄j) but not its parent.

Since q and q̄ are not deflected at τj , we obtain a contradiction: one of the particles has
to be annihilated and they cannot encounter again. However, in the companion paper [2],
when looking at higher moments of the fluctuation field, we will have to consider overlaps,
i.e. encounters where the two particles survive without being deflected. For the sake of com-
pleteness, we therefore deal also with this case. From (B.10) we deduce that

xq(τj−1)− xq̄(τj−1) + (τcyc − τj−1)(wq − wq̄) = ε ωcyc + ζcyc

xq(τj−1)− xq̄(τj−1) + (τj − τj−1)(wq − wq̄) = ε ωj + ζj ,

so that
(τj − τcyc)(wq − wq̄) = (ζj − ζcyc) +O(ε) .

In other words, the sinus between wq−wq̄ and ζj−ζcyc has to be less than ε, which proves (B.2).

This concludes the proof of Proposition B.2. �

Proof of Proposition B.3.

Integration of the first singularity, proof of (B.3).

Let us start by dealing with the singularity 1/|wq − wq̄|, which we want to integrate by
using the parent variables. Denoting by uq, uq̄ the velocities at time τ−` , we distinguish again
between two subcases.

Subcase (i) : q = q` and q̄ = q̄`, then |wq − wq̄| = |uq − uq̄| and there holds∫
1BT≺,`

|wq − wq̄|
dx̂` ≤

C

µε

∫ ∣∣(uq − uq̄) · ω`∣∣
|uq − uq̄|

dω`dτ` ≤
C

µε
(δ1`=1 + θ1`6=1) ·

Subcase (ii) : q = q` and q̄ 6= q̄`, then q̄ is not deflected at τ`. We therefore have

wq = uq − (uq − uq̄`) · ω` ω`
and ∫

1BT≺,`

|wq − wq̄|
dx̂` ≤

C

µε

∫
1

|uq − uq̄ − (uq − uq̄`) · ω` ω`|
∣∣(uq − uq̄`) · ω`∣∣dω`dτ` .

Denoting a := uq − uq̄` and b := uq − uq̄, we therefore have to study the integral∫
1

|b− (a · ω)ω|
∣∣a · ω∣∣dω .

The denominator in the integrand vanishes at

ω0 :=
b

|b|
, if (b · a) = |b|2 .

Consider an infinitesimal variation η around ω0. Since ω ∈ Sd−1, η is orthogonal to ω0. The
first increment of the denominator at ω0 is

|(a · η)ω0 + (a · ω0)η| ≥ |(a · ω0)η| ≥ |b||η| .
We therefore find that ∣∣a · ω∣∣

|b− (a · ω)ω|
≤ C |b|
|η||b|

·



LONG-TIME CORRELATIONS FOR A HARD-SPHERE GAS AT EQUILIBRIUM 49

Locally the measure dω looks like |η|d−2dη, from which we deduce that∫
1

|b− (a · ω)ω|
∣∣a · ω∣∣dω ≤ CV

since d ≥ 3. Integrating with respect to τ` (and for ` = 1 taking into account the constraint
that τ1 ∈ [tstop, tstop + δ]) leads to (B.3) in this case.

The term with small sine in (B.3) is bounded by

1

µε

∫
1sin(wq−wq̄ ,ζ)≤ε1BT≺,` |uq` − uq̄` |dω`dτ` ≤

CVθε
µε

(δ1`=1 + θ1` 6=1) ,

which concludes the proof (B.3).

Integration of the second singularity, proof of (B.4)-(B.5).

We want to integrate the singularity

(B.12)

∣∣∣∣ 1

sin Ω

∣∣∣∣ =
|wq − wq̄| |wqj − wq̄j |
|(wq − wq̄) ∧ (wqj − wq̄j )|

,

by using the parent variable of (q, q̄, qj , q̄j). Without loss of generality, we can assume that
particle q has a deflection at the encounter `. This singularity is very degenerate as the
denominator is equal to 0 as soon as the vectors are aligned. Thus the integration with
respect to the first parent may not be enough to control fully the divergence. Nevertheless,
the integration will lead to a less singular function of the type v 7→ 1/|v| which can then be
integrated by using an additional parent as in (B.3) (already proved) or (B.5) (proved below).

Subcase (i) : Suppose first that q 6= qj and that qj is not deflected at time τ`. The encounter
at time τ` involves particle q = q` and a new particle q̄`. Denoting by σ` the deflection
parameter of the encounter at time τ`, and by uq` , uq̄` the velocities at time τ−` , we must have

wq` =
1

2
(uq` + uq̄`)±

1

2
|uq` − uq̄` |σ` .

In (B.12), the velocities wqj − wq̄j and wq̄ are frozen at time τ`. By definition, given a

vector w := wq̄ and a unit vector e :=
wqj−wq̄j
|wqj−wq̄j |

, the integral

(B.13)

∫
min

(
1,

ε|wq` − w|
|(wq` − w) ∧ e|

)
1BT≺,`dx̂`

=
1

µε

∫
min

(
1,

ε|wq` − w|
|(wq` − w) ∧ e|

)
1BT≺,` |uq` − uq̄` |dσ`dτ`

has a singularity when (wq` − w) ∧ e = 0. Singularities are isolated as soon as uq` − uq̄` 6= 0,
and are in general of order 1, but they become degenerate when the line w + Re is tangent
to the sphere of diameter [uq` , uq̄` ] at wq` (see Figure 13). Consider now an infinitesimal

variation η around a singular value σ` = σ̄. Since σ` ∈ Sd−1, η is orthogonal to σ̄. At leading
order one has

sin Ω ∼ |uq` − uq̄` ||η ∧ e|
|wq` − w|

·

Therefore, if d ≥ 3 (and even though e is in the plane orthogonal to σ̄),

(B.14)
1

µε

∫
min(1,

ε

sin Ω
)1BT≺,` |uq` − uq̄` |dσ`dτ` ≤

CVε| log ε|
µε

(δ1`=1 + θ1` 6=1) ,

which gives (B.4) in the case q 6= qj and qj is not deflected.

Subcase (ii) : Suppose then that q 6= qj (as on the right picture in Figure 11) and that q
and qj encounter at time τ`. In this case, the velocities wq and wqj change simultaneously
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dΩ

w

uq̄` uq`
σ̄

e

Figure 13. The geometry leading to the degeneracy at σ` = σ̄ of the singular
integral (B.13) is depicted.

in (B.12). In order to decouple them, we rewrite the denominator by adding wq−wq̄ and use
the upper bound |wqj − wq̄j | ≤ V

1

sin Ω
=

|wq − wq̄||wqj − wq̄j |
|(wq − wq̄) ∧ (wq + wqj − wq̄j − wq̄)|

≤ V
|wq + wqj − (wq̄j + wq̄)|

|wq − wq̄|
|(wq − wq̄) ∧ e|

,

where the vector e =
wq+wqj−wq̄j−wq̄
|wq+wqj−(wq̄j+wq̄)| is unchanged by the encounter between q, qj as the

momentum is conserved. With the previous notation to describe the encounter at time τ`, the
particles are indexed by q` = q, q̄` = qj , the pre-collisional velocities by uq` , uq̄` and the post-
collisional velocities by wq` = wq and wq̄` = wqj . In particular the momentum conservation
reads wq + wqj = uq` + uq̄` .

Thus the term
|wq−wq̄ |
|(wq−wq̄)∧e| =

|wq`−wq̄ |
|(wq`−wq̄)∧e|

can be integrated as in (B.14)

1

µε

∫
min(1,

ε

sin Ω
)1BT≺,` |uq` − uq̄` |dσ`dτ` ≤

CVθε| log ε|
µε

θV (δ1`=1 + θ1` 6=1)

|uq` + uq̄` − (wq̄j + wq̄)|
,

which leads to (B.4) in this case.

Subcase (iii) : Suppose now that q = qj and q̄ 6= q̄j (left picture in Figure 11). If the parent
acts on q, then one has to integrate over the variable wq = wqj which appears twice now. To
decouple the different occurrences of wq, we proceed as in the previous step and add wq̄ −wq
in the denominator. Then

1

sin Ω
=

|wq − wq̄||wq − wq̄j |
|(wq − wq̄) ∧ (wq − wq̄j )|

≤ |wq − wq̄|V
|(wq − wq̄) ∧ (wq̄ − wq̄j )|

≤ V
|wq̄ − wq̄j |

|wq − w|
|(wq − w) ∧ e|

,

with e =
wq̄−wq̄j
|wq̄−wq̄j |

. We stress the fact that, by construction, the particle q̄` colliding with q is

different from the previous particles. Thus we can repeat the above steps but we will be left
with a singularity 1/|wq̄ − wq̄j |

1

µε

∫
min(1,

ε

sin Ω
)1BT≺,` |uq` − uq̄` |dσ`dτ` ≤

CVθε| log ε|
µε

V
|wq̄ − wq̄j |

·

This concludes the proof of (B.4).

Proof of (B.5) : We discusss now the singularity arising from the previous subcase (ii). This

is a singularity of the form 1/|wq + wqj − (wq̄j + wq̄)| and respecting the assumptions of
item (iii) in Proposition B.3. If the parent ` of the group (q, q̄j , q̄j , q̄) exists and acts on a
single particle, then we proceed as in the proof of (B.3), subcase (ii). If instead the first
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parent of the group (q, q̄j , q̄j , q̄) involves simultaneously q̄j and q̄ 6= q̄j , then the momentum
wq̄j + wq̄ is constant and the parent cannot be used: one then looks for the next available
parent (if any) deflecting only one particle, and proceeds always integrating the singularity
as in (B.3). This leads to (B.5).

The case of no parent is dealt with by (B.6), which is straightforward. This concludes the
proof Proposition B.3. �
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