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High-Frequency Exciton-Polariton Clock Generator

C. Leblanc,! G. Malpuech,! and D. D. Solnyshkov!:?

! Institut Pascal, University Clermont Auwvergne, CNRS,
SIGMA Clermont, F-63000 Clermont-Ferrand, France
?Institut Universitaire de France (IUF), F-75231 Paris, France

Integrated circuits of photonic components are the goal of applied polaritonics. Here, we propose
a compact clock generator based on an exciton-polariton micropillar, providing optical signal with
modulation frequency up to 100 GHz. This generator can be used for driving polariton devices.
The clock frequency can be controlled by the driving laser frequency. The device also features low

power consumption (1 pJ/pulse).

Optical computing is an important long-standing goal

in the field of photonics2. Different approaches were
used in the field during the last 70 years, including
analog optical computing®*, combined electro-optical
circuits®, photonic neural networks®, and digital opti-
cal computing”®. Integration of the photonic compo-
nents raises several key problems linked with miniaturisa-
tion, such as the protection from the parasite reflections,
potentially solved by the recently emerged topological
photonics'®!'. But one of the main problems has been
linked with the high powers required for optical switch-
ing via the Kerr nonlinearity or other mechanisms used in
nonlinear optics'>14. One option to solve this issue can
be to reduce the size of the non-linear cavities, such as it
is done for nano-lasers'®. Another option is to enhance
non-linearities using the strong light-matter coupling!®-7
which allows to use the significant interactions between
the matter part of the eigenmodes'® 20,
Cavity exciton-polaritons!'” (polaritons) are a good ex-
ample of such promising platform showing an increase
by a factor of 10* with respect to the ordinary Kerr
nonlinearity in standard inorganic semiconductors?®:2!
as well as in 2D monolayer materials??2?3 and
perovskites?4. Thanks to these properties, many non-
linear polariton devices have already been proposed and
implemented?® 2. Such devices exhibit low operation
powers and fast switching times. They can be assembled
into logical circuits capable of functioning at very high
operating frequencies. However, in order to be correctly
tested and to be ultimately useful, these circuits have to
be driven not by an external pulsed (or even cw) laser,
as it is typically the case in experiments, but by an in-
tegrated ”clock generator” able to provide the expected
operation frequency.

In electronics, the clock generators always contain a
non-linear element (such as an inverter), which is often
combined with a resonant element (such as a quartz crys-
tal) for frequency stability. The most well-known exam-
ple is the Pierce oscillator®®. In general, the non-linear
circuits used for generating oscillations date back to the
beginning of the XX century®! and are called multivibra-
tors. They are often based on bistable nonlinear elements
exhibiting two possible stationary outputs for a given sin-
gle input. Biasing the bistable element makes impossi-
ble for it to remain in these stationary states, and thus

the element is constantly switching between the two at
a well defined rate. It is therefore logical to apply this
well-developped approach in photonics.

Bistable elements showing low switching powers have
been extensively studied in polaritonic systems32. Mul-
tistability was shown to appear in these systems be-
cause of the spin degree of freedom and because of
the spin-anisotropic interactions?!:3334. However, these
works were focused on the stationary regime. On the
other hand, the oscillations of coupled polariton modes
with non-linearities started to be studied at the same
time, both under pulsed®® and cw excitation6. Usually,
Josephson coupling refers to spatially separated modes,
but from the mathematical point of view the same cou-
pling concerns spatially coexisting spin components®’.
Such four-mode system was shown to exhibit high-
frequency chaotic oscillations®”. Later, it was shown that
the minimal configuration capable of exhibiting both pe-
riodic and chaotic oscillations is actually a point-like sys-
tem with two spin projections®. In a more recent work,
a homogeneous cavity-polariton wire was shown®? to ar-
range itself into a network of coupled oscillators display-
ing self-pulsations or dynamical chaos. However, none
of these works focused on the precise purpose of high-
frequency clock signal generation, that is, on the genera-
tion of a relatively strong propagating output signal with
a periodic modulation of intensity with well-controlled
frequency, and on the optimization of the parameters of
the generator.

In this work, we lay the cornerstone for the future
polariton computer. We design and optimize a high-
frequency polariton clock generator that could be used
in various configurations to drive the optical logical de-
vices. The generator has the simplest possible config-
uration: a single polariton micropillar with an output
channel. Coherent nonlinear oscillations based on the
parametric scattering have already been observed in a
single polariton pillar®®, which makes the implementa-
tion of our proposal quite realistic. Before complete po-
lariton circuits are built, the clock generator can be used
for testing the switching performance of various nonlin-
ear elements. The operating frequency of such elements
is found of the order of a few hundreds GHz, close to the
THz gap, which makes difficult the use of other types of
generators, for example, electro-optical ones.



For relatively low wave vectors, the polariton wave
function (r,t) is well described by a nonlinear
Schrodinger equation (Gross-Pitaevskii equation) with
pump and decay. To simplify the initial theoretical de-
scription, we neglect the non-parabolicity of the polariton
dispersion and the polarization degree of freedom:

0 h? ih -

zha—qf = f%Aw + |1/1|2 Y+ Uy — §¢ + Pe™ ™" (1)
where m = 5 x 10~5my is the typical polariton mass (mg
is the free electron mass), a = 5 peVum? is the coefficient
of polariton nonlinear interactions*'*2, 7 is the polariton
lifetime (varying from few ps to few hundred ps), U(r) is
the confinement potential obtained by lithography (few
tens of meV scale), and P(r) is the pump. Its frequency w
is measured with respect to the energy of a free polariton
(approximately 1500 meV in this material system). This
is a full 2D model, which we shall use for the numerical
simulations of the system. The chosen parameters are
typical for GaAs samples.

The system we consider, described by the potential
U(x,y), consists of a polariton micropillar of a circular
cross-section (radius R). A single mode in presence of
a quasi-resonant pump and non-linearity is known to be
bistable3?, but it cannot exhibit a complex behavior, such
as oscillations. To obtain such behavior, at least two
modes are required. This can be obtained either by con-
sidering two degenerate modes of coupled pillars643 or
two non-degenerate modes of a single pillar, which can
be two spatial modes?® or two spin components®® with
a sufficiently large polarization splitting. We have cho-
sen the configuration with two spatial modes of a single
pillar, because it offers a good level of control on the
splitting between the two modes, crucial for tuning the
output frequency. We note that the presence of the out-
put channels brings an extra contribution in the effec-
tive decay rate, which makes the configuration based on
the splitting between the two spin projections difficult
to use, since it requires the polarization splitting to be
much larger than the broadening. The cylindrical pillar
is supposed to be pumped exactly in the center with a
relatively small pumping spot, optimized for the overlap
with the two pumped states.

In order to obtain a qualitative understanding of the
behavior of the system, we decompose the global con-
densate wavefunction ¢ (z,y,t) on the basis of the quan-
tized modes of the micropillar ¢, (x,y). These modes are
solutions of the stationary eigenvalue equation flown =
E,,, where Hy is the conservative part of Eq. 1 with
the potential U restricted to a single pillar (without the
output channel). The decomposition writes: ¥ (z,y,t) =
S, en(t)n(z, y)e /" where the complex coefficients
¢n(t) are the amplitudes of the corresponding modes,
whose absolute values squared |c, (t)|? give the emission
intensity. Projecting the nonlinear Schrodinger equa-
tion (1) on the eigenstates gives a system of coupled
equations for ¢, (t). The coupling appears because of the
interacting term (¢, a|Y|? [1b,) # 0, mixing the eigen-
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FIG. 1: Energies (dotted lines) and wave functions (solid
lines) of the two lowest-energy symmetric modes of a mi-
cropillar. A possible position of the laser energy is shown
as a dashed line. Inset: spatial images of the two states, with
the pillar boundary shown as a white dashed circle.

states. We need to take into account only the modes
that are supposed to be strongly populated, that is,
the modes exhibiting a large overlap integral with the
pump. The modes of a cylindrical pillar can be written
as Yn, = Xmme(kr)e“(z’, where n,l are the radial and
azimuthal quantum numbers, J is the Bessel function of
the first kind, & = h_l,/QmEml7 X is a normalization
constant, and the energies are determined by the zeros of
the Bessel function: E,, ; = 7?2‘7'721+1)l/2m]~22 (Jnt1,1 is the
n + 1st zero of the Bessel function J;). Since the pump-
ing is symmetric, all wave functions with nonzero [ have a
vanishing overlap with it. The two states of interest, the
closest to the bottom and thus the easiest to obtain and
to observe, shall be denoted as 1, = 19,0 and 1, = Y10
(see Fig. 1). The projection of the nonlinear term [1|?
can be simplified by analysing the expected behavior. In-
deed, only the ground state can exhibit a bistable jump
and become strongly populated, because E, < hw. In
such conditions, the contribution of the other mode to
the coupling term can be neglected. The coupling term
therefore reads

(al @l [4n) = alca? / / G [al by drde = Jlcal?
(2)

The sign of J depends on the relative phase of the modes,
which, in turn, depends on their actual frequency posi-
tion with respect to the laser. The two modes are going
to have opposite phases because E, < hw < E, (ap-
proximately 7 phase difference if the decay is neglected),
and thus J < 0. This can be understood qualitatively
as follows: the admixture of the upper state brings the
ground state closer to the Thomas-Fermi limit**. Numer-
ical evaluation of the Bessel functions gives JS = 1.3a.
For the nonlinear shift in the energy of each mode, we
neglect the contribution of the other mode and of the in-
terference terms, because of the smaller overlap integrals.

With all these approximations, the coupled mode equa-



FIG. 2: Real (a) and imaginary (b) parts of the energy of weak
perturbations of the stationary solution for a pillar of R = 4.5
pm, a polariton lifetime 7 = 7 ps and a laser frequency of
hw = 0.9 meV.
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To simplify the analysis, we then assume o, = o = ag
(the self-interactions in the 2 modes are approximately
the same) and P, = P, = Py (the overlap of the pump
with the 2 modes is almost the same). In order to iden-
tify the necessary conditions for the oscillations, we then
perform a stability analysis. We begin by writing the sys-
tem (3) in the stationary limit, when the only frequency
in the system is the laser frequency: v, ,(t) = 15 e~

ih
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Following the Bogoliubov-de Gennes approach, we

study the weak perturbations of the stationary solution
wa,b(t) — p—iwt (¢Z,b 4 Ua’be—iEt/h + V;beiE*t/h) which
results in a secular equation allowing to find the eigenen-
ergies F of these excitations. Positive imaginary part
Im E > 0 of any eigenvalue means that the correspond-
ing perturbation grows exponentially, and the real part
of its energy is a good estimation for the frequency of
the self-sustained oscillations w,s. =~ Re E//h, once a new
regime settles down. Figure 2 shows the real and imag-
inary parts of the energies of weak perturbations as a
function of pumping Py (parameters given in the cap-
tion). We see that there is a range of pumping values
(between 2 x 10% and 3 x 10 particles/ps) which cor-
respond to the growth of the perturbations Im F > 0.
It is in this range of parameters that our device is ex-
pected to operate. Moreover, since the real part of the
energy is almost constant in this range, the generator is
well-protected from the fluctuations of the driving laser
intensity.

The approximate frequency of the generated clock os-
cillations can be found numerically from the solution of
the 4th order secular equation, but in order to have a
clear analytical estimate, we need to reduce the system
size, keeping only the important terms: the energies of
the two modes (taking into account the effect of the bista-
bility) and their coupling. For this estimate, we assume

that the frequency of the lower mode jumps to the fre-
quency of the pump, which determines both its energy
and its occupancy. The reduced 2-coupled modes Hamil-
tonian reads:

R fiw Jhwaa
Hred = (Jﬁw;Ea E(I): ) (4)

which allows to find the frequency of the oscillations
as v = /(E, — hw)? + 4(E), — hw)2J2/a2/2h (the fac-
tor 1/2 appears because we analyze the oscillations of
intensity). For a pillar of R = 4.5 pum with the mode
energies of F, = 0.2 meV and E, = 1 meV, and a laser
frequency of hiw = 0.9 meV, this expression predicts a
frequency of 86 GHz, very close to the value of 91 GHz
predicted by the numerical solution of the Bogoliubov-de
Gennes equations.

In order to check our analytical predictions, we per-
form two sets of numerical simulations. The first set is
based on a full 2D Gross-Pitaevskii equation (1) and the
second is based on the two-mode approximation (3). The
results of one 2D simulation is shown in Fig. 3 (parame-
ters are given in the caption). Panel (a) shows the spatial
distribution of intensity in the system composed of a cir-
cular pillar with 2 output channels. The visible periodic
spatial modulation of intensity in the channels is due to
the propagating periodically oscillating signal. Fig. 3(b)
shows the time dependence of the polariton density for
a fixed point in a channel, far from the pillar and the
boundary of the system. High-contrast stable periodic
oscillations are clearly visible. These oscillations set in
during the initial transitional period of 1-2 hundreds of
ps, and remain stable for at least 40 nanoseconds, with
no sign of variations with long characteristic time visible
over this period. The 2D simulations are too expensive
numerically to be carried over much longer times. We
have also checked that the oscillations remain stable in
presence of an uncorrelated noise (weak with respect to
the pump), simulating the effects of spontaneous polari-
ton scattering.

The corresponding spectral density is shown in panel
3(c). The main frequency is 70 GHz, very close to the
simple analytical estimate of 74 GHz provided by the
equation above. This high oscillation frequency is ob-
tained for realistic parameters, as we discuss below. A
second harmonic is also visible in the spectrum, it ap-
pears because of the deviation of non-linear oscillations
from perfectly harmonic ones, also visible in the time-
resolved intensity plot, Fig. 3(b).

Figure 4 presents the dependence of the most prac-
tically important parameter — the clock frequency — on
the parameters of the system, which can be varied experi-
mentally. These parameters include the energy difference
between the two modes of the pillar A = E, — E, (de-
termined by the size of the pillar) and the laser detuning
with respect to the middle frequency 6 = hw — (E, +
Ep)/2. As an example, for a pillar of R = 4.5 ym and a
laser frequency of hiw = 0.9 meV, we obtain A = 0.8 meV
and 6 = 0.3 meV. Fig. 4(a) shows the increase of the fre-
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FIG. 3: (a) Spatial polariton density snapshot from a 2D
numerical simulation. Propagating density pulses can be ob-
served in the channels. (b) Oscillations of the polariton den-
sity for a pillar of R = 5 pum, a laser frequency of hw = 0.82
meV and a pumping of p = 2000 ps~*. (c) Spectral density
of [1b(r,t)]* showing a resulting frequency of v = 70 GHz.

quency from 70 to above 100 GHz with the increase of
mode splitting A (for a constant detuning § = 0.3 meV),
meaning that the smaller is the pillar, the higher is the
oscillation frequency. The detuning ¢ of the laser is also
an important parameter in order to optimize the output
frequency, as shown in Fig. 4(b). Unfortunately, both
A and ¢ cannot be increased indefinitely, because the
efficiency of the laser pumping decreases with its detun-
ing with respect to the mode. For a mode linewidth of
v =~ 0.1 meV, the maximal experimentally realistic off-
set is ~ 7y ~ 0.7 meV*2. It means that the realistic
values of § in Fig. 4(b) are below 0.3 meV. Neverthe-
less, we provide the results for higher values of §, which
might be accessible for broader pillar resonances. These
two figures confirm that the operation frequency can be
tuned in a broad range of values. The most accessible
way for tuning the clock generator is via the pumping
laser frequency.

We stress that in the 2D simulations the value of the
lifetime is different in the pillar (7 ps~!) and in the chan-
nels (300 ps~1), which can be easily achieved experimen-
tally. This is important, because it is the decay rate y
which constrains the maximal operation frequency via §
and A. Sufficiently high decay rate is required for high-
frequency operation. We also note that the generator fre-
quency is relatively stable with respect to the pumping

4

power: it changes only by 10% within the whole range of
pumping powers where the oscillations can be observed
(for constant A and §). Besides the frequency, another
important parameter of the clock generator is the power
consumption. The power of the optical pump used to
drive the system is of the order of 10 yW. This is ap-
proximately 10 times higher than in the best modern
electronic clock generators. However, since the opera-
tion frequency of the present device is much higher, en-
ergy consumption per pulse is of the order of 1 pJ, much
better than in electronics.

To conclude, we have studied the possibility of fab-
rication of a clock generator 1f2c())r integrated polaritonic
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FIG. 4: (a) Frequency as a function of A for § = 0.3 meV

constant. (b) Dependence of the frequency with § for A = 0.8

meV constant. The pumping varies between 1500 and 3000
-1

ps” .

circuits based on a single polariton micropillar. Such de-
vice demonstrates high generation frequencies of about
100 GHz, required to fully exploit the potential of po-
lariton circuits for ultra-fast data treatment. We have
shown that the operation frequency can be controlled by
the laser detuning (in-situ) or by changing the pillar ra-
dius.

Acknowledgments

We thank S. Porteboeuf-Houssais for useful comments.
We acknowledge the support of the project ”Quantum
Fluids of Light” (ANR-16-CE30-0021), and of the ANR
program ”Investissements d’Avenir” through the IDEX-
ISITE initiative 16-IDEX-0001 (CAP 20-25).

! P. Ambs, Adv. Opt. Tech. 2010, 372652 (2010).

J. Touch, A.-H. Badawy, and V. J. Sorger, Nanophotonics
6, 503 (2017).

C. Fabre, Nat. Photonics 8, 833 (2014).

D. R. Solli and B. Jalali, Nat. Photonics 9, 704 (2015).

Z. Ying, Z. Wang, Z. Zhao, S. Dhar, D. Z. Pan, R. Soref,
and R. T. Chen, Opt. Lett. 43, 983 (2018), URL http:
//ol.osa.org/abstract.cfm?URI=01-43-5-983.

5 D. Woods and T. J. Naughton, Nat. Physics 8, 257 (2012).
A. A. Sawchuk and T. C. Strand, Proc. IEEE 72, 758

[SUET NN

N

(1984).

8 J. Touch, Y. Cao, M. Ziyadi, A. Almaiman, A. Mohajerin-
Ariaei, and A. E. Willner, Nanophotonics 6, 507 (2017).

9 B. S. Wherrett, Digital Optical Computing (Springer
Netherlands, Dordrecht, 1995), pp. 321-361, ISBN
978-94-017-2446-3, URL https://doi.org/10.1007/
978-94-017-2446-3_9.

10 1,. Lu, J. D. Joannopoulos, and M. Soljacic, Nature Pho-
tonics 8, 821 (2014).

1 T, Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi,



12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zil-
berberg, et al., Rev. Mod. Phys. 91, 015006 (2019),
URL https://link.aps.org/doi/10.1103/RevModPhys.
91.015006.

N. N. Rozanov, Spatial Hysteresis and Optical Patterns
(Springer, Berlin, 2002).

R. Reinisch and G. Vitrant, Progress in Quantum
Electronics 18, 1 (1994), ISSN 0079-6727, URL
http://www.sciencedirect.com/science/article/pii/
0079672794900043.

N. 1. Zheludev, Soviet
357 (1989), URL
2Fpu1989v032n04abeh002702.
P. Hamel, S. Haddadi, F. Raineri, P. Monnier, G. Beau-
doin, I. Sagnes, A. Levenson, and A. M. Yacomotti, Nature
Photonics 9, 311 (2015).

J. J. Hopfield, Phys. Rev. 112, 1555 (1958), URL https:
//1link.aps.org/doi/10.1103/PhysRev.112.1555.

A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P.
Laussy, Microcavities (Oxford University Press, 2011).

C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and
P. Schwendimann, Phys. Rev. B 58, 7926 (1998), URL
https://link.aps.org/doi/10.1103/PhysRevB.58.7926.
M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Ka-
vokin, A. Miard, A. Lemaitre, J. Bloch, D. Solnyshkov,
G. Malpuech, and A. V. Kavokin, Phys. Rev. B 82,
075301 (2010), URL http://link.aps.org/doi/10.1103/
PhysRevB.82.075301.

Y. Sun, Y. Yoon, M. Steger, G. Liu, L. N. Pfeiffer, K. West,
D. W. Snoke, and K. A. Nelson, Nature Physics 13, 870
(2017).

T. K. Paraiso, M. Wouters, Y. Leger, F. Morier-Genoud,
and B. Deveaud-Pledran, Nature Materials 9, 655 (2010).
F. Barachati, A. Fieramosca, S. Hafezian, J. Gu,
B. Chakraborty, D. Ballarini, L. Martinu, V. Menon,
D. Sanvitto, and S. Kéna-Cohen, Nature nanotechnology
13, 906 (2018).

R. Emmanuele, M. Sich, O. Kyriienko, V. Shahnazaryan,
F. Withers, A. Catanzaro, P. Walker, F. Benimetskiy,
M. Skolnick, A. Tartakovskii, et al., arXiv preprint
arXiv:1910.14636 (2019).

A. Fieramosca, L. Polimeno, V. Ardizzone, L. De Marco,
M. Pugliese, V. Maiorano, M. De Giorgi, L. Dominici,
G. Gigli, D. Gerace, et al., Science advances 5, eaav9967
(2019).

T. Gao, P. Eldridge, T. C. H. Liew, S. Tsintzos,
G. Stavrinidis, G. Deligeorgis, Z. Hatzopoulos, and P. Sav-
vidis, Physical Review B 85, 235102 (2012).

D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdré,
E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, and
D. Sanvitto, Nature communications 4, 1778 (2013).

H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese,
D. Solnyshkov, E. Galopin, A. Lemaitre, I. Sagnes,
A. Amo, G. Malpuech, et al., Phys. Rev. Lett. 110,
236601 (2013), URL https://link.aps.org/doi/10.
1103/PhysRevLett.110.236601.

D. Sanvitto and S. Kéna-Cohen, Nature Materials 15, 1061
(2016), ISSN 1476-1122, URL http://www.nature.com/
articles/nmat4668.

Physics  Uspekhi 32,
https://doi.org/10.1070%

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

A. V. Zasedatelev, A. V. Baranikov, D. Urbonas, F. Scafir-
imuto, U. Scherf, T. Stoferle, R. F. Mahrt, and P. G.
Lagoudakis, Nature Photonics 13, 378 (2019).

G. W. Pierce, Proceedings of the American Academy of
Arts and Sciences 59, 81 (1923), ISSN 01999818, URL
http://www.jstor.org/stable/20026061.

W. H. Eccles and F. W. Jordan, The Electrician 83, 298
(1919).

A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, and
E. Giacobino, Physical Review B 70, 161307 (2004),
ISSN 1098-0121, URL https://link.aps.org/doi/10.
1103/PhysRevB.70.161307.

N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov,
S. S. Gavrilov, Y. G. Rubo, A. V. Kavokin, S. G.
Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98,
236401 (2007), URL https://link.aps.org/doi/10.
1103/PhysRevLett.98.236401.

S. Gavrilov, N. Gippius, S. Tikhodeev, and V. Kulakovskii,
Journal of Experimental and Theoretical Physics 110, 825
(2010).

I. A. Shelykh, D. D. Solnyshkov, G. Pavlovic, and
G. Malpuech, Phys. Rev. B 78, 041302 (2008), URL
https://link.aps.org/doi/10.1103/PhysRevB.78.
041302.

D. Sarchi, I. Carusotto, M. Wouters, and V. Savona,
Physical Review B 77, 125324 (2008), ISSN 1098-0121,
URL https://link.aps.org/doi/10.1103/PhysRevB.
77.125324.

D. D. Solnyshkov, R. Johne, I. A. Shelykh, and
G. Malpuech, Phys. Rev. B 80, 235303 (2009), URL
https://link.aps.org/doi/10.1103/PhysRevB.80.
235303.

S. S. Gavrilov, Phys. Rev. B 94, 195310 (2016), URL
https://link.aps.org/doi/10.1103/PhysRevB.9%4.
195310.

S. S. Gavrilov, Phys. Rev. Lett. 120, 033901 (2018), URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.
033901.

L. Ferrier, S. Pigeon, E. Wertz, M. Bamba,
P. Senellart, 1. Sagnes, A. Lematre, C. Ciuti,
and J. Bloch, Applied Physics Letters 97, 031105
(2010), https://doi.org/10.1063/1.3466902, URL
https://doi.org/10.1063/1.3466902.

L. Ferrier, E. Wertz, R. Johne, D. D. Solnyshkov, P. Senel-
lart, I. Sagnes, A. Lemaitre, G. Malpuech, and J. Bloch,
Phys. Rev. Lett. 106, 126401 (2011), URL https://link.
aps.org/doi/10.1103/PhysRevLlett.106.126401.

H. S. Nguyen, D. Gerace, I. Carusotto, D. Sanvitto, E. Ga-
lopin, A. Lemaitre, I. Sagnes, J. Bloch, and A. Amo, Phys.
Rev. Lett. 114, 036402 (2015), URL https://link.aps.
org/doi/10.1103/PhysRevLett.114.036402.

M. Abbarchi, A. Amo, V. G. Sala, D. D. Solnyshkov,
H. Flayac, L. Ferrier, I. Sagnes, E. Galopin, A. Lemaitre,
G. Malpuech, et al., Nat. Phys. 9, 275 (2013).

L. Pitaevskii and S. Stringari, Bose-FEinstein Condensa-
tton (Oxford Science Publications - International Series of
Monographs on Physics 116, 2003).



