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Abstract

The coexistence of the energy and enstrophy cascades in 2D quantum turbulence

is one of the important open questions in the studies of quantum fluids. Here,

we show that polariton quantum fluids are particularly suitable for the possible

observation of scaling on sufficiently large scales. The shape of raw energy

spectra depends on the procedure of fluid excitation (stirring), but the energy

spectra of clustered vortices always exhibit the -5/3 power law. In the optimal

case, the cascade can be observed over almost 2 decades. The fractal nature of

the structures is confirmed by the extracted fractal dimension.

Keywords: quantum turbulence; Kolmogorov cascade; fractal structures;

quantum fluids

1. Introduction

Turbulence is a peculiar kind of stochastic behavior with an emergent or-

der, characterized by the formation of self-similar fractal structures at different

scales. Soon after the famous work of Kolmogorov [1], which determined the

scaling −5/3 of a direct energy cascade with energy flowing from the injection

scale towards smaller scales where it dissipates[2, 3], another seminal work by

Kraichnan [4] predicted the possibility of the formation of an inverse cascade in
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2D fluids, where the energy is transferred towards larger scales with the associ-

ated self-organization of spatial patterns, similar to the formation of the Benard

cells[5]. This result, confirmed numerically[6] and experimentally[7] in classical

fluids, is based on the mutual incompatibility of the scalings of the cascades

associated with 2 conserved quantities: the energy and the squared vorticity

(enstrophy), which therefore have to be transferred in opposite directions.

The existence of a similar inverse cascade, suggested for quantum 2D tur-

bulence [8], is actually still a matter of a strong debate[9]. Contrary to the

3D quantum turbulence, observed in liquid helium [10, 11, 12] and atomic con-

densates [13, 14, 15, 16, 17, 18], the inverse cascade of 2D quantum turbulence

remains elusive even in numerical simulations, let alone real experiments [9, 18].

Indeed, while several works[8, 19] report the numerical observation of an inverse

cascade with a scaling of −5/3, others argue against it [20]. The enstrophy in

quantum fluids is proportional to the total number of quantum vortices, which

can appear and (most importantly) disappear only in pairs. While there are ar-

guments in favor of the formation of the enstrophy cascade [21], it is also argued

by other authors [20] that the dissipation of enstrophy in quantum fluids could

be expected to occur differently from the classical ones: instead of requiring a

transfer to smallest scales, it could on the contrary be dissipated at any scale

above the vortex size (healing length). For example, two very large clusters

rotating in opposite directions and forming a dipole could dissipate vorticity

along their mutual boundary, without requiring any transfer to smaller scales

associated with the redistribution of vortices and formation of smaller clusters

and isolated vortex pairs. So, the enstrophy cannot be a priori considered as

a conserved quantity which is transferred over scales in order to be dissipated

at the smallest ones, and thus the incompatibility of the scaling of cascades

cannot be used to prove the existence of the inverse energy cascade. Still,

the self-organization of individual vortices into clusters discussed theoretically

[22, 23, 24, 25] and observed in recent experiments [26, 27] strongly suggests

that the inverse cascade should exist.

Not only the conclusions of the scaling arguments are controversial, but the
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mathematical limits, imposed on numerical simulations by the properties of

the real systems are so stringent, that they prevent one from drawing definite

conclusions from the numerically observed energy cascades published in the most

recent works. Indeed, one never observes a cascade over more than 1 decade

of wave vectors in such simulations (and even in recent experiments with 3D

condensates[17]), and the suggested scaling is usually not a fit of the spectral

density, but only a guide for the eyes. Actually, since the spectral energy density

often presents a transition between large and small scales (either at the injection

scale or at the vortex size), any scaling exponent can be suggested as a tangent

to such bell-like curve, and the interpretation is therefore highly arbitrary.

The recent progresses in semiconductor heterostructure manufacturing and

spectroscopy techniques [28, 29, 30] make the polariton quantum fluids, formed

in microcavities in the regime of strong light-matter coupling, a perfect play-

ground for the experimental studies of Bose-Einstein condensates and associated

phenomena like quantum turbulence [31]. The coherent propagation of a polari-

ton quantum fluid has been observed at the scale L of hundreds of micrometers

[30, 32], and the expected coherence decay due to quantum and thermal fluctua-

tions is of the order of several millimeters [33] defining the lower cascade bound

1/L. The upper cascade bound 1/ξ is defined by another important parameter,

namely the characteristic healing length ξ – the size of a quantum vortex. In

the numerous experimental observations of quantum vortices in polariton quan-

tum fluids [34, 35, 36, 37] this parameter was estimated to be of the order of

a micron. This allows in principle to hope for the observation of an energy

cascade in a well-developed turbulence over at least 2 decades of wave vector

magnitude. Optical techniques allow studying the cascade in polariton quantum

fluids either using interferential analysis [38, 39] of spatial images generated in

single-shot experiments[40, 41, 42], or by direct energy spectrum analysis based

on simpler to implement angle-resolved photoluminescence (PL) spectroscopy

experiments.

The procedure of vortex creation is very important for the observation of

the cascade both theoretically and experimentally. Previously, the schemes of
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”spoon”-stirring [43, 44, 45] or flowing of the quantum fluid around a set of

stationary defects [46, 19] were used. The artificial vortex imprinting [22, 47] to

the condensate was also used.

In this work, we perform an extensive study of quantum turbulence in scalar

conservative quantum fluids, based on the Gross-Pitaevskii equation. We are

using physical parameters of an idealized polaritonic quantum fluid providing a

particularly large coherence length, but our results are certainly relevant to other

types of quantum fluids, such as atomic condensates. We use the development of

modern numerical techniques, such as the Graphics Processing Units (GPU), to

maximize the accessible scales. We find that independently of stirring method,

the system always contains a mixture of a gas of individual uncorrelated vortices

and a fractal structure of vortex clusters. We demonstrate that an −5/3 energy

cascade can be observed for the clusters over 1 order of magnitude of scale range

at a 95% confidence level, whereas the gas of individual vortices generates a

strong signal with a −1 power law, hindering the observation of the cascade. The

fractal nature of the vortex structure is confirmed by the extraction of the fractal

dimension. Time-dependent studies of the energy transfer suggest the inverse

nature of the −5/3 cascade. The corresponding experimental measurements

should be possible thanks to single-shot interferometry.

The paper is outlined as follows. In Section II, we present the Methods

used in numerical simulations and analysis. In Section III, we present and

discuss the results of the simulations. Conclusions are drawn in Section IV.

Additional results concerning verification of the numerical procedures are given

in the Appendix.

2. Methods

The strong coupling of quantized excitonic and photonic modes in a planar

microcavity [48] with one or several quantum wells can be described in the
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coupled oscillator model with the strong coupling Hamiltonian [49]:

H =

 Ex V

V Ec


where Ex = Ex,0 + ~2k2/2mX is the energy of the quantum well exciton, Ec =

Ec,0 + ~2k2/2mph is the energy of the photon in the cavity mode , k is the

in-plane wave vector, mX ∼ m0 is the exciton mass, mph ∼ 3 × 10−5m0 is the

cavity photon mass (m0 is the free electron mass), and V is the light-matter

coupling constant (half of the Rabi splitting).

This coupling gives rise to the anticrossing of the excitonic and photonic

modes, and the formation of polariton branches. In the following, we consider

only the lower polariton branch in the parabolic approximation. The conse-

quences of such approximation for the simulation of vortices shall be discussed

below, together with the other approximations.

2.1. Simulation

The basic tool for numerical simulations of an interacting bosonic quantum

fluid is the Gross-Pitaevski equation [50, 51]. It has been used for the simulation

of quantum turbulence in numerous papers [9, 22, 43] including ones devoted to

studying the energy cascade[45, 46, 19] and behavior of single vortices[52, 53].

This equation can also be extended, to account for the thermal (uncondensed)

part of the fluid [54, 55], and for other effects, such as the energy relaxation [56],

finite lifetime and pumping [57]. However, the description of large-scale systems

is difficult to be carried out at the level of full GPE numerical simulation of the

quantum fluid, and in this case other models are used, such as the point particle

gas approximation with the specific vortex-vortex potentials [23, 58, 59, 21].

The polaritonic quantum fluid is particularly well known for its non-equilibrium

driven-dissipative features, due to the finite lifetime of polaritons usually deter-

mined by the quality factor of a cavity. In the present work, we deliberately

neglect these features, trying to make an additional step towards the solution of

the problem of inverse or direct nature of the quantum turbulence in the general
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case of conservative quantum fluids. Such description of the polariton fluid cor-

responds to the limiting case of long lifetime and fast relaxation processes [60].

It is valid for pulsed excitation case with long lifetime, where the finite lifetime

does not modify the dispersion; its only effect is the slow decay of density with

the corresponding change of the healing length. For this reason, liquid helium

and atomic condensates are usually considered as conservative, despite their

decay via evaporation, which is clearly non-zero. It was also shown previously

that polariton condensates can in many cases be well described as being at ther-

modynamic equilibrium [60, 61, 62, 63, 33]. On the contrary, our predictions

should not be extended to the case of quasi-resonant pumping, where the laser

is driving the system with a fixed frequency, and where the effects such as bista-

bility are known to occur [64]. The study of such configurations is left for future

works. We also cannot make any conclusions on non-resonantly pumped polari-

ton condensates in the non-equilibrium (kinetic) limit, where the relaxation is

not sufficiently fast. These two configurations are described by various versions

of the Gross-Pitaevskii equation with model-dependent additional terms, known

to lead to different types of behavior [65, 66, 67, 68, 69, 70, 33, 71, 72]. In this

sense, our work is meant be used as a reference for comparison.

The Gross-Pitaevskii equation in dimensionless units reads:

i
∂ψ

∂t
= −∆ψ + V ψ +

(
|ψ|2 − 1

)
ψ, (1)

where (x, y) = (x0, y0)/ξ (with healing length ξ = ~/
√

2gnm), t = t0gn/~,

V = V0/gn, ψ = ψ0/
√
n (the index 0 marks dimensional variables, n = |ψ0|2

is the density of the fluid). Having in mind a particular implementation of a

quantum fluid based on the exciton-polariton system, we use m = 5× 10−5m0

for the polariton mass (twice the cavity photon mass at zero detuning). g is the

strength of the polariton-polariton interaction governed by the exciton-exciton

interaction. It can be written as

g = 6EbX
2
c a

2
B , (2)

where Eb is an exciton binding energy, aB is the exciton Bohr radius and Xc
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is the excitonic fraction. We take the g parameter equal to 5 µeVµm2, which

coincides with the values given in Ref. [73] for GaAs 2D microcavities [74].

Operating with densities n ≈ 200 µm−2 yields healing length ξ close to 1µm. A

typical time scale for polaritons t0 = 1 ps corresponds to dimensionless t = 0.9.

Thus, one concludes that micrometers and picoseconds are quite natural units

for consideration of the problem of turbulence in polariton quantum fluids.

In general, we take all parameters corresponding to the state-of-the-art GaAs

microcavities, which offer the best performance for the possible observation of

the studied effects. As said above, we neglect the finite lifetime, except in

Appendix H shown for comparison. We also neglect the polarization effects,

and the non-parabolicity of the polariton dispersion (which could change the

k−3 spectrum of the vortex core). We also entirely neglect structural disorder

effects which in real systems might play an important role in vortex dynamics.

Indeed, the chemical potential is one order of magnitude higher than the typical

disorder amplitude in high-quality cavities. This is why it is reasonable to

neglect such disorder as a first approximation. All these effects are left for future

studies, for which the present work will serve as a reference. The choice of the

polariton system is important because of the possibility of performing single-

shot interference measurements, allowing the detection of the spatial position

of vortices, as we discuss below. The choice of the polariton system is also

motivated by its extended coherence [75], providing a large ratio between the

maximal system size and the healing length.

In our numerical simulations, the time step was 0.01 ps and an N × N =

1024 × 1024 mesh was used. The Laplace operator was calculated using the

Fourier transform with massive parallelization provided by the GPU ensuring a

14-fold speed increase and in time the third order Adams–Bashforth scheme was

used. We used Matlab and Mathematica packages for numerical solution

of DDGPE and further analysis. The size of the square-shaped space region

where the simulation was performed was L =1024 µm, which corresponds to

the maximal wave vector kmax =
√

2πN/L ≈ 4µm−1. Higher wave vectors are

required for a better description of the vortex core.
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b)a) c)

e)d)
Size: 1024 um x 1024 um
Mesh: 1024 x 1024 
Density: ~200 um-2 
Interaction strength g:
0.005 meV um2

Figure 1: Schematic representation of the employed stirring strategies. a) Large cross, b)

Classical spoon, c) Brownian spots d) White noise e) Gauss-Laguerre potential

2.2. Stirring the quantum fluid

The main feature of the turbulence is the energy flow from the injection scale

towards other scales. It is this flow that leads to the formation of self-similar

spatial structures. A cascade should manifest itself in the so-called incompress-

ible energy part, associated with rotation (see below). Thus, the observation of

cascades, either direct or inverse, absolutely requires the formation of quantum

vortices, and not just of density waves. In classical 2D turbulence, a simplest

random-potential scheme has been shown to be sufficiently efficient for the ob-

servation of a large-scale inverse energy cascade [76]. In quantum 2D turbulence,

such method does not allow to create vortices efficiently, because, contrary to the

classical case, creating a pair of well-defined vortices with a vanishing order pa-

rameter in their centres requires a finite amount of energy [77] Epair ≈ 6~2n/m

precisely because these vortices are quantum.

As mentioned above, the first strategy used was the stirring by a propagat-

ing potential defect [43] or flow around stationary defects [46, 19]. Random

imprinting of vortices followed by healing by simulation with imaginary time

has also been used[47, 22]. In polariton condensates, persistent vortices have
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already been shown to appear because of the flow of the condensate against a

random potential [78].

In the present manuscript, we have compared several different stirring strate-

gies (see Fig. 1):

a) Large cross-like potential

b) Classical rotating spoon

c) Several spots in brownian motion

d) White noise with spatial correlations (for comparison with a classical fluid

[76])

e) Several small potential wells defined by the intensity of the interference of 2

Gauss-Laguerre (GL) beams

As we shall discuss below, these procedures inject energy at different scales.

To obtain a quasistationary configuration, we have used very long times for

the stirring of the quantum fluid (5 ns), for its relaxation (20 ns), and for the

averaging during the extraction of the cascade (5 ns). However, the analysis

of the dynamics presented in the final part of the work demonstrates that the

characteristic formation time of the cascade is of the order of 200 ps, which is

much closer to the lifetimes of the state-of-the-art cavities.

2.3. Extraction of the energy spectra

The Kolmogorov energy cascade is expected to form in the Incompressible

Kinetic Energy (IKE) spectral density, and its observation requires the sepa-

ration of the density-weighted velocity field into the compressible and incom-

pressible part [46, 79], with the selection of the latter. Importantly, the spectral

energy density of the incompressible part of the velocity field can also be cal-

culated analytically from the positions and the signs of the quantum vortices

[46, 45]. This is possible because the quantum fluid is irrotational and all the

vorticity is concentrated only in vortices. One also needs such parameters of

the quantum fluid as its density n, interaction constant g and polariton mass

m. One writes the IKE spectral density (IKE spectrum) as
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E(i)(k) = NvortΩξ
3F (kξ)G(k), (3)

where F = Λ−1f(kξΛ−1) is the single vortex spectrum, Nvort is the total amount

of vortices, Ω = 2π~2n/(mξ2) is the ensthropy quantum, the parameter Λ =

0.8249... and the function f(z) writes

f(z) =
z

4

(
I1

(z
2

)
K0

(z
2

)
− I0

(z
2

)
K1

(z
2

))
. (4)

The function G(k) is shaped by the coordinates ri,j and the signs κi,j of the

vortices:

G(k) = 1 +
2

Nvort

Nvort−1∑
i=1

Nvort∑
j=i+1

κiκjJ0 (k|ri − rj |) , (5)

where the indices i and j enumerate all vortices.

This approach allows not only to find the total incompressible energy spec-

trum, but also to consider the contributions of single vortices and clusters sep-

arately [59, 45], which turns out to be important in order to observe the Kol-

mogorov cascade at a large scale. The cluster selection algorithm was adopted

from Refs. [43, 59] with an additional optimization available in Mathematica.

The positions of vortices were determined from the phase of the wave function.

More details on the numerical methods can be found in the Appendix.

3. Results

In this section, we first study the total incompressible energy spectra for dif-

ferent stirring strategies. We show that, independently of the stirring strategy,

such spectra are strongly dominated by the contribution of individual vortices,

which prevents the observation of the cascade over large energy scales. In the

second subsection, we remove the contribution of individual vortices, keeping

only the one belonging to clusters. This procedure reveals the cascade over a

much large range which confirms the arrangement of clustered vortices in large

scale self-similar structures. In the last subsection, we demonstrate the inverse

nature of the cascade by analyzing the time evolution of the energy distribution

during the stirring procedure.
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Figure 2: The IKE spectra obtained numerically by decomposition in the reciprocal space for

different stirring strategies. The red arrow is for the inverse intervortex distance kl.

3.1. Total IKE spectra

Figure 2 shows the IKE spectra obtained for various stirring strategies. The

incompressible energy part was separated by decomposition in the reciprocal

space (see Methods). One can expect to observe the −5/3 power law cascade in

the IKE spectrum only between the wave vectors kL = 2π/L (L is the system

size) and kl = 2π/l, where l is the mean inter-vortex distance (l was approxi-

mately 20 µm in most number of our simulations and thus klξ ≈ 0.3). In Fig. 2,

such power law is visible only for the cross and spoon stirring, and only in a nar-

row wave vector range (in the vicinity of kξ = 0.02). In this figure, kl is marked

by a red arrow. The difficulty to observe the −5/3 power law characteristic for

the formation of multiscale structures is explained by the large contribution of

single vortices, as we show in the next section.

It is natural [46] to measure the IKE spectral density in the units of ensthropy

Ωξ3. According to the definition, the function F (kξ) is of the order of 1 at kξ = 1

and the function G(k) ≈ 1 at k � kl. Thus, in the vicinity of the point kξ = 1

the magnitude of IKE spectrum estimates the total amount of vortices in the

system Nvort.

For kξ between klξ and 1 one should observe the energy spectrum of a single
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vortex: k−1, because at this scale a vortex does not have any neighbors to

form any structures. For wave vectors larger than 1/ξ (short length scale), one

obligatory observes a k−3 law which is a fingerprint of the vortex core wave

function (this might be different for exciton-polaritons in some regimes because

of their non-parabolic dispersion that we neglect here). In Fig. 2, all stirring

strategies exhibit similar behavior at wave vectors higher than kl : there is a

k−1 power law below 1/ξ and k−3 above 1/ξ.

It is interesting to note that in Ref. [45] the −5/3 cascade signatures have

been observed between kl and 1/ξ. In Refs. [46, 43] there was also no transitional

k−1 regime between 1/ξ and kl, and the −5/3 cascade started immediately after

1/ξ. The absence of an intermediate region with k−1 power law in these works

might be explained by the short inter-vortex distance which is close to the

healing length, or by a large variation in the intervortex distance.

Finally, the differences between stirring strategies can be observed in Fig. 2

at kξ smaller than 0.02-0.03. Indeed, the stirring based on the classical spoon

and large cross generates large-scale vortex clusters. The energy injection for

these strategies is still efficient at the scales of kξ = 0.01. The three other

stirring procedures do not inject energy at large scales and the IKE spectra

drop below kξ = 0.03. However, in all cases most of the energy spectrum is

dominated by the signal arising from single vortices, which strongly hinders the

observation of the Kolmogorov energy cascade because of the wide spreading of

single vortex energy in k-space. So in the next section, we are going to change

our treatment procedure using real space selection allowing to eliminate single

vortices in order to keep only the part of the IKE located in clusters.

3.2. IKE spectra of clustered vortices

We are going to compute the IKE using the analytical procedure described

in the Methods section and in the Appendix. This procedure is based on the

detection of vortices in real space. Indeed, the knowledge of the wave function

at any time allows to determine the position of all vortices. The velocity field

induced by these vortices is the whole incompressible velocity field. Once the
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Figure 3: IKE spectra obtained numerically (points) and analytically for all vortices (solid

lines). In the range from 0.02 to 1 kξ both methods give the same result.

vortex position is known, the incompressible velocity field can be computed

analytically (see Methods). Figure 3 shows the result of this procedure (for all

stirring procedures). These results are compared with those obtained in the

previous section based on a decomposition in reciprocal space. One can indeed

check that the results obtained using both methods coincide for all stirring

procedures, confirming the possibility to use the analytical treatment.

It is then possible to make one step further by determining if a given vortex

is single, in a dipole, or in a cluster (details on the procedure are given in the

Appendix). This is illustrated by Fig. 4 showing a snapshot of the phase of the

quantum fluid stirred by Brownian potentials. The winding of each vortex is

shown by colour (+1 - red, −1 - blue). Single and dipole vortices are marked

by small circles. Vortices belonging to clusters are marked by large circles. One

clearly sees that a large fraction of vortices (about 50%) belong to clusters. At

the same time, it is natural that the signal from the other 50% that are not in

clusters is quite important in the total IKE spectrum.

Figure 5 compares the IKE spectra with and without selection of clustered

vortices. Arrows mark the characteristic scales from which the inverse cascade

might be expected to start: the inverse Brownian trajectory scale (orange),
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Figure 4: Phase of the wave function for Brownian stirrers combined with the results of

clustering procedure. The vortices belonging to the clusters are highlighted with the large

circles. Relatively rare vortex dipoles are connected by green lines.
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Figure 5: IKE spectra for Brownian stirrers. Red dots are for numerical procedure, green

dots are for analytical procedure for all vortices, blue dots are for clustered vortices only. The

dashed lines are the guides for the eye with −5/3 (blue dashed) and −1 (red dashed) power

functions. The blue arrow shows the inverse potential spot size (∼ 7ξ) and the orange one

shows the inverse characteristic scale of Brownian motion (∼ 50ξ). The red arrow is for kl.

the inverse intervortex distance kl (red), and the inverse spot size (blue). A

−5/3 power law is visible for all vortices and for clusters between kξ = 0.01 and

kξ = 0.05, much lower than kl. The spectra differ above kξ > 0.05. The removal

of the single vortex and dipole contributions reveals a very clear −5/3 slope over

more than one order of magnitude, which was hidden in the total IKE spectra.

It becomes clear therefore, that the removal of single vortices is crucial for the

analysis of the turbulence phenomena via the incompressible energy spectrum.

The excess of single vortices in the system is explained by the relatively low

density of the vortex gas, preventing many vortices from participating in the

interactions that allow building the inverse cascade starting from the inverse

trajectory scale (orange arrow).

The power spectra computed with the same spatial selection procedure for

all five stirring procedures are shown in Fig. 6. A −5/3 power law is now visible

in all cases, and also extends over more than one order of magnitude over k.

This is demonstrating the presence of self-similar structures of vortices with

their size varying from about 30 µm to 600 µm.
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Figure 6: The analytically obtained IKE spectra for all 5 stirring strategies for the clustered

vortices only. The red arrow is for inverse intervortex distance kl. The vertical lines cut the

range where -5/3 power law is observed.

In order to check that the observed power law indeed corresponds to the

expected scaling of −5/3, we fit the IKE resulting from the analytical proce-

dure with an allometric (power) function f = axγ with fitting parameters a

and γ (Fig. 7, dots and solid line). We use the non-linear least squares pro-

cedure with the Levenberg-Marquardt error minimization algorithm, with the

confidence interval for parameter values obtained from the variance-covariance

matrix using the asymptotic symmetry method. The fit shows that the expected

value −1.(6) is within the bounds of the confidence interval: γ = −1.5 ± 0.2,

confirming the presence of the Kolmogorov scaling over more than one order

of magnitude of wave vectors and energies. We stress that although the pre-

cision is relatively low, this is a true fit of the numerical experiment, and not

just a guide for the eyes. The importance of performing a fit is underlined

by the fact that even for a completely random arrangement of vortices (vortex

gas) obtained without solving the Gross-Pitaevskii equation and so without any

possible self-organization effects linked with quantum turbulence, the IKE spec-

trum naturally demonstrates a bell-like curve, which can have a tangent slope of

−5/3 in a certain region. Thus, a thorough analysis confirming the existence of
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Figure 7: IKE spectrum for Brownian stirrers (clusters only) with a power-law fit giving

γ = −1.5 ± 0.2 (expected −1.66).

a large scale cascade is really required to draw any conclusions on the quantum

turbulence.

Analyzing power law dependencies can be particularly difficult, because one

needs to confirm that the observed approximately linear distribution on the

loglog plot is best explained by a power law [80], and not by some other dis-

tribution function (for example, exponential or log-normal). When there are

no other means, one has to check if the distance of the measured distribution

from the ideal one is not higher than for simulated power-law distributions. In

a particular physical system, however, the power law energy distribution arises

from the formation of the self-similar spatial structures, that is, fractal clusters.

In the next section, we analyze the spatial distribution of vortices in order to

confirm that the observed power-law distribution is not accidental.

3.3. Fractal dimension of vortex clusters

The Kolmogorov’s arguments for the existence of cascade in classical tur-

bulence are based on the self-similarity of observed spatial patterns at different

scales. This self-similarity in mathematics is what characterizes fractal struc-

tures. An inherent property of fractals is their non-integer dimensionality: a
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fractal formed of an infinite number of points on a plane is neither a 2D ob-

ject like a polygone, nor a 0D object like a point, but something between the

two. Thus, checking if the clusters of vortices exhibit a non-integer (fractal) di-

mension, allows us to prove that their spatial patterns are indeed self-similar, as

required for the formation of an energy cascade. Such methods could be applied

to the recent observation of vortex clusters in atomic condensates [26, 27].

One way to obtain the fractal dimension is the box-counting approach, and

the corresponding dimension is called box-counting or Minkowski-Bouligand

dimension. This approach consists in covering the studied object by a mesh

with the cells (boxes) of size ε and counting the number of boxes required to

fully cover the object Nbox(ε) for various the mesh sizes ε. For our case, we

plot the curve of box count Nbox to cover all vortices vs. box size ε. The slope

of tangent line for this curve finally gives the box-counting fractal dimension of

the pattern formed by the clusters of vortices. The asymptotics of the curve

are always integer (non-fractal): at small scales, each vortex is just a 0D point,

whereas at large scales the whole system is just a 2D object. It is the existence

of a large transition region between the two limits which determines the fractal

dimension.

We consider only the best configuration - the case of Brownian stirrer. Vor-

tices were treated as points with coordinates ri obtained from the wave function

in the same manner as for analytical calculation of IKE spectra. The system

size was 2048 µm. For this analysis, we were only using vortices of the same

sign.

The results of the analysis are shown in Fig. 8 together with the IKE spec-

trum shown for reference. The box size ε is given in terms of the corresponding

wave vectors 2π/ε, to have a common horizontal axis with the energy distribu-

tion plots. We calculate the fractal dimension for clustered vortices and compare

it with that of all vortices (which serve as a non-fractal reference). For clustered

vortices (red curve), a clear transitional regime is present between the 2D and

0D limits, with the fractional dimension of ≈ 0.6. The scale range at which this

regime is present straightly matches with the region of −5/3 power law in IKE
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Figure 8: Fractal (box-counting) dimension of vortex clusters. Solid curves show the depen-

dence of box counts to cover all vortices on the size of the boxes. Dots are for analytical

IKE spectra. Red color is used for clustered vortices and black color is used for all vor-

tices. Dashed lines give the eye guides for some important powers. Red arrow shows the

characteristic intervortex distance (limit of the 0D regime).

spectra, confirming that the energy cascade originates from the self-similarity.

For comparison, the case of all vortices (black line) shows an immediate tran-

sition between the 0D and 2D asymptotics, confirming the absence of a fractal

structure in this case. We therefore conclude that the clustered vortices exhibit

a well-defined fractal dimension confirming the self-similarity of their structure

at the same range of scales where the energy cascade is observed.

To check the applicability and robustness of the realization of the box count-

ing approach, the comparison with a random distribution of points and with an

artificially created pattern in the shape of the Sierpinskii triangle have been

carried out (see Appendix).

In the next subsection, we study the time evolution of the energy spectra in

order to establish the nature (direct or inverse) of the observed energy cascade.
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3.4. Dynamics of the energy redistribution and cascade formation

In order to understand the formation of a −5/3 power law region in the

IKE spectra, we analyze the time dynamics during the first stages of stirring by

Brownian potentials. In this section, we did not perform the cluster selection

procedure in order to keep track of the total IKE spectrum. Similar analysis of

the time evolution of the energy distribution has been carried out in previous

works [46, 19].

Fig. 9(a) shows the IKE spectra at four different times after the start of the

stirring. The corresponding wave vectors are marked with dashed lines in panel

(a). One sees that at the earlier time (225 ps, red dots) the kinetic energy is

mostly concentrated at large wave vectors (small size scales), which corresponds

to the injection scale (spot size, peak at approx. kξ = 0.3). Then the kinetic

energy is transferred from high wave vectors to lower wave vectors versus time.

This is directly visible on the IKE spectra. It is also quantitatively confirmed

in panel (b), showing the ratio of the spectral energy density measured at low

and high wave vectors. This ratio grows from 0 at early times, when there

is no energy at all at small wave vector, to about 15. One can see that this

process takes about 200 ps. This energy redistribution from small scales to large

scales due to the intervortex interactions clearly confirms the formation of the

inverse Kolmogorov cascade. The relative rapidity of this process provides an a

posteriori justification for neglecting the polariton lifetime (which can be of the

order of hundreds of ps) in the simulations. Interestingly, the energy spectrum at

500 ps shows a quite extended −5/3 slope without eliminating isolated vortices.

This situation corresponds to an optimal moment of time, when the Kolmogorov

cascade has built up, while the fraction of individual vortices remains low. The

dashed curve with hollow circles shown for comparison in the same figure for the

situation at 1 ns demonstrates a growth of the maximum at high wave vectors

due to the single vortices, which leads to the narrowing of the −5/3 region.

At even later moments of time, when the stirring stops, strong currents break

up some of the clusters increasing the relative fraction of individual vortices

even more (by up to 20%). The final conclusion is that at any moment of time
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removing the contribution of individual vortices allows to increase the scale of

the observation of the −5/3 cascade.

The difference in the IKE spectra for different stirring strategies stems from

the limited efficiency of the energy redistribution at large scales. If the energy

is injected at a scale which is too low, then the structures of the largest scales

just cannot form, because of the decay of the vorticity at all scales. We note

that the observed signature of the inverse cascade does not rule out the presence

of a direct one: the energy can be transferred from the injection point in both

directions. For us, the most important was to demonstrate the possibility of the

inverse cascade, debated for a long time.

4. Discussion and conclusion

The existence of the −5/3 cascade in 2D quantum turbulence is currently a

matter of scientific debate, and its direct observation is quite difficult, even in

numerical experiments. Even with the maximal efficiency of existing computing

hardware, using the massive parallelization provided by the GPU but without

recurring to supercomputers, we managed to clearly observe and fit the cascade

only over 1-2 orders of magnitude. In experiments, obtaining even 1 order of

magnitude might be quite challenging. While the scales of the experimental

observation in the best quality microcavity samples could cover several orders

of magnitude in space or wave vector thanks to the extended coherence length

of polariton quantum fluids, additional complications arise from the fact that

the high-wave vector limit for the cascade is not the healing length ξ (of the

order of 1 µm), but the mean intervortex distance determining kl = 2π
l . kl by

its nature is greater than ξ, and in our study it was typically one order greater:

tens of microns.

The relatively low density of the vortex gas leaves many single vortices out

of the interaction, preventing them from joining the fractal structures and par-

ticipating in the cascade. The numerical IKE spectra are dominated by these

single vortices with a characteristic −1 slope. Removing the single vortices
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Figure 9: a). Net IKE spectra obtained analytically for Brownian stirrers at several time

moments during stirring. b) Ratio of the spectral energy density at two wave vectors shown

by dashed lines in (a), as a function of time. Vertical lines in (b) correspond to the moments

of time in (a).
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while keeping the vortex clusters allows to observe the −5/3 IKE spectrum over

a larger scale for all stirring strategies. The usage of Brownian stirrers gives

the most extended −5/3 region on IKE spectrum after vortex clusters detection

procedure. Fitting confirms that the expected scaling falls within the bounds of

the confidence interval. We explicitly extract a non-integer (fractal) dimension

of the vortex clusters at the same scales.

We demonstrate that the observed −5/3 is a result of the energy redistribu-

tion during the initial moments of stirring. The energy is injected at relatively

small scales and transferred to the larger scales (smaller wave vectors). The

analysis of the time dependence of the energy stored in large-scale and small-

scale structures supports the hypothesis of the inverse energy cascade.

To conclude, the direct observation (using the angle-resolved luminescence

detection) of the −5/3 cascade in the energy spectrum still remains a challenging

task for polariton quantum fluids. It might require single-shot time-resolved

measurement of the amplitude and phase of the wave function, followed by the

clustering procedure. Still, among the different considered stirring procedures

the Brownian stirrers are preferable. Time-dependent studies should also allow

to observe the energy redistribution during the formation of the cascade.
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Appendix A. Definition of IKE spectrum

According to Ref. [46], the kinetic energy can be calculated for the wave

function via the density weighted velocity field in space domain:

E(i,c) =
m

2

∫
drn(r)

(
|v(i,c)x (r)|2 + |v(i,c)y (r)|2

)
, (A.1)
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where i and c indexes correspond to incompressible and compressible velocity

parts and n = |ψ|2 is the density. This requires obtaining an instantaneous

information on both density and phase of the quantum fluid, which can be

obtained using interferometry [81]. The equation above can be rewritten as

E(i,c) =
m

2

∫
dr
(
|u(i,c)x (r)|2 + |u(i,c)y (r)|2

)
, (A.2)

where the density-weighted velocity u(i,c) is defined as follows: u(i,c) =
√
nv(i,c).

The incompressible and compressible density-weighted velocity parts should

obey the following relations:

∇ · u(i) = 0

∇× u(c) = 0

These definitions straightly match with the Helmholtz decomposition of a

vector field to the incompressible and compressible parts.

Eq. (A.2) can be rewritten in the momentum domain

E(i,c) =
m

2

∫
dk
(
|u(i,c)x (k)|2 + |u(i,c)y (k)|2

)
, (A.3)

where u(i,c)(k) are the Fourier images of u(i,c)(r). The Fourier components

u(i,c)(k) of the incompressible and compressible density-weighted velocity parts

obey the following relation in the momentum domain:

k · u(i)(k) = 0,

k× u(c)(k) = 0.

If the angular dependence is integrated out, the spectral energy density can

be written as:

E(i,c)(k) =
mk

2

∫
dθ
(
|u(i,c)x (k)|2 + |u(i,c)y (k)|2

)
, (A.4)

where the absolute value k and the polar angle θ define the wave vector k. It

is this spectral energy density which is expected to scale as E(i)(k) ∝ k−5/3 in

both the direct and the inverse energy cascades.
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Appendix B. Numerical decomposition of the density-weighted ve-

locity field to compressible and incompressible parts

In order to ensure that the results we obtain are not method-dependent, we

have used several techniques of numerical decomposition of the velocity field

into compressible and incompressible parts. We present them in this section.

(i) The composition in the Fourier (momentum) domain

Incompressible components can be obtained from a given density-weighted

velocity field in the momentum domain u(k) as follows:

u(i)
α

(k) =
∑
β=x,y

(
δα,β −

kαkβ
k2

)
uβ(k), (B.1)

u(c)
α

(k) =
∑
β=1,2

kαkβ
k2

uβ(k), (B.2)

where α and β indices are the Cartesian coordinate directions.

(ii) Decomposition in the spatial domain

Here one operates fully in the spatial domain and the incompressible and

compressible velocity parts are defined via the vector potential Φ and scalar

potential φ as follows[79]:

u(i)(r) = ∇× Φ(r),

u(c)(r) = ∇ · φ(r).

The vector potential can be derived via

Φ(r′) =

∫
dr(∇× u)(r) ·G(r− r′)

−
∮
ds(n× u)(r) ·G(r− r′), (B.3)
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where G is the Green’s function of Poisson equation in the space of a given

dimensions. For the considered here 2D problem it is G(r− r′) = 1
2π ln(|r− r′|).

In 3D one should use G(r− r′) = 1
4π|r−r′| .

For the scalar potential φ one can write in the same manner

φ(r′) =

∫
dr(∇ · u)(r) ·G(r− r′)

−
∮
ds(n · u)(r) ·G(r− r′). (B.4)

In the numerical implementation, the integrals (B.3) and (B.4) can be taken as

a convolution of a matrix representing the curl of the velocity field ∇× u and

a matrix for a Green’s function G(r). The latter has a size of 2N × 2N with

the r = 0 corresponding to the center of the matrix: (N,N) cell (here N is the

mesh size).

After the incompressible u(i)(r) and compressible u(c)(r) parts of the density-

weighted velocity are derived, one makes the Fourier transform and uses the

formula (A.4). The second terms in Eqs. (B.3) and (B.4) can be omitted due to

periodic boundary conditions. The same is for widely used ”cup” simulations

due to zero density n at the boundaries.

(iii) Mixed decomposition

Eqs. (B.3) and (B.4) are de facto the solution of the following spatial domain

Poisson equations for the vector and scalar potentials:

∆Φ = ∇× u,

∆φ = ∇ · u,

with the source terms being the curl and the divergence of the given velocity

field u. These Poisson equations can be solved using the Fourier transform

scheme:

k2Φ = (∇× u)(k),

k2φ = (∇ · u)(k),
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Figure C.10: Verification of IKE spectra calculation. 3 numerical schemes: Fourier, Spatial,

Mixed (points) and analytical (curve). Gray points show the total kinetic energy (mostly

rotational and affected by bogolons only at low wave vectors). The mesh and the region size

parameters were the same as in other simulations, but the quantum fluid density was approx.

9 µm−2 (healing length ξ ≈5.5µm, corresponding wave vector denoted with black arrow).

Stirring was performed using four spoons. 8 vortices were generated.

In 3D space the written above systems contains 4 equations. For the actual 2D

case the curl of the field u aligned in (x, y) plane has only the z component and

thus one has only two equations.

Appendix C. Analytical derivation of IKE spectra schemes

The result of the comparison of 3 numerical schemes of IKE derivation and

analytical approach is given in Fig. C.10. Unlike other figures, the lower quan-

tum fluid density (9 µm−1) was used to give the possibility to look closer into

the vortex core.

Appendix D. Comparison of the IKE spectra

Fig. D.11 compares the IKE spectra analytically for all vortices and for

clustered vortices only. One sees that at low wave vectors the curves coincide

with high accuracy. It means that the macroscopic motion of the quantum fluid
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Figure D.11: IKE spectra obtained analytically for clustered vortices only (points) and for

all vortices (curves). One sees the high similarity at low wave vectors while for high wave

vectors energy for clusters goes down due to ”truncating” single vortices and dipoles. Red

arrow denotes the inverse characteristic intervortex distance.

is defined by the vortex clusters only. On the contrary, at the wave vectors

larger than wave vector kl the macroscopic motion can not be seen and IKE

spectrum magnitude is proportional to the number of vortices only. For such

stirring schemes like spoon or large cross number of clustered vortices is very

large and thus IKE spectra for all vortices and for clustered vortices nearly

coincide. On the contrary for GL, white noise, and Brownian spots schemes the

difference is significant: the number of clustered vortices is lower.

Appendix E. Clustering procedure

The formation of an energy cascade is necessarily accompanied with the

formation of spatial structures at different scales. For the incompressible part

of the quantum fluid, it means the formation of clusters of quantum vortices

of different sizes. To confirm the formation of such clusters and to separate

their contribution from that of an uncorrelated vortex gas, we use the cluster

detection technique described in the present section.

We follow the cluster selection procedure described in section VI of Ref. [59].
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We begin with the creating the list of vectors li = (l(i, 1), l(i, 2), ..., l(i,NOSi)),

consisting of the indices of the neighbors of i-th vortex sorted by increasing the

distance (i = 1..Nvort, where Nvort it the total amount of vortices). The latter

(or the only) member of li is the index of the nearest vortex of the opposite sign,

thus NOSi − 1 is the number of the same-signed neighbors of i-th vortex lying

closer than the Nearest Opposite Sign neighbor. After that, we create the l′i

vectors by dropping the last element and thus l′i vectors list only the neighbors

of the same sign of i-th vortex. In some cases (e.g. for vortex belonging to the

dipole) l′i can be empty.

At the first step, we find the vortex pairs by finding the pairs of i and j

indices so that NOSi = 1 and NOSl(i,1) = 1 is also equal to one. After that the

pair (i, l(i, 1)) is put to the list of connected vortices L.

At the second step, for all i and for all j ≤ NOSi−1 we put the pair (i, l′(i, j))

to the list of connected vortices L if l′l(i,j) contains index i. This procedure is in

fact the finding of mutual vortex pairings.

Then we consider the list of connected vortices L (containing both vortex

pairs and the clusters of the same-sign vortices) as a graph and separate its

connectivity components using the ConnectedGraphComponents routine of the

Mahtematica package. Each connectivity component is thus a cluster. If the

connectivity component consist of exactly two vortices with opposite circulation,

it is marked as a pair, otherwise it is counted as a cluster.

Appendix F. Box-counting fractal dimension

Figure F.12 illustrates the box-counting algorithm that we have used for the

determination of the fractal dimension of the structures formed by vortices. For

this, we considered the clusters of vortices of the same sign (for the opposite

sign the picture is the same). The box size shown in the figure is chosen as

an example of the transitional regime 2πξ/ε = 0.9. For smaller box sizes,

each vortex is covered with a single box and the system is effectively 0D. On

the contrary, for larger ε, all system is covered by boxes and thus it is 2D.
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Figure F.12: Illustration of the box counting algorithm applied to determine the fractal di-

mension of the patterns formed by votrtices. Box size corresponds to kξ = 0.9. Each vortex

is denoted with a red point. Only the same-sign vortices were taken into account. Panel a) is

for clustered vortices only and panel b) is for all vortices.

The spatial distribution of all vortices without cluster selection exhibits the 2D

nature already at this size scale and does not exhibit an evident transitional

regime.

To prove that the transitional region observed for clustered vortices indeed

corresponds to what one would expect for a fractal structure, we have compared

it with a set of randomly-distributed points and with a well-known fractal struc-

ture (Sierpinski triangle). The latter was generated by the so called chaos game

method. Starting from a randomly chosen point v1 in the triangle with the

vertices p1, p2, and p3, one consequentially makes the steps directed to ran-

domly chosen triangle vertex but passing only half of required distance. The

corresponding recurrent formula reads vi+1 = (vi + pri)/2, where ri a random

integer from 1 to 3. Such Sierpinski triangle-like patterns were generated for

320 points and then rescaled to give the same mean distance between the points

as the one observed in the vortex distributions (approx. 25ξ). Finally, all space

was tiled with a 2D lattice of such patterns to obey the transition to 2D regime

at large scales.

Figure F.13 allows to compare the size of the transitional region for randomly
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Figure F.13: Comparison of vortex clustering algorithm for clusters of vortices and artificially

generated patterns in the shape of Sierpinski triangle and random spatial distribution. The

power function of log2 3 ≈ 1.58 corresponds to the exact value of Sierpinski triangle fractal

dimension.

distributed points (blue), vortex structures arising from the turbulence (green),

and a perfect fractal structure of the Sierpinski triangle (orange). For random

points, this region is the smallest and no fractal dimension can be determined.

For the vortex clusters and the Sierpinski triangle, the transitional region is

much larger, and a fractal dimension of log2 3 can be determined correctly for

the Sierpinski triangle. We conclude therefore that vortex clusters indeed form a

fractal structure. The fact that the size of the transitional region for the vortex

clusters is slightly smaller than for the triangle could be partially explained by

the fact that the fractal dimensions are different, and the transition to the 2D

exponent is therefore smoother in the case of the Sierpinski fractal.

At the same time, Fig. F.13 shows clearly that in a finite-size system the

fractal dimension region does not have an infinite extension even for a perfect

self-similar distribution of points. In order to robustly observe the intermediate

regime with fractional Minkowski-Bouligand dimension one requires the system

size to be at least two orders higher than the average distance between the
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points. Practically, for polaritons such system sizes of several hundreds of mi-

crons are already achievable, and increasing them to the scale of 1 mm should

allow to significantly increase the reliability of the determination of the fractal

dimension.

Appendix G. Parameters of the stirrers

1. Large cross-like potential

The length of the cross was 860 µm and the width 100 µm (with additional 64

µm Gaussian filter-based smoothing of borders). The full 360◦ rotation took

1280 ps. The potential depth V = 10 meV. Duration of stirring was 1.5 ns and

total simulation time was 25 ns.

2. Gauss-Laguerres

The stirring was performed by 32 randomly placed rotating potentials during

first 0.5 ns (total simulation time was 25 ns). The potential depth V = 10 meV.

Profile of each stirrer was given by a superposition of the two 2nd order Gauss-

Laguerre beams. One of them was stationary and the second one was rotating.

To obtain the potential profile, the electric field magnitude square was taken.

The resulting profile resembled the 4 smoothed spots with the distance between

the opposite ones 20 µm, see also the sketch in Fig. 1. The full 360◦ rotation of

resulting potential (not the electric field) took 45 ps, which yields approximately

the same linear velocity as for large cross strategy.

3. Classical rotating spoon

The orbit diameter of the spoon was 632 µm. The shape of the spoon was given

by Ṽ (r) = (exp((r − 32µm)/(2.5µm)) + 1)−1. The full 360◦ rotation took 1280

ps as for the cross. The potential depth V = 10 meV. Duration of stirring was

3.0 ns and total simulation time was 25 ns.

4. Several spots in Brownian motion

The trajectory was obtained as a Beta Spline curve defined by the points ob-

tained by random walks. Distance of each step was fixed to 50 µm and the
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direction was random (30 ps between two steps). Hence, the speed of the spots

was approx 2 µm/ps. Number of spots was 10, total simulation time 50 ns, stir-

ring time 1.5 ns. The spots were in the shape of Gaussian profiles with the radii

of 7 µm and the potential depth V = 10 meV. The routine BSplineFunction

in the Mathematica package was used to obtain the curve.

5. White noise

White noise was obtained from 1024x1024 matrix of uniform random values

from 0 to 1 multiplied by the amplitude 80 meV. Then for smoothing and thus

bringing some finite spatial correlations the Fourier image was filtered with

the Gaussian function in reciprocal space. The width was of Gaussian was

2π
rcorrel

, where the correlation length rcorrel = 75 µm. Instantaneous switching

the potential to the new random realization was performed each 0.4 ps. Total

simulation time was 50 ns and the white noise potential was applied during the

first 5 ns.

Appendix H. Finite lifetime effects

Here, we show the results of a single simulation with a finite lifetime, which

confirm that our conclusions hold qualitatively for realistic polariton systems,

provided that pulsed pumping is used. We use the GPE with an additional

decay term describing the finite lifetime:

i
∂ψ

∂t
= −∆ψ + (V − iΓ)ψ +

(
|ψ|2 − 1

)
ψ, (H.1)

where Γ = ~/2τgn0 is the dimensionless decay rate (n0 is the initial density).

As discussed in the main text, the only effect of this term is the decay of particle

density and the associated increase of the healing length. This decay alone does

not lead to any particular driven-dissipative instabilities. On the contrary, the

finite lifetime reduces the instabilities existing in the conservative case, such as

the modulational instability [82], by reducing the growth rate of the pertur-

bations (determined by the imaginary part of their energy). If the maximal

growth rate drops to zero, the instability disappears, and therefore the system
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Figure H.14: Net IKE spectra obtained analytically for Brownian stirrers at several time

moments during stirring for a simulation with a finite lifetime τ = 300 ps.

becomes more stable than in the conservative case. This may indeed affect the

generation of vortex-antivortex pairs by the stirrers in the quantum turbulence

that we study: if the decay is sufficiently fast, no vortices will be generated at

all. However, in the limit of long lifetime Γ � gn (almost conservative case),

this reduction of the vortex generation is negligibly small, because the typical

instability growth rate is of the order of the interaction energy gn.

Figure H.14 shows the time evolution of the energy cascade during the stir-

ring, similar to Fig. 9 of the main text, but with a finite lifetime of τ = 300 ps.

The same energy transfer from higher to lower wave vectors can be seen, and the

formation of a large-scale k−5/3 cascade at t = 375 ps are clearly visible, exactly

like in the fully conservative simulation. Of course, at longer times (t = 1000

ps) the energy distribution starts to change, but there is a possibility to carry

out the measurements before it happens.

In this simulation the density decreases in time. As a result, the value to

which the energy is normalized (in fact the energy of a single vortex) is not

constant in time. Healing length ξ also increases with time. Thus, we have

chosen to fix the energy normalization in Figure H.14 to the value Ω0ξ
3
0 and the

wave vector normalization to be kξ0, where the quantities with subscript 0 are
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obtained at 375 ps. In order to have a time-average density similar to that of

Fig. 9, we start with a higher initial population.
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