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Abstract

Neuromorphic computing uses basic principles inspired by the brain to design circuits that 

perform artificial intelligence tasks with superior energy efficiency. Traditional approaches have 

been limited by the energy area of artificial neurons and synapses realized with conventional 

electronic devices. In recent years, multiple groups have demonstrated that spintronic nanodevices, 

which exploit the magnetic as well as electrical properties of electrons, can increase the energy 

efficiency and decrease the area of these circuits. Among the variety of spintronic devices that 

have been used, magnetic tunnel junctions play a prominent role because of their established 

compatibility with standard integrated circuits and their multifunctionality. Magnetic tunnel 

junctions can serve as synapses, storing connection weights, functioning as local, nonvolatile 

digital memory or as continuously varying resistances. As nano-oscillators, they can serve as 

neurons, emulating the oscillatory behavior of sets of biological neurons. As superparamagnets, 

they can do so by emulating the random spiking of biological neurons. Magnetic textures like 

domain walls or skyrmions can be configured to function as neurons through their non-linear 

dynamics. Several implementations of neuromorphic computing with spintronic devices 

demonstrate their promise in this context. Used as variable resistance synapses, magnetic tunnel 

junctions perform pattern recognition in an associative memory. As oscillators, they perform 

spoken digit recognition in reservoir computing and when coupled together, classification of 

signals. As superparamagnets, they perform population coding and probabilistic computing. 

Simulations demonstrate that arrays of nanomagnets and films of skyrmions can operate as 

components of neuromorphic computers. While these examples show the unique promise of 

spintronics in this field, there are several challenges to scaling up, including the efficiency of 
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coupling between devices and the relatively low ratio of maximum to minimum resistances in the 

individual devices.

I- Neuromorphic computing is the path to low energy Artificial Intelligence

Artificial Intelligence has experienced unprecedented progress in recent years, promising to 

transform multiples areas of how we live and how we work. However, this development 

comes with a considerable challenge: the energy consumption associated with existing 

approaches1, making it imperative that we devise ways to process data more efficiently. One 

approach is to emulate the brain’s processing, which is much more efficient than current 

processors at cognitive tasks like image and speech recognition. Although modern Artificial 

Intelligence relies on algorithms known as deep neural networks, their operation on 

processors radically differs from the brain. Modern computers and graphics cards have been 

designed to solve complicated numerical problems with high precision, while the brain uses 

many parallel low precision calculations to, for example, recognize a face. Computers 

achieve high precision using digital information encoding but the brain achieves its energy 

efficiency with lower precision analog encoding. Modern computers consume substantial 

energy shuttling information between storage and the processor, while the brain stores 

information locally where it is processed.

The elemental devices in the brain and in modern computers play different roles. Modern 

computers use transistors that are voltage-controlled switches and cannot provide memory in 

a compact form. The brain has two primary elemental units, synapses and neurons. In their 

simplest abstraction, synapses connect neurons with a connection strength, called a weight, 

which provides the memory function. Neurons receive inputs from many other neurons, 

integrate those responses, and emit spikes, called action potentials, which provide the input 

for subsequent neurons. Emulating the organization of the brain by using transistors to 

function like neurons and synapses requires many transistors2, using more energy and 

requiring greater area (typically hundreds to thousands of square micrometers3) than 

appropriate for many modern embedded applications.

The research reviewed in this article attempts to develop compact and low power 

computational systems using spintronic devices as an alternative to the large number of 

transistors needed to emulate the functions of neurons and synapses and connect those 

functional blocks together4,5. At the device level, the emphasis is on magnetic tunnel 

junctions (see Fig. 1a), which are being developed for non-volatile memory, (see Fig. 1b) in 

the back-end-of-line of Complementary Metal Oxide Semiconductor (CMOS) chips6. Major 

commercial foundries have now incorporated these devices in their processes7. This 

compatibility and the variety of functionalities available by changing geometries make 

magnetic tunnel junctions attractive candidates for efficient computing.

Magnetic tunnel junctions have several features that other technologies8, both existing and 

emerging, do not combine; e.g., nonvolatility, outstanding read/write endurance, high-speed 

and CMOS-compatible-voltage operation capability, high scalability, and back-end-of-line 

compatibility. However, the ratio of their maximum to minimum conductance (ON/OFF 
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ratio) is typically around three whereas it can reach thousands for other resistive switching 

memories9.

Spintronic approaches extend beyond the use of magnetic tunnel junctions as binary memory 

cells. An advantage of spintronics for neuromorphic computing is the multifunctionality that 

it offers, allowing designers to craft behaviors ranging from non-volatile through plastic, 

oscillatory, to stochastic, all from very similar materials. This enables the design of diverse 

building blocks mimicking key features of biological synapses and neurons. In addition, 

spintronics enables interconnecting these building blocks without relying on just CMOS 

connections. Spintronic components can carry information to distant places through spin 

currents, microwave signals, magnetic waves, and isolated magnetic textures that can then be 

moved around. This multifunctionality opens a wealth of possibilities to build spintronics-

based neuromorphic chips that take advantage of these additional features and 

communications channels, thereby decreasing the CMOS overhead where it is inefficient. 

Here, we review the first steps in this direction. We first describe spintronic neuromorphic 

building blocks and then discuss demonstrations of spintronic neuromorphic computing in 

small hardware systems. Finally, we analyze the advantages and disadvantages of spintronics 

for building larger systems.

II- Spintronic synapses

a. Embedding memory in the processor

In current computers, synaptic weights are stored as digitally-coded numbers in memory 

blocks separated from the circuits that process them. State-of-the-art neural networks can 

use more than a hundred million of these weights. Each time a neural network infers or 

learns, all these parameters must be fetched from memory for processing. Shuttling such 

quantities of data back and forth between memory and processing requires inordinate 

amounts of energy. The most straightforward way spintronics can enhance neuromorphic 

computing is by locating fast, non-volatile binary memory blocks very close to the 

processing units taking advantage of the ability to embed magnetic tunnel junctions within 

CMOS circuits10. These embedded devices also offer the possibility of turning off unused 

memory circuits without losing memorized information11. Local memory as well as energy 

management can be harnessed to realize high-performance energy-efficient neuromorphic 

chips.

Magnetic tunnel junction memory cells have been used recently to store the synaptic weights 

of hardware neural networks called associative memories (see Fig. 1c). Jarollahi et al.10 have 

fabricated a content-driven search engine using a magnetic tunnel junction-based logic-in-

memory architecture. They reduced memory needs by a factor of 13.6 and energy 

consumption by 89 % compared with a non-neural hardware-based search architecture using 

content-addressable memories. The number of clock cycles in performing search operations 

of the developed chip was reduced by a factor of 8.6 compared with common content 

addressable memories and by a factor of five orders of magnitude compared with a search 

engine based on a traditional processor.
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Ma et al.11 fabricated an associative processor that comprises a four-transistors and two-

magnetic tunnel junctions (4T-2MTJ) spin-transfer torque magnetoresistive random-access 

memory. They drastically reduced the energy consumption with an intelligent powering 

strategy, in which only currently accessed memory cells are autonomously activated. This 

approach reduces power consumption by 91.2 % compared with a twin chip designed with 

six-transistors static random-access memory, and by more than 88.0 % compared with the 

latest associative memories11. These results show the improvements that digital magnetic 

tunnel junction devices can bring to neuromorphic chips. Given that spin-transfer torque 

magneto-resistive random-access memory is about to hit the mass market, the very first 

contributions of spintronics to commercial neuromorphic chips will likely rely on the use of 

digital magnetic memories embedded close to CMOS circuitry for low-power cognitive 

computing.

b. Exploiting the inherent stochastic switching in binary magnetic tunnel junctions

An important challenge for magnetic tunnel junctions is that they are inherently prone to bit 

errors due to the role thermal activation plays in their switching dynamics. For conventional 

applications, microelectronics designers alleviate this partial unreliability with engineering 

solutions such as the use of junctions with a high energy barrier compared to thermal energy 

(leading to high programming currents), error correcting codes or specific write strategies 

that check the results of write operations12. Such solutions downgrade the energy efficiency 

of the devices. However, synapses, which implement the long term memory of the brain, are 

far from perfectly reliable13. Correspondingly, when magnetic tunnel junctions are used as 

the memory for neural networks, they do not necessarily need to have the reliability required 

for usual computing: neural networks are inherently resilient to bit errors. It is possible to 

design neural networks with synapses that have a relatively high error rate, without 

endangering the functionality of the whole network14,15.

Programming errors might even be exploited when training a neural network16,17. Training 

requires repeated adjustment of the synaptic weights, usually by small amounts. One 

alternative approach is to make larger changes, but with reduced probabilities. This approach 

has little value in conventional systems, as implementing probabilities requires generating 

random numbers, which is energy-intensive in conventional electronics. However, magnetic 

tunnel junctions operating in a regime with high bit error rates, can efficiently realize this 

alternative approach. Vincent et al.18 simulated stochastic switching of binary magnetic 

tunnel junctions and showed that they can be harnessed to implement spike-timing-

dependent plasticity, a biologically inspired learning rule. Using an accurate physical model, 

they demonstrated unsupervised recognition of patterns in video streams. This approach 

reduces the memory footprint of neural networks: fewer bits are required for weights than 

for conventional training. For some tasks, a single bit per synapse may suffice18. More 

fundamentally, the junctions can be programed with short, low current pulses thus strongly 

decreasing energy consumption during learning. Embracing bit errors exploits the true 

energy efficiency of spin torque, whereas fighting them costs substantial energy.
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c. Spintronic memristors

We have focused until now on the use of binary magnetic tunnel junctions for neuromorphic 

computing, based on the natural encoding of binary information in magnetic materials 

through the direction of their magnetization, which points either up or down in the new 

generation of memories. However, synaptic weights in neural networks, as with synapses in 

the brain, are typically real-valued, not binary. This means that many binary magnetic tunnel 

junctions are needed to store a single weight, costing area and read/write energy. There is 

therefore a strong interest to develop analog storage elements that individually emulate 

synapses in neuromorphic networks. In addition to being analog and non-volatile, these 

components should be plastic, meaning that the long-term properties of the device can be 

modified by its inputs, allowing stored memories to be tweaked.

Analog, nonvolatile, and plastic resistors, now often referred to as memristors, were 

introduced as early as the 60’s by Widrow and Hoff,19 who used them as hardware synapses. 

These components have been then theorized as fundamental circuit elements by Chua in the 

seventies20 and revisited experimentally in 2008 by Strukov et al.21 with Pt-TiO2-x-Pt 

nanodevices. Since then, various material systems have been used in memristive devices9. 

Memristors are particularly suited for imitating synapses. Just as synapses are non-volatile 

analog valves for information in the brain, memristors are non-volatile, analog valves for 

electrical currents. In neural networks, memristors naturally implement another important 

function more efficiently than CMOS circuits: the weighted sum of neural outputs by 

synapses. The current flowing through memristors electrically connected in parallel is the 

weighted sum of the memristor conductances times the input voltage22.

Magnetic devices can function as memristive devices by storing analog information in 

magnetic textures23. For example, Wang et al. proposed a spintronic memristor24 based on 

the displacement of a magnetic domain wall25 in a spin-valve (see Fig. 2a), giving rise to 

lower or higher resistance states depending on the domain wall position26. Chanthbouala et 

al.27 and Lequeux et al.28 experimentally demonstrated this memristive functionality 

through domain wall motion in magnetic tunnel junctions. Huang et al.29 simulated another 

concept for a spintronic memristor, based on representing analog information in the number 

of magnetic skyrmions (see Fig. 2b). Wadley et al. demonstrated analog-like operation in 

antiferromagnetic CuMnAs spintronic devices, using current-induced control of the Néel 

vector in submicron-scale antiferromagnetic domains30,31. Fukami et al. used spin-orbit 

torque switching to control a memristive element32–34 in an antiferromagnet/ferromagnet 

bilayer system35 (see Fig. 2c). The memristive behavior comes from the variation in the 

switching currents among the small magnetic domains that have varying exchange-bias 

magnitudes and directions at the antiferromagnet/ferromagnet interface36.

Spintronic memristors enjoy most of the advantages of spintronic digital memory devices, 

making them unique building blocks for neuromorphic computing with artificial synapses. 

Their nonvolatility allows them to capture simultaneously the two key features that synapses 

need to exhibit for neuromorphic computing: learning and memory. Moreover, the high 

endurance of spintronic memristors allows an outstanding number of learning cycles. This 

feature is particularly important for adaptive applications, especially in Internet-of-Things 

systems. One of the biggest challenges for the spintronic memristors is scalability, i.e., 
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maintaining the analog behavior with reduced device dimensions. Overcoming this 

challenge requires engineering materials that are capable of hosting more magnetic domains 

or skyrmions in nanoscale devices.

III- Spintronic neurons

Until recently, the majority of the effort to use nanotechnology in hardware neural networks 

has focused on synapses. As synapses are much more numerous than neurons in most 

systems, the benefits of implementing them at the nanoscale seems more evident. In 

addition, neural operations in state-of-the-art deep networks are simple non-linear functions 

that could be implemented piecewise with a few transistors. Nevertheless, neurons in the 

brain have much more complicated features. They are not static objects, but excitable cells, 

that leakily integrate the electrical spikes that they receive from other neurons and emit a 

spike when their membrane potential is charged above a threshold. After firing, the 

membrane potential falls back to the resting state and undergoes a refractory period. A 

neuron receiving a constant rate of input spikes therefore fires periodically, which explains 

why a whole branch of computational neuroscience uses non-linear dynamics to model 

neurons as non-linear oscillators coupled by synapses37–39.

When noise is high, which is often the case in biological neuron recordings, the emitted 

spike trains may become seemingly random. For this reason, several neuroscience 

approaches treat neural firing as a Poisson process and neural operations as stochastic 

processes40. These models and approaches are interesting for neuromorphic computing as 

they can potentially give additional features (e.g. time-dependent processing of input fluxes) 

or benefits (lower energy consumption by harnessing thermal processes). Spintronics, which 

allows the implementation of non-linear magnetization dynamics and stochastic processes at 

the nanoscale, gives numerous opportunities in this field5.

a. Spin-torque nano-oscillators

Spin-torque nano-oscillators (see Fig. 3a) are specific types of magnetic tunnel junctions, 

which can be driven into spontaneous microwave oscillations by an injected direct 

current41,42. Spin-torque nano-oscillators possess several distinctive features that are 

appealing for neuromorphic computing4. The oscillation amplitudes have memory due to 

finite magnetization relaxation, which can imitate the leaky integration of neurons43,44. They 

are stable and persistent, with limited drift in the behavior of their precession. The frequency 

and amplitude of voltage oscillations are highly non-linear as a function of current or applied 

field, allowing direct implementation of non-linear activation functions. In addition, their 

high tunability facilitates synchronization with other oscillators45. They can couple to other 

spin-torque nano-oscillators through direct exchange interactions46–48, magnetic fields49,50, 

or oscillating electrical currents due to the giant or tunneling magnetoresistance51. This 

ability to couple enables coupling many devices together through these physical 

interactions52,53 to emulate the synchronization of neurons and collections of neurons in the 

brain to improve information sharing and processing54.

Torrejon et al. demonstrated neuromorphic computing with a single spin-torque nano-

oscillator55 emulating a full neural network of 400 neurons using time-multiplexing56 (see 
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Fig. 3b). The single oscillator emulates 400 neurons by periodically devoting an interval in 

time for the state of each neuron and using the finite relaxation time to emulate coupling 

between neurons. The authors used the oscillator to implement a reservoir computer, a type 

of neural network especially adapted to dynamical situations57. The time-multiplexed nano-

oscillator recognizes spoken digits from the NIST TI-46 database58 with a precision up to 

99.6 %, which is as good as is done with both much larger neurons and software 

simulations. The authors show that this high performance of spin-torque nano-oscillators 

used as neurons comes from their stability, low noise and high non-linearity.

b. Superparamagnetic tunnel junctions

Studies of the brain suggest additional approaches for using magnetic tunnel junctions as 

neurons. Many experimental and theoretical works in neuroscience indicate that synapses 

and neurons in the brain are at least partly stochastic59. Some parts of the brain seem to trade 

reliability for energy effficieny13,60. Biological neurons are sometimes modeled as Poisson 

neurons with random spiking61. Since magnetic tunnel junctions are prone to stochastic 

effects, one can implement low energy artificial neurons by exacerbating stochastic effects, 

by using binary superparmagnetic tunnel junctions (see Fig. 4a). In such junctions, the 

energy barrier between the parallel and anti-parallel states is comparable to the thermal 

energy, so that even in the absence of electrical current and magnetic field, switching is 

triggered by thermal fluctuations.

Superparmagnetic tunnel junctions have distinctive features. First, they can be used to 

generate random bits simply by reading the state of the junction, an extremely low energy 

operation62. Second, they are reminiscent of Poisson neurons, with the difference that the 

output of such junctions is a telegraph signal whereas the output of such neurons is a spike 

train. The switching rate of these junctions can be controlled through spin-torques and 

magnetic fields63, and used for neuromorphic computing. For example, Mizrahi et al. 

showed that superparamagnetic junctions can phase lock to periodic inputs64 just like 

neurons in the brain, providing a mechanism for neuroscience-inspired forms of 

computation.

A third way to compute with superparamagnetic tunnel junctions is to use their average state 

rather than their transition rate. Digital electronics is based on deterministic bits that 

represent zero or one. Bits realized by modern CMOS transistors are used by very large-

scale circuits to implement complex functions. On the other extreme, quantum computing 

relies on qubits, a coherent superposition of zero and one. In between these extremes, it is 

possible to envision probabilistic bits, or p-bits (see Fig. 4b) classical entities that fluctuate 

between zero and one in the presence of thermal noise65. Magnetic tunnel junctions with low 

barrier nanomagnets naturally function as a compact hardware realization of a three-terminal 

p-bit, allowing them to be interconnected as correlated circuits. Two possibilities to 

construct p-bits with magnetic tunnel junctions have been discussed, one using spin-orbit-

torque for switching65 and one using spin-transfer-torque for switching66. Both involve 

replacing the thermally stable free layers of the tunnel junctions with unstable nanomagnets, 

either by reducing the anisotropy or by reducing the total magnetic moment62,67–69. While 

p-bits can be implemented using CMOS circuits, implementations based on nanodevices like 
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magnetic tunnel junctions may enable ultra-low power stochastic computing reminiscent of 

brain processes.

c. Domain-wall and skyrmion based neurons

Spin-torque nano-oscillators and superparamagnetic neurons rely on magnetic tunnel 

junction technology. Alternative types of neurons based on magnetic solitons can also be 

envisioned as proposed by Sharad et al in Ref. 23. Magnetic solitons such as domain walls 

and skyrmions (see Fig. 5a) can be manipulated and moved over large distances with spin-

torques and spin-orbit torques70–72. These objects are possible vectors of information that 

can be used for computing. For instance, magnetic domain-wall-based logic has been studied 

extensively, and the basic operations that have been demonstrated can be used for 

neuromorphic computing73,74. In this context, it is possible to take advantage of the 

fundamentally stochastic nature of the depinning and motion of magnetic nanotextures75–77. 

In particular, the particle-like behavior of skyrmions and their thermal Brownian motion has 

strong analogies with neurotransmitter diffusion78. Simulations show that switching after 

cumulative domain wall motion23, or skyrmion accumulation in a chamber79,80,77 are 

spintronic analogs of leaky integrate and fire neurons.

Non-linear resistance changes in magnetic skyrmion systems81 can be exploited for 

unconventional computing82–84. Such changes originate from an interplay of 

magnetoresistance effects (like the anisotropic magnetoresistance or non-collinear 

magnetoresistance85,86) combined with spin-(orbit)-torques on the skyrmions that either 

move or distort them. Prychynenko et al.82 analyzed the single skyrmion resistance response 

based on the interplay of spin-transfer torques and the anisotropic magnetoresistance using 

micromagnetic calculations that self-consistently solve for the magnetization dynamics and 

the current path87. The output voltage of such a device can be converted into a synaptic 

current.

IV- Neuromorphic computing with small spintronic systems

Using spintronics for neuromorphics is interesting for more than just single devices. Spin 

currents, spin waves or microwave emissions can be harnessed to propagate information 

between devices. However, assembling spintronic neurons and synapses directly in systems 

comes with specific challenges: controlling their coupling, and dealing with inevitable 

device variability. In recent years, highly promising research has started to address these 

points.

a. Computing with spintronic memristors

We have seen that spintronic memristors can be used as artificial synapses. The ability to 

update their states given new information, that is to learn, is a key capability of artificial 

synapses in artificial neural networks. The state of each synaptic device is tuned by training 

so that the network collectively stores the information. As is discussed in other articles in 

this series, pattern classification has been demonstrated in perceptron networks with 

artificial synapses made of metal-oxide resistive devices88 and phase-change material 

devices89.
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Borders et al. demonstrated a proof-of-concept associative memory (see Fig. 2d) based on an 

artificial neural network with spintronic synapses90. They employed antiferromagnet/

ferromagnet spin-orbit torque switching devices with memristive functionality as described 

earlier35. The Hopfield model91, which was originally developed from an analogy with spin 

glass systems, is used for memorization and association of patterns. In this model, each 

neuron is connected to all other neurons via synapses with variable synaptic weight and the 

synaptic weight matrix encodes the stored information.

To demonstrate pattern association, Borders et al. used three kinds of 3×3 block patterns, 

corresponding to 9-neuron systems. In this case, the synaptic weight matrix requires 36 

synaptic devices due to the symmetry of the matrix. The authors constructed a Hopfield 

network consisting of 36 spin-orbit-torque-based memristive devices, driven by field-

programmable gate arrays that emulate neurons. The system is controlled by software 

running on a computer. To initialize the system, electric currents corresponding to the ideal 

synaptic weights calculated for the three patterns based on the Hopfield model are applied to 

the prepared synaptic devices. Due to insufficient linearity and uniformity of the devices, the 

network does not remember the given patterns at this stage, requiring a learning process, 

based on the Hebbian learning rule92, to compensate for the imperfection of the synaptic 

devices. The learning process converges with at most 20 iterations, after which the network 

remembers the given patterns. Importantly, this work demonstrates learning using spintronic 

synapses. As spintronic synapses have high endurance, neuromorphic hardware with 

spintronic synapses can deliver superior adaptivity through learning.

b. Computing with synchronized spin-torque nano-oscillators

In the system that we just described, spintronic synapses were combined with conventional 

electronics to enable learning. Spintronic neurons can also be trained to compute. Romera et 

al. demonstrated classification of signals at microwave frequencies through the 

synchronization of spin-torque nano-oscillators93 (see Fig. 3c). They implemented a small 

neural network with two layers. This network features two independent neurons in the first 

layer (A and B), implemented by two microwave sources delivering sinusoidal waveforms of 

frequency fA and fB, and four all-to-all connected neurons in the second layer (labeled i), 
implemented by four spin-torque nano-oscillators that are globally coupled through long 

range electrical microwave connections. The microwave outputs of the first layer are sent 

through a stripline above the four oscillators in the second layer: the resulting microwave 

fields modify the oscillator dynamics. The principle of the computation is that the 

synchronization of two oscillators models a strong synaptic coupling between them94. If 

neuron i in the second layer synchronizes with neuron A in the first layer, the equality of 

their frequencies models a strong synaptic coupling. On the other hand, neuron A and 

neuron i having independent dynamics and frequencies models weak synaptic coupling 

between them. These synaptic strengths can be tuned by changing the free-running 

frequency of each oscillator in the second layer through the four injected direct currents that 

feed them. If the frequency of neuron i is closer to the frequency of neuron A, it will be 

more likely to synchronize with neuron A, corresponding to a stronger synapse.
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With this approach, Romera et al.93 trained a neural network of four coupled spin-torque 

nano-oscillators to classify seven American vowels (https://youtu.be/IHYnh0oJgOA). 

Training requires less than hundred iterations. The experimental recognition rate after 

training is 89 % on the test data (84 % after cross validation). This performance is 

significantly better than that of a multilayer perceptron trained on the same task with a 

similar number of parameters. In perceptrons, neurons are indeed not connected within a 

layer but here, the coupled oscillators interact to recognize the vowels. This result 

demonstrates that the dynamical properties of spin-torque nano-oscillators can be tuned to 

learn and that their coupling and synchronization can be harnessed to classify. The authors 

also showed that with this scheme, scaled-down oscillators based on state-of-the-art 

magnetic tunnel junctions compute with slightly lower energy consumption than optimized 

CMOS circuits. Developing large scale networks based on this approach requires designing 

arrays with hundreds of spin-torque oscillators with different frequencies but similar 

synchronization ranges. In addition, the simple learning rule developed in this demonstration 

might not easily extend to training deep networks95. Finding ways to tune the coupling 

between oscillators instead of changing their individual frequencies will be key to extend 

synchronization-based approaches to multilayer spintronic neural networks96.

c. Computing with superparamagnetic magnetic tunnel junctions

Just as the deterministic oscillations of spin-torque nano-oscillators can emulate neuron 

responses, the temperature-driven random fluctuations in superparamagnetic magnetic 

tunnel junctions can be used to imitate neural Poisson spiking dynamics. The analogous 

behavior of neurons and spin torque nano-oscillators can be pushed ever further. When 

subjected to an electrical current and the resulting spin torque, the mean frequency of 

superparamagnetic tunnel junctions has a bell-shaped response as a function of current (see 

Fig. 4c). This response is reminiscent of the stimuli-induced response of sensory neurons, 

such as those connected to our retina. Neuroscience has investigated how the brain relies on 

such curves to compute, through the paradigm of population coding, where each neuron 

responds with a bell curve, but each with a different mean value61. Through combined 

experiments and simulations, Mizrahi et al.97 showed that assemblies of superparamagnetic 

tunnel junctions can implement neural population coding and perform complex cascaded 

non-linear operations on their inputs, Fig. 4(d), – the basics of deep learning. The authors 

illustrate how a robot equipped with such a superparamagnetic neural network could reliably 

learn to grasp a ball, despite component unreliability. The resilience to device unreliability is 

a natural benefit of population coding, as the use of a population of devices to code one real 

value provides a form of intrinsic error correction98.

Additionally, Mizrahi et al.97 designed a full combined CMOS-spintronic circuit connecting 

the junctions for this application. They find that a system with 128 inputs and 128 outputs 

consumes 23 nJ per operation during the learning phase, and 7.4 nJ when learning is 

finished, compared to 330 nJ per operation for an implementation based on low-power 

spiking CMOS neurons. The roots of this energy efficiency are threefold and highlight 

generic advantages of spintronics for neuromorphic computing. First, the design closely 

integrates sensing, memory and logic, taking advantage of the ability to integrate spintronics 

with CMOS. Second, the system is stochastic and computes approximately, harnessing the 
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randomness of spintronics in a way that is more energy efficient than traditional precise 

electronics. Finally, the superparamagnetic tunnel junctions convert between analog (input 

current) and digital (spikes) information with more energy efficiency than traditional analog-

to-digital conversions.

Another way to compute with superparamagnetic tunnel junctions is to solve different 

classes of complex problems by encoding their solutions as low-energy states of 

probabilistic p-bit based circuits99. Such circuits (see Fig. 4e) based on superparamagnetic 

tunnel junctions with very low barriers (EB≈ kBT) can stochastically search the vast phase-

space of hard problems at high speed (from megahertz to gigahertz) in massively parallel, 

asynchronous networks99. Applications broadly relevant for two disjoint areas of research, 

namely machine learning and quantum computing could be targeted by such p-circuits. In 

the context of machine learning, the p-bit can be imagined as a hardware representation of a 

binary stochastic neuron100,101, commonly used as a building block for stochastic artificial 

neural networks, such as Boltzmann Machines92. Hardware p-circuits can not only help 

enable low-power stochastic inference networks102 but also accelerate learning algorithms 

that require repeated evaluations of correlations between interconnected binary stochastic 

neurons.

Quantum annealers103,104 explore a large phase space through quantum fluctuations to 

address computationally hard optimization problems such as the NP-complete Traveling 

Salesman Problem or Integer Factorization. Simulations of networks of p-bits show that such 

optimization problems can also be addressed by classical p-bits99. For example, classical 

annealing using hardware p-circuits can be performed by guiding the network to energy 

minima. An unconventional functionality enabled by p-circuits is the concept of “invertible 

logic”105 where for example, a Boolean circuit designed as a multiplier can be operated in 

reverse to factorize numbers, due to the reciprocal nature of p-circuit65.

P-bits can mirror a special class of quantum circuits106 by exploiting a well-known mapping 

between d-dimensional quantum systems and d+1-dimensional classical systems, a method 

often used in Quantum Monte Carlo calculations to simulate quantum systems in software. 

The basic idea is to represent a qubit network (d-dimensional) with a finite number 

(additional +1 dimension) of interacting replicas (d-dimensional) that are made from p-bits. 

Device level simulations show that spin-transfer-torque-based p-bits66 interconnected with a 

resistive network can exactly reproduce the quantum correlations of the transverse Ising 

Hamiltonian, a system commonly used by quantum annealers107. It should be noted that 

even though the mapping between quantum and classical Hamiltonians is quite general, the 

mapped classical Hamiltonian can be efficiently simulated only for a subclass of quantum 

systems that does not suffer from the “sign” problem108. The sign problem arises when the 

quantum to classical mapping produces negative weights, making it exponentially hard to 

reduce errors in quantum Monte Carlo simulations. Whether a scaled hardware 

implementation of room temperature p-bits could be useful in emulating quantum systems 

with the sign problem in practical applications remains to be seen.
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d. Computing with nanomagnets

In the schemes described above, coupling between junctions is realized with CMOS circuits 

or by resistive crossbar arrays. Dipolar coupling between nanomagnets can also be exploited 

directly for computation based on energy minimization, decreasing the CMOS overhead of 

spintronic circuits. There are several demonstrations solving Ising Hamiltonians with 

nanomagnet arrays. Bhanja et al.109 exploited the natural Hamiltonian describing the 

physical dipolar interaction between arrays of nanomagnets by mapping this interaction onto 

a quadratic optimization problem for computer vision applications. Debashis et al.110 

showed that small networks of nanomagnets interacting through dipolar fields can produce 

correlations corresponding to a Ising Hamiltonian. Nomura et al.111 simulated a reservoir 

computer made of dipole coupled nanomagnets. In the future, such reconfigurable artificial 

spin glasses112 could be interesting substrates for the implementation of scaled magnetic 

networks, enabling ultra-low power, high density co-processors by making use of the natural 

physics of nanomagnets.

e. Computing with skyrmions

Towards even deeper miniaturization, Prychynenko et al.82 proposed to use skyrmion 

assemblies (see Fig. 5b) as a fabric for reservoir computing. Here the reservoir is built out of 

a thin film of conducting material that hosts highly complex and self-organized patterns of 

magnetic skyrmions83. In this concept, the input signals are injected into the system through 

voltage patterns84, ideally at randomly distributed contacts. The output signals are the 

different resistances measured between different contacts. Based on the interplay of spin-

torques, pinning and magnetoresistive effects like the anisotropic magnetoresistance, an 

applied voltage across a certain magnetic texture leads to a complex current pattern. The 

underlying idea of this reservoir computing system is analogous to the water current pattern 

that arises in a riverbed filled with rocks, where water flow can induce changes in the 

arrangement of the rocks in the riverbed, in turn adjusting the current flow. In the magnetic 

case the current density relaxes on a much faster time scale than that of the magnetization 

dynamics (induced by the applied voltage patterns) allowing for self-consistent modelling.

The simulations in Ref.82 show that single pinned skyrmions have non-linear I-V 

characteristics. The main effect of spin-torques on pinned skyrmions is their deformation. 

These in turn lead to a change in the current pattern and thus to a change in the measured 

resistance. For a single skyrmion, the effect of non-linearity is small, as it couples only to the 

size of the deformation. For larger effects, it appears beneficial to use more skyrmions, e.g. 

in the form of skyrmion assemblies. In addition to the basic requirements for any reservoir, 

basing a reservoir on complex structures that deform requires that the magnetic texture 

relaxes back to its original state when the voltage is turned off and that the system is stable 

under temperature fluctuations. In Ref.84 the authors showed that skyrmion fabrics on top of 

a grain structure deform without significant displacement and are stable under thermal 

fluctuations, satisfying these additional requirements to operate as a reservoir.

Ref.84 analyzes the response of the simulated system to different voltage patterns observing 

that the signal procession depends on the history of the reservoir, thereby showing a short-

term memory. The complex magnetic response patterns serve as a high-dimensional 
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nonlinear filtering of the input signals. Furthermore, the responses are the most non-linear 

close to the natural time scale of the system (nanoseconds in ferromagnetic systems). 

Simulations demonstrate simple pattern classification. This theoretical work shows that 

skyrmion fabrics are suitable for reservoir computing, providing a path to solve complex 

tasks using linear post-processing techniques based on nanostructures.

V- Challenges for scaling up

The first experimental demonstrations of neuromorphic computing with small spintronics 

systems highlight the promise of this technology for future applications. However, deep 

networks implemented in software already comprise hundred millions of interconnected 

neurons and synapses for image recognition113. Several hurdles need to be overcome to 

scale up spintronic systems to sizes enabling useful pattern recognition. Some of these 

challenges are specific to spintronics, while others are shared by all technologies. In some 

cases, spintronics has advantages that could bring unique solutions for building large 

hardware neural networks.

a. Adapting algorithms to spintronic hardware

Inference in hardware neural networks requires being able to read rapidly and precisely 

circuit outputs. A disadvantage of magnetic tunnel junctions compared to other memory 

technologies is their small resistance changes, which makes them difficult to read 

quickly114, especially when they are multistate, with memristive-like behavior (their 

OFF/ON ratios are typically between one and three, while other resistive switching cells 

have ratios ranging from tens to millions). A way to circumvent this issue is to design 

circuits in which junctions do not need to be read individually. For example, the weighted 

sum of neuron voltages by the junction conductances, which is the important quantity for 

inference, can be read in the overall current flowing through the junctions connected in 

parallel, without any need to measure the resistance of each junction. However, this 

technique is limited to circuits of typically hundreds of junctions in parallel. Side stepping 

this issue requires complementing junctions with CMOS, either by connecting several small 

junction arrays with transistors, or by integrating a transistor below each junction. In both 

cases, these solutions limit the achievable density of the synaptic arrays.

Implementing neural networks that can be trained on-chip imposes additional constraints. 

Backpropagation algorithms115 based on gradient descent require highly linear and 

symmetric weight variations. This is an issue for all emerging memories and for most 

memristor types which tend to have highly nonlinear asymmetric responses116. One 

approach to achieve this linearity with spintronic memristors is to tune the materials and 

mechanisms underlying resistive variations, by considerably shrinking the size of domain 

walls or skyrmions down to a few nanometers117 to decrease granularity. In parallel, within 

the artificial intelligence community, there are considerable efforts to develop algorithms 

based on weights with reduced precision. For example, complex neural networks have been 

trained with only eight bits per synapse for the weights118. For inference, extremely reduced 

precision may be used: in 2016, it was shown that for many situations, binary weights are 

appropriate, which is well adapted to encode in magnetic tunnel junctions119,120. Finally, the 
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stochasticity inherent to magnetic systems can be a problem but one that can possibly be 

turned to an advantage for accelerating training. Continuous training of neural circuits 

during the inference phase offers other potential advantages, when coupled with the large 

cyclability of spintronics systems, particularly magnetic tunnel junctions98.

b. Low energy

Neuromorphic systems are most useful if they use less energy than traditional approaches 

for particular computational tasks. At the system level, it is important to reduce CMOS 

overhead in spintronic circuits, by taking advantage of physical effects to achieve functions 

that CMOS does not do well. It is also important to keep the energy consumption low for 

individual devices. As in most non-volatile memories, the write energy of magnetic tunnel 

junctions is higher than their read energy, and should be therefore be considered carefully 

during learning. The write energy consumption of magnetic memory cells today is of the 

order of a few hundred femtojoules per bit, lower than phase change memories and 

comparable to redox memories6. To decrease this energy consumption further, three options 

are available. The first is to improve spin-torque efficiency, for example through the use of 

spin-orbit torques provided by topological insulators121. The second is to speed up devices, 

for example by combining ultrafast demagnetizing process with parallel optical 

writing122,123 and reading or using antiferromagnets to generate magnetization dynamics in 

the terahertz range124,125. The third, already mentioned in this review, is to decrease the size 

of the devices to the point that thermal fluctuations help electric currents drive magnetization 

dynamics, for example in the superparamagnetic limit126.

c. Interconnection

A major challenge for neuromorphic hardware is to reach a high degree of interconnection 

between neurons. There are from 10 to 1000 synapses per neuron in typical algorithms 

today, in contrast to the 10,000 synapses per neuron in the cortex. There is no good solution 

today to reach such degree of interconnection while keeping the related power consumption 

low. Spintronics offers interesting opportunities in this domain. Spintronic systems are made 

of multilayer systems that naturally stack in three dimensions127. It is therefore possible to 

envision building three-dimensional spintronics neuromorphic systems exploiting solitons 

such as domain walls, skyrmions or magnons for vertical and horizontal communication. 

Communication through optical waves, or microwave signals emitted by spin-torque nano-

oscillators is also potentially useful for this purpose, but amplification through external 

circuitry could be required to achieve high fan-out. Progress in spintronics materials and 

nanodevices now offers the possibility of building complex three-dimensional computing 

systems74.

In summary, based on the basic principles of how brains compute, spintronics could help 

realize artificial intelligence in at least two ways. First, it allows enmeshing computation and 

memory at a very local level. Second, it permits exploiting rich multiphysics as a source of 

computational power. The recent experimental progress achieved by several groups delivers 

the first proofs of concept and pushes toward the development of large scale brain-inspired 

spintronic systems.
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Fig. 1. 
(a) Magnetic tunnel junctions for memory applications. A magnetic junction consists of two 

ferromagnetic layers (gray) separated by an insulating layer (blue) with the magnetization of 

one layer fixed and that of the other either parallel (low resistance) or antiparallel (high 

resistance) to it. (b) Cross-bar array of magnetic tunnel junctions for high density storage 

(Magnetic Random Access Memory). The resistance of a particular tunnel junction is 

measured by activating the appropriate word line (red) allowing conduction between the 

bottom bit line and the top sense line (both blue). The alignment of the magnetization can be 

switched by passing sufficient currents through the device. (c) Associative memory. (i) 

Handwritten digits from the MNIST dataset used for training the associative memory. (ii) 

Sample test input after training. (iii) Output of trained network from the test input showing 

successful association.
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Fig. 2. 
Spintronic based memristors. (a) Domain wall memristor. The resistance of the magnetic 

tunnel junction depends on the location of the domain wall changing the relative area of the 

high resistance antiparallel configuration and the low resistance parallel configuration. (b) 

Skyrmion based memristor. the resistance of the device depends on the number of skyrmions 

under the fixed layer. (c) Fine-magnetic-domain tunneling memristor. In a tunnel junction 

coupled to a polycrystalline antiferromagnet, the variation of switching properties from 

domain to domain allows the domains to reverse independently and under different 

conditions. The resistance of the device then depends on the fraction of domains with 

magnetizations aligned with the uniformly magnetized fixed layer. (d) Spintronic associative 

memory. The value of each off-diagonal matrix element is stored in the configuration of the 

memristor schematically illustrated by the different levels in the matrix. These levels are 

trained so that when the matrix multiplies an input, the result is the closest element of the 

training set. The multiplication is carried out by applying voltages that corresponding to the 

input and measuring the output current through the appropriate memristors.
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Fig. 3. 
Neuromorphic computing with Spin Torque nano-oscillators. (a) Schematic spin torque 

nano-oscillator. When designed appropriately, the free layer magnetization of a tunnel 

junction precesses when a dc current is passed through it. Because of the oscillating 

magnetoresistance, a fixed input current gives an oscillating voltage across the junction. (b) 

Reservoir computing with a spin torque nano-oscillator. Using time multiplexing in pre- and 

post-processing, a single spin torque nano-oscillator gives state of the art performance as a 

reservoir in a reservoir computing scheme. (c) Schematic use of coupled nano-oscillators for 

vowel recognition. The input is represented by the frequencies of two microwaves applied 

through a stripline to the oscillators. The natural frequencies of the oscillators are tuned by 

dc bias currents through the devise. These can be tuned so that the synchronization pattern 

between the oscillators corresponds to the desired output.
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Fig. 4. 
Computing with stochastic magnetic tunnel junctions. (a) Stochastic magnetic tunnel 

junctions. Thermal fluctuations cause stochastic transitions between the low resistance 

parallel and high resistance antiparallel states. Spin torque can bias the fluctuations favoring 

one configuration over the other depending on the sign of the current. (b) P-bit. Varying the 

bias on the input transistor controls the current through the magnetic tunnel junction 

controlling the fraction of time the tunnel junction spends in each magnetic state. The 

simulated average output voltage agrees very well with the expression ⟨Vout⟩ = 

VDDtanh(Vin/V0), where V0 depends on the temperature. (c) Tuning curves. Sensory 

neurons in the eye fire with rates that are highest when the eye is oriented in a particular 

direction. Similarly, the stochastic transition rates (rather than the average times spent in 

each state as in (b)) in magnetic tunnel junctions decrease with current in both directions. (d) 

Population-coding-based computation. In population coding, an input value is represented 

by the firing rates of a set of neurons each of which is tuned to be most sensitive to different 

input values. Non-linear computations can be performed on sets by multiplying the rates by 

synaptic weights giving a population-based representation of the output value. Here the input 

is the angle the eye observes an object at and the output is the angle the arm needs to make 

to grasp the object. The two angles are around different points and are non-linearly related. 

(e) Computing with p-bits. The analogue input voltage to each tunnel junction produces a 

fluctuating (digital) output voltage whose average depends non-linearly on the input as in 

(b). The fluctuating output voltages are combined with appropriate synaptic weights to 

produce the analogue current inputs to the p-bits.
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Fig. 5. 
(a) Schematic skyrmion structure. The magnetization direction of a single skyrmion is 

schematically given both by the directions of the arrows and the color coding, ranging from 

blue for magnetization up, through white for in-plane magnetization directions, to red for 

magnetization down. (b) Simulated skyrmion assembly. A reservoir computing scheme 

based on skyrmions in a random potential makes use of the distortions of the assembly due 

to current flow to provide the necessary non-linearity and memory.
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