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ACTIVE THERMAL CLOAKING AND MIMICKING

MAXENCE CASSIER!, TRENT DEGIOVANNI2, SEBASTIEN GUENNEAU?3, AND
FERNANDO GUEVARA VASQUEZ?2

ABSTRACT. We present an active cloaking method for the parabolic heat (and
mass or light diffusion) equation that can hide both objects and sources. By
active we mean that it relies on designing monopole and dipole heat source
distributions on the boundary of the region to be cloaked. The same technique
can be used to make a source or an object look like a different one to an observer
outside the cloaked region, from the perspective of thermal measurements. Our
results assume a homogeneous isotropic bulk medium and require knowledge of
the source to cloak or mimic, but are in most cases independent of the object
to cloak.

1. INTRODUCTION

Certain solutions to the heat equation can be reproduced inside or outside a
closed surface by a source distribution on the surface determined by Green’s identi-
ties. In particular, given a solution to the heat (or mass or light diffusion) equation
in a homogeneous medium and with no sources inside of a domain, it is possible
to reproduce it inside the domain with a distribution of sources on the surface of
the domain, while also giving a zero solution outside. We call this the interior
reproduction problem, see fig. a). Similarly, the exterior reproduction problem is
to reproduce a solution to the heat equation in a homogeneous medium with no
sources outside of a domain, while keeping a zero solution inside the domain (see
fig. [{b)). As we shall see, a growth condition for the heat equation solution is
needed to guarantee that the exterior reproduction problem can be solved.

This growth condition plays the same role as a radiation boundary condition
for the Helmholtz equation (section . By combining solutions to interior/exterior
reproduction problems we can achieve cloaking or mimicking for the heat equation
in the following scenarios.

Interior cloaking of a source: Given a localized heat source, find an active
surface or cloak surrounding the source so that the source cannot be detected by
thermal measurements outside the cloak (section .

Interior cloaking of an object: Given a passive object (e.g. an inclusion),
find an active surface or cloak surrounding the object so that the temperature dis-
tribution outside the cloak is indistinguishable from having a region of homogeneous
medium instead of the cloak and the object (section [3.2).

Source mimicking problem: Given a localized source, find an active surface
or cloak surrounding it so that the source appears as a different source for an
observer outside the cloak (section .
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(a) (b)

FIGURE 1. In (a) we illustrate the “interior reproduction problem”
which consists of reproducing a solution to the heat equation in
the interior of a bounded region Q (in yellow), while enforcing a
zero solution outside of Q (in white) by placing heat sources on
the boundary 0€2. In (b) we illustrate the “exterior reproduction
problem” in a similar way.

FIGURE 2. An illustrative example of an arrangement of Peltier
elements that could be used to cloak objects (e.g. a kite) inside
a two-dimensional region 2, illustrated here by a disk within a
heat conducting plate. Each Peltier device is represented by two
adjacent red and blue boxes, where the heat flux it can create
is oriented in the direction normal to their interface. We have
represented both Peltier elements that transport heat within the
plate (across 0€2) and also between the exterior and the plate.

Object mimicking problem: Given a passive object inclusion, find an active
surface or cloak surrounding it so that the object appears as a different object for
an observer outside the cloak (section [4.2).

Active sources for the “interior cloaking of an object” problem have already been
proposed and demonstrated experimentally for the steady state heat equation in [I].
The idea is to use Peltier elements to dissimulate a hole in a conductive plate under
a steady state temperature distribution. A Peltier element is a thermoelectric heat
pump that moves heat by putting an electric current across a metal/metal junction
(see e.g. [2]). Our approach deals with time varying solutions to the heat equation.
It could be implemented with a setup similar to [I] by using Peltier devices that are
either used to transport heat within the plate or act as heat sources/sinks on the
plate by transporting heat between the environment and the plate, as illustrated
in fig. 2l An alternative route using a single active dipole source placed inside the
object to cloak in a constant gradient steady state regime is proposed in [3].

Although all the results are presented in the context of the heat equation, they
also apply to the diffusion equation, which can be used to model e.g. diffusion of a
species in a porous medium. In this case the active surface would consist of pumps
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that can transport the species either across the medium or between the medium
and the environment. For the diffusion equation case, we can either hide or imitate
a source or an inclusion with different diffusivity properties.

Controlling the heat flux may find applications in enhancing the efficiency of
thermal devices in solar thermal collectors, protecting electronic circuits from heat-
ing, or the design of thermal analogs of electronic transistors, rectifiers, and diodes
[]. Moreover, all our results could be easily adapted to control of mass diffusion
with potential applications ranging from biology with the delay of the drug release
for therapeutic applications [5, [6] to civil engineering with the control of corrosion
of steel in reinforced concrete structures[7]. We further note that in many media,
such as clouds, fog, milk, frosted glass, or media containing many randomly dis-
tributed scatterers, light is not described by the macroscopic Maxwell equations,
but rather by the Fick’s diffusion equation as photons of visible light perform a
random walk. Cloaking for diffusive light was experimentally achieved in [8] using
the transformed Fick’s equation [5] and this suggests potential applications of our
work in control of diffusive light as well.

Because we are using source distributions, we can achieve cloaking of inclusions
and sources, regardless of how complicated they are and on arbitrarily large time
intervals. One drawback of our method is that the source distribution completely
surrounds the object or source that we want to cloak or mimic. Another drawback is
that we assume perfect knowledge of the fields to reproduce on a surface, however we
expect this can be relaxed, as we demonstrate numerically in section[2:3] Apart from
the active cloaking strategies for the steady state heat equation in [Il [3], there are
passive cloaking methods for the heat equation that use carefully crafted materials
to hide objects [0, 10, T, 02 5]. Such materials, whose effective conductivity
mimics that in the heat equation after a suitable change of variables has been
made, are quite bulky. In [12], some proof of concept of passive thermal cloaking was
achieved with a metamaterial cloak consisting of 10 concentric layers mixing copper
and polydimethylsiloxane in a copper plate. However, it has been numerically
shown using homogenization in [13] that one would require over 10,000 concentric
layers with an isotropic homogeneous conductivity to accurately mimic the required
anisotropic heterogeneous conductivity within a thermal cloak in order to achieve
some markedly improved cloaking performance in comparison with [12].

The idea of using active sources based on the Green identities to cloak objects
was first proposed for waves by Miller [14]. The way of finding the sources for
active cloaking is similar to that in active sound control for e.g. noise suppres-
sion [I5], 16]. One problem with this approach is that the sources completely sur-
round the cloak. However only a few sources are needed to cloak as was shown
in [I7, 18, 19, 20, 2], 22] for the Laplace and Helmholtz equations. The approach
can be extended to elastic waves [23] and flexural (plate) waves [24] 25]. The ac-
tive cloaking approach can be applied to the steady state diffusion equation with
the role of sources and sinks over a thick coating played by chemical reactions|26].
Active cloaking has been demonstrated experimentally for the Laplace equation
[27, 28], electromagnetics [29] and the steady state heat equation [I, B]. Finally the
illusion/mimicking problem was first proposed using metamaterials via a transfor-
mation optics approach [30] and then with active exterior sources [31].

We start in section [2| by recalling results on representing solutions to the heat
equation by surface integrals. This section includes a growth condition on heat
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equation solutions that is sufficient to ensure that the exterior reproduction problem
is solvable and numerical experiments illustrating both the interior and exterior
reproduction problems in two-dimensions. We also underline properties related to
the maximum principle of the heat equation that we use on one hand to point out
some stability of the two reproduction problems and on the other hand to interpret
the numerical error in our simulations. Then in section [3] we explain how to cloak a
source (section or an object (section . The mimicking problem is presented
in section for both mimicking objects (section and sources (section. The
numerical method we use to illustrate our approach in two-dimensions is explained
in section [f] Finally, our results are summarized in section [0}

2. INTEGRAL REPRESENTATION OF HEAT EQUATION SOLUTIONS

We start by recalling results on boundary integral representation of solutions
to the heat equation. Concretely we show in sections section [2.1] and section [2.2
how to use a distribution of monopole and dipole heat sources on a closed surface,
an “active surface”, to reproduce a large class of solutions to the heat equation
inside and outside the surface. We include a two-dimensional numerical study
(section of how the reproduction error is affected by the time step, the boundary
discretization and errors in the boundary density we use to represent the fields.

The temperature u(z, t) of a homogeneous isotropic body satisfies the heat equa-
tion

(1) peu; = kAu + h, for t >0,

where u is in Kelvin, x is the position in meters, ¢ is the time in seconds, « is the
thermal conductivity (W m~1K~1), ¢ is the specific heat (JK~'kg™1), p is the mass
density (kg m~3) and h(z,t) is a source term (W m~3). To simplify the exposition
we consider instead

(2) uy = kAu+ h, for ¢ >0,

where k = k/pc is the thermal diffusivity (m? s=') and h = h/pc is the source term
(K s71). In dimension d the Green function or heat kernel for is

(4mkt) =% exp|—|z|?/4kt], for t >0 and x € R?,

0, otherwise,

(3) K(z,t) = {

where | - | is the Euclidean norm in R%. We point out that outside the origin
(z,t) = (0,0), K(z,t) is a smooth function even on the line ¢ = 0. This can be shown
directly or by using the hypoellipticity property of the heat operator. Namely, as
the heat kernel solves the homogeneous heat equation in the distributional sense on
any open set that does not contain the origin, by hypoellipticity (see [32] theorem
1.1 page 192) K(z,t) can be extended as a C°° function on (R¢ x R) — {(0,0)}.
Thus K (z,t) is a smooth solution of the heat equation on any open subset of this
set.

We consider a bounded non empty open set €2 with Lipschitz boundary 02 and
possibly multiple connected components in R, d > 2. The interior reproduction
problem (section is to reproduce a solution of the homogeneous heat equation
in the space-time cylinder € x (0, c0) by placing appropriate source densities on its
boundary 9 x [0, 00) and possibly on 2 x {0} (initial condition). The sources are
chosen such that the fields vanish in (R? — Q) x (0,00) (where Q = QU 09 denotes
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the closure of §2). If the initial condition is harmonic, it is sufficient to have sources
on 99 x [0,00) only. For the exterior reproduction problem (section [2.2) we seek to
reproduce a solution of the homogeneous heat equation in (R? — Q) x (0, 00) using

sources on 92 x [0,00) and possibly on (R? — Q) x {0}. The fields are required to
vanish in © x (0, c0).

2.1. Reproducing fields in the interior of a bounded region. The goal here
is to reproduce solutions u to in Q by controlling sources on 92 while leaving
the exterior unperturbed. More precisely, for some temperature field u(z,t), we
wish to generate uq(z,t) such that for ¢ > 0:

I

Notice that uq(z,t) is not defined for x € 912, as usual in boundary integral equa-
tions. For initial condition u(z,0) = f(z), x € Q and a source term h(z,t) sup-
ported in R? —Q, this can be achieved via the Green identities (see e.g. [33] 34} 35])

(5)
ug(z,1) = / s /8 ) AS() (S (. VK (& — 9,1~ ) — uly, ) 2z 3, — 5)

+ / F) K (x — y, t)dy, t >0,
Q

here n(y) is the outward pointing unit length normal vector at y € 9Q. The Green
identities guarantee that uq(x,t) = 0 for x ¢ Q, as desired. The first term in
the integral is the single layer potential (a collection of monopole heat sources)
and the second is the double layer potential (a collection of dipole heat sources).
For zero initial conditions, the solution u is completely represented within €2 by the
single and double layer potentials, with densities given by the field to be reproduced
and its normal derivative on 9€2. We point out that the representation formula
holds for instance if u € C?(2 x [0,+00)). A less restrictive condition, for zero
initial condition, is to assume some Sobolev regularity for u, see e.g. [34, theorem
2.20]. In this less regular setting, the first integral in becomes a duality pairing
between boundary Sobolev spaces.

Remark 2.1 (Causality and instantaneous control). The boundary integral repre-
sentation is causal in the sense that to reproduce ug(x,t), t > 0, we only need
information about u in the past, i.e. for times before the present time t. Moreover,
the time convolution suggests that at the present time t, we only require control
of heat sources localized in time to the present time t. Indeed, the integral over OS)
mn s a collection of monopole and dipole sources localized in time to s and that
depends only on knowing u and Ou/On at time s. Moreover the contribution of past
s, i.e. with s < t, amounts to the memory effect of the bulk. Thus for experimental
purposes, the boundary integral representation could be approximated by e.g. Peltier
devices.

A numerical example is given in fig. [3l Here the field u is generated by a point
source at = (0.25,0.25) and ¢ = 0. For the heat equation we took k = 0.3
and the domain is Q = B(zo,70), the open ball with center o = (0.5,0.5) and
radius 79 = 0.25. It should be noted that in all of the numerical examples the
thermal diffusivity & is chosen for the convenience of computations, and may be
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F1GURE 3. Numerical example of the interior field reproduction
problem for a point source located at (1/4,1/4) and t = 0s. A
snapshot of the original field at time ¢ = 0.2 s appears in (a).
The field is reconstructed inside a disk of radius 1/4 centered at
(1/2,1/2) by using only heat sources on the corresponding circle.
In (c) we show the log;, of the reconstruction error (the absolute
value of the difference between the exact uq and its numerical ap-
proximation). We generated a plot similar to (¢) by taking the
maximum over the time interval [0.2,0.3] at each grid point (the
plot being very similar to (c), we include the code to generate it as
supplementary material). This indicates that the maximum error
is attained near 02 in space (and in time at ¢ = 0.2 on the time
interval [0.2,0.3]), conforming to the maximum principle (applied
with initial time ¢ = 0.2) for the interior problem (remark[2.2) and
the exterior one (remark . We can use the maximum princi-
ple on the computed fields because the numerical method we use
generates solutions to the heat equation (see section [5| for more
details).

different depending on the numerical experiment. We computed the fields on the
unit square [0, 1]2 with a 200 x 200 uniform grid at time ¢ = 0.2 s. The integral
is approximated using the midpoint rule in time with 200 equal length subintervals
of [0,%] and the trapezoidal rule on 9 with 128 uniformly spaced points. A more
detailed explanation of the numerical method appears in section[§] The accuracy of
our numerical method with respect to discretization changes and noise is evaluated
in section Figure [3|c) shows a plot of the log;, error between the computed
field and the desired one. It can be observed that the accuracy of the numerical
method improves as we move away from 0f).

We point out that the term in involving the initial condition is very different
from the other terms because it is an integral over {2 rather than just the boundary
O). If the initial condition f(z) is non-zero but harmonic, this integral over {2 can
also be expressed as an integral over 9 by using Green identities as follows (see

/Qf(y)K(x -y, t)dy = /aQ dS(y)[f(y)a—(x —y,t) — d(x — y,t)%(y)],

where ¢(z,t) is given in two dimension by [33]:
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where Ein(z) = E(2) +1Inz + v, 7 is the Euler constant and

+oo e—g
E(2) :/Z Td(

is the exponential integral (see e.g. [36l eq. 6.2.2 and 6.2.4]). The expression for
¢ in three dimensions is given in [33]. From the experimental perspective, it is
not clear whether the kernels in the boundary integrals (@ can be achieved with
heat monopole and dipole sources. So we assume from now on, that the initial
condition is harmonic but does not need to be reproduced using sources on 9f).
Under this assumption, we can simply subtract the initial condition to obtain the
heat equation with zero initial condition, which is the case that we focus on.

Remark 2.2. As formula uses the boundary data and the initial condition
to express ug, this reconstruction of u satisfies some stability due the mazimum
principle applied to the heat equation (a property that does not hold e.g. for the
wave equation). Indeed, for any T > 0, the mazimum principle [37, B8, [B9] states
that a continuous function on 2 x [0, T)] that solves the homogeneous heat equation
on Q x (0,T) (in the distributional sense) reaches its minimum and mazimum
either at t = 0 or at any time t € [0,T] on the boundary ). For instance, the
solution of the initial-Dirichlet boundary value problem (with no sources) described
in the chapter 7 page 171-172 of [39] satisfies the above conditions. In particular,
this solution is continuous up to the boundary, i.e. on Q x [0,T]. To obtain such
continuity, the continuous initial data and the continuous Dirichlet data have to
match on 9 at t =0, see e.g. [39].

To understand the stability, we take two solutions u; € C°(2 x [0,T1), j = 1,2,

that satisfy the homogeneous heat equation in Q x (0,T) for T > 0 in the
distributional sense. In this setting solutions in the distributional sense are also
smooth solutions of the homogeneous heat equation (since by hypoellipticity,
uj € C*°(Q x (0,7)) for j =1,2, see e.g. [32] theorem 1.1 page 192). Thus, one
can apply the mazimum principle (see [37], theorem 10.6 page 334) to obtain that
@) e ) = () )
Moreover if the initial conditions are harmonic, using the mazimum principle for
the Laplace equation gives
(8) g uz(w,t) — w1 (2, t)| = el uz (@, t) — ua(, t)].
Thus, in the space of solutions of the homogeneous heat equation (with the regularity
described above), an error committed on the initial condition u(x,0) or the boundary
Dirichlet data of a solution u (i.e. the dipole distribution) on 9 x [0,T] controls
the error (in the supremum norm) in the reconstruction of ug in £ x (0,T7.

Finally, we point out an important property that constrains the behavior of us—uq
if the mazimum in 18 attained at a point not located at the boundary or at the
initial time. Under the additional assumption that § is connected, one shows based
on the mean value property of the heat operator and a connexity argument (as in
[38], section 2.2.3, theorem 4 page 54-55), that if there exists a point (xo,ty) €
(0,T) x Q such that |us — u1| reaches its mazimum at (zo,to) in (7)), then us — uy
has to be constant in Q x [0,t]. Indeed, for formula , this property holds also
for tg = 0 since the initial condition is harmonic and the Laplace operator satisfies
a mean value property.
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2.2. Reproducing fields exterior to a bounded region. For the exterior re-
production problem we seek to reproduce solutions to outside of Q by controlling
sources on 02, while leaving the interior unperturbed. That is, for some tempera-
ture field v(z,t) solving the heat equation we wish to generate vg(z,t), such that

0, x € Q,
©) va(,t) = {v(av,t)7 r ¢,

for t > 0. Notice that we have used the subscript 2 differently in @ than in . We
adhere to the convention that ug always refers to the interior reproduction problem
of heat equation solution u and vq refers to the exterior reproduction of a field v.
The problem of reproducing v can be solved when the source term associated with
v(z,t) is supported in € for all time. We only consider the case where v(z,0) = 0.
Non-zero initial conditions are left for future studies.

Without further assumptions the exterior reproduction problem may not have a
unique solution as can be illustrated by the one-dimensional non-uniqueness exam-
ple by Tychonoff [40]. Uniqueness for the Dirichlet problem can be guaranteed via
the maximum principle [38 chapter 2, section 3, theorem 7] (see also remark
or via Sobolev regularity estimates in space and time [41], [42]. For the transmission
problem, growth restrictions in the Laplace domain are used to prove uniqueness
in [43]. Here we want to establish a boundary representation formula for exte-
rior solutions to the heat equation, which uses both Dirichlet and Neumann data.
Such exterior representation formula has already been mentioned in [42] 43, [44],
but without giving an explicit growth condition on the heat equation solution that
guarantees its validity. We give a growth condition for the heat equation, anal-
ogous to the Sommerfeld radiation condition for the Helhmholtz equation [45] (a
comparison between these two conditions is in remark .

To prove a boundary potential formula for the exterior reproduction problem,
we follow the same steps as in [45] for the Helmholtz equation. Namely we use the
interior reproduction problem (section on the complement of Q truncated to
a ball of sufficiently large radius r (see fig. , and then give a sufficient condition
guaranteeing that the contribution from the sources at |z| = r vanishes as r — oo,
allowing heat equation solutions outside of Q to be reproduced by only controlling
sources at ). The sufficient condition that we impose on the growth of v(x,t)
is close to the growth condition for the exterior Dirichlet problem uniqueness, see

remark 2.4

Condition 2.3 (Growth condition). A differentiable function v(x,t), where x €
R?, d > 2, is said to satisfy the “growth condition” if there exists an ro > 0, such
that if r > ro,

2r

Souen+ ()i

where m is an integer, C' > 0, a > 0 are constants, the exponent b satisfies 0 < b < 2
and S%(0,1) is the sphere of radius 1 centered at the origin in d dimensions.

(10) <Crmer”, W >0, €€ 5%0,1),

Remark 2.4. The bound in condition[2.3, is not as restrictive as the Sommerfeld
radiation condition for the Helmholtz equation because of the Gaussian spatial decay
of the heat kernel at fized positive time. Indeed the Green function for the Helmholtz
equation decays in space faster than r—™ as r — oo, where m > 0 depends on the
dimension and r = |z|. On the other hand, the heat kernel decays faster than
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FIGURE 4. To show that the exterior reproduction problem has a
solution outside of a bounded region 2 we use the interior repro-
duction problem in the yellow region. Theorem shows that for
fields satisfying condition the contribution of the sources on
the sphere S(0,7) of radius r vanishes as r — oo for d > 2.

e~ g5 — oo, witha > 0,0 < b <2 andm € Z. This is how we motivate the
bound in condition (2.5 However, we conjecture that it may be possible to improve
the bound to allow b = 2 (Gaussian decay over a polynomial), which would bring it
on the same par as the growth condition guaranteeing uniqueness for the Dirichlet
problem outside of a bounded domain (remark @) We point that condition 1S
satisfied by a large class of solutions of the heat equations in (R?—Q) x (0, +00)
that includes in particular the heat kernel and any of its spatial derivatives (see

lemma .

Theorem 2.5. Let v € C?((R? — Q) x [0, +00)) be a solution to the heat equation
in (R — Q) x (0,4+00) for d > 2, with zero initial condition and a source term
spatially supported in the compact set Q. Furthermore, assume that v satisfies the
growth condition then v can be reproduced for t > 0 in the exterior of Q by the
boundary representation formula

¢ v 0K
(1) va(e.t) == [ ds [ aS)(G K (@—pnt=9) =0l G (@t 9]
where vo 1S as in @D

Proof. Let (z,t) € (R? — Q) x (0,4+00) be fixed. Without loss of generality we
assume that 0 €  and take r to be large enough such that @ c B(0,r) and
z € B(0,r) — Q. Since v € C?*((R? — Q) x [0,400)) satisfies the heat equation
with a zero source term outside of Q, we can use (5)) with zero initial condition to
reproduce v(x,t) on the bounded open set B(0,7) — Q, giving
(12) Vpo,m-a(@,t) = Li(z,t;r) + Iz(x,1)
where
(13)

t

0 0K

Li(z,t;r) = / ds/ dS(y) —v(y,s)K(x —y,t—38)—v(y,s)—(x —y,t —9)

0 S(0,r) on on

ov

K 0K
Iry(x,t) = —/O ds aszdS(y) [(y, $)K(x —y,t —s) —v(y,s)an(x—y,t—s)} .

on

The minus sign in Ir(x,t) is because we defined n as the outward pointing unit
normal to Q. The goal is now to show that I(z,¢;r) — 0 as r — oo, leaving us

and



10 M. CASSIER, T. DEGIOVANNI, S. GUENNEAU, F. GUEVARA VASQUEZ

with only I5(x,t) which gives the desired result (11)). We rewrite I1(z,t;r) using
oK —2x

. 4y t)=K ) t (7 : ) )

on () () 4kt

and switching the convolutions in time to get

(14)
Lo tir) = /O s /S o 850 [g:;(y,t—swr (%(29) -n)v(yﬂf—s)] K(z—y, 5).

t—s

We define £ = x/|z| (x # 0 since x ¢ Q). Thus, for y € S(0,7), we can bound the
heat kernel by

(15) K(x—y,s) SK(.T—TE,S),

because |z — y| > |z — r&| holds for |y| = r. Noticing that we also have y-n = r for
ly| = r, we can use condition to bound I (x, t;r) for sufficiently large r. Thus,
using , the bound and applying condition leads to

b ¢ 1 2
. —lz—r&|"/4ks
(16) [Ty (z,t57)] < Cr™e®™ Aq(r) /0 ds (47rks)d/2€ e s

where A4(r) is the surface of a sphere of radius r in d dimensions, which is given
in terms of the Gamma function (see e.g. [36} eq. 5.2.1]) by

2’/Td/2 B
Aq(r) = F(d/Z)Td 1

Now using the change of variables u = |z — 7€|?/4ks on the integral appearing
in the right hand side of yields:

t z—re|? )4kt d
/ dS[S—d/26—|m—r§|2/4ks] — /l I~/ du (4]€U) /2 —|JZ - T'§|2 e U
o oo |z — ré|d 4ku?

(17) - M /+oo dufud/?=1- e~

|z —rgld? |w—r&|2 /4kt
_ (Rt fd e g
e —rgd2\2 7 4kt ’

where the upper incomplete Gamma function I'(d/2 — 1,-) is defined for all y > 0
by:

(18) F(g - 1,y> = /+OO dufu?/?1=1emv].

2

In our case y = | — r&|%=2/(4kt) — 400 as r — +oco. Thus, we need an equivalent
of T'(d/2 —1,y) as y — +oo. To this aim, we do an integration by parts on (18) to
get :

d —y. dj2-2 e d/2—1-1, —1_—u
(19) F(i—l,y) = e VY272 4 (d/2 - 2) dufu u~leY).
Yy

Then, as u > y, one observes that

+oo
‘ / dufu/? 11y~
y

1_/d
S 71—‘(7 - 17y)
y \2
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and thus concludes from that:

d
(20) P(& - 1y) =221 4 o1), sy +ov.

Combining , and the equivalent of the incomplete Gamma function
for y = |z — r&|92/(4kt) gives that for r large enough:

b (4k)1/2=1 o — g \/2=2 e
1 ; < 2Cr™Me™ A ( ) lo—rg|? /4kt
|[Ii(x, t;rm)] < 2Cr™e d(r)|x T yym e

(21) < Gy rm A2l lemrt Akt tar®

where C~'x,t is positive constant that depends only x and ¢ that are here fixed. To
conclude, observe that the upper bound in goes to 0 as r — oo since b < 2. This
statement holds for any = outside of {2 and any ¢ > 0, yielding the representation

(D). 0

Remark 2.6. We point out that the regularity assumption v € 02((Rd - Q) x
[0, +00)) of the solution in theorem can be relazed. Indeed, our proof still holds
with weaker reqularity assumptions but for a smooth bounded open set Q) (i.e. with a
C boundary 02). For instance, our proof works under a Sobolev local reqularity,
namely if the solution v (in the sense of distributions) belongs to H*(O x (0,T))
for any T > 0 and any open bounded set O C R? — Q (we refer to [34l [46] for
the definition of H*'). This assumption and the zero initial condition of v allows
us to apply the representation formula in the proof for © = B(0,r) — Q by
applying the theorem 2.20 of [34). In this setting the integrals in have to be
interpreted as duality pairings between Sobolev spaces of the boundary 02 (see [34]
for more details). By the trace theorem 2.1 page 9 in [46], the assumed local Sobolev
regularity ensures that v and Ov/On belong to L*(0Q x (0,t)) and L*(0B, x (0,t))
fort >0 and r sufficiently large. Thus, the integrals I (x,t;r) and Is(z,t;7) can be
interpreted not only as a duality paring but as integrals. Furthermore, by interior
regularity (and even hypoellipticity) of the differential operator in the heat equation
(see [32] theorem 1.1 page 192), one has v € C*®(R% — Q) x (0,4+0oc). Thus, as v
is smooth on this set, the growth condition 1s still well-defined. The proof of
theorem follows similarly and yields the representation formula in this new
setting.

The heat kernel and its spatial derivatives (which all solve the heat equation)
satisfy the growth condition [2.3] as we see next.

Lemma 2.7. In dimension d > 1, the heat kernel and all its spatial derivatives
satisfy the growth condition for some C >0 and any a >0, b€ [0,2), ro > 1
and non-negative integer m.

Proof. We first introduce the notation 0%t for arbitrary spatial derivatives of a
smooth function (z,t) + v (x,t) on RY x (0, 00):

Og(w,t) = 0y 0p2 ... Opdap(xr, w2, ..., 24q,t), Where x = (x1,22,...,7q).
Here o = (v, ..., q) is a multi-index, where «; is the order of differentiation in
ZTi.

Since the heat kernel K is in C°°(R? x (0,+0o0)), an induction on the degree
of differentiation reveals that for (z,t) € Q x (0,4+00), K and any of its spatial
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derivatives have the form,
(22) a:(cxK(xa t) - P(‘Tl/ta xQ/ta cee axd/t7 1/t) K(CE, t)a

where P is a multivariate polynomial. In the particular case a = (0,0,...,0), we
have 0,K = K and thus P = 1. Using the triangle inequality on the expression
of 09 K leads to:

(23) |0°K (x,t)] < Q(|z|/t, |x|/t,. .., |=|/t,1/t) |K (2,t)| for (z,t) € RYx(0,00),

where (Q is a polynomial which has the same monomial terms as P, but whose
coeflicients are given by the modulus of the coefficients of P.

Let o > 1 and |z| = r > ro. We set u = |z|>/t in the right hand of side of (23).
As |z|/t < |z|?/t = u (since 1 < |z| < |2]?), 1/t = u/|z|?> < u/rd (since |z| > ro)
and the coefficients of @) are positive, it follows from and the expression of
K that:

(24)
09K (2,1)] < Qu,u, ..., u,u/rd) (4km) Y2 (u/r2)Y2e /4R for |z| > r and t;0.

As @ is a polynomial, due to the exponential term, the right hand side of is
clearly bounded for u > 0, thus there is a constant Cy , > 0 (depending only on «,
d and r() such that:

(25) |05 K (x,t)| < Cy 4 for |z| > ¢ and ¢;0.

Now, as the bound holds for any «, one immediately deduces that there is a
(3, such that

(26)

V(02K (r€,t))n| < |[V(OXK(ré,t))| < Co for x =7€, € € S40,1), r > 79 and t > 0.

Thus, by , and the bound r/t < r?/t = u (as r > 79 > 1), there is a
C3,o > 0 such that:

(27)
V(0K (16, 0) - n+ 5= 0a K (r&,8)| < |VOuK(E 1) 1| + 5| 0a K (rE, )|
(2k)~! U\ G/241 —u/(4k)
< G U, —
_02,04+ (477]67”3)(1/2 Q(u,u, ) Uy T%)u €
< CS,om
for any r > rq, £ € §4(0,1) and ¢ > 0. O

Remark 2.8. As in remark for bounded ), the representation formula
satisfies some stability due to the mazimum principle. However, as R¢ — § is
unbounded, it requires a bound that controls the growth of the functions when |x| —

400, namely, one assumes that there exist A,a > 0 such that:
(28) lu(z,t)] < Ae®* | for (2,t) € (R — Q) x (0,7,

for some finite T > 0. This last condition allows Gaussian growth and is similar
to condition[2.3

More precisely, let v; € CO((Rd - Q) x [O,T]) for 5 = 1,2 be two solutions
of the homogeneous heat equation in (RY — Q) x (0,T) in the distributional sense
that satisfy the growth condition ([28). Again by hypoellipticity (see [32] theorem
1.1 page 192), u; is indeed a smooth solution of the homogeneous heat equation on
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(R? — Q) x (0,T) for j = 1,2 since it is C*> on this set. Then by the mazimum
principle (see e.g. [38, chapter 3, section 3, theorem 6]) one has:

(29) sup |vg(z,t) —vi(z,t)] = sup [v2(2,t) — vi1(x,1)].
(R?—Q)x[0,T] (mi—0)x{0})u(aax[o,17)

Note that the proof of [38], chapter 3, section 3, theorem 6] is done on all of R, but
can be adapted to R* — Q with Q a bounded Lipschitz domain. Furthermore if the
initial condition is harmonic and decays to 0 as |x| — 400, using the maximum
principle for the Laplace equation in unbounded domains, one can simplify to
include only surface terms in the right hand side
(30) (Rd—rg?f[o,ﬂ lva(z,t) — vi(a, t)| = aQHxl?ng] lva(z,t) — vi(z, ).
Thus, in the space of solutions of the homogeneous heat equation (that satisfy
and the regularity described above), both and tell us that an error com-
mitted on the initial condition or on the Dirichlet boundary data controls the recon-
struction error of vg on (R — Q) x (0,T), in the supremum norm. Furthermore,
uniqueness on (RY — Q) x [0, T for the heat equation esterior Dirichlet problem
follows from the mazximum principle equality , provided the growth condition
and regularity assumptions hold. Moreover if is satisfied for any t > 0,
this uniqueness result extends to (R? — ) x [0, 4+00), assuming the same regularity
assumptions but with an infinite time.

Finally, as in remark under the additional assumption that the open set R%—
Q is connected, if a mazimum is attained in at (zo,t9) € (RY—Q) x (0,T] then
there exists a real constant C such that va(x,t) —vi(z,t) = C on (R? — Q) x [0,t0].
Furthermore, one shows that if one considers the formula , this last property
holds also for to = 0 and the constant C has to be zero (since in formula , one
assumes that the initial conditions decay to 0 when |x| — 400 which imposes that
C=0)

A numerical example of the exterior reproduction of a field can be seen in fig.
The details of the example are the same as those in fig. [3] except the point source
has been moved to (0.5,0.55).

2.3. Numerical sensitivity study of field reproduction. We study the sensi-
tivity of the numerical approximation of the boundary representation formulas
and to the following factors: (a) the spatial discretization (number of points
on 99Q), (b) the temporal discretization (number of time steps) and (c) errors in
the densities appearing in the boundary representation formulas. As can be seen
in fig. BJ(c) and fig. [f(c), the reproduction error peaks close to the boundary, so
we decided to exclude a neighborhood of 02 from the error measures we present.
The numerical approximation of the boundary reproduction formulas is explained
in detail in section [5] Here we keep the same domain 2 as in the examples of sec-
tions[2.1|and The boundary integral representations were used to approximate
the field on a 100 x 100 uniform grid of [0, 1]? and the thermal diffusivity was taken
to be kK =0.2.

The first case we consider is that of the interior reproduction problem, i.e.,
when the source distribution is supported in R2 — Q. We expect using that
uo = u inside ©Q and ug = 0 outside Q. To evaluate the quality of the numerical
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F1GURE 5. Numerical example of the exterior field reproduction
problem. The details of this example are the same as fig. [3
but with the point source moved to (0.5,0.55). We generated a
plot similar to (c) by taking the maximum over the time interval
[0.2,0.3] for each grid point (the plot being very similar to (c),
we include code to generate it as supplementary material). This
indicates that the maximum error is attained near 90 in space
(and in time at ¢ = 0.2), conforming to the maximum principle
(remarks and. We can use here the maximum principle on
the computed error because the numerical methods we use gener-
ates solutions to the heat equation (see section .

FIGURE 6. We evaluate the field reproduction errors on regions
that exclude a neighborhood of the boundary 0f2. For the nu-
merical experiments we took Q = B(xg,r) C [0,1]2. The interior
reproduction error is evaluated on Q_s = B(zg, (1 — s)r) (in red)
while the exterior one is evaluated on [0,1]? — Q (in blue), where
Qs = B(xog, (14 s)r).

approximation we make, we calculate the relative reproduction error on a slightly
smaller domain Q_; = B(zg, (1 — s)r),

u(- ) —ua(- t)lr2@_,)
u( 2.

relerr_ (u;t) =

where we used the L? norm of a function over some set R, namely

Il = ( [ 1f@)Par) "
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We also calculate the absolute error outside of a slightly larger domain €, =
B(xg, (14 s)r), ie.
erry (ust) = [Jua(, )| 2(0,12—0,)-

The L? norms appearing in the error quantities that we consider are approximated
using Riemann sums on the 100 x 100 grid of [0,1]2. The domains of interest,
[0,1]2— Qg and Q_g, are illustrated by the blue and red regions of fig. |§| respectively.
In our numerical experiments we chose s = .05 to get a buffer annulus at £5% of
r. The field u is generated by a delta source 6(z,t).

Similarly for the exterior reproduction problem, where we want to reproduce a
field v satisfying the heat equation with a source term supported in 2 and satisfying
the radiation type boundary condition , we calculate the absolute interior error

err—(v;t) = flva(, 82 @_,)
and the relative exterior error
() —val 0)llr2o2-a.,)
lv(, Ol L2 (0,12 —0.) '

relerry (v;t) =

For the exterior reproduction studies, the field u is produced by a delta source
located at = = (0.5,0.55) and ¢ = 0.

2.3.1. Sensitivity to spatial discretization. In fig. [7] we illustrate the changes in re-
production error for both the interior (fig. [7| first row) and exterior (fig. [7| second
row) reproduction problems. For both studies a uniform discretization of 99 is
used and 1000 uniform time steps. While increasing the number of points on 92
decreases the error in all cases, the decrease from 50 to 100 points is modest. We
think this is due to the temporal discretization error being dominant.

2.3.2. Sensitivity to temporal discretization. We report in fig. [§the change in repro-
duction error as we increase the number of time steps while keeping the number of
uniformly spaced points used to discretize 92 fixed and equal to 100. This is done
for both the interior (fig. |8 first row) and exterior (fig. |8|second row) reproduction
problems. For a fixed time the errors decrease with the number of time steps, as
expected.

2.3.3. Sensitivity to errors in the densities. In practice it cannot be assumed that
the field to be reproduced is perfectly known so we report in fig. [9] how the repro-
duction error is affected by errors in the monopole and dipole densities appearing
in and when discretized with 1000 time steps and 100 points on 0f).

Say ¢ e R is a vector representing the values of either the monopole or
dipole density in one of the boundary representation formulas at time nAt, where
At is the time step. We perturb ¢ with a vector 6¢(™ e R with independent
identically distributed zero mean Gaussian entries with standard deviation being a
fraction (3%) of ||¢(™||2. For clarity we only show the error for a single realization
of the perturbation 6¢(™). The errors we observe in fig. |§| oscillate rapidly because
we introduced a random perturbation at every single time step. As expected, the
error we introduced in the densities increases the overall error at every single time
step. We include code to generate the spatial distribution of the reconstruction
errors as supplementary material (see README file), we observe that the maximum
error over a time window is attained near 0f2 as predicted by the maximum principle
(remarks and . Since the additive noise comes from perturbing the monopole
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FI1GURE 7. Influence of the number of points used to discretize 02
on the reproduction error for the interior reproduction problem of
a point source located at zo = (0,0),¢ = 0 (top row) and for the
exterior reproduction problem of a point source located at xy =
(0.5,0.55),t = 0 (bottom row), both with thermal diffusivity k& =
0.2. Here 09 is the circle of radius 0.25 centered at (0.5,0.5). Since
the errors for small times are large, we only show the errors for
t>0.1.

and dipole densities, this perturbation is also a smooth solution of the heat equation
(see section , which makes the maximum principle applicable.

Remark 2.9. In the numerical results we present, the exterior errors, relative and
absolute, are smaller than the interior errors. We also see a transient effect in the
absolute exterior error. We believe this is similar to the temperature distribution
near a point source, which also increases and then decreases with time. Since the
errors that we report in figs. @ to @ are based on the L? norm, the maximum prin-
ciple considerations of remarks[2.3 and[2.§ do not apply directly to these numerical
experiments.
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FI1GURE 8. Influence of the number of time steps on the reproduc-
tion error for the interior reproduction problem of a point source
located at xg = (0,0),¢ = 0 (first row) and for the exterior repro-
duction problem of a point source located at o = (0.5,0.55),¢t = 0
(second row), both with thermal diffusivity & = 0.2. Here 0§ is
the circle of radius 0.25 centered at (0.5,0.5). Since the errors for
small times are large, we only show the errors for ¢t > 0.1.

3. CLOAKING

The goal here is to use the results from section[2]to cloak sources or objects inside
a cloaked region, by placing sources on the surface of the region. By cloaking we
mean that it is hard to detect the object or source from only thermal measurements
made outside the cloaked region. The boundary representation formulas of section[2]
give us the appropriate surface source distribution. We start in section [3.1| with the
interior cloaking of a source, directly applying the boundary representation formula
in section[2:2] The interior cloaking of an object is illustrated in section [3.2| by using
the boundary representation formula in section 2.1} The boundary representation
formulae impose restrictions on what can be cloaked and how. In either case the
field must be known for all time and with no sources in the region where it is
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FI1GURE 9. Influence of random perturbations added to the mono-
pole and dipole densities on the reproduction error for the interior
reproduction problem of a point source located at xo = (0,0),t =0
(first row) and for the exterior reproduction problem of a point
source located at zo = (0.5,0.55),¢ = 0 (second row), both with
thermal diffusivity &k = 0.2. Here 02 is the circle of radius 0.25
centered at (0.5,0.5). Since the errors for small times are large,
we only show the errors for t > 0.1. In orange: error with random
perturbations. In blue: error obtained with the unperturbed den-
sities.

reproduced. For the interior cloaking of a source, the temperature field generated
by this source must also satisfy condition [2.3]

3.1. Cloaking a source in an unbounded domain. Given certain kinds of
localized heat source distributions, we can find an active surface surrounding the
source so that the source cannot be detected by an observer outside the surface. Let
v;(x,t) be a free space solution to the heat equation with zero initial condition
and compactly supported source distribution h(z,t). Let © be an open bounded set
(with Lipschitz boundary) that contains the support of the source h(z,t) for ¢ > 0.
In an analogy with wave problems, we call v; the “incident field” and we further
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assume that it satisfies the growth condition 2.3] By theorem [2.5] we can find
monopole and dipole densities on 9f) so that the boundary representation formula
(11)) gives —v; outside of Q and 0 inside 2. We call this the cloaking field v, and it
is given for ¢ > 0 by

0 z €8
(3D vel®, ) = {—vi(x,t) z ¢ Q.

In this manner the total field v = v; + v is zero outside of Q and equal to v;
inside 2. Because the active surface 0f) perfectly cancels the effect of the source
h(z,t) for x ¢ €, the source cannot be detected by an observer. Figure [5| shows a
numerical example of v,.

3.2. Cloaking passive objects in an unbounded domain. One way to detect
an object in free space using only thermal measurements would be to generate an
incident or probing field w;(x,t) with a source distribution h(x,t), i.e. a solution
to the heat equation in free space with zero initial condition and h as its source
term. In the presence of an object, the total field is given by ot = u; +us, where ug
is the field “scattered” by the object, borrowing terminology from the wave equa-
tion. The scattered field is produced by the interaction between the incident field
and the object and depends on the properties of the object (boundary condition,
heat conductivity, ...). We point out that us(z,0) = 0 because usor(x,0) = u;(x,0).
Having us # 0 reveals the presence of an object. In the following we assume that
the object is “passive”, meaning that the scattered field is linear in the incident
field. In particular this means that u;, = 0 when u; = 0. Examples of passive
objects include objects with homogeneous linear boundary conditions (e.g. Dirich-
let, Neumann or Robin) or objects with a heat conductivity that is different from
that of the surrounding medium (see e.g. [47, 48] for transmission problems for the
heat equation). We point out that the object is assumed to be open with Lipschitz
boundary.

The results in section 2] can be used to cloak a passive object R by placing it
inside a cloaking region  (i.e. a bounded open set {2 with smooth boundary such
that R C Q) and makes this whole region invisible from probing incident fields
u; generated by a source h spatially supported in RY — Q. Indeed, by controlling
monopoles and dipoles on 012, the region 2 and the object within can be made
indistinguishable from a patch of homogeneous medium, from the perspective of
thermal measurements outside of . In a similar manner to section the idea is to
use ([B]) to cancel the incident field in §2, while leaving the outside of Q unperturbed.
The cloaking field, u., produced by this active surface 92 is then for ¢ > 0:

(32) ue(xz,t) = {(;ui(x,t) i Zg’

In principle, this cloaking field can be used to perfectly cancel the incident field in
Q for all t > 0. Since the temperature of the “modified incident field”: u; + u, is
zero in (), the temperature field surrounding the object vanishes and no scattered
field is produced. In practice, the field u; 4+ u. in the vicinity of the object does
not perfectly vanish, but we expect it to be sufficiently close to zero so that the
scattered field ug is very small (because of linearity).
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Our technique is illustrated with an object with homogeneous Dirichlet boundary
conditions in fig. Here the field u; is generated by a point source at © = (0.9,0.3)
and t = 0. For the heat equation we took k& = 0.2 and the cloaked region is
Q = B(xg,r) with g = (0.5,0.5) and r = 1/3. We computed the fields on the unit
square [0, 1] with a 200 x 200 uniform grid. The field u,. is found by approximating
the integral using the midpoint rule in time with 600 equal length subintervals
of [0,0.5] and the trapezoidal rule on 9 with 128 uniformly spaced points. A
more detailed explanation, including how the scattered fields are calculated, is in
section [bl We represent in figure fig. the total fields respectively generated by
the incident field u; (left column) and by the "modified incident field”: wu; + u.
(right column). As can be seen in the right column, the temperature fields, outside
of the cloaked region are indistinguishable from the incident field u;. We do not
include a detailed error plot for this configuration, as the error is similar to the one
we encountered when studying the interior reproduction problem.

Remark 3.1. Here are two ways of dealing with active objects, i.e. that are not
passive. First if the object produces a non-zero scattered field us when u; = 0, the
object acts as a source and us can be cancelled using the technique in section [31].
This presumes perfect knowledge of us and u;. Second, if the object does not produce
a scattered field when immersed in some harmonic field ug, we can use as a cloaking
field uc(x,t) = —ui(x,t) + ug(x) for x € Q and u.(z,t) = 0 for x ¢ Q, instead of
. An example of such an object would be one with a constant ¢ # 0 Dirichlet
boundary condition. By our assumption, the field ug(z) = ¢ does not create any
scattering, regardless of the shape of the object.

4. MIMICKING

Another possible application of the boundary representation formulas and
is to mimic sources or passive objects. This is done in two steps. First we
cancel out the original source or suppress the scattering of the original object using
a source distribution on a surface 92 surrounding the object. Second we adjust the
source distribution so that the object or source appears to the observer as another
object or source. We illustrate this idea with two cases: making sources look like
other sources (section and making a passive object look like a different passive
object (section . Other combinations are possible but are not presented here.

4.1. Source mimicking. For source mimicking, we consider the problem where
there is a compactly supported source distribution, f(z,t) which we seek to make
appear as a different compactly supported source distribution, g(x,t) from thermal
measurements outside of a region 2 (where Q is an open bounded set with Lipschitz
boundary). The support of both distributions is assumed to be contained in Q for
all t > 0. The two corresponding solutions to the heat equation are v(z,t; f)
and v(z,t; g), and we further assume they satisfy condition

Mimicking can be achieved by simultaneously canceling the field v(x, t; f) outside
Q and adding v(x,t;g) also outside . Both can be done using the results in
section That is, using we can find a monopole and dipole density on 92
that generates a field

r €,

0
(33) ve(2, 1) = {v(x,t;g) —v(z, b f) ¢ Q.
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FIGURE 10. Numerical example of the object cloaking problem,
with object to hide having homogeneous Dirichlet boundary con-
ditions. The incident field is produced by a point source at
x = (0.9,0.3) and ¢t = 0s. The left images (a), (c) and (e) show
time snapshots of the object without the cloak and the right im-
ages (b), (d) and (f) the corresponding snapshots when the cloak
is active. Placing the cloak close to the object is a challenging
simulation because we expect that errors will be highest near the
boundary as in fig. [3| [See also movie in supplementary material]

In this way the field v(z, t; f) +ve(z, t) is equal to v(x, t; g) outside of Q, as desired.

A numerical example to illustrate the method is given in fig. Fields are
calculated in [0, 1]? using a uniform grid of 200 by 200 points at ¢t = 0.2 s. Here a
point source at y1) = (0.6,0.4) and ¢t = 0 is made to appear as a point source at
y? = (0.39,0.6) and ¢t = 0, from thermal measurements outside of Q. Figure
(a) and (b) represent the fields v(z, t; f) and v(x,t; g), where f(x,t) = d(x —y1), 1)
and g(x,t) = 0(x—yP,t). Figure c) shows the field v(z, t; f)+v.(z,t), where v,
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FIGURE 11. Time snapshots from a numerical example of the
source mimicking problem with point sources at ¢ = 0.2s. In (c)
the original point source in (a) is made to appear as the point
source in (b) from the perspective outside of the cloaking region
Q. The point source in (a) is at = (0.6,0.4) and ¢ = 0 and in (b)
is at © = (0.39,0.6) and ¢ = 0. A plot of the log,, errors in the
exterior appears in (d). The diagonal line is an artifact due to the
symmetry of the problem. A similar problem with point sources
at = (0.5,0.4) and = = (0.5, 0.6) produces a horizontal line.

has been constructed by applying . An error plot is shown in fig. d) where
the error is largest near the boundary as we expect based on the sensitivity analysis
of section[2] We believe the diagonal line with small error in fig. [TT|(d) is an artifact
of our choice of sources.

4.2. Mimicking a passive object. Consider a passive object R that is completely
contained in an open set €2 and a source exterior to €2 which produces the incident
field u;. The goal is to make R look like a different passive object, S, from ther-
mal measurements outside . To achieve this we can use linearity and both the
interior and exterior boundary representation formulas to find monopole and dipole
densities on 0f2 producing a field

ut) = —ui(z,t), =€,
(34) c( 7t) {Us(l’,t), z ¢§’

where vs(x,t) is the scattered field corresponding to the object S, included also
in Q, resulting from the incident field u;(x,t). In this fashion the total field is
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> H

kite flower field

FIGURE 12. Numerical example of the object mimicking problem
with a “kite” and “flower” object, both with homogenous Dirichlet
boundary conditions. A snapshot the scattered field from the orig-
inal object at time ¢t = 0.05s appears in (a). In (c), the scattered
field from the original object is made to appear as the scattered
field from the object in (b) from the perspective of thermal mea-
surements outside of the cloaking region Q.

ui(x,t) + vs(x,t) outside of Q and 0 inside of . Its associated scattered field is
vs(x,t) outside of Q and 0 inside of Q — R as desired.

To illustrate the method we consider a “kite” object with homogeneous Dirichlet
boundary conditions and make it appear as a “flower” object with identical bound-
ary conditions. Here the field u; is generated by a point source at = = (0.25,0.5)
and t = 0. For the heat equation we took k = 0.2 and the domain is Q = B(xo, )
with zp = (0.5,0.5) and r» = 0.25. We computed the fields on the unit square
[0,1]% with a 200 x 200 uniform grid. The field u. is found by approximating the
integral using the midpoint rule in time with 180 equal length subintervals of
[0,0.05] and the trapezoidal rule on 9Q with 128 uniformly spaced points. A more
detailed explanation, including how the scattered fields are calculated, is in sec-
tion [5} Figure [12{a) and (b) show the scattered fields from two different objects
and fig. c¢) shows the mimicked scattered field. Because we are approximating
the fields numerically, the field u; + u. is very close to zero in €2, but not exactly
zero. The errors (which are not reported here) are larger near the boundary and
decay as we move outwards, as we observed in section

Remark 4.1. Although we have only shown mimicking of passive objects, the same
techniques outlined in remark [3-1], could be used to suppress the field generated by
an active object, which is part of what needs to be done to mimic an active object.

5. A SIMPLE NUMERICAL APPROACH TO POTENTIAL THEORY FOR THE HEAT
EQUATION

The boundary representation formulas and can expressed very efficiently
in terms of the single and double layer potentials for the heat equation defined for

.0

(a) Scattered field from a (b) Scattered field from a (c) Mimicked scattered
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t >0 by

Ko(W) (2, 1) = / s /8 S K (@ =yt =), @ ¢ 09

Kil)at) = [ s [ asletn.s) 5o —nt = s x ¢ 09,

as well as the corresponding boundary layer operators given for ¢ > 0 by

V() (e, 1) = / s /a S ) K (@ .t = ), @ € 00

Kt = [ ds [ dswlot) 5 =t =)o eom

where ¢(x,t) and 9 (x, t) are time dependent densities defined on 9. A full deriva-
tion of these and other potential theory operators for the heat equation and their
properties can be found in [34] 39, [49]. For a review of classic potential theory see
e.g. [60, [45, 39, B1].

With the potential theory notation, the interior boundary representation formula
(), with zero initial condition, becomes

(35) ua e, 1) = Ko 90 (2,1) ~ K (), 1)

Whereas the exterior boundary representation formula becomes

(36) valz,t) = K1 (v)(z,t) — Ko (%) (,1).

Galerkin methods are commonly used to approximate the spatial integrals in
eqs. and , with a number of different approaches to deal with the integration
in time. For instance time marching [33], time-space Galerkin methods [42] [44]
convolution quadrature [43] and collocation [52]. For simplicity we opted for an
approach based on the trapezoidal rule for the integration on 02 and the midpoint
rule for the time convolution. To be more precise, there are two convolutions that
need to be evaluated in order to calculate the boundary representations in and
; a convolution in space and a convolution in time. For the spatial integration,
trapezoidal rule is used with uniformly placed points on a parametric representation
of 9f). Since this amounts to integrating a periodic function, we can expect that the
convergence rate of the trapezoidal rule depends explicitly on the rate of decay of
the Fourier coefficients of the function to be integrated [53]. Due to the smoothness
of the heat kernel, exponential convergence is expected. For the integration in time,
the convolutions are of the form

/ ds g(s)f(t —s).
0

These convolutions are approximated with the midpoint rule as follows

JAt J 1 1
B [ dsg(fGat -9 = ALY gl(h = HANFG - HIAL+ A0,
0 k=1

which avoids evaluating f at ¢ = 0. This is handy in our case because of the
singularity of the heat kernel at (x,t) = (0,0), which only occurs for boundary
layer operators. After this space-time discretization, the resulting approximations
are by construction an interpolation on the space-time grid of a finite distribution
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of monopoles and dipoles located on 9f). These distributions are smooth solutions
of the homogeneous heat equation on any open set of (R? — 9€) x R. Moreover
lemma (see eq. (2F])) ensures that they are bounded for t > 0 and = ¢ B(0,r)
for r large enough. Thus, as they satisfy eq. , we can apply the maximum
principle over any finite time window [t1,ts] (with 0 < ¢; < t2) on any closed set of
R? — ) that does not intersect Q. We leave an accuracy study of the numerical
approximation we use to future work. In particular there are more accurate ways
of dealing with the approximation for s € [0, At] than the midpoint rule we use,
see e.g. [33] [42] 52 [54].

5.1. Scattered field computation. In the case of inclusions, finding the scat-
tered field requires the use of the boundary layer operators. For simplicity we only
consider a homogeneous Dirichlet inclusion, R, i.e. where the temperature on OR is
held constant at 0. Neumann inclusions, and inclusions with varying thermal diffu-
sivity, require the introduction of other boundary integral operators (adjoint double
layer and hypersingular [34]), but a similar numerical approach can be applied to
this case.

The idea is to look for a scattered field ug of the form outside of R. Since
the temperature at OR is constant and equal to 0, the scattered field satisfies
us|lor = —u;lor. Hence we know the Dirichlet data on OR in the representation
formula , but not the Neumann data. We treat this as an unknown boundary
density v in
(38) us(z,t) = Ki(—uilor)(2,t) — Ko(v) (@, t).

The latter formula is only valid for x ¢ R. To obtain an integral equation on R
we take the limit of as x approaches OR. The limit could be different if we
approach R from the inside or from the outside. The limits are given by the so-

called jump relations. For x € R, the jump relation needed for the single layer
potential is

which holds for z tending towards OR from both the interior and exterior of R. The
jump relations needed for the double layer potential are
(40)
1 -1
lim Kyp(z,t) = iap(x,t) + Ko(z,t), and lim Kip(z,t) = 7(,0(:1:,t) + Ko(z,t),
Z—T

z—axt

where z — x7 denotes approaching OR from the exterior of R and z — z~ from
the interior. Using these jump relations and we have

lim us(z,t) = Um Kq(—ui(z,t)) — lim Koy(z,t)
(41) z—at z—at z—xt

-1
= —Uilor = 7ui|8R + K(—uilor) — V.

Rearranging terms yields a boundary integral equation for 1
Us
(42) Vi = % + K(—uilor)-

We discretize as a linear system where the unknown is 1 evaluated on a
uniform grid of R and of [0, T]. The boundary integral operators V and K in
are discretized using the trapezoidal rule in space and the midpoint rule in time.
For instance, V is approximated by a M N x M N matrix which is lower triangular
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by blocks, with each block of size NV x N. Here M is the number of time steps and
OR is approximated by a polygon with N sides:

Vi
(43) vl V3 W
VMfl VM*% Vl

The V; are N x N matrices with entries (V;) jr = i K (x; — zk, iAt), where zy, is the
center of the k—th segment of length /5. Clearly the matrix in is guaranteed
to be invertible if V% is invertible. Though we have not studied the invertibility of
V% , we observe that it may become singular for a given spatial discretization if the
temporal discretization is not fine enough.

6. SUMMARY AND PERSPECTIVES

We proposed a strategy for active cloaking for the time-dependent parabolic heat
(or mass, or diffusive light) equation. Similar to previous work for active cloaking
for e.g. the Helmholtz or Laplace equation (e.g. modelling time-harmonic waves
and thermostatic problems), our results rely on active sources coming from Green
identities to reproduce solutions inside or outside a bounded domain. The idea is
to use a source distribution on a closed surface to reproduce certain solutions to
the heat equation inside the surface and the zero solution outside or vice versa. We
give a growth condition which is sufficient to guarantee that a solution to the heat
equation can be reproduced outside of a closed surface. We apply these theoretical
results in four ways: interior cloaking of a source, interior cloaking of an object,
source mimicking, and object mimicking. For the cloaking problems the idea is to
find an active surface that surrounds the object or source to make the object or
source undetectable by thermal measurements outside the surface. In the mimicking
problems, instead of making the object undetectable, we make the source or object
appear as a different source or object from the perspective of thermal measurements
outside the cloak. Our solution to these problems inherits the limitations of the
reproduction method, namely that the fields must be known for all time on the
active surface surrounding the object or source we want to cloak or mimic. However
the maximum principle guarantees some stability of our approach, as it is based on
boundary representation formulas. This is a special feature of the heat equation.
We illustrate our method with simple potential theory based simulations which are
consistent with the heat equation and thus allow us to interpret the numerical errors
using the maximum principle. Our study was limited to the case where the initial
condition is zero or harmonic. It may be possible to use @ to cancel out the initial
condition with a boundary integral, but (a) it is not clear whether this mathematical
construct has a physical interpretation and (b) this representation formula is only
valid inside a bounded domain. These are questions we plan on exploring. Although
we focused on the isotropic heat equation, it may be possible to carry out a similar
cloaking strategy for anisotropic media and when an advection term is added to
the heat equation. Our approach could also be tied to the active cloaking strategies
for the Helmholtz equation in [I8], [I7] by going to Fourier or Laplace domain in
time, so that the active sources do not completely surround the object to achieve
partial cloaking. For the Fourier domain, the physical interpretation is to study
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time-harmonic sources. Another open question is whether the growth condition we
provided is optimal and how it is related to the uniqueness question for the exterior
problem associated with different boundary condition types for the heat equation.

We note that this work could be also adapted to cloaking [55] [56] and mimicking
[57] of quantum matter waves. We believe this approach could be further gener-
alized to the Fokker-Plank equation arising in statistical mechanics, which could
applied to gravitational systems for which some passive cloaking theory has been
proposed [58]. Finally, as some scattering cancellation based cloaking approach has
been proposed for Maxwell-Cataneo heat waves [59], we believe that our method
for active cloaking could be also applied to such pseudo-waves.

Data Access. The Matlab code to reproduce the figures figs. 3} [f] and [7] to [12] is
available in repository [TBA]. For example, fig. [3[can be reproduced by running the
Matlab script £ig3.m. The scripts for figs. [3|and [5|generate additional plots that are
mentioned in the respective figure captions. Figure [10|is animated in moviel.mp4.
The spatial distribution for the monopole/dipole added noise (section can be
generated with the scripts fig9supint.m and fig9supext.m.
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