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2D quantum turbulence in a polariton quantum fluid

Introduction

Turbulence is a peculiar kind of stochastic behavior with an emergent order, characterized by the formation of self-similar fractal structures at different scales. Soon after the famous work of Kolmogorov [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF], which determined the scaling -5/3 of a direct energy cascade with energy flowing from the injection scale towards smaller scales where it dissipates [START_REF] Obukhov | Spectral energy distribution in a turbulent flow[END_REF][START_REF] Barenblatt | The kolmogorov-obukhov exponent in the inertial range of turbulence: A reexamination of experimental data[END_REF], another seminal work by Kraichnan [4] predicted the possibility of the formation of an inverse cascade in URL: kon@mail.ioffe.ru (S. V. Koniakhin) Preprint submitted to Chaos, Solitons and Fractals November 21, 2019 2D fluids, where the energy is transferred towards larger scales with the associated self-organization of spatial patterns, similar to the formation of the Benard cells [START_REF] Benard | Étude expérimentale du mouvement des liquides propageant de la chaleur par convection. Régime permanent : tourbillons cellulaires[END_REF]. This result, confirmed numerically [START_REF] Lilly | Numerical simulation studies of two-dimensional turbulence: I. models of statistically steady turbulence[END_REF] and experimentally [START_REF] Sommeria | Experimental study of the two-dimensional inverse energy cascade in a square box[END_REF] in classical fluids, is based on the mutual incompatibility of the scalings of the cascades associated with 2 conserved quantities: the energy and the squared vorticity (enstrophy), which therefore have to be transferred in opposite directions.

The existence of a similar inverse cascade, suggested for quantum 2D turbulence [START_REF] Horng | Twodimensional quantum turbulence in a nonuniform bose-einstein condensate[END_REF], is actually still a matter of a strong debate [START_REF] Tsubota | Numerical studies of quantum turbulence[END_REF]. Contrary to the 3D quantum turbulence, observed in liquid helium [START_REF] Vinen | Mutual friction in a heat current in liquid helium ii i. experiments on steady heat currents[END_REF][START_REF] Skrbek | Quantum turbulence[END_REF][START_REF] Barenghi | Introduction to quantum turbulence[END_REF] and atomic condensates [START_REF] Tsubota | Quantum hydrodynamics[END_REF][START_REF] Allen | Quantum turbulence in atomic bose-einstein condensates[END_REF][START_REF] Stagg | Generation and decay of twodimensional quantum turbulence in a trapped bose-einstein condensate[END_REF][START_REF] White | Vortices and turbulence in trapped atomic condensates[END_REF][START_REF] Navon | Emergence of a turbulent cascade in a quantum gas[END_REF][START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF], the inverse cascade of 2D quantum turbulence remains elusive even in numerical simulations, let alone real experiments [START_REF] Tsubota | Numerical studies of quantum turbulence[END_REF][START_REF] Alexakis | Cascades and transitions in turbulent flows[END_REF].

Indeed, while several works [START_REF] Horng | Twodimensional quantum turbulence in a nonuniform bose-einstein condensate[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF] report the numerical observation of an inverse cascade with a scaling of -5/3, others argue against it [START_REF] Numasato | Direct energy cascade in twodimensional compressible quantum turbulence[END_REF]. The enstrophy in quantum fluids is proportional to the total number of quantum vortices, which can appear and (most importantly) disappear only in pairs. While there are arguments in favor of the formation of the enstrophy cascade [START_REF] Reeves | Enstrophy cascade in decaying two-dimensional quantum turbulence[END_REF], it is also argued by other authors [START_REF] Numasato | Direct energy cascade in twodimensional compressible quantum turbulence[END_REF] that the dissipation of enstrophy in quantum fluids could be expected to occur differently from the classical ones: instead of requiring a transfer to smallest scales, it could on the contrary be dissipated at any scale above the vortex size (healing length). For example, two very large clusters rotating in opposite directions and forming a dipole could dissipate vorticity along their mutual boundary, without requiring any transfer to smaller scales associated with the redistribution of vortices and formation of smaller clusters and isolated vortex pairs. So, the enstrophy cannot be a priori considered as a conserved quantity which is transferred over scales in order to be dissipated at the smallest ones, and thus the incompatibility of the scaling of cascades cannot be used to prove the existence of the inverse energy cascade. Still, the self-organization of individual vortices into clusters discussed theoretically [START_REF] Simula | Emergence of order from turbulence in an isolated planar superfluid[END_REF][START_REF] Kim | Role of thermal friction in relaxation of turbulent bose-einstein condensates[END_REF][START_REF] Groszek | Vortex thermometry for turbulent two-dimensional fluids[END_REF][START_REF] Groszek | Decaying quantum turbulence in a two-dimensional bose-einstein condensate at finite temperature[END_REF] and observed in recent experiments [START_REF] Gauthier | Giant vortex clusters in a two-dimensional quantum fluid[END_REF][START_REF] Johnstone | Evolution of large-scale flow from turbulence in a two-dimensional superfluid[END_REF] strongly suggests that the inverse cascade should exist.

Not only the conclusions of the scaling arguments are controversial, but the mathematical limits, imposed on numerical simulations by the properties of the real systems are so stringent, that they prevent one from drawing definite conclusions from the numerically observed energy cascades published in the most recent works. Indeed, one never observes a cascade over more than 1 decade of wave vectors in such simulations (and even in recent experiments with 3D

condensates [START_REF] Navon | Emergence of a turbulent cascade in a quantum gas[END_REF]), and the suggested scaling is usually not a fit of the spectral density, but only a guide for the eyes. Actually, since the spectral energy density often presents a transition between large and small scales (either at the injection scale or at the vortex size), any scaling exponent can be suggested as a tangent to such bell-like curve, and the interpretation is therefore highly arbitrary.

The recent progresses in semiconductor heterostructure manufacturing and spectroscopy techniques [START_REF] Kavokin | Cavity polaritons[END_REF][START_REF] Richard | Experimental evidence for nonequilibrium bose condensation of exciton polaritons[END_REF][START_REF] Wertz | Spontaneous formation and optical manipulation of extended polariton condensates[END_REF] make the polariton quantum fluids, formed in microcavities in the regime of strong light-matter coupling, a perfect playground for the experimental studies of Bose-Einstein condensates and associated phenomena like quantum turbulence [START_REF] Berloff | Turbulence in exciton-polariton condensates[END_REF]. The coherent propagation of a polariton quantum fluid has been observed at the scale L of hundreds of micrometers [START_REF] Wertz | Spontaneous formation and optical manipulation of extended polariton condensates[END_REF][START_REF] Hivet | Half-solitons in a polariton quantum fluid behave like magnetic monopoles[END_REF], and the expected coherence decay due to quantum and thermal fluctuations is of the order of several millimeters [START_REF] Solnyshkov | Hybrid boltzmann˘gross-pitaevskii theory of bose-einstein condensation and superfluidity in open driven-dissipative systems[END_REF] defining the lower cascade bound 1/L. The upper cascade bound 1/ξ is defined by another important parameter, namely the characteristic healing length ξ -the size of a quantum vortex. In the numerous experimental observations of quantum vortices in polariton quantum fluids [34,[START_REF] Lagoudakis | Probing the dynamics of spontaneous quantum vortices in polariton superfluids[END_REF][START_REF] Dominici | Interactions and scattering of quantum vortices in a polariton fluid[END_REF][START_REF] Caputo | Topological order and thermal equilibrium in polariton condensates[END_REF] this parameter was estimated to be of the order of a micron. This allows in principle to hope for the observation of an energy cascade in a well-developed turbulence over at least 2 decades of wave vector magnitude. Optical techniques allow studying the cascade in polariton quantum fluids either using interferential analysis [START_REF] Sanvitto | All-optical control of the quantum flow of a polariton condensate[END_REF][START_REF] Amo | Polariton superfluids reveal quantum hydrodynamic solitons[END_REF] of spatial images generated in single-shot experiments [START_REF] Baumberg | Spontaneous polarization buildup in a room-temperature polariton laser[END_REF][START_REF] Bobrovska | Dynamical instability of a nonequilibrium exciton-polariton condensate[END_REF][START_REF] Estrecho | Single-shot condensation of exciton polaritons and the hole burning effect[END_REF], or by direct energy spectrum analysis based on simpler to implement angle-resolved photoluminescence (PL) spectroscopy experiments.

The procedure of vortex creation is very important for the observation of the cascade both theoretically and experimentally. Previously, the schemes of "spoon"-stirring [START_REF] Reeves | Classical and quantum regimes of two-dimensional turbulence in trapped bose-einstein condensates[END_REF][START_REF] Reeves | Inverse energy cascade in two-dimensional quantum turbulence[END_REF][START_REF] Skaugen | Vortex clustering and universal scaling laws in two-dimensional quantum turbulence[END_REF] or flowing of the quantum fluid around a set of stationary defects [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF] were used. The artificial vortex imprinting [START_REF] Simula | Emergence of order from turbulence in an isolated planar superfluid[END_REF][START_REF] Salman | Long-range ordering of topological excitations in a two-dimensional superfluid far from equilibrium[END_REF] to the condensate was also used.

In this work, we perform an extensive study of quantum turbulence in scalar conservative quantum fluids, based on the Gross-Pitaevskii equation. We are using physical parameters of an idealized polaritonic quantum fluid providing a particularly large coherence length, but our results are certainly relevant to other types of quantum fluids, such as atomic condensates. We use the development of modern numerical techniques, such as the Graphics Processing Units (GPU), to maximize the accessible scales. We find that independently of stirring method, the system always contains a mixture of a gas of individual uncorrelated vortices and a fractal structure of vortex clusters. We demonstrate that an -5/3 energy cascade can be observed for the clusters over 1 order of magnitude of scale range at a 95% confidence level, whereas the gas of individual vortices generates a strong signal with a -1 power law, hindering the observation of the cascade. The fractal nature of the vortex structure is confirmed by the extraction of the fractal dimension. Time-dependent studies of the energy transfer suggest the inverse nature of the -5/3 cascade. The corresponding experimental measurements should be possible thanks to single-shot interferometry.

The paper is outlined as follows. In Section II, we present the Methods used in numerical simulations and analysis. In Section III, we present and discuss the results of the simulations. Conclusions are drawn in Section IV.

Additional results concerning verification of the numerical procedures are given in the Appendix.

Methods

The strong coupling of quantized excitonic and photonic modes in a planar microcavity [START_REF] Kavokin | Microcavities[END_REF] with one or several quantum wells can be described in the coupled oscillator model with the strong coupling Hamiltonian [START_REF] Hopfield | Theory of the contribution of excitons to the complex dielectric constant of crystals[END_REF]:

H =   E x V V E c   where E x = E x,0 + 2 k 2 /2m X is the energy of the quantum well exciton, E c = E c,0 + 2 k 2 /2m
ph is the energy of the photon in the cavity mode , k is the in-plane wave vector, m X ∼ m 0 is the exciton mass, m ph ∼ 3 × 10 -5 m 0 is the cavity photon mass (m 0 is the free electron mass), and V is the light-matter coupling constant (half of the Rabi splitting).

This coupling gives rise to the anticrossing of the excitonic and photonic modes, and the formation of polariton branches. In the following, we consider only the lower polariton branch in the parabolic approximation. The consequences of such approximation for the simulation of vortices shall be discussed below, together with the other approximations.

Simulation

The basic tool for numerical simulations of an interacting bosonic quantum fluid is the Gross-Pitaevski equation [START_REF] Bogoliubov | On the theory of superfluidity[END_REF][START_REF] Gross | Structure of a quantized vortex in boson systems[END_REF]. It has been used for the simulation of quantum turbulence in numerous papers [START_REF] Tsubota | Numerical studies of quantum turbulence[END_REF][START_REF] Simula | Emergence of order from turbulence in an isolated planar superfluid[END_REF][START_REF] Reeves | Classical and quantum regimes of two-dimensional turbulence in trapped bose-einstein condensates[END_REF] including ones devoted to studying the energy cascade [START_REF] Skaugen | Vortex clustering and universal scaling laws in two-dimensional quantum turbulence[END_REF][START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF] and behavior of single vortices [START_REF] Flayac | Electric generation of vortices in polariton superfluids[END_REF][START_REF] Pigeon | Sustained propagation and control of topological excitations in polariton superfluid[END_REF].

This equation can also be extended, to account for the thermal (uncondensed) part of the fluid [START_REF] Zaremba | Two-fluid hydrodynamics for a trapped weakly interacting bose gas[END_REF][START_REF] Kobayashi | Dissipation of gross-pitaevskii turbulence coupled with thermal excitations[END_REF], and for other effects, such as the energy relaxation [56],

finite lifetime and pumping [START_REF] Carusotto | Quantum fluids of light[END_REF]. However, the description of large-scale systems is difficult to be carried out at the level of full GPE numerical simulation of the quantum fluid, and in this case other models are used, such as the point particle gas approximation with the specific vortex-vortex potentials [START_REF] Kim | Role of thermal friction in relaxation of turbulent bose-einstein condensates[END_REF][START_REF] Yu | Emergent non-eulerian hydrodynamics of quantum vortices in two dimensions[END_REF][START_REF] Valani | Einstein-bose condensation of onsager vortices[END_REF][START_REF] Reeves | Enstrophy cascade in decaying two-dimensional quantum turbulence[END_REF].

The polaritonic quantum fluid is particularly well known for its non-equilibrium driven-dissipative features, due to the finite lifetime of polaritons usually determined by the quality factor of a cavity. In the present work, we deliberately neglect these features, trying to make an additional step towards the solution of the problem of inverse or direct nature of the quantum turbulence in the general case of conservative quantum fluids. Such description of the polariton fluid corresponds to the limiting case of long lifetime and fast relaxation processes [START_REF] Kasprzak | Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes[END_REF].

It is valid for pulsed excitation case with long lifetime, where the finite lifetime does not modify the dispersion; its only effect is the slow decay of density with the corresponding change of the healing length. For this reason, liquid helium and atomic condensates are usually considered as conservative, despite their decay via evaporation, which is clearly non-zero. It was also shown previously that polariton condensates can in many cases be well described as being at thermodynamic equilibrium [START_REF] Kasprzak | Formation of an exciton polariton condensate: Thermodynamic versus kinetic regimes[END_REF][START_REF] Wertz | Spontaneous formation of a polariton condensate in a planar gaas microcavity[END_REF][START_REF] Levrat | Condensation phase diagram of cavity polaritons in gan-based microcavities: Experiment and theory[END_REF][START_REF] Li | From excitonic to photonic polariton condensate in a zno-based microcavity[END_REF][START_REF] Solnyshkov | Hybrid boltzmann˘gross-pitaevskii theory of bose-einstein condensation and superfluidity in open driven-dissipative systems[END_REF]. On the contrary, our predictions should not be extended to the case of quasi-resonant pumping, where the laser is driving the system with a fixed frequency, and where the effects such as bistability are known to occur [START_REF] Baas | Optical bistability in semiconductor microcavities[END_REF]. The study of such configurations is left for future works. We also cannot make any conclusions on non-resonantly pumped polariton condensates in the non-equilibrium (kinetic) limit, where the relaxation is not sufficiently fast. These two configurations are described by various versions of the Gross-Pitaevskii equation with model-dependent additional terms, known to lead to different types of behavior [START_REF] Wouters | Excitations in a nonequilibrium bose-einstein condensate of exciton polaritons[END_REF][START_REF] Keeling | Spontaneous rotating vortex lattices in a pumped decaying condensate[END_REF][START_REF] Wouters | Superfluidity and critical velocities in nonequilibrium bose-einstein condensates[END_REF][START_REF] Wouters | Energy relaxation in onedimensional polariton condensates[END_REF][START_REF] Larré | Wave pattern induced by a localized obstacle in the flow of a one-dimensional polariton condensate[END_REF][START_REF] Chiocchetta | Non-equilibrium quasi-condensates in reduced dimensions[END_REF][START_REF] Solnyshkov | Hybrid boltzmann˘gross-pitaevskii theory of bose-einstein condensation and superfluidity in open driven-dissipative systems[END_REF][START_REF] Altman | Two-dimensional superfluidity of exciton polaritons requires strong anisotropy[END_REF][START_REF] Baboux | Unstable and stable regimes of polariton condensation[END_REF]. In this sense, our work is meant be used as a reference for comparison.

The Gross-Pitaevskii equation in dimensionless units reads:

i ∂ψ ∂t = -∆ψ + V ψ + |ψ| 2 -1 ψ, (1) 
where (x, y) = (x 0 , y 0 )/ξ (with healing length ξ = / √ 2gnm), t = t 0 gn/ ,

V = V 0 /gn, ψ = ψ 0 / √ n (the index 0 marks dimensional variables, n = |ψ 0 | 2
is the density of the fluid). Having in mind a particular implementation of a quantum fluid based on the exciton-polariton system, we use m = 5 × 10 -5 m 0 for the polariton mass (twice the cavity photon mass at zero detuning). g is the strength of the polariton-polariton interaction governed by the exciton-exciton interaction. It can be written as

g = 6E b X 2 c a 2 B , (2) 
where E b is an exciton binding energy, a B is the exciton Bohr radius and X c is the excitonic fraction. We take the g parameter equal to 5 µeVµm 2 , which coincides with the values given in Ref. [START_REF] Ferrier | Interactions in confined polariton condensates[END_REF] for GaAs 2D microcavities [START_REF] Bajoni | Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities[END_REF].

Operating with densities n ≈ 200 µm -2 yields healing length ξ close to 1µm. A typical time scale for polaritons t 0 = 1 ps corresponds to dimensionless t = 0.9.

Thus, one concludes that micrometers and picoseconds are quite natural units for consideration of the problem of turbulence in polariton quantum fluids.

In general, we take all parameters corresponding to the state-of-the-art GaAs microcavities, which offer the best performance for the possible observation of the studied effects. As said above, we neglect the finite lifetime, except in Appendix H shown for comparison. We also neglect the polarization effects, and the non-parabolicity of the polariton dispersion (which could change the k -3 spectrum of the vortex core). We also entirely neglect structural disorder effects which in real systems might play an important role in vortex dynamics.

Indeed, the chemical potential is one order of magnitude higher than the typical disorder amplitude in high-quality cavities. This is why it is reasonable to neglect such disorder as a first approximation. All these effects are left for future studies, for which the present work will serve as a reference. The choice of the polariton system is important because of the possibility of performing singleshot interference measurements, allowing the detection of the spatial position of vortices, as we discuss below. The choice of the polariton system is also motivated by its extended coherence [START_REF] Caputo | Topological order and thermal equilibrium in polariton condensates[END_REF], providing a large ratio between the maximal system size and the healing length.

In our numerical simulations, the time step was 0.01 ps and an N × N = 1024 × 1024 mesh was used. The Laplace operator was calculated using the Fourier transform with massive parallelization provided by the GPU ensuring a 14-fold speed increase and in time the third order Adams-Bashforth scheme was used. We used Matlab and Mathematica packages for numerical solution of DDGPE and further analysis. The size of the square-shaped space region where the simulation was performed was L =1024 µm, which corresponds to the maximal wave vector k max = √ 2πN/L ≈ 4µm -1 . Higher wave vectors are required for a better description of the vortex core. 

Stirring the quantum fluid

The main feature of the turbulence is the energy flow from the injection scale towards other scales. It is this flow that leads to the formation of self-similar spatial structures. A cascade should manifest itself in the so-called incompressible energy part, associated with rotation (see below). Thus, the observation of cascades, either direct or inverse, absolutely requires the formation of quantum vortices, and not just of density waves. In classical 2D turbulence, a simplest random-potential scheme has been shown to be sufficiently efficient for the observation of a large-scale inverse energy cascade [START_REF] Boffetta | Inverse energy cascade in twodimensional turbulence: Deviations from gaussian behavior[END_REF]. In quantum 2D turbulence, such method does not allow to create vortices efficiently, because, contrary to the classical case, creating a pair of well-defined vortices with a vanishing order parameter in their centres requires a finite amount of energy [START_REF] Jones | Motions in a bose condensate. IV. axisymmetric solitary waves[END_REF] 

E pair ≈ 6 2 n/m
precisely because these vortices are quantum.

As mentioned above, the first strategy used was the stirring by a propagating potential defect [START_REF] Reeves | Classical and quantum regimes of two-dimensional turbulence in trapped bose-einstein condensates[END_REF] or flow around stationary defects [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF]. Random imprinting of vortices followed by healing by simulation with imaginary time has also been used [START_REF] Salman | Long-range ordering of topological excitations in a two-dimensional superfluid far from equilibrium[END_REF][START_REF] Simula | Emergence of order from turbulence in an isolated planar superfluid[END_REF]. In polariton condensates, persistent vortices have already been shown to appear because of the flow of the condensate against a random potential [START_REF] Sanvitto | Persistent currents and quantized vortices in a polariton superfluid[END_REF].

In the present manuscript, we have compared several different stirring strategies (see Fig. 

Gauss-Laguerre (GL) beams

As we shall discuss below, these procedures inject energy at different scales.

To obtain a quasistationary configuration, we have used very long times for the stirring of the quantum fluid (5 ns), for its relaxation (20 ns), and for the averaging during the extraction of the cascade (5 ns). However, the analysis of the dynamics presented in the final part of the work demonstrates that the characteristic formation time of the cascade is of the order of 200 ps, which is much closer to the lifetimes of the state-of-the-art cavities.

Extraction of the energy spectra

The Kolmogorov energy cascade is expected to form in the Incompressible Kinetic Energy (IKE) spectral density, and its observation requires the separation of the density-weighted velocity field into the compressible and incompressible part [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Kowal | Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings[END_REF], with the selection of the latter. Importantly, the spectral energy density of the incompressible part of the velocity field can also be calculated analytically from the positions and the signs of the quantum vortices [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Skaugen | Vortex clustering and universal scaling laws in two-dimensional quantum turbulence[END_REF]. This is possible because the quantum fluid is irrotational and all the vorticity is concentrated only in vortices. One also needs such parameters of the quantum fluid as its density n, interaction constant g and polariton mass m. One writes the IKE spectral density (IKE spectrum) as

E (i) (k) = N vort Ωξ 3 F (kξ)G(k), (3) 
where F = Λ -1 f (kξΛ -1 ) is the single vortex spectrum, N vort is the total amount of vortices, Ω = 2π 2 n/(mξ 2 ) is the ensthropy quantum, the parameter Λ = 0.8249... and the function f (z) writes

f (z) = z 4 I 1 z 2 K 0 z 2 -I 0 z 2 K 1 z 2 . ( 4 
)
The function G(k) is shaped by the coordinates r i,j and the signs κ i,j of the vortices:

G(k) = 1 + 2 N vort Nvort-1 i=1 Nvort j=i+1 κ i κ j J 0 (k|r i -r j |) , (5) 
where the indices i and j enumerate all vortices.

This approach allows not only to find the total incompressible energy spectrum, but also to consider the contributions of single vortices and clusters separately [START_REF] Valani | Einstein-bose condensation of onsager vortices[END_REF][START_REF] Skaugen | Vortex clustering and universal scaling laws in two-dimensional quantum turbulence[END_REF], which turns out to be important in order to observe the Kolmogorov cascade at a large scale. The cluster selection algorithm was adopted from Refs. [START_REF] Reeves | Classical and quantum regimes of two-dimensional turbulence in trapped bose-einstein condensates[END_REF][START_REF] Valani | Einstein-bose condensation of onsager vortices[END_REF] with an additional optimization available in Mathematica.

The positions of vortices were determined from the phase of the wave function.

More details on the numerical methods can be found in the Appendix.

Results

In this section, we first study the total incompressible energy spectra for different stirring strategies. We show that, independently of the stirring strategy, It is natural [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF] to measure the IKE spectral density in the units of ensthropy For kξ between k l ξ and 1 one should observe the energy spectrum of a single vortex: k -1 , because at this scale a vortex does not have any neighbors to form any structures. For wave vectors larger than 1/ξ (short length scale), one obligatory observes a k -3 law which is a fingerprint of the vortex core wave function (this might be different for exciton-polaritons in some regimes because of their non-parabolic dispersion that we neglect here). In Fig. 2, all stirring strategies exhibit similar behavior at wave vectors higher than k l : there is a k -1 power law below 1/ξ and k -3 above 1/ξ.

Total IKE spectra

It is interesting to note that in Ref. [START_REF] Skaugen | Vortex clustering and universal scaling laws in two-dimensional quantum turbulence[END_REF] the -5/3 cascade signatures have been observed between k l and 1/ξ. In Refs. [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Reeves | Classical and quantum regimes of two-dimensional turbulence in trapped bose-einstein condensates[END_REF] there was also no transitional k -1 regime between 1/ξ and k l , and the -5/3 cascade started immediately after 1/ξ. The absence of an intermediate region with k -1 power law in these works might be explained by the short inter-vortex distance which is close to the healing length, or by a large variation in the intervortex distance.

Finally, the differences between stirring strategies can be observed in Fig. 2 at kξ smaller than 0.02-0.03. Indeed, the stirring based on the classical spoon and large cross generates large-scale vortex clusters. The energy injection for these strategies is still efficient at the scales of kξ = 0.01. The three other stirring procedures do not inject energy at large scales and the IKE spectra drop below kξ = 0.03. However, in all cases most of the energy spectrum is dominated by the signal arising from single vortices, which strongly hinders the observation of the Kolmogorov energy cascade because of the wide spreading of single vortex energy in k-space. So in the next section, we are going to change our treatment procedure using real space selection allowing to eliminate single vortices in order to keep only the part of the IKE located in clusters.

IKE spectra of clustered vortices

We are going to compute the IKE using the analytical procedure described in the Methods section and in the Appendix. This procedure is based on the detection of vortices in real space. Indeed, the knowledge of the wave function vortex position is known, the incompressible velocity field can be computed analytically (see Methods). Figure 3 shows the result of this procedure (for all stirring procedures). These results are compared with those obtained in the previous section based on a decomposition in reciprocal space. One can indeed check that the results obtained using both methods coincide for all stirring procedures, confirming the possibility to use the analytical treatment.

It is then possible to make one step further by determining if a given vortex is single, in a dipole, or in a cluster (details on the procedure are given in the Appendix). This is illustrated by Fig. 4 the inverse intervortex distance k l (red), and the inverse spot size (blue). A -5/3 power law is visible for all vortices and for clusters between kξ = 0.01 and kξ = 0.05, much lower than k l . The spectra differ above kξ > 0.05. The removal of the single vortex and dipole contributions reveals a very clear -5/3 slope over more than one order of magnitude, which was hidden in the total IKE spectra.

It becomes clear therefore, that the removal of single vortices is crucial for the analysis of the turbulence phenomena via the incompressible energy spectrum.

The excess of single vortices in the system is explained by the relatively low density of the vortex gas, preventing many vortices from participating in the interactions that allow building the inverse cascade starting from the inverse trajectory scale (orange arrow).

The power spectra computed with the same spatial selection procedure for all five stirring procedures are shown in Fig. 6. A -5/3 power law is now visible in all cases, and also extends over more than one order of magnitude over k.

This is demonstrating the presence of self-similar structures of vortices with their size varying from about 30 µm to 600 µm. In order to check that the observed power law indeed corresponds to the expected scaling of -5/3, we fit the IKE resulting from the analytical procedure with an allometric (power) function f = ax γ with fitting parameters a and γ (Fig. 7, dots and solid line). We use the non-linear least squares procedure with the Levenberg-Marquardt error minimization algorithm, with the confidence interval for parameter values obtained from the variance-covariance matrix using the asymptotic symmetry method. The fit shows that the expected value -1.( 6) is within the bounds of the confidence interval: γ = -1.5 ± 0.2, confirming the presence of the Kolmogorov scaling over more than one order of magnitude of wave vectors and energies. We stress that although the precision is relatively low, this is a true fit of the numerical experiment, and not just a guide for the eyes. The importance of performing a fit is underlined by the fact that even for a completely random arrangement of vortices (vortex gas) obtained without solving the Gross-Pitaevskii equation and so without any possible self-organization effects linked with quantum turbulence, the IKE spectrum naturally demonstrates a bell-like curve, which can have a tangent slope of a large scale cascade is really required to draw any conclusions on the quantum turbulence.

Analyzing power law dependencies can be particularly difficult, because one needs to confirm that the observed approximately linear distribution on the loglog plot is best explained by a power law [START_REF] Clauset | Power-law distributions in empirical data[END_REF], and not by some other distribution function (for example, exponential or log-normal). When there are no other means, one has to check if the distance of the measured distribution from the ideal one is not higher than for simulated power-law distributions. In a particular physical system, however, the power law energy distribution arises from the formation of the self-similar spatial structures, that is, fractal clusters.

In the next section, we analyze the spatial distribution of vortices in order to confirm that the observed power-law distribution is not accidental.

Fractal dimension of vortex clusters

The Kolmogorov's arguments for the existence of cascade in classical turbulence are based on the self-similarity of observed spatial patterns at different scales. This self-similarity in mathematics is what characterizes fractal struc-

tures. An inherent property of fractals is their non-integer dimensionality: a fractal formed of an infinite number of points on a plane is neither a 2D object like a polygone, nor a 0D object like a point, but something between the two. Thus, checking if the clusters of vortices exhibit a non-integer (fractal) dimension, allows us to prove that their spatial patterns are indeed self-similar, as required for the formation of an energy cascade. Such methods could be applied to the recent observation of vortex clusters in atomic condensates [START_REF] Gauthier | Giant vortex clusters in a two-dimensional quantum fluid[END_REF][START_REF] Johnstone | Evolution of large-scale flow from turbulence in a two-dimensional superfluid[END_REF].

One way to obtain the fractal dimension is the box-counting approach, and the corresponding dimension is called box-counting or Minkowski-Bouligand dimension. This approach consists in covering the studied object by a mesh with the cells (boxes) of size ε and counting the number of boxes required to fully cover the object N box (ε) for various the mesh sizes ε. For our case, we plot the curve of box count N box to cover all vortices vs. box size ε. The slope of tangent line for this curve finally gives the box-counting fractal dimension of the pattern formed by the clusters of vortices. The asymptotics of the curve are always integer (non-fractal): at small scales, each vortex is just a 0D point, whereas at large scales the whole system is just a 2D object. It is the existence of a large transition region between the two limits which determines the fractal dimension.

We consider only the best configuration -the case of Brownian stirrer. Vortices were treated as points with coordinates r i obtained from the wave function in the same manner as for analytical calculation of IKE spectra. The system size was 2048 µm. For this analysis, we were only using vortices of the same sign.

The results of the analysis are shown in Fig. 8 together with the IKE spectrum shown for reference. The box size ε is given in terms of the corresponding wave vectors 2π/ε, to have a common horizontal axis with the energy distribution plots. We calculate the fractal dimension for clustered vortices and compare it with that of all vortices (which serve as a non-fractal reference). For clustered vortices (red curve), a clear transitional regime is present between the 2D and 0D limits, with the fractional dimension of ≈ 0.6. The scale range at which this regime is present straightly matches with the region of -5/3 power law in IKE spectra, confirming that the energy cascade originates from the self-similarity.

For comparison, the case of all vortices (black line) shows an immediate transition between the 0D and 2D asymptotics, confirming the absence of a fractal structure in this case. We therefore conclude that the clustered vortices exhibit a well-defined fractal dimension confirming the self-similarity of their structure at the same range of scales where the energy cascade is observed.

To check the applicability and robustness of the realization of the box counting approach, the comparison with a random distribution of points and with an artificially created pattern in the shape of the Sierpinskii triangle have been carried out (see Appendix).

In the next subsection, we study the time evolution of the energy spectra in order to establish the nature (direct or inverse) of the observed energy cascade.

Dynamics of the energy redistribution and cascade formation

In order to understand the formation of a -5/3 power law region in the IKE spectra, we analyze the time dynamics during the first stages of stirring by Brownian potentials. In this section, we did not perform the cluster selection procedure in order to keep track of the total IKE spectrum. Similar analysis of the time evolution of the energy distribution has been carried out in previous works [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF][START_REF] Reeves | Inverse energy cascade in forced two-dimensional quantum turbulence[END_REF]. The difference in the IKE spectra for different stirring strategies stems from the limited efficiency of the energy redistribution at large scales. If the energy is injected at a scale which is too low, then the structures of the largest scales just cannot form, because of the decay of the vorticity at all scales. We note that the observed signature of the inverse cascade does not rule out the presence of a direct one: the energy can be transferred from the injection point in both directions. For us, the most important was to demonstrate the possibility of the inverse cascade, debated for a long time.

Discussion and conclusion

The existence of the -5/3 cascade in 2D quantum turbulence is currently a matter of scientific debate, and its direct observation is quite difficult, even in numerical experiments. Even with the maximal efficiency of existing computing hardware, using the massive parallelization provided by the GPU but without recurring to supercomputers, we managed to clearly observe and fit the cascade only over 1-2 orders of magnitude. In experiments, obtaining even 1 order of magnitude might be quite challenging. While the scales of the experimental observation in the best quality microcavity samples could cover several orders of magnitude in space or wave vector thanks to the extended coherence length of polariton quantum fluids, additional complications arise from the fact that the high-wave vector limit for the cascade is not the healing length ξ (of the order of 1 µm), but the mean intervortex distance determining k l = 2π l . k l by its nature is greater than ξ, and in our study it was typically one order greater: tens of microns.

The relatively low density of the vortex gas leaves many single vortices out of the interaction, preventing them from joining the fractal structures and participating in the cascade. The numerical IKE spectra are dominated by these single vortices with a characteristic -1 slope. Removing the single vortices where i and c indexes correspond to incompressible and compressible velocity parts and n = |ψ| 2 is the density. This requires obtaining an instantaneous information on both density and phase of the quantum fluid, which can be obtained using interferometry [START_REF] Sala | Spin-orbit coupling for photons and polaritons in microstructures[END_REF]. The equation above can be rewritten as

E(k)/(Ωξ 3 ) k -5/3 k -1
E (i,c) = m 2 dr |u (i,c) x (r)| 2 + |u (i,c) y (r)| 2 , (A.2)
where the density-weighted velocity u (i,c) is defined as follows:

u (i,c) = √ nv (i,c) .
The incompressible and compressible density-weighted velocity parts should obey the following relations:

∇ • u (i) = 0 ∇ × u (c) = 0
These definitions straightly match with the Helmholtz decomposition of a vector field to the incompressible and compressible parts.

Eq. (A.2) can be rewritten in the momentum domain

E (i,c) = m 2 dk |u (i,c) x (k)| 2 + |u (i,c) y (k)| 2 , (A.3)
where u (i,c) (k) are the Fourier images of u (i,c) (r). The Fourier components u (i,c) (k) of the incompressible and compressible density-weighted velocity parts obey the following relation in the momentum domain:

k • u (i) (k) = 0, k × u (c) (k) = 0.
If the angular dependence is integrated out, the spectral energy density can be written as:

E (i,c) (k) = mk 2 dθ |u (i,c) x (k)| 2 + |u (i,c) y (k)| 2 , (A.4)
where the absolute value k and the polar angle θ define the wave vector k. It is this spectral energy density which is expected to scale as 

E (i) (k) ∝ k -5/
∆Φ = ∇ × u, ∆φ = ∇ • u,
with the source terms being the curl and the divergence of the given velocity field u. These Poisson equations can be solved using the Fourier transform scheme: 9 µm -2 (healing length ξ ≈5.5µm, corresponding wave vector denoted with black arrow).

k 2 Φ = (∇ × u)(k), k 2 φ = (∇ • u)(k), E(k)/(Ωξ 3 ) k -1 k -3
Stirring was performed using four spoons. 8 vortices were generated.

In 3D space the written above systems contains 4 equations. For the actual 2D case the curl of the field u aligned in (x, y) plane has only the z component and thus one has only two equations.

We begin with the creating the list of vectors l i = (l(i, 1), l(i, 2), ..., l(i, NOS i )), consisting of the indices of the neighbors of i-th vortex sorted by increasing the distance (i = 1..N vort , where N vort it the total amount of vortices). The latter (or the only) member of l i is the index of the nearest vortex of the opposite sign, thus NOS i -1 is the number of the same-signed neighbors of i-th vortex lying closer than the Nearest Opposite Sign neighbor. After that, we create the l i vectors by dropping the last element and thus l i vectors list only the neighbors of the same sign of i-th vortex. In some cases (e.g. for vortex belonging to the dipole) l i can be empty.

At the first step, we find the vortex pairs by finding the pairs of i and j indices so that NOS i = 1 and NOS l(i,1) = 1 is also equal to one. After that the pair (i, l(i, 1)) is put to the list of connected vortices L.

At the second step, for all i and for all j ≤ NOS i -1 we put the pair (i, l (i, j))

to the list of connected vortices L if l l(i,j) contains index i. This procedure is in fact the finding of mutual vortex pairings.

Then we consider the list of connected vortices L (containing both vortex pairs and the clusters of the same-sign vortices) as a graph and separate its connectivity components using the ConnectedGraphComponents routine of the Mahtematica package. Each connectivity component is thus a cluster. If the connectivity component consist of exactly two vortices with opposite circulation, it is marked as a pair, otherwise it is counted as a cluster. The spatial distribution of all vortices without cluster selection exhibits the 2D nature already at this size scale and does not exhibit an evident transitional regime.

F. Box-counting fractal dimension

To prove that the transitional region observed for clustered vortices indeed corresponds to what one would expect for a fractal structure, we have compared it with a set of randomly-distributed points and with a well-known fractal structure (Sierpinski triangle). The latter was generated by the so called chaos game method. Starting from a randomly chosen point v 1 in the triangle with the vertices p 1 , p 2 , and p 3 , one consequentially makes the steps directed to randomly chosen triangle vertex but passing only half of required distance. The corresponding recurrent formula reads v i+1 = (v i + p ri )/2, where r i a random integer from 1 to 3. Such Sierpinski triangle-like patterns were generated for 320 points and then rescaled to give the same mean distance between the points as the one observed in the vortex distributions (approx. 25ξ). Finally, all space was tiled with a 2D lattice of such patterns to obey the transition to 2D regime at large scales. distributed points (blue), vortex structures arising from the turbulence (green), and a perfect fractal structure of the Sierpinski triangle (orange). For random points, this region is the smallest and no fractal dimension can be determined.

For the vortex clusters and the Sierpinski triangle, the transitional region is much larger, and a fractal dimension of log 2 3 can be determined correctly for the Sierpinski triangle. We conclude therefore that vortex clusters indeed form a fractal structure. The fact that the size of the transitional region for the vortex clusters is slightly smaller than for the triangle could be partially explained by the fact that the fractal dimensions are different, and the transition to the 2D exponent is therefore smoother in the case of the Sierpinski fractal.

At the same time, Fig. F. [START_REF] Tsubota | Quantum hydrodynamics[END_REF] shows clearly that in a finite-size system the fractal dimension region does not have an infinite extension even for a perfect self-similar distribution of points. In order to robustly observe the intermediate regime with fractional Minkowski-Bouligand dimension one requires the system size to be at least two orders higher than the average distance between the points. Practically, for polaritons such system sizes of several hundreds of microns are already achievable, and increasing them to the scale of 1 mm should allow to significantly increase the reliability of the determination of the fractal dimension.

direction was random (30 ps between two steps). Hence, the speed of the spots was approx 2 µm/ps. Number of spots was 10, total simulation time 50 ns, stirring time 1.5 ns. The spots were in the shape of Gaussian profiles with the radii of 7 µm and the potential depth V = 10 meV. The routine BSplineFunction in the Mathematica package was used to obtain the curve. 

Appendix H. Finite lifetime effects

Here, we show the results of a single simulation with a finite lifetime, which confirm that our conclusions hold qualitatively for realistic polariton systems, provided that pulsed pumping is used. We use the GPE with an additional decay term describing the finite lifetime:

i ∂ψ ∂t = -∆ψ + (V -iΓ) ψ + |ψ| 2 -1 ψ, (H.1)
where Γ = /2τ gn 0 is the dimensionless decay rate (n 0 is the initial density).

As discussed in the main text, the only effect of this term is the decay of particle density and the associated increase of the healing length. This decay alone does not lead to any particular driven-dissipative instabilities. On the contrary, the finite lifetime reduces the instabilities existing in the conservative case, such as the modulational instability [START_REF] Kuznetsov | Instability and collapse of solitons in media with a defocusing nonlinearity[END_REF], by reducing the growth rate of the perturbations (determined by the imaginary part of their energy). If the maximal growth rate drops to zero, the instability disappears, and therefore the system becomes more stable than in the conservative case. This may indeed affect the generation of vortex-antivortex pairs by the stirrers in the quantum turbulence that we study: if the decay is sufficiently fast, no vortices will be generated at all. However, in the limit of long lifetime Γ gn (almost conservative case), this reduction of the vortex generation is negligibly small, because the typical instability growth rate is of the order of the interaction energy gn. In this simulation the density decreases in time. As a result, the value to which the energy is normalized (in fact the energy of a single vortex) is not constant in time. Healing length ξ also increases with time. Thus, we have chosen to fix the energy normalization in Figure H.14 to the value Ω 0 ξ 3 0 and the wave vector normalization to be kξ 0 , where the quantities with subscript 0 are
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 1 Figure 1: Schematic representation of the employed stirring strategies. a) Large cross, b) Classical spoon, c) Brownian spots d) White noise e) Gauss-Laguerre potential

  1): a) Large cross-like potential b) Classical rotating spoon c) Several spots in brownian motion d) White noise with spatial correlations (for comparison with a classical fluid [76]) e) Several small potential wells defined by the intensity of the interference of 2

3 )Figure 2 :

 32 Figure 2: The IKE spectra obtained numerically by decomposition in the reciprocal space for different stirring strategies. The red arrow is for the inverse intervortex distance k l .

Figure 2

 2 Figure2shows the IKE spectra obtained for various stirring strategies. The incompressible energy part was separated by decomposition in the reciprocal space (see Methods). One can expect to observe the -5/3 power law cascade in the IKE spectrum only between the wave vectors k L = 2π/L (L is the system size) and k l = 2π/l, where l is the mean inter-vortex distance (l was approximately 20 µm in most number of our simulations and thus k l ξ ≈ 0.3). In Fig.2, such power law is visible only for the cross and spoon stirring, and only in a narrow wave vector range (in the vicinity of kξ = 0.02). In this figure, k l is marked by a red arrow. The difficulty to observe the -5/3 power law characteristic for the formation of multiscale structures is explained by the large contribution of single vortices, as we show in the next section.

Ωξ 3 .

 3 According to the definition, the function F (kξ) is of the order of 1 at kξ = 1 and the function G(k) ≈ 1 at k k l . Thus, in the vicinity of the point kξ = 1 the magnitude of IKE spectrum estimates the total amount of vortices in the system N vort .

3 )Figure 3 :

 33 Figure3: IKE spectra obtained numerically (points) and analytically for all vortices (solid lines). In the range from 0.02 to 1 kξ both methods give the same result.

  showing a snapshot of the phase of the quantum fluid stirred by Brownian potentials. The winding of each vortex is shown by colour (+1 -red, -1 -blue). Single and dipole vortices are marked by small circles. Vortices belonging to clusters are marked by large circles. One clearly sees that a large fraction of vortices (about 50%) belong to clusters. At the same time, it is natural that the signal from the other 50% that are not in clusters is quite important in the total IKE spectrum.
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 5435 Figure 5 compares the IKE spectra with and without selection of clustered vortices. Arrows mark the characteristic scales from which the inverse cascade might be expected to start: the inverse Brownian trajectory scale (orange),

E(k)/(Ωξ 3 )Figure 6 :

 36 Figure 6: The analytically obtained IKE spectra for all 5 stirring strategies for the clustered vortices only. The red arrow is for inverse intervortex distance k l . The vertical lines cut the range where -5/3 power law is observed.
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 5337 Figure 7: IKE spectrum for Brownian stirrers (clusters only) with a power-law fit giving γ = -1.5 ± 0.2 (expected -1.66).
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 8 Figure 8: Fractal (box-counting) dimension of vortex clusters. Solid curves show the dependence of box counts to cover all vortices on the size of the boxes. Dots are for analytical IKE spectra. Red color is used for clustered vortices and black color is used for all vortices. Dashed lines give the eye guides for some important powers. Red arrow shows the characteristic intervortex distance (limit of the 0D regime).

Fig. 9 (

 9 Fig.9(a) shows the IKE spectra at four different times after the start of the stirring. The corresponding wave vectors are marked with dashed lines in panel (a). One sees that at the earlier time (225 ps, red dots) the kinetic energy is mostly concentrated at large wave vectors (small size scales), which corresponds to the injection scale (spot size, peak at approx. kξ = 0.3). Then the kinetic energy is transferred from high wave vectors to lower wave vectors versus time. This is directly visible on the IKE spectra. It is also quantitatively confirmed in panel (b), showing the ratio of the spectral energy density measured at low and high wave vectors. This ratio grows from 0 at early times, when there is no energy at all at small wave vector, to about 15. One can see that this process takes about 200 ps. This energy redistribution from small scales to large scales due to the intervortex interactions clearly confirms the formation of the inverse Kolmogorov cascade. The relative rapidity of this process provides an a posteriori justification for neglecting the polariton lifetime (which can be of the order of hundreds of ps) in the simulations. Interestingly, the energy spectrum at 500 ps shows a quite extended -5/3 slope without eliminating isolated vortices. This situation corresponds to an optimal moment of time, when the Kolmogorov cascade has built up, while the fraction of individual vortices remains low. The dashed curve with hollow circles shown for comparison in the same figure for the situation at 1 ns demonstrates a growth of the maximum at high wave vectors due to the single vortices, which leads to the narrowing of the -5/3 region. At even later moments of time, when the stirring stops, strong currents break up some of the clusters increasing the relative fraction of individual vortices even more (by up to 20%). The final conclusion is that at any moment of time
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 9 Figure 9: a). Net IKE spectra obtained analytically for Brownian stirrers at several time moments during stirring. b) Ratio of the spectral energy density at two wave vectors shown by dashed lines in (a), as a function of time. Vertical lines in (b) correspond to the moments of time in (a).
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 3 in both the direct and the inverse energy cascades. where G is the Green's function of Poisson equation in the space of a given dimensions. For the considered here 2D problem it is G(r -r ) = 1 2π ln(|r -r |). In 3D one should use G(r -r ) = 1 4π|r-r | . For the scalar potential φ one can write in the same mannerφ(r ) = dr(∇ • u)(r) • G(r -r ) -ds(n • u)(r) • G(r -r ). (B.4)In the numerical implementation, the integrals (B.3) and (B.4) can be taken as a convolution of a matrix representing the curl of the velocity field ∇ × u and a matrix for a Green's function G(r). The latter has a size of 2N × 2N with the r = 0 corresponding to the center of the matrix: (N, N ) cell (here N is the mesh size). After the incompressible u (i) (r) and compressible u (c) (r) parts of the densityweighted velocity are derived, one makes the Fourier transform and uses the formula (A.4). The second terms in Eqs. (B.3) and (B.4) can be omitted due to periodic boundary conditions. The same is for widely used "cup" simulations due to zero density n at the boundaries. (iii) Mixed decomposition Eqs. (B.3) and (B.4) are de facto the solution of the following spatial domain Poisson equations for the vector and scalar potentials:

Figure C. 10 :

 10 Figure C.10: Verification of IKE spectra calculation. 3 numerical schemes: Fourier, Spatial, Mixed (points) and analytical (curve). Gray points show the total kinetic energy (mostly rotational and affected by bogolons only at low wave vectors). The mesh and the region size parameters were the same as in other simulations, but the quantum fluid density was approx.

Figure F. 12 Figure F. 12 :

 1212 Figure F.12 illustrates the box-counting algorithm that we have used for the determination of the fractal dimension of the structures formed by vortices. For this, we considered the clusters of vortices of the same sign (for the opposite sign the picture is the same). The box size shown in the figure is chosen as an example of the transitional regime 2πξ/ε = 0.9. For smaller box sizes, each vortex is covered with a single box and the system is effectively 0D. On the contrary, for larger ε, all system is covered by boxes and thus it is 2D.
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 13582513 Figure F.13 allows to compare the size of the transitional region for randomly

5 .

 5 White noiseWhite noise was obtained from 1024x1024 matrix of uniform random values from 0 to 1 multiplied by the amplitude 80 meV. Then for smoothing and thus bringing some finite spatial correlations the Fourier image was filtered with the Gaussian function in reciprocal space. The width was of Gaussian was 2π r correl , where the correlation length r correl = 75 µm. Instantaneous switching the potential to the new random realization was performed each 0.4 ps. Total simulation time was 50 ns and the white noise potential was applied during the first 5 ns.

Figure H. 14 :

 14 Figure H.14: Net IKE spectra obtained analytically for Brownian stirrers at several time moments during stirring for a simulation with a finite lifetime τ = 300 ps.

Figure H. 14

 14 Figure H.14 shows the time evolution of the energy cascade during the stirring, similar to Fig. 9 of the main text, but with a finite lifetime of τ = 300 ps.The same energy transfer from higher to lower wave vectors can be seen, and the formation of a large-scale k -5/3 cascade at t = 375 ps are clearly visible, exactly like in the fully conservative simulation. Of course, at longer times (t = 1000 ps) the energy distribution starts to change, but there is a possibility to carry out the measurements before it happens.
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Appendix A. Definition of IKE spectrum

According to Ref. [START_REF] Bradley | Energy spectra of vortex distributions in two-dimensional quantum turbulence[END_REF], the kinetic energy can be calculated for the wave function via the density weighted velocity field in space domain:

Appendix B. Numerical decomposition of the density-weighted velocity field to compressible and incompressible parts

In order to ensure that the results we obtain are not method-dependent, we have used several techniques of numerical decomposition of the velocity field into compressible and incompressible parts. We present them in this section.

(i) The composition in the Fourier (momentum) domain

Incompressible components can be obtained from a given density-weighted velocity field in the momentum domain u(k) as follows:

where α and β indices are the Cartesian coordinate directions.

(ii) Decomposition in the spatial domain

Here one operates fully in the spatial domain and the incompressible and compressible velocity parts are defined via the vector potential Φ and scalar potential φ as follows [START_REF] Kowal | Velocity field of compressible magnetohydrodynamic turbulence: wavelet decomposition and mode scalings[END_REF]:

The vector potential can be derived via is defined by the vortex clusters only. On the contrary, at the wave vectors larger than wave vector k l the macroscopic motion can not be seen and IKE spectrum magnitude is proportional to the number of vortices only. For such stirring schemes like spoon or large cross number of clustered vortices is very large and thus IKE spectra for all vortices and for clustered vortices nearly coincide. On the contrary for GL, white noise, and Brownian spots schemes the difference is significant: the number of clustered vortices is lower.

Appendix E. Clustering procedure

The formation of an energy cascade is necessarily accompanied with the formation of spatial structures at different scales. For the incompressible part of the quantum fluid, it means the formation of clusters of quantum vortices of different sizes. To confirm the formation of such clusters and to separate their contribution from that of an uncorrelated vortex gas, we use the cluster detection technique described in the present section.

We follow the cluster selection procedure described in section VI of Ref. [START_REF] Valani | Einstein-bose condensation of onsager vortices[END_REF].

Appendix G. Parameters of the stirrers

Large cross-like potential

The length of the cross was 860 µm and the width 100 µm (with additional 64

µm Gaussian filter-based smoothing of borders). The full 360 • rotation took 1280 ps. The potential depth V = 10 meV. Duration of stirring was 1.5 ns and total simulation time was 25 ns.

Gauss-Laguerres

The stirring was performed by 32 randomly placed rotating potentials during first 0.5 ns (total simulation time was 25 ns). The potential depth V = 10 meV.

Profile of each stirrer was given by a superposition of the two 2 nd order Gauss-Laguerre beams. One of them was stationary and the second one was rotating.

To obtain the potential profile, the electric field magnitude square was taken.

The resulting profile resembled the 4 smoothed spots with the distance between the opposite ones 20 µm, see also the sketch in Fig. 1. The full 360 • rotation of resulting potential (not the electric field) took 45 ps, which yields approximately the same linear velocity as for large cross strategy.

Classical rotating spoon

The orbit diameter of the spoon was 632 µm. The shape of the spoon was given by Ṽ (r) = (exp((r -32µm)/(2.5µm)) + 1) -1 . The full 360 • rotation took 1280 ps as for the cross. The potential depth V = 10 meV. Duration of stirring was 3.0 ns and total simulation time was 25 ns.

Several spots in Brownian motion

The trajectory was obtained as a Beta Spline curve defined by the points obtained by random walks. Distance of each step was fixed to 50 µm and the