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Rodney Coleman, Laurent Zwald

December 4, 2020

Abstract

In these notes we introduce minimal prime ideals and some of their applications. We prove

Krull's principal ideal and height theorems and introduce and study the notion of a system

of parameters of a local ring. In addition, we give a detailed proof of the formula for the

dimension of a polynomial ring over a noetherian ring.

Let R be a commutative ring and I a proper ideal in R. A prime ideal P is said to be a
minimal prime ideal over I if it is minimal (with respect to inclusion) among all prime ideals
containing I. A prime ideal is said to be minimal if it is minimal over the zero ideal (0). Minimal
prime ideals are those of height 0.

If I is a prime ideal, then I is the only minimal prime ideal over I. Thus, in an integral
domain the only minimal prime ideal is (0). It should also be noticed that, if I is an ideal
contained in a prime ideal P and ht(I) = ht(P ), then P is a minimal prime ideal over I.

We now consider the existence of minimal prime ideals.

Theorem 1 If I is a proper ideal in a ring R, then there exists a prime ideal P in R which is
minimal over I.

proof Let S be the set of prime ideals containing I. Since any proper ideal is contained in a
maximal ideal, S is not empty. We order S by reverse inclusion, i.e., we write Pa ≤ Pb if Pb ⊂ Pa.
If C is a chain in S, then any Pa ∈ C is majored by the intersection P of all elements in the
chain. P is clearly an ideal containing I. We claim that P is prime.

Suppose that xy ∈ P and x /∈ P , y /∈ P . Then there exists Pa, Pb ∈ C such that x /∈ Pa,
y /∈ Pb. Without loss of generality, let us assume that Pa ⊂ Pb. Then x, y /∈ Pa. Now, xy ∈ P
implies that xy ∈ Pa; as Pa is prime, we have x ∈ Pa or y ∈ Pa, a contradiction. Hence P is
prime and so the chain C has a maximum.

From Zorn's lemma, S has a maximal element Q, which is a minimal prime ideal over I. 2

If the ring R is noetherian, we can say a little more.

Theorem 2 If I is a proper ideal in a noetherian ring R, then R has only a �nite number of
minimal prime ideals over I.

proof First we show that every ideal containing I contains a �nite product of prime ideals each
containing I. Suppose that this is not the case, and let S be the set of ideals containing I which
do not contain a �nite product of prime ideals each containing I. By hypothesis, S is not empty.
Let C be a chain in S. As R is noetherian, C has a maximum. From Zorn's lemma, S has a
maximal element M . As R has a prime ideal containing I, M 6= R. Also, M is not prime.
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There exist a, b ∈ R such that ab ∈ M and a /∈ M , b /∈ M . Setting A = (M,a) and
B = (M, b), we obtain AB ⊂ M , with A and B strictly included in M . Since M is maximal, A
and B both contain a �nite product of prime ideals each containing I, hence so does M , which
contradicts the fact thatM ∈ S. It follows that every ideal containing I contains a �nite product
of prime ideals each containing I.

We now apply this result to the ideal I: there exist prime ideals P1, . . . , Pn, each containing
I, whose product is contained in I. We claim that any minimal prime P over I is among the
Pi. Indeed, P1 · · ·Pn ⊂ I ⊂ P . We deduce that Pi ⊂ P , for some i. However, P is minimal, so
Pi = P and it follows that there is only a �nite number of minimal prime ideals over I. 2

The following result is interesting, and perhaps unexpected.

Proposition 1 If P is a minimal prime ideal (over (0)), then every element x ∈ P is a zero
divisor.

proof First we notice that RPP is the unique prime ideal in RP and so the nilradical N(RP ) =
RPP . If x ∈ P , then x

1 ∈ RPP and there exists n ∈ N∗ such that (x1 )n = 0. Hence there exists
s ∈ R \ P such that sxn = 0. If m is the smallest n for which this applies, then sxm−1 6= 0 and
so x is a zero divisor. 2

We aim now to show that every maximal ideal in an artinian ring is minimal (over (0)). We
need a preliminary result.

Lemma 1 Let R be a commutative ring, I ⊂ A ideals in R, with A prime. Then A contains a
minimal prime ideal over I.

proof Let S be the set of prime ideals containing I and included in A. We order the elements
in S by reverse inclusion, i.e., we write Pa ≤ Pb if Pb ⊂ Pa. Let C be a chain in S. If P is the
intersection of all elements in C, then P is a maximum of all elements C. P is clearly an ideal.
We claim that P is prime.

Suppose that xy ∈ P , but x /∈ P and y /∈ P . Now, there exist prime ideals Pa, Pb such
that x /∈ Pa, y /∈ Pb. Without loss of generality, let us assume that Pa ⊂ Pb, which implies that
x, y /∈ Pa. As xy ∈ Pa, we have a contradiction. It follows that P is prime and so C has a
maximum. From Zorn's lemma, there is a maximal element Q of S, which is a minimal prime
ideal over I. 2

Remark From the lemma, when considering the height of an ideal I, we only need to take into
account the minimal prime ideals over I.

Theorem 3 If R is an artinian ring and M a maximal ideal in R, then M is minimal.

proof From Lemma 1, there exists a minimal prime ideal P contained in M . However, every
prime ideal in an artinian ring is maximal ([1] Theorem 8), so P is maximal and we have P = M .2

Krull's height theorem

We �rst consider a particular case of Krull's height theorem, namely Krull's principal ideal
theorem: in a noetherian ring, if P is a minimal prime ideal over a principal ideal (a), then
ht(P ) ≤ 1. We begin with a preliminary result.

Lemma 2 If (R,M) is a local noetherian domain and M a minimal prime ideal over some
principal ideal (a), then (0) and M are the only prime ideals in R.
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proof Let P be any prime ideal in R other thanM . Then P is a proper subset ofM . We aim to
show that P = (0). Since R is a domain, it is su�cient to show that Pn = (0), for some n ∈ N∗.
We recall that P (n) = R ∩RPPn, the nth symbolic power of P , is a P -primary ideal containing
Pn ([2] Corollary 7), so it is su�cient to show that P (n) = (0), for some positive n. We also
recall that ∩n≥1P

(n) is the kernel of the standard mapping f : R −→ RP ([2] Proposition 11).
We claim that the descending chain of ideals (P (n))n≥1 stabilizes after a certain n.

We set R̄ = R/(a) and M̄ = M/(a). Then M̄ is the only prime ideal in R̄, because M is a
minimal prime ideal over (a). Hence R̄ is a noetherian ring of dimension 0. This implies that R̄
is an artinian ring ([1] Theorem 12). Hence the descending chain of ideals (P (n) + (a))n≥1 must
stabilize. For su�ciently large n we have

P (n) + (a) = P (n+1) + (a).

Therefore, if x ∈ P (n), we may write x = y+za, where y ∈ P (n+1) and z ∈ R. As P (n+1) ⊂ P (n),
we have x− y ∈ P (n), from which we deduce that z ∈ P (n) : a ([2] De�nition after Theorem 1).
Next we observe that a /∈ P : if a ∈ P , then (a) ⊂ P ; however, M is minimal over (a), which
implies that M ⊂ P and so M = P , a contradiction, thus a /∈ P . As a /∈ P , P (n) : a = P (n) ([2]
Proposition 5). It follows that z ∈ P (n) and so

P (n) ⊂ P (n+1) + P (n)a.

Since
P (n+1) + P (n)a ⊂ P (n),

we have
P (n) = P (n+1) + P (n)a.

We set N = P (n)/P (n+1). Then N is an ideal in the the noetherian ring R/P (n+1) so is �nitely
generated. Also,

N = P (n)/P (n+1) = (P (n+1) + P (n)a)/P (n+1) = P (n)a/P (n+1) = aN.

Given that the Jacobson radical J(R) = M and (a) ⊂ M , we may apply Nakayama's lemma
version 2 ([3] Theorem 2) to obtain that N = 0, i.e., P (n) = P (n+1), for n su�ciently large, as
claimed. It follows that the kernel of the standard mapping f : R −→ RP is equal to ∩ni=1P

(i).
As P (n) is included in each P (i), we have P (n) ⊂ kerf , which implies that P (n) = (0). 2

We are now in a position to prove Krull's principal ideal theorem.

Theorem 4 Let R be a noetherian ring and a ∈ R.

• 1. If P is a minimal prime ideal over (a), then ht(P ) ≤ 1;

• 2. If a ∈ R∗ is not a zerodivisor and P a minimal prime ideal over (a), then ht(P ) = 1.

proof 1. Suppose that P2 is a minimal prime ideal over (a) and P0 ⊂ P1 ( P2 a chain of prime
ideals. We must show that P1 = P0.

We set R̄ = R/P0. Then R̄ is a noetherian domain. Setting P̄1 = P1/P0 and P̄2 = P2/P0,
we obtain a chain of prime ideals in R̄: (0) ⊂ P̄1 ( P̄2, and P̄2 is a minimal prime ideal over
(ā) = (a+ P0).

We now localize with respect to P̄2, to obtain a local noetherian domain R̄P̄2
, with maximal

ideal R̄P̄2
P̄2. In addition, R̄P̄2

P̄2 is a minimal prime ideal over ( ā1 ). From Lemma 2, we know
that the only prime ideals in R̄P̄2

are (0) and R̄P̄2
P̄2, so R̄P̄2

P̄1 = (0) or R̄P̄2
P̄1 = R̄P̄2

P̄2. Only
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the �rst alternative is possible, which implies that P̄1 = (0), which in turn implies that P1 = P0,
as required.

2. Suppose that a is a not a zerodivisor and that a minimal prime P over (a) has height 0. If
P ′ is a prime ideal and (0) ⊂ P ′ ⊂ P , then P ′ = P , because ht(P ) = 0. This implies that P
is a minimal prime (over (0)). From Proposition 1, the elements of a minimal prime ideal are
nilpotent. As a ∈ P , a is nilpotent, hence a zerodivisor, which is a contradiction. It follows that
ht(P ) = 1. 2

There is a corollary to the above result. We need a de�nition. If R is a commutative ring
and P0 ( P2 are prime ideals, then a prime ideal P1 such that P0 ( P1 ( P2 is said to be
intermediate between P0 and P2.

Corollary 1 Let R be a noetherian ring and P0 ( P2 prime ideals in R. If there exists an
intermediate prime ideal between P0 and P2, then, for each a ∈ P2, there exists an intermediate
prime ideal between P0 and P2 containing a.

proof Suppose that a ∈ P2 and there is no intermediate prime ideal containing a. We set
R̄ = R/P0 and P̄2 = P2/P0. Then R̄ is a domain and P̄2 is minimal over (ā) = (a + P0). From
Theorem 4, we have ht(P̄2) ≤ 1, so there is no prime ideal P̄ ′ such that (0) ( P̄ ′ ( P̄2, because
(0) is a prime ideal. It follows that there is no intermediate prime ideal between P0 and P2, a
contradiction. Hence the result. 2

We now generalize Theorem 4. The following result is referred to as Krull's height theorem.

Theorem 5 Let R be a noetherian ring. If P is a minimal prime ideal over an ideal I =
(x1, . . . , xn), then ht(P ) ≤ n.

proof By induction on n. For n = 1, we have Krull's principal ideal theorem. Suppose now
that n ≥ 2 and that the result is true for k < n. We must show that the result is true for n. Let
us assume that this is not the case. Then there is a chain (C) of distinct prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pn ⊂ Pn+1 = P.

Let us suppose that one of the xi belongs to P1. Without loss of generality, let this element be
x1. Then

(x1, . . . , xn) ⊂ P1 + (x2, . . . , xn) ⊂ P.

If Q ⊂ P is a prime ideal containing P1 + (x2, . . . , xn), then Q contains (x1, . . . , xn), so P = Q,
because P is minimal. It follows that P is a minimal prime ideal over P1 + (x2, . . . , xn), which
implies that P/P1 is a minimal prime ideal over (x̄2, . . . , x̄n) in R/P1, where x̄i = xi + P1. As
the chain of distinct prime ideals

(0) ⊂ P2/P1 ⊂ · · · ⊂ Pn+1/P1

has length n, we have a contradiction to the induction hypothesis. Thus it is su�cient to show
that the chain (C) can be modi�ed in such a way that x1 ∈ P1. This we will now do.

As x1 ∈ P and Pn−1 ⊂ Pn ⊂ P , from Corollary 2 there exists an intermediate prime ideal
P ′n such that x1 ∈ P ′n and Pn−1 ⊂ P ′n ⊂ P . Now Pn−2 ⊂ Pn−1 ⊂ P ′n and x1 ∈ P ′n, so,
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using Corollary 2 again, we obtain an intermediate prime ideal P ′n−1 such that x1 ∈ P ′n−1 and
Pn−2 ⊂ P ′n−1 ⊂ P ′n. Repeating the process, we �nally obtain a prime deal P ′1 with x1 ∈ P ′1 and

P0 ⊂ P ′1 ⊂ · · · ⊂ P ′n ⊂ Pn+1 = P,

a chain whose length is n+ 1. This completes he proof. 2

Remark Let R be a noetherian ring and I = (x1, . . . , xn) a proper ideal in R. Then ht(I) ≤ n:
from Theorem 1 there is a prime ideal P minimal over I, hence ht(I) ≤ ht(P ) ≤ n. In partic-
ular, if (R,M) is a local noetherian ring and (x1, . . . , xn) a minimal generating set of M , then
ht(M) ≤ n, hence dim(R) ≤ n. It follows that the dimension of a local noetherian ring is �nite.

There is a question which naturally arises. Suppose that we have a prime ideal P , with
ht(P ) = n. Does there exist an ideal I with n generators such that P is minimal over I? In fact,
this is the case as we will now see and we can say a little more:

Theorem 6 If R is a noetherian ring, I an ideal in R such that ht(I) = n, with n ≥ 1, and
1 ≤ k ≤ n, then there exist x1, . . . , xk ∈ I such that ht((x1, . . . , xk)) = k.

proof First suppose that n = 1. Let Q1, . . . , Qk be the minimal prime ideals in R. (From
Theorem 2 there is a �nite number of such ideals.) If I = ∪ki=1Qi then, by the Prime Avoidance
Lemma ([1] Theorem 9), I ⊂ Qi, for some i. However, this is not possible, because ht(Qi) = 0.
Hence there exists x ∈ I \ ∪ki=1Qi. Then (x) ⊂ I and ht((x)) ≤ ht(I) = 1. If ht((x)) = 0, then
(x) = Qj , for some j, a contradiction, so ht((x)) = 1.

Now suppose that n > 1. As in the case n = 1, we may �nd x1 such that (x1) ⊂ I and
ht((x1)) ≥ 1. Using the remark after Theorem 5 we see that ht((x1)) = 1. We claim that there
exists x2 ∈ I such that ht((x1, x2)) = 2. Let Q′1, . . . , Q

′
l be the minimal prime ideals in R over

(x1). If I ⊂ ∪li=1Q
′
i, then, by Prime Avoidance Lemma, I ⊂ Q′i, for some i, which is not possible,

because ht(Q′i) = 1 and ht(I) > 1. Hence there exists x2 ∈ I \ ∪li=1Q
′
i. Then (x1, x2) ⊂ I. We

claim that ht(x1, x2) = 2.
Let P be a minimal prime ideal over (x1, x2). By Krull's height theorem (Theorem 5), we

have ht(P ) ≤ 2. Next we notice that (x1) ⊂ P , therefore there exists a minimal prime ideal
Q′i over (x1) such that (x1) ⊂ Q′i ⊂ P . However, by construction, x2 ∈ P and x2 /∈ Q′i, which
implies that ht(P ) > ht(Q′i) = 1, i.e., ht(P ) ≥ 2. Since for any minimal prime ideal P over
(x1, x2) we have ht(P ) ≥ 2, we must have ht((x1, x2)) ≥ 2. Using the remark after Theorem 5
we obtain ht((x1, x2)) = 2.

If n = 2, then we are �nished. If n > 2 and k = 3, then we may �nd x3 ∈ I \ ∪mi=1Q
′′, where

the Q′′i are the minimal prime ideals over (x1, x2). By an analogous argument to that previously
used, we obtain that (x1, x2, x3) has height 3. If n > 3, continuing in the same way up to k, we
�nd x1, . . . , xk ∈ I, such that ht(x1, . . . , xk) has height k. 2

Remark It should be noticed that we have used the remark after Lemma 1.

Corollary 2 If P is a prime ideal in a noetherian ring R such that ht(P ) = n ≥ 1, then there
exist x1, . . . , xn ∈ P such that P is a minimal prime ideal over (x1, . . . , xn).

proof From Theorem 6, we may �nd x1, . . . , xn ∈ P such that ht((x1, . . . , xn)) = n. As
ht((x1, . . . , xn)) = ht(P ), P is a minimal prime ideal over (x1, . . . , xn). 2

Systems of parameters
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We investigate further properties of local rings. If R is a local ring with maximal ideal M ,
then we usually write (R,M) for R.

Proposition 2 Let (R,M) be a local ring and x1, . . . , xn ∈ M . The following conditions are
equivalent:

• 1. M is the only prime ideal containing (x1, . . . , xn);

• 2. M is a minimal prime ideal over (x1, . . . , xn);

• 3. r((x1, . . . , xn)) = M ;

• 4. (x1, . . . , xn) is M -primary.

proof 1. ⇒ 2. From Lemma 1, there exists a minimal prime ideal M ′ ⊂ M over (x1, . . . , xn).
Since M is the only prime ideal containing (x1, . . . , xn), we have M ′ = M .

2. ⇒ 1. Let P be a prime ideal containing (x1, . . . , xn). P must lie in a maximal ideal, hence
P ⊂M . As M is a minimal prime ideal over (x1, . . . , xn), we have M = P .

1. ⇒ 3. r((x1, . . . , xn)) is the intersection of all prime ideals containing (x1, . . . , xn). As M is
the only prime ideal containing (x1, . . . , xn), we have r((x1, . . . , xn)) = M .

3. ⇒ 4. From [2] Proposition 4, if the radical of a proper ideal is maximal, then the ideal is
primary. Given that r((x1, . . . , xn)) = M , (x1, . . . , xn) is primary. As r((x1, . . . , xn)) = M ,
(x1, . . . , xn) is M -primary.

4. ⇒ 1. Let P be a prime ideal containing (x1, . . . , xn). Then the intersection of all prime
ideals containing (x1, . . . , xn) is included in P , i.e., r((x1, . . . , xn)) ⊂ P . Since (x1, . . . , xn) is
M -primary, we have r((x1, . . . , xn)) = M , soM ⊂ P . Given thatM is a maximal ideal, we must
have P = M . 2

There may be sets {x1, . . . , xn} of di�erent cardinals satisfying the conditions of Proposition
2. If (R,M) is noetherian, then we may characterize the smallest possible cardinal.

Proposition 3 Let (R,M) be a noetherian local ring. Then dim(R) is the smallest integer n
for which there exist x1, . . . , xn ∈M satisfying the equivalent conditions of Proposition 2.

proof By [1] Lemma 2, we have dim(R) = ht(M). We note this common value m. If x1, . . . , xn
are elements of R satisfying the conditions of Proposition 2, then m ≤ n, by Krull's height
theorem (Theorem 5). However, from Corollary 2 there exist elements x1, . . . , xm ∈M such that
M is a minimal prime ideal over (x1, . . . , xm), hence the result. 2

De�nition Let (R,M) be a local ring and n = dim(R). A set {x1, . . . , xn} is a system of pa-
rameters for M , if any one of the conditions of Proposition 2 is satis�ed. From Corollary 2, if R
is noetherian, then M has a system of parameters.

Let (R,M) be a noetherian local ring. Given a collection of elements x1, . . . , xr ∈M , we aim
to �nd conditions under which the collection may be extended to a system of parameters for M .
We set R̄ = R/(x1, . . . , xr). Then R̄ is a noetherian local ring, with maximal ideal M̄ , where M̄
is the image of M under the standard mapping of R onto R̄.
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Lemma 3 dim(R̄) ≥ dim(R)− r.

proof Let s = dim(R̄) and y1, . . . , ys ∈ R be such that ȳ1, . . . , ȳs form a system of parameters
for M̄ . Then M̄ is the only prime ideal in R̄ containing (ȳ1, . . . , ȳs). It follows that M is the
only prime ideal in R containing (x1, . . . , xr, y1, . . . , ys). From Proposition 3, dim(R) ≤ r + s,
which implies that dim(R̄) ≥ dim(R)− r. 2

Theorem 7 If (R,M) is a noetherian local ring and x1, . . . , xr ∈ M , then the following state-
ments are equivalent:

• 1. x1, . . . , xr can be extended to a system of parameters for M ;

• 2. dim(R̄) = dim(R)− r.

proof 1. ⇒ 2. Suppose that we can extend the set x1, . . . , xr to a system of parameters
x1, . . . , xr, y1, . . . , ys for M . Then r+ s = dim(R). We claim that M̄ is the unique prime ideal in
R̄ containing (ȳ1, . . . , ȳs). If this is not the case, then there is a prime ideal P̄ strictly included in
M̄ containing (ȳ1, . . . , ȳs). If φ is the standard mapping from R onto R̄ and P = φ−1(P̄ ), then P
is a prime ideal strictly included in M and (x1, . . . , xr, y1, . . . , ys) ⊂ P , contradicting condition
1. of Proposition 2. Therefore our claim is correct.

Using Proposition 2 again, we obtain that M̄ is a minimal prime ideal over (ȳ1, . . . , ȳs), so,
from Krull's height theorem (Theorem 5), dim(R̄) = ht(M̄) ≤ s. However, from Lemma 3,
dim(R̄) ≥ dim(R)− r = s, hence dim(R̄) = s, as required.

2.⇒ 1. Let s = dim(R̄) = dim(R)− r and y1, . . . , ys ∈M such that ȳ1, . . . , ȳs form a system of
parameters for M̄ . Then M̄ is the only prime ideal in R̄ containing (ȳ1, . . . , ȳs), which implies that
M is the only prime ideal in R containing (x1, . . . , xr, y1, . . . , ys). In addition, r + s = dim(R).
Therefore x1, . . . , xr, y1, . . . , ys is a required extension. 2

This theorem has two useful corollaries.

Corollary 3 Let (R,M) be a noetherian local ring and x1, . . . , xr ∈M . If ht((x1, . . . , xr)) = r,
then x1, . . . , xr may be extended to a system of parameters for M .

proof From Lemma 3 we have dim(R̄) ≥ dim(R)− r. However, from PMI Lemma 1, we know
that dim(R̄) + ht((x1, . . . , xr)) ≤ dim(R), which implies that dim(R̄) = dim(R) − r. From
Theorem 7 we deduce that x1, . . . , xr may be extended to a system of parameters for M . 2

Corollary 4 Let (R,M) be a noetherian local ring and x ∈M , with ht((x)) = 1. Then

dim(R/(x)) = dim(R)− 1.

In particular, if x is a nonzero element in M , which is not a zero divisor, then ht((x)) = 1 and
so the equality applies.

proof From Corollary 3 we may extend x to a system of parameters x, y1, . . . , yn−1 forM , where
dim(R) = n. We deduce from Theorem 7 that

dim(R/(x)) = dim(R)− 1,

as required.
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Now suppose that x is a nonzero element in M , which is not a zero divisor. From Theorem
4, if P a minimal prime ideal over (x), then ht(P ) = 1. It follows that ht((x)) = 1. 2

Polynomial rings over noetherian rings

From [1] Theorem 2 we know that if R is a commutative ring, then

dim(R) + 1 ≤ dim(R[X]) ≤ 2 dim(R) + 1.

If R is noetherian, then we can be more precise, namely show that dim(R[X]) = dim(R) + 1. In
the following we aim to prove this. We begin with a preliminary result. We recall a de�nition: if
(A,M) and (B,N) are local rings, then a homomorphism f : A −→ B is a local homomorphism
if f(M) ⊂ N .

Let A and B be commutative rings and f : A −→ B a surjective ring homomorphism. We
suppose that M is a maximal ideal in A whose image M ′ under f is not equal to B. Then M ′ is
a maximal ideal in B, hence a prime ideal, and f induces a surjective local ring homomorphism
f1 from AM onto BM ′ :

For rs ∈ AM , we set f1( rs ) = f(r)
f(s) . We need to show that f(s) /∈M ′ and that f1 is well-de�ned.

To see that f(s) /∈ M ′ it is su�cient to show that M = f−1(M ′). Clearly, M ⊂ f−1(M ′). If
M 6= f−1(M ′), then f−1(M ′) = A, but in this case all the elements of A are mapped onto a
proper subset of B, which contradicts the surjectivity.

If rs = r′

s′ , then there exists t /∈M such that t(r′s−rs′) = 0, which implies that f(t)(f(r′)f(s)−
f(r)f(s′)) = 0. As f(t) /∈M ′, we have f1( rs ) = f1( r

′

s′ ) and so f1 is well-de�ned.
It is easy to check that f1 is a surjective ring homomorphism. As f1(AMM) ⊂ BM ′M ′, f1 is

a local ring homomorphism.

Theorem 8 Let R be a noetherian ring and M a maximal ideal in R[X]. If P = R ∩M , then
P is a prime ideal in R and ht(M) = ht(P ) + 1.

proof Let
P0 ⊂ P1 ⊂ · · · ⊂ Ps = P

form a chain of distinct prime ideals in R. Then the ideals

R[X]P0 ⊂ R[X]P1 ⊂ · · · ⊂ R[X]Ps

form a chain of distinct prime ideals in R[X]. (If R[X]Pi = R[X]Pj , then Pi[X] = Pj [X], and
so Pi = Pj .) Moreover, R[X]Ps is strictly included in M , because R[X]/R[X]P is not a �eld.
Therefore ht(M) ≥ ht(P ) + 1. We will show that ht(M) ≤ ht(P ) + 1 by induction on n = ht(P ),
which will imply that ht(M) = ht(P ) + 1, as required.

If n = 0, then P is a minimal prime ideal in R. Let Q be a prime ideal in R[X] contained in
M . Then Q ⊂M implies that R∩Q ⊂ R∩M = P . Since ht(P ) = 0, we have P = R∩Q = R∩M .
From [1] Lemma 4, if Q is properly contained in M , then Q = R[X]P . Hence no chain of prime
ideals contained in M can be longer than 1 and it follows that ht(M) ≤ 1 = ht(P ) + 1, so the
result is true for n = 0.

Now suppose that n ≥ 1 and that the result is true up to n− 1. From Theorem 6 there is an
element x ∈ P such that ht((x)) = 1. Let B = R/(x) and ψ be the canonical mapping from R
onto B. We de�ne a mapping φ from R[X] onto B[X] by
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φ(a0 + a1X + · · ·+ anX
n) = ψ(a0) + ψ(a1)X + · · ·+ ψ(an)Xn.

The mapping φ is clearly a surjective homomorphism. Let M be a maximal ideal in R[X] and
M ′ = φ(M). We claim that M ′ 6= B[X]. Suppose that this is not the case. Then there exists

f = a0 + a1X + · · ·+ amX
m ∈M,

with φ(f) = 1 ∈ B[X]. As φ(1) = 1, we have

ψ(1− a0) = ψ(a1) = · · · = ψ(am) = 0 =⇒ 1− a0, a1, . . . , am ∈ (x) ⊂ P ⊂M.

As 1 /∈ M , we must have a0 /∈ M . However, a1X, . . . , amX
m ∈ M , because R[X]P ⊂ M ,

and f ∈ M implies that a0 ∈ M , a contradiction. It follows that φ(f) 6= 1 and hence M ′ 6=
B[X], as claimed. Thus M ′ is a maximal ideal in B[X] and so φ induces a surjective local ring
homomorphism φ1 from R[X]M onto B[X]M ′ .

We claim that the kernel of φ1 is R[X]Mx. First we notice that φ1( rs ) = 0 if and only if there
exists β ∈ B[X] \M ′ such that βφ(r) = 0. If u ∈ R[X]Mx, then u = r

sx; as φ(rx) = φ(r)φ(x)
and φ(x) = 0, we have u ∈ ker(φ1). Hence kerR[X]Mx ⊂ ker(φ1). Now suppose that v ∈ R[X]M
and v ∈ ker(φ1). Then v = r

s , with s /∈M and there exists β ∈ B[X] \M ′ such that βφ(r) = 0.
As φ is surjective, there exists α ∈ R[X] such that φ(α) = β and, given that β /∈ M ′, we have
α /∈M . Since φ is ring homomorphism, we may write φ(αr) = 0, i.e., αr ∈ ker(φ), which implies
that x divides αr. It follows that αr

s ∈ R[X]Mx. However, α /∈ M implies that 1
α ∈ R[X]M

and so 1
α
αr
s ∈ R[X]Mx, i.e.,

r
s ∈ R[X]Mx. This completes the proof that ker(φ1) = R[X]Mx, as

claimed.
We now notice that R[X]MM is the unique maximal ideal in the local ring R[X]M and that

its height in R[X]M is the same as that of M in R[X]. Thus, using [1] Lemma 2, Lemma 3 and
the isomorphism which have just established, we obtain

ht(M) = dim(R[X]M ) ≤ dim(R[X]M/R[X]Mx) + 1 = dim(B[X]M ′) + 1 = ht(M ′) + 1.

We now return to the canonical mapping ψ from R onto B = R/(x). Then ψ is a surjective
homomorphism. Let P ′ = ψ(P ). We claim that u 6∈ P implies that ψ(u) 6∈ P ′: If u+ (x) ∈ P ′,
then there exists v ∈ P such that u+ (x) = v+ (x), which implies that u− v ∈ (x) ⊂ P , because
x ∈ P . It follows that u ∈ P , a contradiction, hence ψ(u) 6∈ P ′. Proceeding as above for M and
M ′ we may construct a ring homomorphism ψ1 from RP onto BP ′ whose kernel is RPx, hence
RP /RPx is isomorphic to BP ′ . Since BP ′P ′ is the unique maximal ideal in the local ring BP ′

and the height of P ′ in R is that of BP ′P ′ in BP ′ , we have ht(P ′) = dim(BP ′). In the same way
ht(P ) = dim(RP ). Thus, using [1] Lemma 1,

ht(P ′) = dim(BP ′) = dim(RP /RPx) ≤ dim(RP )− ht(RPx).

However, ht(RPx) ≥ 1 implies that −ht(RPx) ≤ −1, thus

ht(P ′) ≤ dim(RP )− 1 = ht(P )− 1,

where we have used [1] Lemma 2.

We recall that M ′ is a maximal ideal in B[X] and P ′ a prime ideal in B. Our next step is to
show that B ∩M ′ = P ′. We recall that the mapping φ : R[X] −→ B[X] has the form

φ(a0 + a1X + · · ·+ amX
m) = ψ(a0) + ψ(a1)X + · · ·+ ψ(an)Xm.
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Then

M ′ = φ(M) = {ψ(a0) + ψ(a1)X + · · ·+ ψ(am)Xm : a0 + a1X + · · ·+ amX
m ∈M}.

Then B ∩M ′ is composed of the elements ψ(a0), where a0 + a1X + · · · anXn ∈M and ψ(x1) =
· · · = ψ(xn) = 0. Hence B ∩M ′ ⊂ {ψ(a0) : a0 ∈ M ∩ R} = P ′. On the other hand, it is clear
that P ′ ⊂ B ∩M ′, therefore we have the equality B ∩M ′ = P ′, as required.

We may now complete the proof. We have seen that ht(P ′) ≤ ht(P )− 1 = n− 1, so, by the
induction hypothesis, ht(M ′) ≤ ht(P ′) + 1. Therefore

ht(M) ≤ ht(M ′) + 1 ≤ ht(P ′) + 2 = ht(P ) + 1,

as asserted. 2

Corollary 5 If R is a noetherian ring, then

dim(R[X1, . . . , Xn]) = dim(R) + n.

proof It is su�cient to prove the result for n = 1, and for this we only need to show that
dim(R[X]) ≤ dim(R) + 1. Using Theorem 8, for any maximal ideal M ⊂ R[X] we have

ht(M) = ht(R ∩M) + 1 ≤ sup
P∈Spec(R)

ht(P ) + 1 = dim(R) + 1

and so dim(R[X]) ≤ dim(R) + 1. However, from [1] Theorem 2 we know that dim(R) + 1 ≤
dim(R[X]), therefore dim(R[X]) = dim(R) + 1. 2
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