
HAL Id: hal-03040932
https://hal.science/hal-03040932

Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Worst-Case Complexity Bounds of Directional
Direct-Search Methods for Multiobjective Optimization
Ana Luísa Custódio, Youssef Diouane, Rohollah Garmanjani, Elisa Riccietti

To cite this version:
Ana Luísa Custódio, Youssef Diouane, Rohollah Garmanjani, Elisa Riccietti. Worst-Case Complexity
Bounds of Directional Direct-Search Methods for Multiobjective Optimization. Journal of Optimiza-
tion Theory and Applications, 2020, pp.0. �10.1007/s10957-020-01781-z�. �hal-03040932�

https://hal.science/hal-03040932
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/26983

https://doi.org/10.1007/s10957-020-01781-z

Custódio, Ana Luísa and Diouane, Youssef and Garmanjani, Rohollah and Riccietti, Elisa Worst-Case Complexity

Bounds of Directional Direct-Search Methods for Multiobjective Optimization. (2020) Journal of Optimization

Theory and Applications. ISSN 0022-3239



Worst-Case Complexity Bounds of Directional Direct-Search
Methods for Multiobjective Optimization

Ana Luísa Custódio1 · Youssef Diouane2 · Rohollah Garmanjani1 ·
Elisa Riccietti3

Abstract
Direct Multisearch is a well-established class of algorithms, suited for multiobjective
derivative-free optimization. In this work, we analyze the worst-case complexity of
this class of methods in its most general formulation for unconstrained optimization.
Considering nonconvex smooth functions, we show that to drive a given criticality
measure below a specific positive threshold, DirectMultisearch takes atmost a number
of iterations proportional to the square of the inverse of the threshold, raised to the
number of components of the objective function. This number is also proportional to
the size of the set of linked sequences between the first unsuccessful iteration and the
iteration immediately before the one where the criticality condition is satisfied. We
then focus on a particular instance of DirectMultisearch, which considers amore strict
criterion for accepting new nondominated points. In this case, we can establish a better
worst-case complexity bound, simply proportional to the square of the inverse of the
threshold, for driving the same criticality measure below the considered threshold.

Keywords Multiobjective unconstrained optimization · Derivative-free optimization
methods · Directional direct-search · Worst-case complexity · Nonconvex smooth
optimization

Mathematics Subject Classification 90C29 · 90C30 · 90C56 · 90C60

1 Introduction

Multiobjective optimization is a challenging domain in nonlinear optimization [1,2],
when there are different conflicting objectives that need to be optimized. Difficulties
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increase if derivatives are not available, neither can be numerically approximated due
to the associated computational cost or to the presence of noise [3]. We are then
in the domain of multiobjective derivative-free optimization, which often appears in
problems where the objective function is evaluated through numerical simulation (for
complementary information on single-objective derivative-free optimizationmethods,
see [4–6]).

We are interested in establishing worst-case complexity (WCC) bounds for direc-
tional direct-search, a class of derivative-free optimization methods, when used for
solving unconstrained multiobjective optimization problems. Each iteration of this
class of algorithms can be divided into a search step and a poll step, being the former
optional. In fact, the convergence properties of these methods rely on the procedure
implemented in the poll step [7]. The objective function is evaluated at a finite set
of points, corresponding to directions with good geometrical properties, scaled by a
stepsize parameter. The decision of accepting or rejecting a new evaluated point is
solely based on the objective function value, no model is built for the objective func-
tion, neither any attempt of estimating derivatives is considered [7]. The criterion for
accepting a new evaluated point makes use of the partial order induced by the concept
of Pareto dominance (cf. Definition 2.1).

In the last decades, there has been a growing interest in evaluating the performance
of optimization algorithms in the worst-case scenario (see, for instance, [8–16]). Usu-
ally, the performance of an algorithm is measured by the number of iterations (or
function evaluations) required to drive either some criticality measure below a given
positive threshold or the function value below the threshold distance to the optimal
function value.

In single-objective nonconvex smooth unconstrained optimization, Nesterov [15,
Example 1.2.3] derived a WCC bound of O (

ε−2
)
for gradient descent algorithms. A

similar bound has been achieved for trust-region [17] and line-search [18] methods.
Nesterov and Polyak [19] investigated the use of cubic regularization techniques, and
then Cartis et al. [20] proposed a generalization to an adaptive regularized framework
using cubics. For the latter class of methods, by considering second-order algorithmic
variants, this bound was improved to O (

ε−3/2
)
, including a derivative-free approach

where derivatives are approximated by finite-differences [8].
In the context of single-objective derivative-free optimization, directional direct

search was the first class of algorithms for which worst-case complexity bounds were
established [16]. The author considered the broad class of directional direct-search
methods which use sufficient decrease as globalization strategy and established that
this class of algorithms shares, in terms of ε, the worst-case complexity bound of
steepest descent for the unconstrained minimization of a nonconvex smooth function.
The complexity of directional direct-search methods for the optimization of convex
smooth functions has been addressed in [9]. The bound ofO (

ε−2
)
has been improved

to O (
ε−1

)
, which is identical, in terms of ε, to the one of steepest descent, under

convexity. Complexity results have also been established for the nonsmooth case. In
[11], a class of smoothing direct-search methods for the unconstrained optimization of
nonsmooth functions was proposed and it was shown that the worst-case complexity
of this procedure is roughly one order of magnitude worse than the one for directional



direct-search or the steepest descent method, when applied to smooth functions. Other
types of direct-search methods have been analyzed in the literature. A probabilistic
descent directional direct-search algorithm has been proposed in [13], which is char-
acterized by the fact that poll directions only guarantee descent with a certain fixed
probability. The authors establish a worst-case complexity bound of O (

ε−2
)
, which

holdswith a high probability. A restricted version of directional direct-searchmethods,
where no stepsize increase is allowed, along with a worst-case complexity analysis has
also been studied in [14]. In [21], considering stepsizes independent from the results of
each iteration, the authors propose and analyze a random derivative-free optimization
algorithm which evaluates three points per iteration and enjoys a worst-case complex-
ity bound of O (

ε−2
)
.

As for the worst-case complexity of derivative-based methods for solving uncon-
strained multiobjective optimization problems, it has been shown in [12] that
trust-region methods provide a worst-case complexity bound of O (

ε−2
)
. A similar

bound has been derived in [10] and improved to O (
ε−1

)
or O(log(ε−1)), assuming

convexity or strong convexity of the different objective function components. In [22],
complexity bounds have also been derived for p–order regularization methods, this
time under a Hölder continuity assumption on the derivatives of the objective function
components.

Regarding the WCC of multiobjective derivative-free optimization algorithms, a
first work [23] showed that an optimal worst-case algorithm for Lipschitz functions
can be reduced to the computation of centers of balls producing an uniform cover of
the feasible region. A biobjective optimization algorithm for single variable, twice
continuously differentiable functions was proposed and analyzed in [24]. The authors
prove that after � ∈ N function evaluations, the number of points that do not belong
to the Pareto front is of O(log(�)2).

In this work, we first establish a worst-case complexity bound for the original
Direct Multisearch (DMS) [7] class of methods. We show that the DMS algorithm
takes at mostO (|L(ε)|ε−2m

)
iterations for driving a criticality measure below ε > 0,

where |L(ε)| represents the cardinality of the set of linked sequences between the
first unsuccessful iteration and the iteration immediately before the one where the
criticality condition is satisfied. We then focus on a particular instance of this class of
algorithms, which considers a more restrictive condition to accept new nondominated
points. For that, we resort to the standard min–max formulation of the multiobjective
optimization problem, which is widely used in the literature (e.g., see [25] and [12,
Sect. 4.2] for multiobjective trust-region methods or [1] for additional references).
We are able to establish that this particular instance of DMS enjoys a worst-case
complexity bound of O (

ε−2
)
for driving the same criticality measure below ε > 0.

This bound is identical, in terms of ε, to the one derived for multiobjective gradient
descent [10] and trust-region [12] methods.

With regard to the strategy used to establish theWCC of the min–max formulation,
we highlight that it is not equivalent to a straightforward application of the technique
used for single-objective optimization to the scalar function obtained by considering
the maximum of the components of the objective function. In particular, the analysis
in [16], which establishes the WCC of directional direct-search for single-objective



optimization, relies on the differentiability of the objective function, which does not
hold when a min–max formulation is considered. However, the analysis we propose
takes into account the differentiability of the single components.

The remaining of the paper is organized as follows. In Sect. 2, we recall some known
results on multiobjective optimization, which will be used throughout the paper. The
complexity analysis of DMS in its most general form will be established in Sect. 3.
Section 4 introduces themin–max formulation and establishes aworst-case complexity
bound for it. Some conclusions are drawn in Sect. 5.

2 Preliminaries

Let us consider the unconstrainedmultiobjective derivative-free optimization problem,
defined as

min F(x) := ( f1(x), . . . , fm(x))� s.t. x ∈ R
n, (1)

where m ≥ 2, and each fi : R
n → R∪ {+∞}, i ∈ I := {1, . . . ,m} is a continuously

differentiable function with Lipschitz continuous gradient.
When solving a multiobjective optimization problem of type (1), the goal is to

identify a local Pareto minimizer [26], i.e., a point x∗ ∈ R
n such that it does not

exist another point x in a neighborhood N of x∗ that dominates x∗, according to
Definition 2.1.

Definition 2.1 (Pareto dominance) We say that point x dominates point x∗ when
F(x) ≺F F(x∗), i.e., when F(x∗) − F(x) ∈ R

m+\{0}.
Point x∗ is then a local Pareto minimizer, if there is a neighborhoodN of x∗ where

x∗ is nondominated, meaning F(x) ⊀F F(x∗) for all x ∈ N .
A necessary condition for x∗ ∈ R

n to be a local Pareto minimizer is [26]:

∀d ∈ R
n, ∃id ∈ I : ∇ fid (x

∗)�d ≥ 0. (2)

A point satisfying (2) is called a Pareto critical point [26]. We are then interested in
finding Pareto critical points. In what comes next, ‖ ·‖will denote the vector or matrix
�2-norm.

Following [26], to characterize Pareto critical points, we are going to use, for a
given x ∈ R

n , the function:

μ(x) := − min‖d‖≤1
max
i∈I ∇ fi (x)

�d. (3)

Fliege and Svaiter [26] showed how some properties of μ(x), as reported in the fol-
lowing lemma, relate to the concept of Pareto critical points. We denote by F(x) the
solution set of (3).

Lemma 2.1 [26, Lemma 3] For a given x ∈ R
n, assume that, for all i ∈ I , the function

fi is continuously differentiable at x and let μ(x) be defined as in (3). Then,



1. μ(x) ≥ 0;
2. If x is a Pareto critical point of (1), then 0 ∈ F(x) and μ(x) = 0;
3. If x is not a Pareto critical point of (1), then μ(x) > 0 and for any d ∈ F(x) we

have

∇ f j (x)
�d ≤ max

i∈I ∇ fi (x)
�d < 0, ∀ j ∈ I ,

i.e., d is a descent direction of (1);
4. The function x �→ μ(x) is continuous;
5. If xk converges to x̄ , dk ∈ F(xk) and dk converges to d̄, then d̄ ∈ F(x̄).

Function μ can then be used to provide information about Pareto criticality of a
given point and plays a role similar to the one of the norm of the gradient in single-
objective optimization.

The following lemma describes the relationship between function μ and the norm
of the gradient of the components of F .

Lemma 2.2 For a given x ∈ R
n and ε > 0, assume that, for all i ∈ I , ∇ fi (x) is well

defined. If μ(x) > ε, then ‖∇ fi (x)‖ > ε, for all i ∈ I .

Proof If μ(x) > ε, then

min‖d‖≤1
max
i∈I ∇ fi (x)

�d < −ε.

As a consequence, it exists d̄ such that ‖d̄‖ ≤ 1 and

max
i∈I ∇ fi (x)

�d̄ < −ε,

that is, for all i ∈ I , we have

−∇ fi (x)
�d̄ > ε.

Hence, as −∇ fi (x)�d̄ ≤ ‖∇ fi (x)‖‖d̄‖ ≤ ‖∇ fi (x)‖, the thesis follows. ��
In the following, we set μk := μ(xk), for all k ≥ 0.

3 Direct Multisearch

Direct Multisearch (DMS) was proposed in [7] and generalizes directional direct-
search to multiobjective derivative-free optimization. It is a general class of methods
that can encompass many algorithmic variants, depending, for instance, on the glob-
alization strategy considered. In this work, we will require sufficient decrease for
accepting new points, via the use of a forcing function ρ :]0,+∞[−→]0,+∞[. Fol-
lowing [4], ρ is a continuous nondecreasing function, satisfying ρ(t)/t → 0 when
t ↓ 0. We consider the typical forcing function ρ(t) = ct p, with p > 1, and c > 0.



DMSmakes use of the strict partial order induced by the coneR
m+. Let D(L) ⊂ R

m

be the image of the set of points dominated by a list of evaluated points L and let
D(L; a) be the set of points whose distance in the �∞-norm to D(L) is no larger
than a > 0. Algorithm 1 corresponds to an instance of the original DMS [7] method,
which uses a globalization strategy based on the imposition of a sufficient decrease
condition.

Algorithm 1: DMS using sufficient decrease as globalization strategy.
Initialization

Choose x0 ∈ R
n with fi (x0) < +∞,∀i ∈ I , α0 > 0 an initial stepsize, 0 < β1 ≤ β2 < 1 the

coefficients for stepsize contraction and γ ≥ 1 the coefficient for stepsize expansion. Let D be a
set of positive spanning sets. Initialize the list of nondominated points and corresponding stepsize
parameters L0 = {(x0; α0)}.

For k = 0, 1, 2, . . .

1. Selection of an iterate point:Order the list Lk according to some criteria and select the first item
(x; α) ∈ Lk as the current iterate and stepsize parameter (thus setting (xk ; αk ) = (x; α)).

2. Search step: Compute a finite set of points {zs }s∈S and evaluate F at each point in S. Compute
Ltrial by removing all dominated points, using sufficient decrease, from Lk ∪ {(zs ; αk ) : s ∈ S}
and selecting a subset of the remaining nondominated points. If Ltrial �= Lk declare the iteration
(and the search step) as successful, set Lk+1 = Ltrial , and skip the poll step.

3. Poll step: Choose a positive spanning set Dk from the set D. Evaluate F at the poll points
belonging to {xk + αkd : d ∈ Dk }. Compute Ltrial by removing all dominated points, using
sufficient decrease, from Lk ∪ {(xk + αkd; αk ) : d ∈ Dk } and selecting a subset of the remaining
nondominated points. If Ltrial �= Lk declare the iteration (and the poll step) as successful and
set Lk+1 = Ltrial . Otherwise, declare the iteration (and the poll step) as unsuccessful and set
Lk+1 = Lk .

4. Stepsize parameter update: If the iteration was successful, then maintain or increase the cor-
responding stepsize parameter, by considering αk,new ∈ [αk , γ αk ]. Replace all the new points
(xk + αkd; αk ) in Lk+1 by (xk + αkd; αk,new), when success is coming from the poll step, or
(zs ; αk ) in Lk+1 by (zs ; αk,new), when success is coming from the search step. Replace also
(xk ; αk ), if in Lk+1, by (xk ; αk,new).
Otherwise, decrease the stepsize parameter, by choosing αk,new ∈ [β1αk , β2αk ], and replace the
poll pair (xk ; αk ) in Lk+1 by (xk ;αk,new).

DMS declares an iteration as successful when there are modifications in the
list of nondominated points, meaning that a new point x was accepted, such that
F(x) /∈ D(L; ρ(α)), where α represents a stepsize parameter associated with the
current iteration.

For analyzing the worst-case behavior of the algorithms presented in this paper, we
will need the following assumptions with regard to the component functions in (1).

Assumption 3.1 For all i ∈ I , the function fi is continuously differentiable with
Lipschitz continuous gradient with constant Li . Set Lmax = maxi∈I Li .

Assumption 3.2 For all i ∈ I , the function fi is lower and upper bounded in {x ∈
R
n : F(x) /∈ D({x0})}, with lower bound f min

i and upper bound f max
i . Let Fmin :=

min{ f min
1 , . . . , f min

m } and Fmax := max{ f max
1 , . . . , f max

m }.



Assumption 3.3 The set {x ∈ R
n : F(x) /∈ D({x0})} is compact.

At an unsuccessful iteration of Algorithm 1, none of the components of the objec-
tive function is improved, since no new point is added to the list. However, the use
of Pareto dominance to accept new points implies that successful iterations do not
necessarily correspond to points that improve all components of the objective func-
tion. In fact, at some successful iterations, some of these components could increase
the corresponding value. Nevertheless, at every successful iteration, the hypervolume
(see Definition 3.1 or [27]) corresponding to the current list of nondominated points
always increases.

Definition 3.1 [3, Definition 5.2] The hypervolume indicator (or S–metric, from ‘Size
of space covered’) for some (approximation) set A ⊂ R

m and a reference point r ∈ R
m

that is dominated by all the points in A is defined as:

HI(A) := Vol{b ∈ R
m : b ≤ r ∧ ∃a ∈ A : a ≤ b} = Vol

(
⋃

a∈A

[a, r ]
)

.

The inequalities should be understood componentwise, Vol(·) denotes the Lebesgue
measure of a m–dimensional set of points, and [a, r ] denotes the interval box with
lower corner a and upper corner r .

Define F(L) as the image set of a list of points L , i.e., F(L) := {F(x) : (x, α) ∈ L}.
Wewill consider r = ( f max

1 , . . . , f max
m ), when computing a hypervolume. Lemma 3.1

quantifies the increase in the hypervolume, associated with successful iterations.

Lemma 3.1 In Algorithm 1, for a successful iteration k ≥ 0, we have

HI(F(Lk+1)) − HI(F(Lk)) ≥ (ρ(αk))
m .

Proof If k is a successful iteration, then Lk+1 �= Lk . Let x ∈ Lk+1 be such that
x /∈ Lk . In this situation, F(x) /∈ D(Lk; ρ(αk)).

Thus, B∞(F(x), ρ(αk))∩ D(Lk) = ∅, where B∞(F(x), ρ(αk)) represents the �∞
ball centered at F(x), with radiusρ(αk). Thismeans that at least a hypercube of volume
ρ(αk)

m was added to the dominated region (the one belonging to F(x) + (R+
0 )m). ��

Figure 1 illustrates the situation,where for a biobjective problem, at a successful iter-
ation, the previous condition is satisfied as an equality. The initial list of nondominated
points is formed by the two points represented by the dots. The point corresponding
to the star, in the interior of the shaded region, was accepted as a new nondominated
point, since it satisfies the sufficient decrease condition. Thus, the hypervolume cor-
responding to the new set of nondominated points has increased exactly in ρ(αk)

2.
As it is done in classical directional direct-search [4], we assume that all positive

spanning sets considered by the algorithm include bounded directions. In multiobjec-
tive optimization, the cone of descent directions for all components of the objective
function can be as narrow as one would like (see Remark 3.1). So, we need to assume
density of the directions at a given limit point, as it is considered in the convergence
analysis of DMS [7].



Fig. 1 Hypervolume increase at
a successful iteration of
Algorithm 1

f1

f2

ρ(αk)

Definition 3.2 A subsequence of iterates {xk}k∈K , corresponding to unsuccessful poll
steps, is said to be a refining subsequence if {αk}k∈K converges to zero.

The existence of at least one convergent refining subsequence is a direct con-
sequence of Assumption 3.3 and the use of sufficient decrease for accepting new
nondominated points. Refining directions are limits of normalized poll directions asso-
ciated with the refining subsequence. Without loss of generality, we will assume that
all the positive spanning sets considered have normalized directions.

Assumption 3.4 Consider Algorithm 1 and let x∗ be the limit point of a convergent
refining subsequence. Assume that the set of refining directions associated with x∗ is
dense in the unit sphere.

We will make use of the following result, which establishes a relationship between
the stepsize parameter at an unsuccessful iteration of a directional direct-searchmethod
and μDk (xk), an approximation to μk = μ(xk) which only considers the poll direc-
tions.

Lemma 3.2 Let Assumption 3.1 hold. Let k be an unsuccessful iteration of Algorithm 1,
Dk be the positive spanning set considered, and αk > 0 be the corresponding stepsize.
Define

μDk (x) := − min
d∈Dk ,‖d‖≤1

max
i∈I ∇ fi (x)

�d. (4)

Then,

μDk (xk) ≤
(
Lmax

2
αk + ρ(αk)

αk

)
. (5)



Proof If iteration k is unsuccessful, then for each direction dk ∈ Dk there is an index
i(dk) ∈ I such that

fi(dk )(xk + αkdk) ≥ fi(dk )(xk) − ρ(αk).

Hence, for each direction dk ∈ Dk ,

0 ≤ fi(dk )(xk + αkdk) − fi(dk )(xk) + ρ(αk)

=
∫ 1

0
∇ fi(dk )(xk + tαkdk)

�αkdk dt + ρ(αk)

Adding −αk∇ fi(dk )(xk)
�dk to both sides yields:

−αk∇ fi(dk )(xk)
�dk

≤
∫ 1

0

(
∇ fi(dk )(xk + tαkdk)

�αkdk − αk∇ fi(dk )(xk)
�dk

)
dt + ρ(αk)

≤ α2
k
Lmax

2
‖dk‖2 + ρ(αk),

so that

−∇ fi(dk )(xk)
�dk ≤ αk

Lmax

2
‖dk‖2 + ρ(αk)

αk
.

Then,

max
i∈I ∇ fi (xk)

�dk ≥ −αk
Lmax

2
‖dk‖2 − ρ(αk)

αk

This is true for all dk ∈ Dk so the thesis holds. ��
Hereafter, we set μDk := μDk (xk). In the current work, WCC bounds will be

derived for driving μDk below ε > 0. However, the goal is to establish bounds for
having μk ≤ ε. For this purpose, we consider Assumption 3.5. A somehow similar
assumption has already been used within the context of trust-region derivative-free
methods for multiobjective optimization (see [28, Assumption 4.8]).

Assumption 3.5 There exists C1 > 0 such that

|μDk − μk | ≤ C1μDk , ∀k ≥ 0. (6)

Remark 3.1 We note that Assumption 3.5 requires the nonnegativity of μDk at every
iteration, which may not hold. In such cases, additional directions could be added to
the positive spanning sets considered as poll directions. Such procedure is supported
by Assumption 3.4.



However, there are cases where Assumption 3.5 can be easily satisfied. Let us
consider the following biobjective function:

F(x) := 1

2

(
‖x − c1‖2, ‖x − c2‖2

)�
,

where c1 = (−1, 1)� and c2 = −c1. This is a biobjective version of a single-objective
variant of the Dennis–Woods function [29] introduced in [4] (see also [5]). The single-
objective function has been used to show that coordinate search (which considers, at
every iteration, the positive spanning set Dk = [I − I ], where I represents the identity
matrix) stalls at any point (a, a)�, where a �= 0 (see [4,5]). We will show that, for this
biobjective problem, when considering the coordinate directions as positive spanning
set, Assumption 3.5 holds for the majority of points in R

2.
When applying DMS, for simplicity, we drop the iteration index k and assume that

the set of poll directions is D = [I − I ]. Then, for any x ∈ R
2, one has μD(x) =

−min{x1 + 1, x2 + 1,−x1 + 1,−x2 + 1}. Thus, as long as x belongs to B = {x ∈
R
2 : |x1| > 1 ∨ |x2| > 1}, μD(x) will be positive. On the other hand,

μ(x) = max‖d‖=1
min{−∇ f1(x)

�d,−∇ f2(x)
�d}

≤ min
{
max‖d‖=1

−∇ f1(x)
�d, max‖d‖=1

−∇ f2(x)
�d

}

We will show that the assumption holds for all the points in B such that x1 > 1 and
x2 > 1. For the other points in B a similar reasoning can be applied. If x1 > 1 and
x2 > 1, one gets that μD(x) = max{x1 − 1, x2 − 1} and

μ(x) ≤ min
{
μ1(x), μ2(x)

}
, where

μ1(x) := (x1 − 1)

√
(x1 − 1)2

(x1 − 1)2 + (x2 + 1)2
+ (x2 + 1)

√
(x2 + 1)2

(x1 − 1)2 + (x2 + 1)2
,

μ2(x) := (x1 + 1)

√
(x1 + 1)2

(x1 + 1)2 + (x2 − 1)2
+ (x2 − 1)

√
(x2 − 1)2

(x1 + 1)2 + (x2 − 1)2
.

Then, it holds

μ1(x)

μD(x)
≤ (x1 − 1) + (x2 + 1)

x1 − 1
≤ x1 + x2

x1 − 1
,

μ2(x)

μD(x)
≤ (x1 + 1) + (x2 − 1)

x2 − 1
≤ x1 + x2

x2 − 1
.

Hence, in this case, inequality (6) holds with C1 ≥ max
{
x1+x2
x1−1 , x1+x2

x2−1

}
− 1. If x is

far from the border of B, this constant will assume reasonable values. For example, if
we assume 2 ≤ x1, x2 ≤ 5, then C1 = 6.



Difficulties arise when x /∈ B (in which case μD ≤ 0) or when x is close to the
border of B (which makes the constant C1 large). In particular, if x = (a, a)� and
a → 0, the cone of descent directions will become as narrow as one would like. In
such cases, it is advisable to rotate the set of polling directions. For example, to make
sure that Assumption 3.5 holds at any point x = (a, a)� with |a| < 1, a possibility
would be to choose, for l ≥ 1, 2l−1 maximal positive basis {Ri D}0≤i≤2l−1−1, where

Ri =
[
cos(iθ) − sin(iθ)

sin(iθ) cos(iθ)

]
,

with θ = π
2l

the angle between the generators of the cone of descent directions.
Therefore, when a → 0 (or equivalently θ → 0), Assumption 3.5 is satisfied at the
cost of increasing the number of function evaluations.

In the following theorem, we will derive a bound on the number of successful
iterations required to drive μk below a given small positive threshold. For each pair
of indexes k1 < k2, we will denote byUk1(k2) and Sk1(k2) the set of unsuccessful and
successful iterations from k1 to k2, respectively. We will also denote by k0 the index of
the first unsuccessful iteration. We remark that the existence of such index is ensured
by Assumption 3.2, from which one can prove that Algorithm 1 generates a sequence
of iterates satisfying lim infk→+∞ αk = 0 [7].

Theorem 3.1 Consider the application of Algorithm 1 to problem (1), with the choice
of forcing function ρ(t) = ct p, p > 1, c > 0. Let Assumptions 3.1, 3.2, and 3.5 hold.
Let k0 be the index of the first unsuccessful iteration. Given any ε ∈ ]0, 1[, assume that
μk0 > ε and let j1 be the first iteration after k0 such that μ j1+1 ≤ ε. Then, to achieve

μ j1+1 ≤ ε starting from k0, Algorithm 1 takes at most |Sk0( j1)| = O
(
ε
− pm

min(p−1,1)

)

successful iterations.

Proof Let us assume that μk > ε, for k = k0, . . . , j1. Using Assumption 3.5 we have

ε < μk = |μk − μDk | + μDk ≤ (C1 + 1)μDk . (7)

Hence, we obtain μDk > ε/(1 + C1).
In view of Lemma 3.2, for an unsuccessful iteration k, we have

μDk ≤
(
Lmax

2
αk + ρ(αk)

αk

)
.

Thus,

ε

1 + C1 <

(
Lmax

2
αk + ρ(αk)

αk

)
,

which then implies, when αk < 1,

ε < L1α
min(p−1,1)
k ,



where L1 = (1 + C1)
(
Lmax
2 + c

)
. If αk ≥ 1, then αk > ε. Hence, by combining the

two cases (αk ≥ 1 and αk < 1) and having ε < 1, when k is an unsuccessful iteration,
we have

αk > L2ε
1

min(p−1,1) , (8)

where L2 = min

(
1,L− 1

min(p−1,1)
1

)
.

Let k be a successful iteration andUk0(k) = {k0, k1, . . . , ku}with ku < k be the set
of unsuccessful iterations from k0 to k. From Lemma 3.1 and by the choice of forcing
function,

HI(F(Lk+1)) − HI(F(Lku )) ≥ (k − ku)(c( min
ku+1≤t≤k

αt )
p)m

≥ |Sku (k)|(cβ p
1 α

p
k�

)m, for some 0 ≤ � ≤ u.

Notice that the second inequality holds as it is possible to backtrack from any
iteration t ∈ {ku + 1, . . . , k} to some previous unsuccessful k� ∈ Uk0(k) iteration and
have αt ≥ β1αk�

.
Thus, in view of (8),

HI(F(Lk+1)) − HI(F(Lku )) ≥ |Sku (k)|
(
cβ p

1 Lp
2 ε

p
min(p−1,1)

)m
.

By a similar reasoning, for 1 ≤ i ≤ u, we obtain

HI(F(Lki )) − HI(F(Lki−1)) ≥ |Ski−1(ki )|
(
cβ p

1 Lp
2 ε

p
min(p−1,1)

)m
.

Therefore, using the two inequalities above for k = k0, . . . , j1, we obtain

HI(F(L j1+1)) − HI(F(Lk0)) ≥ |Sk0( j1)|
(
cβ p

1 Lp
2 ε

p
min(p−1,1)

)m
.

Since
(
Fmax − Fmin

)m ≥ HI(F(L j1+1)) − HI(F(Lk0)), the proof is completed. ��
Now, in order to obtain a bound on the total number of iterations for driving μk

below a given threshold, it remains to find a bound on the number of unsuccessful
iterations. For that, we will adapt the definition of linked sequences, introduced in
[30].

Definition 3.3 Consider {Lk}k∈N the sequence of sets of nondominated points gen-
erated by Algorithm 1. A linked sequence between iterations i and j (i < j) is a
finite sequence {(xlk , αlk )}k∈{1,...,nl } of maximum length such that nl ≤ j − i + 1,

(xlk , αlk ) ∈ ∪ j
r=i Lr for all k ∈ {1, . . . , nl}, and for any k ∈ {2, . . . , nl} and

r ∈ {i + 1, . . . , j}, the pair (xlk , αlk ) ∈ Lr is generated by (xlk−1 , αlk−1) ∈ L p,
with i ≤ p < r .



Theorem 3.2 establishes a bound on the number of unsuccessful iterations required
for driving μk below a given threshold.

Theorem 3.2 Let all the assumptions of Theorem 3.1 hold. Then, to achieve μk ≤ ε

starting from k0, Algorithm 1 takes at most

|Uk0( j1)| ≤ |L j1
k0

|
⎡

⎢⎢
⎢
⎢

− log(γ )

log(β2)
|Sk0( j1)| − log(αl1)

log(β2)
+

log
(
β1L2ε

1
min(p−1,1)

)

log(β2)

⎤

⎥⎥
⎥
⎥

unsuccessful iterations, where αl1 denotes the stepsize associated to one of the points

in Lk0 and |L j1
k0

| the cardinality of the set of all linked sequences between k0 and j1.

Proof Let {(xlk , αlk )}k∈{1,...,nl } be a linked sequence between k0 and j1. Let Sk0(nl)
and Uk0(nl) be, respectively, the set of successful and unsuccessful iterations in the
sequence. Assume Uk0(nl) �= ∅. Since, for any 1 ≤ k < nl − 1, either αlk+1 ≤ β2αlk
(if the iteration is unsuccessful) or αlk+1 ≤ γαlk (if the iteration is successful), we
obtain by induction

αlnl ≤ αl1γ
|Sk0 (nl )|β |Uk0 (nl )|

2 ,

which, in turn, implies from log(β2) < 0

|Uk0(nl)| ≤ − log(γ )

log(β2)
|Sk0(nl)| − log(αl1)

log(β2)
+ log(αlnl )

log(β2)
.

From log(β2) < 0 and the lower bound (8) on αk , we obtain

|Uk0(nl)| ≤ − log(γ )

log(β2)
|Sk0(nl)| − log(αl1)

log(β2)
+

log
(
β1L2ε

1
min(p−1,1)

)

log(β2)
.

The last inequality holds trivially when Uk0(nl) = ∅.
Let L

j1
k0
denote the set of indexes of all linked sequences between k0 and j1. Then,

|Uk0( j1)| ≤
∑

l∈L j1
k0

|Uk0(nl)|

≤ |L j1
k0

| max
l∈L j1

k0

|Uk0(nl)|

≤ |L j1
k0

| max
l∈L j1

k0

⎡

⎢
⎣− log(γ )

log(β2)
|Sk0(nl)| − log(αl1)

log(β2)
+

log
(
β1L2ε

1
min(p−1,1)

)

log(β2)

⎤

⎥
⎦ .



Since nl ≤ j1 − k0 + 1, one has |Sk0(nl)| ≤ |Sk0( j1)| for all l ∈ L
j1
k0
. Thus,

|Uk0( j1)| ≤ |L j1
k0

|
⎡

⎢
⎣− log(γ )

log(β2)
|Sk0( j1)| − log(αl1)

log(β2)
+

log
(
β1L2ε

1
min(p−1,1)

)

log(β2)

⎤

⎥
⎦ .

��
In the previous bound, the size of the second term in the sum can be easily bounded.

In fact, from Theorem 3.1 we know that there is a finite number of successful itera-
tions, before driving μ below the given threshold. The increase in the stepsize can be
controlled by setting γ = 1 or by considering an upper bound for the stepsize itself
(see [9]).

Combining Theorems 3.1 and 3.2, it can be seen that Algorithm 1 takes at most

O
(
|L(ε)|ε− pm

min(p−1,1)

)
iterations to bring μk < ε for some k ≥ 0, where |L(ε)|

represents the size of the set of linked sequences between thefirst unsuccessful iteration
and the iteration immediately before the one where the criticality condition is satisfied.
The best complexity bound is then derived by setting p = 2, which leads to the
complexity bound of O (|L(ε)|ε−2m

)
. The WCC bounds of Algorithm 1 in terms of

the number of function evaluations are established in the following corollary.

Corollary 3.1 Let all the assumptions of Theorem 3.1 hold. To achieve μk < ε, Algo-

rithm 1 takes at most O
(
|L(ε)|ε− pm

min(p−1,1)

)
iterations (and O

(
n|L(ε)|ε− pm

min(p−1,1)

)

function evaluations).When p = 2 this bound isO (|L(ε)|ε−2m
)
(andO (

n|L(ε)|ε−2m
)

function evaluations).

Remark 3.2 With regard to the number of function evaluations in Corollary 3.1, since
the computational cost of evaluating each component of the objective function might
not be the same, we have considered the computational cost of F and count the number
of times that it is evaluated at each iteration, rather than counting separately the number
of component functions evaluations.

One can see that the bound for DMS, in terms of ε, does not conform with the
boundO (

ε−2
)
for the gradient descent derived in [10] for problem (1).One of themain

reasons behind this difference is the fact that DMS declares an iteration as successful if
at least one of the components of the objective function could be improved sufficiently,
whereas in [10] the algorithm, which uses a backtracking approach for determining the
right stepsize parameter, moves to a new point if all the components of the objective
function could be improved sufficiently. It should also be noted that DMSwill compute
an approximation to a complete local Pareto front, whereas the multiobjective gradient
descent algorithm finds a single Pareto critical point. This explains the dependence on
|L(ε)| for the WCC bounds derived.

If a more demanding criterion is considered to accept new nondominated points, a
complexity bound identical, in terms of ε, to the one derived in [10] for the gradient
descent can be established for DMS. In the next section, we will propose a direct-
search framework, which corresponds to a particular instance of DMS, and presents a



worst-case complexity bound ofO (
nε−2

)
, when considering the number of function

evaluations.

4 AMin–Max Direct-Search Framework for Multiobjective
Optimization

In this section, instead of considering problem (1) directly, we use a min–max formu-
lation:

min
x∈Rn

f (x)

with

f (x) := max
i∈I fi (x).

Algorithm 2 considers a direct-search (DS) approach with a stricter criterion for
accepting new nondominated points. In this case, rather than an approximation to the
complete Pareto front, only one Pareto critical point will be computed for problem (1).
For simplicity, the forcing function ρ(t) = c

2 t
2, with c > 0, has been considered

and the (optional) search step has not been included in the algorithmic description.
However, the subsequent results could be established for amore general setting, such as
the one of Algorithm 1, once that the strict condition for accepting new nondominated
points is used.

Algorithm 2:Min–max DS for multiobjective optimization.
Initialization

Choose x0 ∈ R
n with fi (x0) < +∞,∀i ∈ I , α0 > 0 an initial stepsize, 0 < β1 ≤ β2 < 1 the

coefficients for stepsize contraction and γ ≥ 1 the coefficient for stepsize expansion. LetD be a set
of positive spanning sets and c > 0 a constant used in the sufficient decrease condition.

For k = 0, 1, 2, . . .

1. Poll step: Choose a positive spanning set Dk from the set D. Evaluate F at the poll points
belonging to {xk + αkd : d ∈ Dk }. If it exists dk ∈ Dk such that

f (xk + αkdk ) < f (xk ) − c

2
α2k ,

then declare the iteration as successful and set xk+1 = xk + αkdk . Otherwise, declare the
iteration as unsuccessful and set xk+1 = xk .

2. Stepsize parameter update: If the iteration was successful, then maintain or increase the
corresponding stepsize parameter, by considering αk+1 ∈ [αk , γ αk ].
Otherwise decrease the stepsize parameter, by choosing αk+1 ∈ [β1αk , β2αk ].

Algorithm 2 can be regarded as a particular instance of Algorithm 1, where no
search step is performed, the list Lk is a singleton, corresponding to the current iterate



Fig. 2 Selecting a new
nondominated point in the
min–max direct-search
framework

f1

f2

ρ(αk)

(fk
1 , fk

2 )

and stepsize parameter (xk;αk), with a particular choice of Ltrial as a subset of the set
of computed nondominated points. Figure 2 illustrates the latter claim for a biobjective
optimization problem. Consider F(xk) = ( f k1 , f k2 ) as the objective function value at
the current iterate and ρ(αk) as the current value of the forcing function. The shaded
region corresponds to the image of the subset of nondominated points, from which a
new iterate can be selected. This set is a subset of the corresponding set in Algorithm 1
(represented by the hatch-lined area). Such restriction leads to a better worst-case
complexity bound, compared to the general formulation of DMS.

A result similar to Lemma 3.2 can be established for Algorithm 2.

Lemma 4.1 Under Assumption 3.1, suppose that the k-th iteration of Algorithm 2 is
unsuccessful. Let Dk be the positive spanning set considered, and αk > 0 be the
corresponding stepsize. Then,

μDk (xk) ≤ 1

2
(Lmax + c) αk .

Proof If iteration k is unsuccessful, then for all directions dk ∈ Dk

f (xk + αkdk) ≥ f (xk) − c

2
α2
k .

Hence, there exists i(dk) ∈ I such that

fi(dk )(xk + αkdk) ≥ fi(dk )(xk) − c

2
α2
k .

The remainder of the proof is similar to the one of Lemma 3.2. ��



The following lemma states that the sequence
∑∞

k=0 α2
k is finite, where {αk}k≥0 is

generated by Algorithm 2. The proof is identical to the one of [13, Lemma 4.1], but
we include it for completeness.

Lemma 4.2 [13, Lemma 4.1] Under Assumption 3.2, the sequence of {αk}k≥0 gener-
ated by Algorithm 2 satisfies

∞∑

k=0

α2
k ≤ Ω := γ 2

1 − β2
2

(
γ −2α2

0 + 2

c
( f (x0) − Fmin)

)
,

where γ, β2, c are defined in Algorithm 2.

Proof We begin by proving that the series
∑

k∈S α2
k is finite. To this end, recall that

for every successful iteration, we have

f (xk) − f (xk+1) ≥ c

2
α2
k .

Moreover, denoting by S the set corresponding to the indexes of successful iterations,
since the iterate does not change between two successful iterations, we also have for
any K ≥ 0:

∑

k∈S
k≤K

f (xk) − f (xk+1) =
∑

k≤K

f (xk) − f (xk+1) = f (x0) − f (xK+1) ≤ f (x0) − Fmin,

where the last inequality results from Assumption 3.2. As result, we obtain

f (x0) − Fmin ≥
∑

k∈S
f (xk) − f (xk+1) ≥

∑

k∈S

c

2
α2
k .

Thus,
∑

k∈S α2
k ≤ 2

c ( f (x0) − Fmin) < ∞.
To analyze the full series, we consider the set S := {k0, k1, k2, . . . , }, where ki ≥

0 is the index of the i-th successful iteration and k0 = −1 is an artificial index
corresponding to α−1 = γ −1α0. With this notation, given the updating rules on αk ,
we have that

∞∑

k=0

α2
k =

∞∑

i=0

ki+1∑

k=ki+1

α2
k ≤

∞∑

i=0

ki+1∑

k=ki+1

γ 2β
2(k−ki−1)
2 α2

ki ≤ γ 2

1 − β2
2

∞∑

i=0

α2
ki .

We conclude by observing that

∞∑

i=0

α2
ki = γ −2α2

0 +
∑

k∈S
α2
k ≤ γ −2α2

0 + 2

c
( f (x0) − Fmin).

��



Finally, in the main result of this section, we will prove that Algorithm 2 takes
at most O(ε−2) iterations for driving μ below ε > 0. Similarly to Algorithm 1,
Algorithm 2 cannot be proven globally convergent to a Pareto critical point for an
arbitrary choice of positive spanning sets as sets of poll directions, as one can easily
present examples where the cone of descent directions, considering all components of
the objective function, can be arbitrarily narrow (see Remark 3.1).

Theorem 4.1 Let Assumptions 3.1, 3.2, and 3.5 hold. For ε ∈ ]0, 1[, let kε be the first
iteration index such that μkε+1 ≤ ε. Then,

kε ≤ 2

cα2
0

(
f (x0) − Fmin

)
+ Ω(Lmax + c)2(C1 + 1)2

4β2
1

ε−2,

where Ω is defined as in Lemma 4.2.

Proof If kε = 0, the result trivially holds. Therefore, we assume in what follows that
kε > 0.

For any unsuccessful iteration of index k ≤ kε , we have from Lemma 4.1 that

α2
k ≥ 4μ2

Dk

(Lmax + c)2
. (9)

Since μk > ε, in view of (7), we have μDk > ε/(C1 + 1). Therefore, using (9), we
have

α2
k ≥ 4ε2

(Lmax + c)2(C1 + 1)2
. (10)

Considering the updating rules on the stepsize, for any successful iteration of index
kε ≥ k > j1, where j1 is the index of the first unsuccessful iteration, there exists
an index of an unsuccessful iteration j(k) ≤ k (with possibly j(k) = j1) such that
αk ≥ β1α j(k). Putting this together with (10) yields:

∀k ∈ S, kε ≥ k > j1, α2
k ≥ 4β2

1ε
2

(Lmax + c)2(C1 + 1)2
,

where S denotes the set of successful iterations. Using now the result of Lemma 4.2,
we have:

Ω ≥
∞∑

k=0

α2
k ≥

kε∑

k= j1+1

α2
k ≥ (kε − j1)

4β2
1ε

2

(Lmax + c)2(C1 + 1)2
.

Thus,

kε − j1 ≤ Ω(Lmax + c)2(C1 + 1)2

4β2
1

ε−2.



Since j1 is the index of the first unsuccessful iteration, one can trivially show that
j1 ≤ 2

cα2
0

(
f (x0) − Fmin

)
. Then, the thesis follows. ��

The previous theorem allows us to establish a WCC bound in terms of the number
of function evaluations for Algorithm 2 (see also Remark 3.2).

Corollary 4.1 Let all the assumptions of Theorem 4.1 hold. To achieve μk < ε, Algo-
rithm 2 takes at most O (

nε−2
)
function evaluations.

5 Conclusions

In this work, we analyzed the worst-case complexity of some direct-search derivative-
free algorithms for unconstrained multiobjective nonconvex smooth optimization
problems. In the case of Direct Multisearch [7], we derived a complexity bound of
O(|L(ε)|ε−2m) for driving a criticality measure below ε > 0. We then proposed a
min–max approach to the multiobjective derivative-free optimization problem, which
proved to be a particular instance of Direct Multisearch, but presented a worst-case
complexity bound of O(ε−2) for driving the same criticality measure below ε > 0.
This result is identical, in terms of ε, to the one established in [10] for gradient descent,
considering the same class of problems. For the (strongly) convex case, where all the
components of the objective function are (strongly) convex, it remains as an open ques-
tion whether similar complexity bounds to those derived in [10] could be established
for the algorithms considered in this paper.
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