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Topological Physics relies on the specific structure of the eigenstates of Hamiltonians. Their

geometry is encoded in the quantum geometric tensor 1 containing both the celebrated Berry

curvature 2, crucial for topological matter 3, and the quantum metric 4. The latter is at

the heart of a growing number of physical phenomena such as superfluidity in flat bands

5, orbital magnetic susceptibility 6, 7, exciton Lamb shift 8, and non-adiabatic corrections to

the anomalous Hall effect 6, 9. Here, we report the first direct measurement of both Berry

curvature and quantum metric in a two-dimensional continuous medium, together with the

related anomalous Hall drift of an accelerated wavepacket. The studied platform is a pla-

nar microcavity of extremely high finesse, in the strong coupling regime 10. It hosts mixed

exciton-photon modes (exciton-polaritons) subject to photonic spin-orbit-coupling 11, which
∗These authors contributed equally: A. Gianfrate, O. Bleu
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makes emerge Dirac cones 12, and to exciton Zeeman splitting, breaking time-reversal sym-

metry. The monopolar and half-skyrmion pseudospin textures are measured by polarisation-

resolved photoluminescence. The associated quantum geometry of the bands is extracted and

allows to predict the anomalous Hall drift, which we independently measure using high reso-

lution spatially-resolved epifluorescence. Our results unveil the intrinsic chirality of photonic

modes which is the cornerstone of topological photonics 13–15. They validate experimentally

the semiclassical description of wave packet motion in geometrically non-trivial bands 9, 16.

The use of exciton-polaritons (interacting photons) opens wide perspectives for future studies

of quantum fluid physics in topological systems.

One of the striking manifestations of topological effects in Physics is the conductance quan-

tization in the two-dimensional (2D) quantum Hall effect (QHE). This perfect quantization relies

on a topological invariant characterising the global band properties: the Chern number. Non-zero

Chern numbers are associated with the chiral conducting edge states in topological insulators and

superconductors 3. Beyond electronic systems, topological band concepts have been extended to a

variety of wave systems covering photonics 14, 15, acoustics 17, cold atoms 18, and even geophysics

19.

Topological effects are not encoded in the energy spectrum of the system but rely on the

non-trivial geometry of the eigenstates. It is the gauge invariant quantum geometric tensor (QGT)

that contains the structural information about the eigenstates of a parametrised Hamiltonian. The

QGT has a symmetric real part which defines the quantum metric characterising distances between
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states 4 in a parameter space. Its antisymmetric imaginary part determines the Berry curvature 2

whose momentum space distribution is crucial in modern Physics. Locally, it is responsible for the

anomalous Hall transport 16 in the intrinsic spin Hall and valley Hall effects. Its integral over a 2D

closed manifold gives the Chern number. On the other hand, the quantum metric, related to the

concept of fidelity in quantum information theory, also describes important physical phenomena.

It can probe quantum phase transitions when defined in an arbitrary parameter space 20. The

momentum space metric affects the electronic orbital magnetic susceptibility 6, 7 in crystals and

the exciton Lamb shift in Transitional Metal Dichalcogenides 8. It characterises superfluidity and

bogolon current in flat bands 5, 21 and also corrections to the semiclassical equations describing the

anomalous Hall effect 6, 9.

The extension of topological concepts from solid state physics to other classical or quantum

systems has opened new possibilities for measuring local geometrical properties of bands, and not

only the global ones (like the conductivity in QHE). Several protocols have been proposed to mea-

sure the Berry curvature 22, 23. Experimental reconstructions via indirect dynamical measurements

have been reported 24, 25. The parameter space geometry of two-level systems has been explored

experimentally even more recently 26, 27. In this work, we present a direct measurement of the full

momentum space QGT (Berry curvature and quantum metric) of the 2D bands of a homogeneous

system. Furthermore, we measure independently the dynamics of an accelerated wavepacket which

demonstrates anomalous Hall drift. This drift is reproduced by semiclassical equation of motion

9, 16 including the measured band geometry as an input parameter.

3



Our experimental platform is a high-quality planar microcavity (Q > 105) with embedded

quantum wells supporting 2D strongly coupled exciton-photon bands (Supplementary Figure 6) 10.

Each band is doubly polarisation degenerate and forms a pseudo-spinor. The polarisation degen-

eracy is lifted by the photonic splitting between TE and TM (Transverse-Electric and Transverse-

Magnetic) eigenmodes 11 and, under magnetic field, by the exciton Zeeman splitting. The polarised

polariton eigenstates are exactly determined by a Fourier space mapping of polarisation-resolved

photoluminescence (PL). They exhibit non-zero Berry curvature and quantum metric as discussed

below.

Before presenting the measurements, let us remind the properties of an effective two-band

Hamiltonian 28 describing, in the conservative limit, the lower polariton branch in the circular

polarisation basis 10:

Hk =

 ~2k2
2m∗ + ∆z α− βk2e−2iϕ

α− βk2e2iϕ ~2k2
2m∗ −∆z

 (1)

where m∗ = mlmt/(ml + mt), with ml and mt being the longitudinal and transverse effective

masses. k = |k| =
√
k2H + k2V is the in-plane wavevector (kH = k cosϕ, kV = k sinϕ, ϕ is

the propagation angle). ∆z is the polariton Zeeman splitting (due to the excitonic part). α is

the optical birefringence, unavoidable in crystalline systems. It leads to a k-independent splitting

between horizontally and vertically (HV) polarised states. β quantifies the k-dependent TE-TM

splitting, ubiquitous in 2D photonic systems, which makes 2D photonic bands geometrically non-

trivial. This 2 × 2 Hamiltonian can be decomposed in Pauli matrices, describing the interaction
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Figure 1: Experimental setup and the Poincaré sphere a) Scheme of the polarisation tomography

experiment. The incoming pump laser (bottom right) is focused onto the sample held in the cryogenic

superconductive magnet (bottom left). The emission is recollected, polarisation filtered and the momentum

space optically rebuilt at the entrance slits of a spectrometer (top) with energy resolution (top left). The

Zeeman splitting is highlighted in the inset. b) Pseudospin (Stokes vector) orientation on the Poincaré

sphere parametrised by the angles θ and φ. The pseudospin coordinates S1, S2, S3 are measured trough the

polarisation degree of emission of one state on the Horizontal/Vertical (HV), Diagonal/Anti-diagonal (DA),

and circular Right/Left (RL) polarisation basis [Eq. (5)].
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between an effective magnetic field and a pseudospin:

Hk =
~2k2

2m∗
I + Ω(k).σ (2)

S = 〈σ〉 is here the polarisation pseudospin of light. The effective field reads:

Ω(k) =


α− βk2 cos 2ϕ

−βk2 sin 2ϕ

∆z

 (3)

Eigenstates have their pseudospin parallel and anti-parallel with the effective field. The QGT

components are linked with the variation of the pseudospin orientation in k-space as 28:

gij =
1

4
(∂kiθ∂kjθ + sin2 θ∂kiφ∂kjφ)

Bz =
1

2
sin θ(∂kiθ∂kjφ− ∂kjθ∂kiφ) (4)

with gij the metric components and Bz the Berry curvature, which cancels if the TE-TM spin-

orbit coupling vanishes (β = 0). θ(k) and φ(k) are polar and azimuthal angles parametrising the

eigenstate ψ =
(
cos θ

2
e−iφ, sin θ

2

)T and the pseudospin position on the Poincaré sphere [Fig. 1(b)]

with θ = arccosS3 and φ = arctanS2/S1. These quantities are computed analytically28 from the

eigenstates of (1) (Supplementary Note 1).

The sample studied is a high-quality microcavity with a 100 ps lifetime (Methods). The

experimental setup is shown in Fig. 1(a). The measurements are executed at 4K in a reflection

configuration under an applied external magnetic field. We first use off-resonant continuous wave

laser excitation. PL is measured versus the 2D wavevector and energy for all 6 polarisation axes of

the Poincaré sphere (Fig. 1(b)). For each wavevector, the energies of the polarization doublet are
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found by Gaussian fitting of the emission. Their pseudospin is determined from the polarisation

intensities as:

S1(k) =
IH − IV
IH + IV

, S2(k) =
ID − IA
ID + IA

, S3(k) =
IR − IL
IR + IL

(5)

The k-space pseudospin distribution then allows to compute the QGT components of each branch

using Eq. (4).

Figure 2 shows the 0 T measurements (no Zeeman splitting, ∆z = 0) at zero exciton-photon

detuning (Methods). The energy dispersion extracted from the raw PL (Methods, Supplementary

Note 2) is shown in Fig. 2(a) (inset shows the energy difference). By fitting the dispersion, we

obtain the polariton mass m = (9.2 ± 0.1) × 10−5m0 (m0 is the free electron mass), the TE-TM

splitting 2β = 26.3 ± 0.3 µeVµm2, and the birefringence (HV-splitting) 2α = 15.3 ± 0.6 µeV at

k = 0. If this HV splitting were zero (α = 0), the dispersion would be composed of two parabola of

different masses touching at k = 0, similar to the quadratic band degeneracies in bilayer graphene.

The Berry phase accumulated along a closed loop around the band touching point would be 2π

(Berry topological charge 1). When the HV-splitting is non-zero (α 6= 0), as in our sample, the

cylindrical symmetry is broken. Along kH , the lowest energy mode has the smallest mass. The

two parabola cross at k0 =
√
α/β ≈ 0.8 µm−1 where the TE-TM and HV- splitting compensate.

Along kV such points are absent, since both contributions add up. This is visible in Fig. 2(b,c),

showing the HV and DA polarisation degree of the lower band (the circular polarisation degree is

zero at 0 T).

The degeneracy points, marked by crosses, are tilted Dirac cones, around which the effective
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Figure 2: Emergence of pseudospin monopoles. Data from PL at 0 T. a) The two eigenmode energies

along the two orthogonal momentum directions kH and kV . The zero is at ∼ 1600 meV (bottom of the po-

lariton branch). Inset: eigenmodes energy splitting. Points - experimental data. Solid lines - fit with Eq. (1).

(b,c) HV and DA polarisation degree maps of the lower mode in the full 2D momentum space. The crosses

mark the degeneracy points. (d,e) The corresponding in-plane pseudospin (S1, S2) texture distribution in

k-space, shown on a wide scale (d), and zoomed on one of the crossing points (e), demonstrating a monopole

pseudospin texture. (f) k-space distribution of the trace of the quantum metric tensor (gHH + gV V ), peaked

around the two monopoles.
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field and pseudospin textures look like 2D monopoles [Fig. 2(d,e)]. The breaking of the TE-TM

rotational symmetry by the HV field induces the separation of the TE-TM vector field of winding

number 2 into a pair of 2D monopoles of winding 1, but of opposite divergences. Each monopole

carries a Berry topological charge 1/2, so that the band topology does not depend on the HV-

splitting, but the band geometry does. The Berry curvature of each monopole is a delta function,

whereas the metric has a finite extension measured in Fig. 2(f). Therefore, any finite-duration mea-

surement of the Berry phase performed making a loop around these points should show a deviation

from the adiabatic value of π quantified by this metric distribution. These effective monopoles

can be mapped to emergent non-Abelian gauge fields acting on photons 12. Interestingly, the met-

ric distribution around the crossing points is not cylindrically symmetric, which might be due to

non-hermiticity 29.

Now we break the time-reversal symmetry, applying a 9 T magnetic field described by the

Zeeman term ∆z. The field also makes the exciton-photon detuning slightly negative (Methods)

because of the exciton diamagnetic shift. Panel 3(a) shows the dispersions along kH and kV , as

in Fig. 2(a) (inset shows the energy difference). The modes are now split everywhere in k-space

and at k = 0 the energy splitting is ≈ 102 µeV. The crossing along kH becomes an anticrossing.

The splitting at the anti-crossing point is the polariton Zeeman splitting 2∆z = 100.9 ± 0.6 µeV

caused by the excitonic part (exciton g-factor ∼ 0.2). It is ten times larger than the linewidth of

our ultra-high quality sample which is quite significant, despite the optical frequency operation.

The measured polarisation degrees are shown in Figs. 3(b-d). The polarisation at k = 0 becomes

elliptical. The circular polarisation degree decreases along kV and increases along kH up to ±k0,
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Figure 3: Broken time-reversal symmetry: Emergence of half-skyrmion pseudospin textures.

Data from PL at 9T. a) Energy dispersion along kH and kV . Anticrossing of the branches is observed

instead of their crossing. The polarisation bands are split for all wave-vectors (see inset, where along kV ,

the splitting has a non-zero minimum). (b,c,d) RL, HV, and DA polarisation degree maps of the lower energy

mode. The crosses mark the anti-crossing points. e) Pseudospin distribution in k-space, zoomed near one of

the crossing points. The in-plane pseudospin (S1, S2) is shown by the white arrows, S3 amplitude is shown

by colour.
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Figure 4: Berry curvature and quantum metric distributions. (a-d) - experiment (PL at 9 T). k-

space distribution of QGT elements: (a) Berry curvature Bz , (b) gHH , (c) gV V , (d) gHV , extracted using

Eq. (4). (e-h) - theory. The computation is based on the effective Hamiltonian (1) and Supplementary Note

1.

where it becomes close to 1. A zoom on the measured pseudospin texture around k0 is shown in

Fig. 3(e), exhibiting a part of a half-skyrmion, as expected.

The k-space distributions of the Berry curvature and of the three components of the quantum

metric tensor, extracted from the experimental data of Fig. 3 using Eq. (4), are shown in Figs. 4(a-

d). They are compared with analytical calculations [Figs. 4(e-h), Supplementary Note 1] performed

using the parameters extracted from the dispersions in Fig. 2(a), 3(a). Without HV-splitting, the

Berry curvature would be circularly symmetric, whereas for a dominating HV-splitting the distri-

bution would be concentrated around the anti-crossing points. Here, we are between these two
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limiting cases. A similar procedure applied to the second polarisation branch (Supplementary Fig-

ure 4) confirms that the two branches are cross-polarised, show opposite Berry curvatures and the

same quantum metric elements.

A consequence of non-trivial band geometry is the anomalous Hall drift of an accelerated

wavepacket which appears as a correction in the semiclassical equation of motion 16:

~
∂r

∂t
=

∂E

∂k
+ F×B (6)

where r is the wavepacket center of mass, E(k) is the dispersion, F(k) is the accelerating force,

B = Bzez. The acceleration is provided by the thickness gradient of the microcavity. The result-

ing energy gradient accelerates polaritons like an electric field accelerates charges. We choose a

sample region with the largest gradients of 6 meV/mm and negative exciton-photon detuning. The

gradient is measured independently (Supplementary Note 3) and exhibits a slight spatial variation

(saddle-type potential). We selectively excite the lower polariton branch at k = 0 with a cw laser

(30 µm size spot). Fig. 5(a) shows the spatial distribution of the intensity at±9 T (removing noise)

under elliptically-polarised excitation of the lower eigenstate (Methods). The two traces separate

along their propagation. This is confirmed in Fig. 5(b), showing the measured centre-of-mass tra-

jectories, well reproduced by numerical simulations based on the semiclassical equation (6), using

as input parameters the potential and the Berry curvature distribution computed using (1),(4) and

the experimentally fitted parameters. Interestingly, this saddle-like potential magnifies the drift by

a factor 1.6 with respect to a constant gradient (Supplementary Note 3). The oscillations of ex-

perimental trajectories are attributed to sample disorder. They remain smaller than the significant

global drift. The role of non-adiabaticity on the trajectories, quantified by the quantum metric 9,
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b)

c)

a)

Figure 5: Polariton anomalous Hall effect. cw resonant excitation of the lower polariton mode at

k = 0 with 30 µm size excitation spot. For (a) and (b) the polarisation is elliptical corresponding to the

polarisation of the eigenstate. (a) Spatial distribution of emission at +9 T (pink) and -9 T (blue). (b) Center

of mass trajectory at +9 T and -9 T respectively. The experiment is shown by squares with error bars and

theory based on the semiclassical equation by solid lines. (c) The polarisation of excitation is circular which

leads to oscillations of the intensity of emission in the cross-circular polarisation (black – experiment, blue

– theory).
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cannot be evidenced here considering the experimental uncertainties. However, non-adiabaticity

can be increased by modifying the excitation conditions. Fig. 5(c) shows the cross-polarised emis-

sion when the excitation is circularly polarised, slightly exciting the upper polarisation eigenstate

(black – experiment, blue – full Schrödinger simulation, Supplementary Note 3). The contrast of

these oscillations is the non-adiabatic fraction, also given by the distance between the quantum

states at k = 0 and k = k0 determined from the metric gij (Supplementary Note 4) as:

|f1|2 ≈

 |ψ0(k0)〉∫
|ψ0(0)〉

√∑
ij

gij
dki

dt

dkj

dt
dt


2

(7)

where dt is taken along the shortest distance path. The distance that we estimate from the oscilla-

tions is 0.16± 0.02, while the expression (7) gives 0.18± 0.03, showing a remarkable agreement.

Our experiments provide a measure of both the full non-trivial band geometry of a 2D contin-

uous system and, independently, real space wavepacket motion demonstrating anomalous Hall ef-

fect and non-adiabaticity. It supports the validity of the semiclassical approach and band geometry

to compute wavepacket dynamics. Our results demonstrate that 2D photonic modes, because they

are TE and TM polarised, carry topological charges, essential for topological photonics. Indeed,

by using an appropriate lattice, the geometrically non-trivial bulk photon dispersion transforms

into gapped topologically non-trivial photonic Bloch bands 13–15, 30, 31 whose QGT can be explored

by our technique 28. The polaritonic platform (interacting photons) able to demonstrate lasing and

quantum fluid behaviour (superfluidity, quantized vortices...) opens wide perspectives for topolog-

ical physics. It already brought striking breakthroughs, such as topological lasers 32, and offers

exciting possibilities, such as mixing different topological effects related to quantum vortices and
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band structures 33.

Methods

Sample details. The sample used for this experiment is a high quality-factor 3/2 λ GaAs/AlGaAs

planar cavity. The advanced control of molecular beam epitaxy (MBE) of the grower results in a

quality factor widely exceeding 100.000, the associated lifetime τ for the lower polariton branch

surpass 100 ps. This lifetime is measured making propagation experiments at negative exciton-

photon detuning, as done in 34, 35. Moreover, the quantum wells show large areas (up to several

hundreds of µm) free from defects. The cavity contains 12 GaAs quantum wells, 7 nm thick,

organised in groups of 4 placed at three anti-node positions of the electric field. The front (back)

mirror consists of 34 (40) pairs of AlAs/Al0.80Ga0.20As layers. The exciton energy is Eexc =

1.611 eV and the Rabi splitting is ~ΩR ≈ 16 meV at 0 T. The full polariton dispersion measurement

evidencing the exciton-photon anticrossing is shown in the Supplementary Figure 6.

The exciton diamagnetic shift (red shift) is 4 meV at 9 T. The oscillator strength increases

when applying 9 T, leading to a 17% increment of the Rabi splitting. These two effects almost

compensate each other, resulting in a small blueshift of the bottom of the lower polariton branch of

0.4 meV at 9 T. The exciton-photon detuning (see below) is therefore more negative by 4 meV at

9 T with respect to 0 T. This detuning change remains relatively moderate compared with the Rabi

splitting value. The exciton fraction of the exciton-polariton is reduced from 0.5 at 0 T to about

0.4 at 9 T while the photon fraction increases from 0.5 to about 0.6. The exciton diamagnetic shift

and the increase of the exciton oscillator strength are well-known effects due to the decrease of the
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exciton Bohr radius under magnetic field 36, 37.

Exciton-photon detuning. One of the most important parameters controlling the properties

of exciton-polaritons is the exciton-photon detuning 10, which is the difference between the ener-

gies of the two bare resonances at k = 0: δ = Ephot − Eexc. This parameter controls the excitonic

and photonic fractions of the lower polariton branch, or rather their deviation from the equal val-

ues of 50% at δ = 0. For example, the excitonic fraction (square of the Hopfield coefficient) for

relatively small detunings reads: x(δ) ≈ 1/2+δ/2~ΩR. As an example, going towards negative de-

tuning makes polaritons more photonic, which means (among other things) that the exciton-related

Zeeman splitting ∆z decreases, while the photon-related spin-orbit coupling β increases.

In order to perform the two experiments, the QGT and the Anomalous Hall Drift (AHD)

measures shown in the main text, we selected two different regions of the same wafer. For the

QGT measure, we selected a central region of the sample at δ = 0 meV at 0T. On the other hand,

in order to have the adiabatic acceleration needed to observe the AHD effect, we selected a lateral

region of the same wafer showing a rapid change in the energy of the lower polariton branch, (≈

3 nm/mm), and a negative detuning of δ ≈ −10 meV.

Experimental setup to measure the QGT. The microcavity is cooled to 4 K in a closed

loop helium cryostat equipped with a superconductive magnet able to generate a field onto the

sample that spans from -9 to 9 T in a Faraday configuration (external magnetic field perpendicular

to the microcavity plane).

For the measurement of the QGT, the excitation is performed by an off-resonant linearly po-
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larized continuous wave 2 µm laser spot, tuned to the first minimum of the stopband oscillations

in order to maximize the injection. The sample excitation and polaritonic PL collection is per-

formed in a reflection scheme, by means of a wide numerical aperture objective (0.86), resulting in

a 14 µm−1 field of view. A 8 µm−1 portion of k space is then reconstructed on the monochromator

slits so that the PL can be energetically resolved. In order to avoid any loss of information of k

space, the entire detection line is built in a 2f configuration and the needed polarisation filtering is

performed in the real space plane. The polarisation response of the setup is characterised prior to

the experiments. The raw PL data are collected by an automatised Labview routine able to perform

a complete tomography in any of the 3 polarisation bases (H/V, A/D, and R/L), via the sequential

passage of light through a couple of motorised quarter- and half-waveplates and a polariser. The

energy mapping onto the charge-coupled device (CCD) camera is performed throughout a 550 cm

monochromator equipped with a 1800 lines/mm grating and slits aperture set to 80 µm. For each

polarisation, a scan of 561 images is acquired, each containing a I(E, kV ) map at a given kH ,

upon moving a translational stage mounting the final lens by steps of 12 µm. In this way, a 3D

set of PL data [I(E, kH , kV )] is collected in any of the 6 polarisation states. The image energy

resolution is δE = 0.015 nm. The momentum resolution are δkV = 0.008 µm−1 · pixel−1 and

δkH = 0.014 µm−1 · frame−1, corresponding to the momentum magnification with respect to the

CCD pixel size and scan lens movement step, respectively.

Experimental setup to measure polariton anomalous Hall effect. The anomalous Hall

drift experiment is also performed in reflection configuration, in the same cryostat at the same

temperature and magnetic field conditions, but using a 3 cm focal distance doublet ensuring a real
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space field of view exceeding 500 µm. Resonant excitation of the lower polariton mode at k = 0

is performed, with a polarisation of excitation which is adjusted to the one of the eigenstates. The

chosen region of the sample exhibits the highest gradients 34.

The experimental uncertainties for all types of measurements are discussed in Supplementary

Note 5.

Numerical analysis. We start by fitting the total intensity for each wavevector (kH , kV ) with

a double Gaussian curve, which allows to find the energies of the two eigenstates (E±). Then,

the intensities of the 6 polarisation components are obtained at the energies of the eigenstates

by integration within the Gaussian width, and the components of the pseudospin calculated from

these intensities. If the modes are almost degenerate in total intensity, with the energy difference

falling below the inhomogeneous broadening, they can often still be distinguished by studying

the spectra in polarisation components separately. This allows to resolve the branches for small

energy differences. The pseudospin maps of the lower and upper eigenstates encoded in the angles

θ and φ are then smoothed with a low-pass filter eliminating the noise. Finally, the components of

the QGT are calculated from the pseudospin with Eqs. 4. The gradient is obtained by the Green-

Gauss method with simple face averaging. Parallel computing is used to accelerate the treatment

of 4.6× 109 experimental data points. The final resolution of the QGT components is 1024× 561.
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Abstract

This supplementary material is composed of five notes. The first note presents ana-
lytical formula used to compute the quantum metric and Berry curvature and which are
taken from [1]. In the second note, we present the raw Photoluminescence data and the
deconvolution procedure used to obtained the experimental data presented in the main
manuscript. The third note discusses the measurements of the anomalous Hall drift. The
fourth note concerns the associated non-adiabaticity and quantum metric effects. Finally,
the fifth note presents the estimates of the experimental uncertainties.

The Supplementary Figures present the raw PL data (Suppl. Figs. 1-3), extracted
experimental images of the Berry curvature and the quantum metric of the upper po-
larisation mode (Suppl. Fig. 4), additional trajectories and profiles for the anomalous
Hall drift (Suppl. Fig. 5) and, finally, polariton dispersion measurement on a large scale
(Suppl. Fig. 6) evidencing exciton-photon anticrossing.

∗These authors contributed equally: A. Gianfrate, O. Bleu
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Supplementary Note 1. Analytical expressions for quan-

tum metric and Berry curvature

For a given band, the elements of the quantum geometric tensor can be defined as:

T
(n)
ij =

∑
m6=n

〈ψm| ∂kiHk |ψn〉 〈ψn| ∂kjHk |ψm〉
(Em − En)2

(1)

where Hk is the k-dependent Hamiltonian, |ψn〉 and En the corresponding eigenstates and
eigenenergies (n is the band index). The quantum metric tensor and the Berry curvature
tensor are obtained from real symmetric and the imaginary antisymmetric part of (1):

g
(n)
ij = Re

[
T

(n)
ij

]
, Ω

(n)
ij = −2 Im

[
T

(n)
ij

]
= i
(
T

(n)
ij − T

(n)
ji

)
(2)

For a two-band system, these definitions imply that the metric elements of each band are equal
g
(1)
ij = g

(2)
ij whereas the Berry curvature ones are opposite. In three dimensional space, the

Berry curvature can be represented as a pseudo-vector B(n) =
(

Ω
(n)
23 ,Ω

(n)
31 ,Ω

(n)
12

)T
. Since the

system under study is a planar structure, the only non-zero component of B(n) is out of the
plane, along the z-direction.

Starting with the effective Hamiltonian presented in the main text, one can obtain the
analytical expressions of the quantum geometric tensor elements:

gHH =
β2
(
k2H (α− k2β)

2
+ k2∆2

z

)
(α2 + 2 (k2V − k2H)αβ + k4β2 + ∆2

z)
2

gV V =
β2
(
k2V (α + k2β)

2
+ k2∆2

z

)
(α2 + 2 (k2V − k2H)αβ + k4β2 + ∆2

z)
2

gHV =
β2kHkV (α2 − k4β2)

(α2 + 2 (k2V − k2H)αβ + k4β2 + ∆2
z)

2

Bz =
2β2k2∆z

(α2 + 2 (k2V − k2H)αβ + k4β2 + ∆2
z)

3/2
(3)

In the figure 4 of the main text, we use the above expressions for a direct comparison with the
experimental extraction, the value of α, β, and ∆z being extracted from the experimental data.
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Supplementary Note 2. Raw Photoluminescence data and

its treatment

The Supplementary Figure 1 shows the raw PL spectra versus kH measured at 9 T: (a) - total
intensity, (b) - left-circular, (c) - right-circular. One can see that the lines are well resolved, with
the splitting exceeding their broadening (of all origins) everywhere. They show a substantial
circular polarisation degree near k = 0.

The Supplementary Figure 2 shows the photoluminescence intensity measured again at 9 T
in the four linear polarisation projections: horizontal (a), vertical (b), diagonal (c), and anti-
diagonal (d), versus the wave vector k at a given energy (4.5 meV above k = 0), where the
mode structure is governed by the TE-TM splitting. One clearly sees the presence of two
interleaved circles. For each direction in the reciprocal space, the polarisations of the inner and
outer circles are orthogonal. The polarisation patterns, presented in the main text (Fig. 2(b,c),
Fig. 3(b,c,d)) are extracted from these types of measurements.

One should note, however, that the energy difference between modes is quite smaller at
0 T, where the modes are even crossing at two points in reciprocal space. The Supplementary
Figure 3(a) shows the total intensity taken at 0 T along kH respectively. One can see that
the mode splitting close to k = 0 is not straightforwardly resolved since the splittings are
comparable with the linewidth. This is imposing the use of a standard deconvolution procedure
to extract the two modes energy and polarisations for each wave vector. We ultimately used
this procedure to treat all the sets of data.

The measured k-space polarisation patterns of the main text, even if very clear, show some
short scale fluctuations due to the experimental setup. These fluctuations would induce errors
in the computation of the quantum geometric tensor elements, because their calculation requires
taking derivatives. We therefore use a low-pass spectral filtering procedure. The procedure is
based on the 2D Fourier transform of the k-space polarisation, removal of the fluctuations, and
inverse Fourier transform. This allows to get a pseudo spin texture cleaned of experimental noise
(Fig. 2(d,e), Fig. 3(e)) and then to compute the different elements of the quantum geometric
tensor shown in Fig. 2(f) and Fig. 4(a-d).

In order to compensate the inevitable angles between the axes of the CCD camera (x,y), the
polarizer axes (H,V), and the crystallographic axes of the sample, we have rotated the in-plane
components of the Stokes vector for all measured points, and the points themselves. This allows
to use a single set of axes throughout the manuscript. The Supplementary Figure 2 shows an
example of non-rotated data.
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Supplementary Note 3. Anomalous Hall effect

In this supplementary note, we discuss the anomalous Hall effect and the details of its mea-
surement. First, we provide a simple analytical estimate based on the monopolar nature of the
gauge field arising in the reciprocal space because of the interplay of the constant XY field with
the k-dependent TE-TM effective field. Then, we discuss the treatment of the experimental
data and the different types of corresponding numerical simulations.

A monopolar in-plane effective field combined with a Zeeman splitting is equivalent to the
well-studied configuration of the 2D Dirac Hamiltonian, which describes not only relativistic
electrons and positrons in 2D, but also many analog systems, in particular, the wide class
of 2D materials (graphene, transitional metal dichalcogenides). The maximal anomalous Hall
drift due to the Berry curvature in such systems can be simply estimated as the double of the
Compton electron wavelength, which is the combination of parameters of the Dirac equation
with the dimensions of length:

λCompt =
~
mc

(4)

The parameters m and c in our case should be chosen to describe the dispersion at the an-
ticrossing point k0 =

√
α/β: the slope of the dispersion c is given by ~c =

√
βα/2, and the

mass corresponds to the splitting of the branches mc2 = ∆z, which gives the estimation for the
maximal anomalous Hall drift:

∆YAHE =

√
2βα

∆z

(5)

This expression can be compared with the anomalous Hall drift without the in-plane field found
in [2]:

∆Y0 =

√
βΓ2(3/4)√

∆z

√
π

(6)

An important difference is that the dependence on the Zeeman splitting changes: it is stronger in
presence of the in-plane field α, because the Berry curvature becomes completely concentrated
in the anticrossing points, and not distributed along a ring in the reciprocal space.

A stronger sensitivity to the Zeeman splitting allows to increase the anomalous Hall drift
by shifting towards more negative detunings. With the parameters extracted from the ex-
perimental dispersion in the main text corrected by the detuning δ = −10 meV we obtain
∆YAHE ≈ 0.7 µm.

The experiment on the polariton anomalous Hall drift is discussed in the main text and
shown in Fig. 5(a). Here, we discuss the details of the treatment of the experimental data used
to obtain the trajectories shown in Fig. 5(b). We start with the spatial distribution of intensity
I(x, y) for two configurations (+9 and -9 T). First, we determine the average propagation
direction (black arrow in Fig. 5(a)), which is chosen as the horizontal (X) axis. Then, for each
point along X, we calculate the center of mass position of the wave packet in the transverse
direction (Y). The position of the center of mass along the Y coordinate for a given value of x
is defined as:

〈Y (x)〉 =

∫
yI(x, y) dy∫
I(x, y) dy

(7)

We then use a sliding average procedure to obtain the smoothed trajectories shown by points
in Fig. 5(b) and also in Supplementary Figure 5(a). The error bars are given by the average
value of the standard deviation within each group of experimental points represented by a single
point of the smoothed trajectory.

In order to demonstrate that the anomalous Hall drift is clearly present without any smooth-
ing, we show the difference between the center of mass positions along the Y axis in the two
configurations (+9 and -9T) ∆Y (X) for all points. A linear least-mean-square fit allows to
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extract an average ”double” drift of 7 ± 1 nm/µm, clearly different from zero. We note that
this value is the double of the drift of a single wavepacket in a single experiment, because it is
a difference between two opposite drifts.

The configuration of our experiment is particularly favourable for the observation of the
anomalous Hall drift thanks to the presence of a saddle-type component in the potential created
for polaritons by the variation of the cavity thickness. To take into account the precise properties
of this potential U(x, y), we have scanned the energy of the lower polariton branch at k = 0
in a wide region (660 µm × 580 µm) and determined its first derivatives (the gradient) and
the second derivatives (variations of the gradient). We have obtained a gradient ∂U/∂x =
−5.8 ± 0.2 meV/mm, and a second derivative ∂2U/∂y2 = −(2.0 ± 0.2) × 10−2 µeV/µm2 (in
the direction transverse to the gradient). This second derivative acts like a magnifying glass,
amplifying the differences between the trajectories in the +9 T and -9 T configurations.

In the main text, we present the results of the simulations of the wave packet propagation
with the semiclassical equation, where this potential is fully taken into account via F. The
Supplementary Figure 5(a) presents, in addition, the results of the full numerical simulation
based on a 2D Schrödinger equation (which is equivalent to the Maxwell’s equations for the
transverse beam profile in the paraxial approximation):

i~∂ψ±
∂t

= − ~2
2m

∆ψ± − i~
2τ
ψ± ±∆zψ± (8)

+β
(
∂
∂x
∓ i ∂

∂y

)2
ψ∓ + αψ∓ + Uψ± + P̂

where P is the pump, τ = 100 ps is the polariton lifetime. The corresponding trajectories are
plotted with solid lines. They confirm the validity of the results obtained in the semiclassical
approximation with the same potential (dash-dotted lines).

In order to understand the relative contribution of the magnifying effect of the saddle-type
potential we also plot the semiclassical trajectories with a constant gradient (dashed lines).
The increase of the divergence of the two trajectories is substantial, but even without the
saddle-type potential the drift is non-negligible.

The same three results are also plotted in Fig. 5(b), showing the difference between the two
configurations (+9 T and -9 T). Both the full Schrödinger simulation (blue) and the semiclas-
sical equation with saddle-type potential (cyan) allow to reproduce correctly the experimental
”double” drift of 7±1 nm/µm, whereas the pure semiclassical calculation (red solid line) shows
a smaller (but also quite substantial) drift.

The uncertainties of these (and other) experimental measurements are discussed in Supple-
mentary Note 5.

As an illustration, we show the transverse profiles of the polariton flow in Fig. 5(c). Fitting
these profiles with a Gaussian function allows to extract the parameters of the wavepacket, such
as its width and its position. At X = 50 µm, the fit with R2 = 0.98 gives a FWHM of 36±1 µm
and 34 ± 1 µm at +9 T and -9 T, respectively. The transverse position y0 at X = 50 µm is
0±0.2 µm for both +9 T and -9 T. During the propagation, the two wave packets shift laterally.
The final profile at X = 350 µm gives the transverse position of y0 = +1.7± 0.2 µm for +9 T
and y0 = −1.0 ± 0.2 µm, which gives a difference of 2.7 ± 0.4 µm. This is compatible with a
”double” drift of 7± 1 nm/µm found above.

We stress, however, that the direct treatment of these profiles does not allow to extract the
anomalous Hall drift with a high confidence level for several reasons. First, the profile does not
have to be a Gaussian (because of the spin conversion and disorder), and in a general case it
is not. It is the centre of mass of the wavepacket that has to obey the semiclassical equation
of motion, and not the center of a Gaussian fit. Second, the transverse position exhibits large
fluctuations (as seen in panel (b)), and a significant averaging along the propagation direction
is required to get meaningful values. This is why the profiles shown in Fig. 5(c) should really
be used rather as an illustration.
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Supplementary Note 4. The effects of the quantum metric

on the anomalous Hall drift

The semiclassical equation for the trajectory of the wave packet describes only the adiabatic
part of the wave function, that is, the fraction which is aligned with the effective field. The
non-adiabatic fraction appears both because of the conditions of the excitation and during the
evolution of the wave packet because of its finite velocity in the reciprocal space. We have
performed additional experiment to emphasize the role of the metric by creating a substantial
initial non-adiabaticity controlled by the choice of the laser polarisation.

We begin by writing a general superposition |ψ〉 = f0 |ψ0〉+ f1 |ψ1〉, where |ψ0〉 corresponds
to the lower band and |ψ1〉 corresponds to the upper band. The fractions of the bands can be
found as

|f0|2 =

∫
e−

k2

2σ2

√
2πσ2

|〈ψl|ψ0(k)〉|2 d2k (9)

|f1|2 =

∫
e−

k2

2σ2

√
2πσ2

|〈ψl|ψ1(k)〉|2 d2k (10)

where |ψl〉 describes the polarization state of the laser (circular polarization). The overlap
integrals are determined by the quantum metric of the reciprocal space:

|〈ψl|ψ1〉|2 = 1−

 |ψl〉∫
|ψ1〉

√∑
ij

gij
dki

dt

dkj

dt
dt


2

(11)

where the integral is taken along the shortest distance path between the two points. Using the
orthogonality of the states |ψ0〉 and |ψ1〉 we can finally write

|f1|2 =

∫
e−

k2

2σ2

√
2πσ2

 |ψl〉∫
|ψ0(k)〉

√∑
ij

gij
dki

dt

dkj

dt
dt


2

d2k (12)

In the particular experimental conditions, when the laser is circular polarized, its spinor
state corresponds to the wavefunction at the anticrossing point: |ψl〉 = |ψ0(k0)〉, whereas the
excitation wave vector determines the lower bound of the integral |ψ0(0)〉. Assuming that the
wave packet is sufficiently small in the reciprocal space, that is, σk � k0, we can estimate the
non-adiabatic fraction as:

|f1|2 ≈

 |ψ0(k0)〉∫
|ψ0(0)〉

√∑
ij

gij
dki

dt

dkj

dt
dt


2

(13)

This expression allows us to link the oscillations observed in the cross-polarization (cor-
responding to the non-adiabatic fraction) in the experimental measurement of the anomalous
Hall drift with the quantum metric. Indeed, the non-adiabatic fraction determines the angle η
between the effective field and the pseudospin of the state: |f1|2 = 1 − cos2 η = sin2 η, which
for small η gives simply |f1|2 ≈ η2. In the regime of dominant initial non-adiabaticity, this an-
gle (together with the non-adiabatic fraction) remains constant during the propagation of the
wave packet and the associated evolution of the effective field. For long propagation distances,
the effective field is almost in the plane, and the polar angle of the pseudospin, during the
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precession of the latter about the effective field, oscillates between π/2 + η and π/2− η, which
means that the intensity of the cross-polarized component varies between sin2((π/2+η)/2) and
sin2((π/2 − η)/2) or approximately between 1/2 − η/2 and 1/2 + η/2. The contrast of these
oscillations gives

C =
Imax − Imin
Imax + Imin

≈ η (14)

Therefore, measuring the contrast at later times gives directly the deviation angle and the
associated non-adiabatic fraction |f1|2 = C2 linked with the metric. The quantum distance
that we estimate from the oscillations in the experimentally measured cross polarization is
0.16± 0.02, while the expression (13) gives 0.18± 0.03.
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Supplementary Note 5. Estimation of the measurement

uncertainty

In this supplementary note, we discuss the uncertainty of our experimental measurements. Dif-
ferent measured quantities are discussed in corresponding subsections. For all fitting procedures
in all sections we use the non-linear least squares procedure with the Levenberg-Marquardt er-
ror minimization algorithm, with the confidence interval for parameter values obtained from
the variance-covariance matrix using the asymptotic symmetry method.

Pseudospin distribution

Each point of the measured pseudospin distributions shown in Figs. 2 and 3 of the main text is
subject to experimental uncertainty. For each point, the PL curve similar to the one shown in
Supplementary Figure 3 is fitted with a Gaussian function for each polarization. As an example,
for a typical point in the highly-circular polarized region, the amplitude of the Gaussian for a
given polarization is determined with 1.2% precision, and its width with 1.5% precision. These
confidence intervals obtained for the amplitude and the width of each of the Gaussian functions
from the Levenberg-Marquardt algorithm at 95% confidence level allow to determine the final
relative precision on the pseudospin components (by comparing the maximal and the minimal
possible value of the component), which is about 10% (or smaller, depending on the local
polarization degree). The corresponding deviations of the pseudospin from the local average
value are clearly visible in Figs. 2 and 3 of the main text. However, they are mostly short-scale
and/or uncorrelated, which allows to suppress them by using filtering for the calculation of the
Berry curvature and the quantum metric.

Berry curvature

The short-scale fluctuations linked with the uncertainty of the pseudospin extraction are elimi-
nated before the calculation of the Berry curvature by using low-pass spatial filtering. However,
this procedure cannot remove efficiently the large-scale fluctuations of the pseudospin, and at
the same time it smooths out the real variations of the pseudospin due to the interplay of the
SOC with the Zeeman splitting. In order to estimate the uncertainty introduced by filtering, we
compare the filtered pseudospin distributions with the original ones. In particular, we compare
the local average pseudospin value with the result of the filtering. This comparison reveals
that the deviations after the filtering procedure are of the order of 5%. The advantage of fil-
tering is that these deviations are all large-scale, and are therefore not amplified by taking the
derivatives. In the worst case, the product of two derivatives appearing in the Berry curvature
(Eq. (4) of the main text) gives a doubled relative error. The final estimate of the precision on
the determination of the points in Fig. 4 of the main text is therefore of the order of 10%.

Parameters of the effective Hamiltonian

The parameters of the effective Hamiltonian are determined from the experimentally measured
dispersions by fitting them with the analytical expression for the dispersion obtained from the
effective Hamiltonian (1) of the main text. confidence interval in its turn determines the relative
uncertainty values given in the Methods section.
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Center of mass measurement

In the experiment, the intensity of emission is measured on a finite-step grid: I(xn, yn). The
wave packet is accelerated by a gradient along the X direction and is expected to exhibit a
tranvserse anomalous Hall drift in the Y direction. We need therefore to analyze the position
of the center of mass along the Y direction with the highest possible precision. The step (pixel
size) h = yn− yn−1 is 1.29 µm. The position of the center of mass along the Y coordinate for a
given value of x is defined as the mathematical expectation of the Y coordinate, if the intensity
distribution is considered as a probability density (as already discussed in Supplementary Note
3):

〈Y (x)〉 =

∫
yI(x, y) dy∫
I(x, y) dy

(15)

In practice, the continuous integral in (15) is replaced by a Riemann sum with the step h.
In order to maximize the precision, we use the midpoint rule:∫

f(y) dy ≈ S = h

n∑
1

f(y∗i ) (16)

where y∗i = (yi+1−yi)/2. The error of this method (which is entirely due to the finite step size)
is estimated by ∣∣∣∣∣∣

b∫
a

f(y) dy − S

∣∣∣∣∣∣ ≤ (b− a)3 max f ′′(y)

24n2
(17)

In order to evaluate this error, we first find the maximal value of the second derivative of the
intensity distribution, which we first assume to be a Gaussian (valid in most of the moments
of time during the wave packet evolution):

I(x0, y)∫
I(x0, y) dy

=
1

σ
√

2π
exp

(
− y2

2σ2

)
= f(y) (18)

The second derivative reads

f ′′(y) =
(y3 − 3σ2y) e−y

2/2σ2

σ5
√

2π
(19)

Its maximal value is achieved for y = σ
√

3−
√

6. This maximal value is given by

max f ′′(y) =

√
9−3
√
6

π
e−

3
2
+
√

3
2

σ2
≈ 0.55

σ2
(20)

Another important parameter is the integration interval b− a, determined by the noise. In
our case, b− a ≈ 6σ. Finally, the number of steps n = (b− a)/h = 6σ/h. This allows to write
the final expression:

∆Y =
(6σ)30.55

24σ2(6σ/h)2
≈ h2

8σ
(21)

This analysis clearly shows that the error on the center of mass position for large wave
packets can be much smaller than the step size. In our case, h = 1.29 µm, σ ∼ 10 µm, which
allows to determine the wave packet center of mass position with a precision up to 0.02 µm.

For a multi-peak distribution, the maximal value of the second derivative is determined by
the narrowest peak: max f ′′(y) ≈ 0.6/σ2

min. One has to use the expression (17), which writes:

∆Y ≈ Lh2

40σ2
(22)
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where L is the multi-peak region over which the integration is carried out. Taking the typical
values of L = 50 µm and σ = 5 µm (for a particularly narrow peak), we obtain an error of
∆Y = 0.09 µm. This precision is still sufficient for the measurement of the deviation caused
by the anomalous Hall effect.

We note that the uncertainty ∆Y from this Note should not be confused with the dif-
ference between the center of mass trajectories ∆Y (X) from the Supplementary Note 3 and
Supplementary Figure 5.

The above analysis applies only to the ”quantization noise”, linked with the finite spatial
step of the measurements h. We now estimate the contribution of the intensity noise by using
the linearity of the expression for the center of mass (15). Indeed, if the center of mass position
of the pure signal is given by Ys, the measured center of mass position can be found as

Ym = YsIs + YnIn (23)

where Is is the signal intensity, In is the noise intensity and Yn is the noise center of mass
position. The experimental detector noise is well described as a positive constant plus a spatially
uniform noise with a Gaussian amplitude distribution. The average integrated noise intensity
is therefore given by the standard deviation of its amplitude times L, while the error on its
center of mass position is given by the standard deviation of the uniform distribution. The
final error on the measured center of mass position is given by:

∆Y =
LIn

2
√

3Is
(24)

which gives for experimental values of In/Is ≈ 0.01 (integrated within L = 50 µm) ∆Y =
0.15 µm.

The total error on the center of mass position, taking into account the finite step size and
the detector noise, is of the order of 0.24 µm. This is comparable with the expected amplitude
of the effect for large excitonic fractions, but smaller than the expected anomalous Hall drift
for smaller excitonic and larger photonic fractions. The observed drift is moreover amplified
by the saddle-type potential present in the system, which makes our measurement sufficiently
reliable.
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Supplementary figures
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Supplementary Figure 1: Measured photoluminescence intensity as a function of energy and
wave vector at 9 Tesla: a) total, b) left-circular, c) right-circular.
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Supplementary Figure 2: Measured photoluminescence intensity as a function of in-plane wave
vector, 4.5 meV above the ground state energy and under 9 Tesla: a) horizontal, b) vertical, c)
diagonal, d) anti-diagonal.
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Supplementary Figure 3: Measured photoluminescence intensity at 0 Tesla: a) total intensity
as a function of wave vector and energy, b) total intensity as a function of energy only, for wave
vector kH = 1.46 µm−1; c) intensities in H and V polarisations for the same wave vector.
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Supplementary Figure 4: Berry curvature and quantum metric for the upper branch, measured
at 9 T. k-space distribution of quantum geometric tensor elements: (a) Berry curvature Bz, (b)
gHH , (c) gV V , (d)gHV , extracted using Eq. (4) of the main text.
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Supplementary Figure 5: Wavepacket center of mass trajectories in the anomalous Hall effect.
a) Trajectories in the +9 and -9 T configurations: experiment (points with error bars), full
Schrödinger simulation (solid lines), semiclassical equation with saddle-type potential (dash-
dotted lines), semiclassical equation with a constant gradient (dashed lines). b) Difference
between the +9 and -9 T configurations: experiment (points), linear fit (red dashed line),
full Schrödinger simulation (blue line), semiclassical equation with saddle-type potential (cyan
line), semiclassical equation with a constant gradient (red solid line). c) Transverse profiles of
the polariton flow at X = 50 µm and X = 350 µm at ±9 T (points) with Gaussian fits (solid
lines), giving the initial positions y0 = 0.0 ± 0.2 µm at X = 50 µm and the final positions
y0(+9 T) = 1.7± 0.2 µm vs y0(−9 T) = −1.0± 0.2 µm.
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Supplementary Figure 6: Energy dispersion of the polariton emission under cw non-resonant
excitation (1.689 eV) at 0 T. The strong coupling between the exciton transition (yellow line)
and the photon mode (black line) leads to the generation of the upper and lower polariton
modes. The intensity map is plotted in log scale in order to highlight the anticrossing behaviour.
Two different scales are used for the lower and upper part of the figure in order to be able to
better visualise the modes. The green and red lines correspond to the theoretical upper and
lower polariton dispersions obtained considering a two coupled oscillators model. The Rabi
energy splitting is 16.2 meV.
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