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Primary ideals

Rodney Coleman, Laurent Zwald

December 4, 2020

Abstract

We introduce primary ideals and prove the Lasker-Noether theorem, namely that in a noethe-

rian ring any ideal can be written as a minimal �nite intersection of primary ideals. We

also introduce minimal prime ideals and symbolic powers of prime ideals, which are closely

related to primary ideals.

First notions

All rings are assumed to be commutative with identity.

De�nition An ideal Q in a ring R is primary if

• 1. Q 6= R;

• 2. xy ∈ Q =⇒ x ∈ Q or yn ∈ Q, for some n > 0.

Clearly prime ideals are primary, so the notion of primary ideal extends that of prime ideal.

The next result is fundamental.

PRIMARYprop1a Proposition 1 The ideal Q is primary in the ring R if and only if R/Q is nontrivial and every

zero-divisor in R/Q is nilpotent.

proof ⇒) If Q is primary, then Q is properly contained in R, so R/Q is nontrivial. If z +Q is
a zero-divisor, then there exists w /∈ Q such that

zw +Q = Q =⇒ zw ∈ Q.

As w /∈ Q, there exists n > 0 such that zn ∈ Q and so (z +Q)n = Q.

⇐) Suppose that R/Q is nontrivial and that every zero-divisor in R/Q is nilpotent. As R/Q is
nontrivial Q 6= R. Let x, y ∈ R be such that xy ∈ Q. If x /∈ Q, then

(x+Q)(y +Q) = xy +Q = Q,

so y +Q is a zero-divisor and there exists n > 0 such that

yn +Q = (y +Q)n = Q =⇒ yn ∈ Q.

Therefore Q is primary. 2
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Example The primary ideals in Z are (0) and (pi), where p is a prime number and i > 0: It
is easy to see that such ideals are primary. Suppose that Q is a proper ideal in Z, which is not
of this form; then Q = (m), and there is a prime number p and an element q > 1 in Z such
that m = piq, with i ≥ 1 and p 6 |q. However, p + (m) is a zero-divisor in Z/(m), which is not
nilpotent, because pn ∈ (m) implies that piq|pn, which is not possible. So in this case Q is not
primary. Thus the primary ideals in Z are as stated.

Notation For an ideal Q in a ring R, we will write r(Q) for the radical of Q, i.e., r(Q) is the
set of elements x ∈ R with a positive power in Q. We recall that r(Q) is the intersection of all
prime ideals containing Q.

PRIMARYprop1 Proposition 2 Let Q be a primary ideal in the ring R. Then the radical r(Q) of Q is the

smallest prime ideal containing Q.

proof Let Q be a primary ideal in the ring R and suppose that x, y ∈ R and xy ∈ r(Q). There
exists n > 0 such that (xy)n ∈ Q, i.e., xnyn ∈ Q. As Q is primary, either xn ∈ Q or (yn)m ∈ Q,
for some m > 0. By de�nition of the radical, either x ∈ r(Q) or y ∈ r(Q), so r(Q) is prime.

Suppose now that P ′ is a prime ideal containing Q. If x ∈ r(Q), then xn ∈ Q, for some n > 0.
As Q ⊂ P ′ and P ′ is prime, we have x ∈ P ′. Hence r(Q) ⊂ P ′. 2

Corollary 1 If P is a prime ideal, then r(P ) = P .

De�nition If Q is a primary ideal and r(Q) = P , then we say that Q is P -primary. It is notice-
able that P is a prime ideal.

Example If p is a prime number and i > 0, then the radical of the primary ideal (pi) is (p), so
(pi) is (p)-primary.

We have seen that powers of prime ideals in Z are primary. We may generalize this to UFDs.

Proposition 3 If R is a UFD and p ∈ R a prime element, then all powers of the principal ideal

(p) are primary ideals.

proof Let us consider (p)n, with n > 0. If ab ∈ (p)n, then pn|ab. Since R is a UFD, if a = cpk,
with k < n, then b = dpl, with l ≥ n−k 6= 0. There exists s such that ls ≥ n, so bs = dspls ∈ (p)n.
2

PRIMARYcor1 Corollary 2 If F is a �eld and λ ∈ F , then F [X](−λ + X)n is a primary ideal in F [X], for
any n > 0.

Remark We might be tempted to think that powers of primary ideals are always prime or that
primary ideals are always powers of prime ideals. Both of these statements are false. We will
give a counter-example to each of these assertions in an appendix.

In Proposition
PRIMARYprop1
2 we saw that the radical of a primary ideal is a prime ideal. We have a partial

converse to this statement.

PRIMARYprop2 Proposition 4 If Q is a proper ideal in the ring R and r(Q) is maximal, then Q is primary.
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proof Suppose that r(Q) = M , with M maximal. As r(Q) is the intersection of all prime ideals
containing Q, if P is such an ideal, then M ⊂ P . As M is maximal, we have M = P . Thus M
is the unique prime ideal in R containing Q. It follows that M/Q is the unique prime ideal in
R/Q. As every nonunit is contained in a maximal ideal, every nonunit in R/Q is contained in
M/Q. However, all elements in M have powers in Q, so every nonunit in R/Q is nilpotent. As
zero-divisors are nonunits, every zero-divisor in R/Q is nilpotent. It follows from Proposition

PRIMARYprop1a
1

that Q is primary. 2

Although powers of prime ideals are not always primary, this is the case for the subclass of
maximal ideals.

PRIMARYcor1 Corollary 3 IfM is a maximal ideal in the ring R, then any positive power ofM isM -primary.

proof Let M be a maximal ideal in R and n > 0. We claim that r(Mn) = M : If x ∈ r(Mn),
then there exists m > 0 such that xm ∈ Mn ⊂ M , so x ∈ r(M) = M , because M is prime.
Hence r(Mn) ⊂M . Suppose now that x ∈M ; then xn ∈Mn, which implies that x ∈ r(Mn), so
M ⊂ r(Mn). This proves the claim. As r(Mn) = M , r(Mn) is maximal, so, from Proposition
PRIMARYprop2
4, Mn is primary. Also, because r(Mn) = M , Mn in M -primary. 2

Intersections of primary ideals

A �nite intersection of prime ideals is not necessarily a prime ideal. However, a �nite inter-
section of primary ideals is primary, if we impose that all the ideals are P -primary for a given
prime P . To establish this, we need a preliminary result.

PRIMARYlem1 Lemma 1 If Q1, . . . , Qn are ideals in a ring R and Q = ∩ni=1Qi, then

r(Q) = ∩ni=1r(Qi).

proof If x ∈ r(Q), then xm ∈ Q, for some m > 0, and so xm ∈ Qi, for all i. Thus, x ∈ ∩ni=1r(Qi)
and it follows that r(Q) ⊂ ∩ni=1r(Qi).

Now suppose that x ∈ ∩ni=1r(Qi). For all i, there exists mi > 0 such that xmi ∈ Qi. Setting
m = max{mi}, we obtain

∀i, xm ∈ Qi =⇒ xm ∈ Q =⇒ x ∈ r(Q).

Thus ∩ni=1r(Qi) ⊂ r(Q) and so r(Q) = ∩ni=1r(Qi). 2

PRIMARYthm1 Theorem 1 Let P be a prime ideal in the ring R and Q1, . . . , Qn P -primary ideals. Then

Q = ∩ni=1Qi is also P -primary.

proof From Lemma
PRIMARYlem1
1,

r(Q) = ∩ni=1r(Qi) = ∩ni=1P = P,

so it remains to show that Q is primary. Suppose that xy ∈ Q. Then xy ∈ Qi, for all i. If
x /∈ Qj for some j, then ym ∈ Qj , for some m > 0, because Qj is primary. This implies that
y ∈ r(Qj) = P . Since r(Q) = P , there exists n > 0 such that yn ∈ Q, so Q is primary. 2

Ideals Q : x
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De�nition If Q is a proper ideal in a ring R and x ∈ R, then we set

Q : x = {y ∈ R : xy ∈ Q}.

There is no di�culty in seeing that Q : x is an ideal in R and that Q ⊂ Q : x.

PRIMARYprop2a Proposition 5 Let P be a prime ideal in the ring R, Q a P -primary ideal and x ∈ R. Then

• 1. x ∈ Q =⇒ Q : x = R;

• 2. x /∈ Q =⇒ Q : x is P − primary;

• 3. x /∈ P =⇒ Q : x = Q.

proof 1. If x ∈ Q, then x1 ∈ Q, so 1 ∈ Q : x, which implies that Q : x = R.

2. Suppose that x /∈ Q. If y ∈ Q : x, then xy ∈ Q. As Q is primary and x /∈ Q, there exists
k > 0 such that yk ∈ Q. Hence y ∈ r(Q) = P . Thus we have

Q ⊂ Q : x ⊂ P.

yielding
P = r(Q) ⊂ r(Q : x) ⊂ r(P ) = P

hence
r(Q : x) = P.

It remains to show that Q : x is primary. Since x /∈ Q, we have 1 /∈ Q : x, so Q : x 6= R. Suppose
that ab ∈ Q : x. If bk /∈ Q : x, for all k > 0, then b /∈ r(Q : x) = P . However, abx ∈ Q implies
that ax ∈ Q or bl ∈ Q, for some l > 0. In the latter case, b ∈ r(Q) = P , a contradiction, so
ax ∈ Q, which implies that a ∈ Q : x. Therefore Q : x is primary.

3. Suppose that x /∈ P . If y /∈ Q and xy ∈ Q, then xk ∈ Q, for some k > 0, because Q is
primary, so x ∈ r(Q) = P , a contradiction, hence xy /∈ Q, which implies that y /∈ Q : x. As
Q ⊂ Q : x, we have Q = Q : x. 2

The following property is useful.

PRIMARYprop3 Proposition 6 If Q1, . . . , Qn are ideals in a ring R and x ∈ R, then

(∩ni=1Qi) : x = ∩ni=1(Qi : x).

proof If a ∈ ∩ni=1(Qi : x), then ax ∈ Qi, for all i. It follows that ax ∈ ∩ni=1Qi and so
a ∈ (∩ni=1Qi) : x.

On the other hand, if a ∈ (∩ni=1Qi) : x, then ax ∈ ∩ni=1Qi. Thus ax ∈ Qi, for all i, and it
follows that a ∈ (∩ni=1Qi : x). 2

Primary decomposition

De�nition A primary decomposition of an ideal I in a ring R is an expression of the form

I = ∩ni=1Qi,

where the Qi are primary ideals. The expression is said to be minimal if
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• (i) the radicals r(Q1), . . . , r(Qn) are distinct;

• (ii) ∩j 6=iQj 6⊂ Qi, for all i.

If an ideal has a primary decomposition, then we say that it is decomposible.

Proposition 7 A primary decomposition may be replaced by a minimal primary decomposition.

proof Consider a primary decomposition

I = ∩ni=1Qi.

If r(Qi1) = · · · = r(Qik) = P1, then, from Theorem
PRIMARYthm1
1,

Q = ∩kj=1Qij

is P1-primary, so we may replace the ideals Qi1 , . . . , Qik by Q. Continuing in the same way we
can guarantee that the condition (i) holds.

If condition (ii) does not hold, then we may eliminate ideals until it does hold, without chang-
ing the overall intersection. 2

In an arbitrary ring there may be ideals which do not have a primary decomposition. How-
ever, every ideal in a noetherian ring has a primary decomposition. We will now set about
proving this. To do so we introduce the notion of an irreducible ideal.

De�nition A proper ideal I in a ring R is irreducible if there is no pair of ideals {J1, J2}, both
distinct from I, such that I = J1 ∩ J2. Alternatively, if I = J1 ∩ J2, then J1 = I or J2 = I.

PRIMARYlem2 Lemma 2 An irreducible ideal in a noetherian ring is primary.

proof Let R be a noetherian ring and Q an irreducible ideal in R. By de�nition, we have Q 6= R,
so R/Q is nontrivial. Let x̄ be a zero-divisor in R/Q. Then there exists ȳ 6= 0̄ in R/Q such that
x̄ȳ = 0̄. We consider the chain of ideals in R/Q:

Ann(x̄) ⊂ Ann(x̄2) ⊂ Ann(x̄3) ⊂ · · · ,

where Ann(ā) is the annihilator of the element ā, i.e., Ann(ā) = {ū ∈ R/Q : ūā = 0̄}. As R/Q is
noetherian, there exists n > 0 such that Ann(x̄n) = Ann(x̄n+1). We claim that (ȳ)∩ (x̄n) = (0̄).
Indeed, suppose that λȳ = µx̄n, for some λ, µ ∈ R/Q. Then

0̄ = λȳx̄ = µx̄n+1,

hence µ ∈ Ann(x̄n+1) = Ann(x̄n). Thus µx̄n = 0̄ and so (ȳ) ∩ (x̄n) = (0̄), as claimed.
Since Q is irreducible in R, the ideal (0̄) is irreducible in R/Q. As (ȳ) 6= (0̄), we must have

(x̄n) = (0̄). Hence x̄n is nilpotent and it follows from Proposition
PRIMARYprop1a
1 that Q is primary. 2

We are now in a position to show that any ideal in a noetherian has a primary decomposition.
From Lemma

PRIMARYlem2
2 it is su�cient to show that we may express an ideal as an intersection of irreducible

ideals.

Theorem 2 If I is an ideal in a noetherian ring, then I has a primary decomposition.
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proof As we have remarked above, it is su�cient to show that there are irreducible ideals
Q1, . . . , Qn whose intersection is I. Let S be the set of ideals which are not �nite intersections
of irreducible ideals. Suppose that S is nonempty. Let C be a chain of ideals in S. If C does not
have a maximum, then we can extrait from C an in�nite chain of distinct ideals. However, this
is not possible, because R is noetherian. Therefore every chain has a maximum and so by Zorn's
lemma, S has a maximal element M . As M is not irreducible, there exist ideals J and K, such
that M = J ∩K, with M ( J and M ( K. Since M is maximal, both J and K do not belong
to S, i.e., J and K are both �nite intersections of irreducible ideals. However, this implies that
M = I ∩ J is such an intersection, a contradiction. It follows that S is empty, which �nishes the
proof. 2

We might be tempted to think that primary decompositions are unique, or at least that
minimal primary decompositions are unique. This is not the case; however, we do have certain
uniqueness properties.

Theorem 3 Let I be a decomposible ideal in a ring R and

I = ∩ni=1Qi

a minimal primary decomposition. We set Pi = r(Qi), for i = 1, . . . , n. Then the set {P1, . . . , Pn}
is composed of the prime ideals P in R such that P = r(I : x), for some x ∈ R.

proof Let x ∈ R. Then, using Proposition
PRIMARYprop3
6 and Lemma

PRIMARYlem1
1, we obtain

r(I : x) = r(∩ni=1Qi : x) = r(∩ni=1(Qi : x)) = ∩ni=1r(Qi : x).

Finally, from parts 1. and 2. of Proposition
PRIMARYprop2a
5, we obtain

r(I : x) = ∩ni=1r(Qi : x) = ∩i,x 6∈QiPi.

If the intersection of a �nite set of ideals is a prime ideal, then the intersection is equal to one of
the ideals; thus, if r(I : x) is prime, then

r(I : x) ∈ {Pi : x 6∈ Qi} ⊂ {P1, . . . , Pn}.

Now we consider the converse. Let i ∈ {1, . . . , n}. Because the primary decomposition is
minimal, for each i, there exists

xi ∈ (∩j 6=iQj) \Qi.

If y ∈ Qi : xi, then yxi ∈ Qi, so

yxi ∈ Qi ∩ (∩j 6=iQj) = I =⇒ y ∈ I : xi.

Hence,
Qi : xi ⊂ I : xi ⊂ Qi : xi.

(The latter inclusion follows from the fact that I ⊂ Qi.) Therefore Qi : xi = I : xi and so, using
part 2. of Proposition

PRIMARYprop2a
5, we obtain

r(I : xi) = r(Qi : xi) = Pi.

It follows that the Pi form the set of those ideals r(I : x) which are prime. 2
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Corollary 4 In a minimal decomposition

I = ∩ni=1Qi

the prime ideals Pi = r(Qi) are uniquely determined.

Minimal prime ideals

In this paragraph I is supposed to be a decomposible ideal and I = ∩ni=1Qi a minimal primary
decomposition. We denote r(Qi) = Pi. We say that the prime ideals P1, . . . , Pn belong to I. The
minimal elements of the set S = {P1, . . . , Pn} with respect to inclusion are said to be isolated
and the others embedded. At least one isolated prime ideal exists, because the set S is �nite.

Let VI = {P ∈ Spec(R) : I ⊂ P}. Then S ⊂ VI , because I ⊂ Qi ⊂ r(Qi) = Pi, for
i = 1, . . . , n. We will show that the minimal elements of the set S are the minimal elements of
the set VI . We need the following result.

PRIMARYprop4 Proposition 8 Let I be a decomposible ideal in a ring R, I = ∩ni=1Qi a minimal primary

decomposition, with S the set of prime ideals belonging to I. If P ∈ VI , then P contains an

isolated prime ideal Pj.

proof Let I = ∩ni=1Qi be a minimal primary decomposition. We set Pi = r(Qi), for i = 1, . . . , n.
Then

P = r(P ) ⊃ r(I) = ∩ni=1r(Qi) = ∩ni=1Pi,

where we have used Lemma
PRIMARYlem1
1. However, if a prime ideal contains an intersection of ideals, then

at least one of the ideals in the intersection is contained in the prime ideal, therefore Pj ⊂ P , for
some j. The result now follows. 2

Corollary 5 The isolated prime ideals are the minimal elements in VI .

proof Above we saw that S ⊂ VI , so a fortiori if Pj is an isolated prime in S, then Pj ∈ VI .
Suppose now that P ∈ VI , with P ⊂ Pj . From Proposition

PRIMARYprop4
8 there exists an isolated prime ideal

Pk ⊂ P , so Pk ⊂ Pj . Since Pj is isolated, Pk = Pj , hence P = Pj and it follows that Pj is
minimal in VI .

Suppose now that P is minimal in VI . From Proposition
PRIMARYprop4
8, P contains an isolated prime ideal

Pj ∈ S. As P is minimal, we have P = Pj . 2

Although the primary ideals in di�erent minimal decompositions of an ideal are not necessarily
the same, the primary ideals whose radicals are isolated are the same. We aim now to establish
this.

Lemma 3 Let I be a decomposible ideal in the ring R and Qj an ideal in a minimal decomposi-

tion of I such that r(Qj) is an isolated prime ideal. Then Qj is composed of the elements a ∈ R
for which there exists b 6∈ r(Qj) with ab ∈ I.

proof Let I = ∩ni=1Qi be a minimal decomposition, with r(Qj) isolated. We claim that Qi 6⊂
r(Qj), for i 6= j: Suppose that Qi ⊂ r(Qj) and let x ∈ r(Qi); then x

n ∈ Qi, for some n > 0,
which implies that there exists m > 0 such that xnm ∈ Qj , for some m > 0, because Qi ⊂ r(Qj),
hence x ∈ r(Qj). It follows that r(Qi) ⊂ r(Qj), which is impossible, because r(Qj) is isolated.
Thus Qi 6⊂ r(Qj), as claimed.

Now let a ∈ Qj . From what we have just seen, for i 6= j, there exists bi ∈ Qi \ r(Qj). We set
b =

∏
i 6=j bi. As r(Qj) is a prime ideal, we have b 6∈ r(Qj). However, ab ∈ Qi, for i 6= j, because
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bi ∈ Qi. Also, given that a ∈ Qj , we also have ab ∈ Qj and so ab ∈ ∩ni=1Qi = I. Therefore, a is
an element in R for which there exists b 6∈ r(Qj) with ab ∈ I.

We now consider the converse. Suppose that a ∈ R and b /∈ r(Qj) are such that ab ∈ I. Since
I ⊂ Qj , we have ab ∈ Qj . As Qj is primary and bn /∈ Qj , for any n > 0, we must have a ∈ Qj .
This concludes the proof. 2

Corollary 6 If I is a decomposible ideal in a ring R, then the primary ideals in a minimal

decomposition of I corresponding to isolated prime ideals are uniquely determined.

Symbolic powers of prime ideals

Let P be a prime ideal in a commutative ring R. For n ∈ N∗, we call P (n) = RPP
n ∩R the

nth symbolic power of P . It is not di�cult to see that

P (n) = {r ∈ R : sr ∈ Pn for some s /∈ P}.

PRIMARYprop5 Proposition 9 Let f : A −→ B be a ring homomorphism and Q ⊂ B a primary ideal. Then

P = f−1(Q) is a primary ideal.

proof It is not di�cult to show that P is an ideal. Since 1 /∈ P , because f(1) = 1 /∈ Q, P is
a proper ideal and it follows that A/P 6= 0. f induces a mapping F : A/P −→ B/Q de�ned
by F (a + P ) = f(a) + Q, which is a well-de�ned ring homomorphism. If F (a + P ) = 0, then
f(a) ∈ Q, which implies that a ∈ P , so a+ P = 0, hence F is injective.

We now use Proposition
PRIMARYprop1a
1. Let a + P be a zero-divisor in A/P . Then F (a + P ) is a zero-

divisor in B/Q. From Proposition
PRIMARYprop1a
1, F (a+P ) is nilpotent in B/Q, i.e., F (a+P )n = 0, for some

n ∈ N∗. As F is injective, (a+ P )n = 0, i.e., a+ P is nilpotent. It follows that P is primary. 2

Corollary 7 The nth symbolic power P (n) of P is P -primary.

proof First we show that P (n) is primary. Since RPP is maximal in RP , from Corollary
PRIMARYcor1
3,

RPP
n = (RPP )n is RPP -primary. The standard mapping f : R −→ RP is a ring homomorphism

and so, from Proposition
PRIMARYprop5
9, f−1(RPP

n) = RPP
n ∩R is primary, i.e., P (n) is primary.

We now show that P (n) is P -primary. Suppose that x ∈ r(P (n)). For some s ∈ N∗,
xs ∈ P (n) = RPP

n ∩ R ⊂ RPP
n. Hence xs ∈ RPP and so x ∈ RPP , because RPP is a

prime ideal. As x ∈ R, we have x ∈ RPP ∩ R = P and so r(P (n)) ⊂ P . Now suppose that
x ∈ P . Then x ∈ RPP = r(RPP

n). Hence there exists s ∈ N∗ such that xs ∈ RPP
n. However,

xs ∈ R, so xs ∈ RPP
n ∩R = P (n), hence P ⊂ r(P (n)). It follows that P (n) is P -primary. 2

We may go a little further.

Proposition 10 P (n) is the smallest P -primary ideal containing Pn.

proof We will use the expression for P (n) mentioned above, namely

P (n) = {r ∈ R : sr ∈ Pn for some s /∈ P}.

First we notice that 1 /∈ P implies that Pn ⊂ P (n). Let Q be another P -primary ideal such that
Pn ⊂ Q and suppose that r ∈ P (n). We aim to show that r ∈ Q. As r ∈ P (n), there exists s /∈ P
such that sr ∈ Pn ⊂ Q. Then r ∈ Q or a power of s lies in Q. In the latter case s ∈ r(Q) = P ,
which is a contradiction, so r ∈ Q, as required. Therefore P (n) ⊂ Q. 2

Let R be a noetherian ring, P a prime ideal in R and f : R −→ RP the standard mapping.
We may use symbolic powers to characterize the kernel of f .
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Proposition 11 We have

Ker (f) = ∩n≥1P (n).

proof Let M = RPP , the unique maximal ideal in RP . Thus the Jacobson radical of RP is M
and we may apply Theorem 5 of 'Nakayama's lemma and applications' to obtain ∩n≥1Mn = (0).
Then

Ker (f) = f−1((0)) = f−1(∩n≥1Mn) = ∩n≥1f−1(Mn) = ∩n≥1Mn ∩R = ∩n≥1P (n),

as required. 2

APPENDIX

Primary ideals are not necessarily powers of prime ideals

Let R = F [X,Y ], where F is a �eld. We set

Q = 〈X,Y 2〉 = RX +RY 2.

We aim to show that Q is a primary ideal which is not a power of a prime ideal. First, we
will show that all zero-divisors in R/Q, which is not trivial, are nilpotent and hence that Q is a
primary ideal (Proposition

PRIMARYprop1a
1).

We de�ne a mapping φ from R into F [Y ]/〈Y 2〉 by

φ(f(X,Y )) = f(0, Y ) + 〈Y 2〉.

φ is clearly a surjective ring homomorphism and

kerφ = {f(X,Y ) ∈ R : f(0, Y ) ∈ 〈Y 2〉}.

Certainly, φ(X) and φ(Y 2) belong to 〈Y 2〉 so Q ⊂ kerφ. Suppose now that f(X,Y ) ∈ kerφ.
There exist f1 ∈ F [Y ] and f2 ∈ F [X,Y ] such that

f(X,Y ) = f1(Y ) +Xf2(X,Y ).

As f1(Y ) = f(0, Y ) ∈ 〈Y 2〉 ⊂ Q, we have kerφ ⊂ Q. Thus kerφ = Q and so R/Q ' F [Y ]/〈Y 2〉.
Now 〈Y 2〉 = F [Y ]Y 2, which is a primary ideal by Corollary

PRIMARYcor1
3, so all zero-divisors of F [Y ]/〈Y 2〉

are nilpotent. It follows that all zero-divisors of R/Q are nilpotent, which implies that Q is
primary, as required.

Our next step is to show that Q is not a power of its radical. First we notice that

r(Q) = 〈X,Y 〉 = RX +RY :

Clearly X and Y lie in r(Q), hence 〈X,Y 〉 ⊂ r(Q). As no power of a constant polynomial lies in
Q, we must have the equality stated. Then

(r(Q))2 = (RX)2 + (RY )2 + (RX)(RY ) = RX2 +RY 2 +RXY,

so, for n ≥ 2, we have
r(Q)n ⊂ r(Q)2 ( Q ( r(Q)

9



and it follows that Q is not a power of its radical.
We are now in a position to show that Q is not a power of a prime ideal. Suppose that

Q = Pn, where P is a prime ideal. If n = 1, then Q is prime and so r(Q) = Q, thus Q is a
power of its radical, which is impossible. Now suppose that n ≥ 2. We claim that r(Q) = P .
If α ∈ P , then αn ∈ Pn = Q ⊂ r(Q), so P ⊂ r(Q). Now let β be an element of r(Q). Then
β2 ∈ r(Q)2 ( Q = Pn ⊂ P . As P is prime, we have β ∈ P and so r(Q) ⊂ P . This establishes
the claim. Therefore we may write

P 2 = r(Q)2 ( Q = Pn ⊂ P.

If n = 2, then r(Q)2 = Q, which is impossible. If n > 2, then

Pn ⊂ P 2 ( Q = Pn,

which is also not possible. It follows that Q is not a power of a prime ideal.

Powers of prime ideals are not necessarily primary ideals

Let R = F [X,Y, Z], where F is a �eld and I = 〈XY −Z2〉 ⊂ R. Also, we note B = R/I and
P = 〈X + I, Z + I〉 ⊂ B. We aim to show that P is a prime ideal, with P 2 not primary.

To establish that P is a prime ideal, we show that B/P is an integral domain. We de�ne a
mapping φ from R into F [Y ] by

φ(f(X,Y, Z)) = f(0, Y, 0).

Then φ is a surjective ring homomorphism and

φ(XY − Z2) = 0 =⇒ I ⊂ kerφ.

Thus φ induces a surjective ring homomorphism φ̄ from B onto F [Y ]:

φ̄(f(X,Y, Z) + I) = f(0, Y, 0).

We claim that ker φ̄ = P . First, we notice that X+I and Z+I belong to ker φ̄, so P ⊂ ker φ̄.
Showing that ker φ̄ ⊂ P is more di�cult. We may write

f(X,Y, Z) = f1(Y ) +Xf2(X,Y ) + Zf3(X,Y, Z),

for some f1(Y ) ∈ F [Y ], f2(X,Y ) ∈ F [X,Y ] and f3(X,Y, Z) ∈ F [X,Y, Z]. Then, if f(X,Y, Z) +
I ∈ ker φ̄,

f1(Y ) = f(0, Y, 0) = φ̄(f(X,Y, Z) + I) = 0,

so
f(X,Y, Z) ∈ 〈Y,Z〉 =⇒ f(X,Y, Z) + I ∈ 〈X + I, Z + I〉 = P =⇒ ker φ̄ ⊂ P,

and it follows that ker φ̄ = P . We now have B/P ' F [Y ], which implies that B/P is an integral
domain and so P a prime ideal.

We now show that P 2 is not primary. First,

(X + I)(Y + I) = XY + I = XY − (XY − Z2) + I = Z2 + I = (Z + I)2 ∈ P 2.

Also,
P 2 = 〈X2 + I,XZ + I, Z2 + I〉.

If P 2 is primary, then X + I ∈ P 2 or Y k + I = (Y + I)k ∈ P 2, for some k > 0, so that X or Y k

belong to the ideal 〈X2, XZ,Z2, XY − Z2〉 ⊂ R. However, the elements of this ideal have the
form

αX2 + βXY + γZ2 + δ(XY − Z2),

where α, β, γ, δ ∈ R. As X and Y k do not have such a form, the ideal P 2 is not primary.
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