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Abstract

In these notes, we present various useful results concerning prime ideals. We characterize
prime and maximal ideals in Z[X] and introduce the height of an ideal and the dimension
of a ring. In particular, we provide bounds for the dimension of a polynomial ring. We also
study in detail radicals and certain proprieties of artinian and noetherian rings. We give a
proof of the prime avoidance lemma.

Prime ideals principal implies all ideals principal

A commutative ring is a principal ideal ring if every ideal can be generated by a single ele-
ment. In particular, an integral domain is a principal ideal domain (PID), if every ideal can be
generated by a single element. Our aim here is to show that it is sufficient to consider prime ideals.

Let R be a ring such that every prime ideal is principal and X the set of ideals which are not
principal. We aim to show that % is empty. Suppose that this is not the case. We define an
order on ¥ by inclusion. Let (I;)ier be a chain in ¥ and I = Ugerl;. We claim that T € 3. If
I ¢ ¥, then I = (), for some z € R. There exists an index ¢ € T such that = € I, and so we
have

(x) c I, C I =(x),
which implies that I; = (x), a contradiction, because I; is not principal. Hence I € .. By Zorn’s

lemma, there exists a maximal ideal J € ¥. We will show that J is a prime ideal, which is a
contradiction, because all prime ideals are principal.

Let aj,as € R\ J. Since J is maximal, the ideals (J,a1) and (.J,a2) do not belong to X.
Therefore there exist x1,22 € R such that (J,a1) = (z1) and (J,az2) = (z2). We claim that
(x122) = (J, ara2). First we have

(r122) = (21)(72) = (J,01)(J, a2) C (J,a1az).
Now we set
Ji={y e R:yx; € J},

for i = 1,2. The J; are ideals containing J. We will show that J = J;(z;), for i = 1,2. (J;(z;)
is the product of the ideals J; and (z;).) By definition of J;, we have J;(x;) C J. On the other
hand, if x € J, then = € (J,a;) = (x;), which implies that z = w;x;, with u; € R. As z € J,
u; € J; so x € J;(x;). We have shown that J = J;(x;), as required.

Our next step is to show that J = J;. We have observed above that J C J;. If the in-
clusion is proper, then J; is principal and so we may write .J; = (y;), for some y; € R. Then



J = Ji(x;) = (yix;), so J is a principal ideal, contradicting the fact that J € 3. Thus we have
J=J = Js.

We now show that (J,a1a2) = (z122). First we have
J = J1($1) = J($1) = JQ(ﬂig)(xl) = J(J?lxg) C (xll‘g).

Since ajag € (J,a1)(J,as2) = (x122), we conclude that (J,a1a2) C (x122). Above we saw that
(x122) C (J, ara2), so we have the desired equality.

Now we complete the argument. If ajay € J, then (J,a1a2) = J and so J is principal, a
contradiction. We have shown that aq,as ¢ J implies that ajas ¢ J, hence J is a prime ideal.
Thus J is a prime ideal which is not principal. However, this contradicts the hypothesis that
every prime ideal is principal. It follows that X is empty, i.e., R is a PID. We have proved:

Theorem 1 If R is a commutative ring in which every prime ideal is principal, then R is a
principal ideal Ting. In particular, an integral domain in which every prime ideal is principal is
a principal ideal domain (PID).

Corollary 1 If D is a Dedekind domain which is also a UFD, then D is a PID.

PIDthl
PROOF From Theorem [['1t 1s sufficient to show that a prime ideal P in D is principal. If P = {0},

then there is nothing to prove, so let P be a nontrivial prime ideal and = a nonzero element in P.
As P # D, we may write = p{'* - - - p%, where the p; are irreducible elements in D and s and
the «; positive integers. Since P is a prime ideal, at least one of the p; belongs to P. Without
loss of generality, let us suppose that p; € P. Then (p;) C P. As D is a UFD and p; irreducible,
hence prime, the ideal (p;) is a prime ideal. However, prime ideals in a Dedekind domain are
maximal, thus (p;) = P and it follows that P is a principal ideal. O

The prime and maximal ideals in Z[X]

We aim to show that the prime ideals in Z[X] have one of the following forms:

e 1. P=(0);

e 2. P =Z[X]p, for some prime number p;

e 3. P =Z[X]r(X), for some irreducible nonconstant polynomial 7(X) in Z[X];

e 4. P=Z[X]p+ Z[X]n(X), where p is a prime number and 7(X) is a polynomial in Z[X]
irreducible modulo p.

First we show that the above ideals are prime:
1. If P = (0), then P is clearly prime.

2. Suppose that P = Z[X]p, for some prime number p. The elements of P have the form f(X) =
S o a; X, where pla;, for all i. Suppose that k(X) = g(X)h(X) € P, with g(X) = > ;_,b; X"
and h(X) = Y7, X%, and that both g(X) and h(X) do not belong to P. Then there are
coefficients of g and h not divisible by p. Let by (resp. ¢;), be the first coefficient of g (resp. h)
not divisible by p. If g(X)h(X) = k(X) = 327" d; X?, then

di+1 = boCky1 + bickyi—1 + -+ brer + -+ + brqico.



Now p divides all terms other than byc;, so p fdk4i, a contradiction, hence g € P or h € P and
so P is prime.

3. The elements of P have the form f(X) = > m(X)a; X" = >""" , a;(X) X", where 7(X)]a;(X).
To show that P is prime, we may use an argument analogous to that used in 2. Suppose that
f(X) = g(X)h(X) € P, where both g(X) and h(X) do not belong to P. We may write
g(X) =31 _obi(X)X? and h(X) = >°7_, ¢;i(X)X". There are coefficients of g and h not divisi-
ble by w(X). Let bi(X) (resp. ¢;(X)) be the first coefficient of g (resp. h) not divisible by 7w (X).
If g(X)h(X) = Y075 di(X)X?, then

dk+l(X) = bo(X)Ck+l(X) + bl(X)CkJrl,l(X) + - bk(X)Cl(X) + -+ bk+l(X)Co(X).

Now 7(X) divides all terms other than by (X)c;(X). (If 7(X) divides the product by (X)e;(X),
then m(X) must divide one of the polynomials in the product, because 7(X) is irreducible, hence
prime.) This implies that 7(X) does not divide di;(X), a contradiction, hence g(X) € P or
h(X) € P, i.e., P is a prime ideal.

4. Let « be the standard mapping taking g € Z[X] to g € F,[X] and § the standard mapping
taking elements of F,[X] into F,[X]/(7). We set ¢ = S o «a. The kernel of ¢ is P and so
Z[X]/P ~ F,[X]/(7), which is a field. Thus P is a maximal ideal and so prime.

We now need to show that these ideals are the only prime ideals in Z[X]. Let P be a prime
ideal in Z[X]. For the contraction of P to Z, i.e., the intersection of P with Z, there are two

possibilities: PNZ = (0) or PNZ = (p), for some prime number p.

Case 1 PNZ=(0)

If P = (0), then we are done. Suppose that this is not the case and let S = Z \ (0). Then
SNP=10. As S is a multiplicative set in Z[X], we may localize Z[X] at S to obtain Q[X].
The ideal S~ P is prime in Q[X] and so has the form Q[X]r(X), where m(X) is irreducible in
Q[X]. We may suppose that 7(X) has integer coefficients whose ged is 1, i.e., 7 is a primitive
polynomial in Z[X]. We claim that P = Z[X|n(X).

The elements of S~ P have the form @, with 7(X) € P and s € S, so m(X) has this form and
we may write sw(X) € P, for some s € Z; since P is a prime ideal in Z[X] and s ¢ P, we must
have m(X) € P. Thus Z[X|n(X) C P.

We now show that P C Z[X]|r(X). If f € P, then f € S™'P and so we may write f(X) =
@W(X ), where r has integer coefficients. Writing ¢(g) for the content of a polynomial g(X) €
Z[X] and noting that ¢(7) = 1, we have

— 1) = Y (x0ym(x) € ZXIR(X),

e(r)

because ¢(r) divides all the coefficients of r(X). Therefore P C Z[X]n(X) and it follows that
P =7 X|n(X).



Tt should be noted that 7(X) is irreducible in Q[X], hence in Z[X]. We also notice that 7(X)
is not a constant polynomial: since ¢(m) = 1, the only possibility would be that = = 1, which is
not possible, because P is properly contained in Z[X].

Case 2 PNZ = (p)

Let « be the standard mapping defined above. We claim that the image of P under « in F,[X]
is a prime ideal. First we notice that the kernel of « is equal to Z[X]p, which is a subset of P.

If 1 € a(P), then there exists u € P such that a(u) = 1. As a(l) = 1, we have 1 —u €
Ker (a) C P and it follows that 1 = u + (1 — u) € P, which is impossible, because P is a proper
subset of Z[X]. Therefore a(P) is properly contained in F,[X].

Suppose now that x,y € F,[X] and zy € a(P). There exist a,b € Z[X] such that a(a) = =,
and a(b) = y. Then a(ab) = a(a)a(b) € a(P). Thus there exists ¢ € P such that a(ab) = a(c),
which implies that ab — ¢ € Kera C P. Hence ab € P. As P is a prime ideal, either a € P or
b € P, therefore z = a(a) € a(P) or y = a(b) € a(P). Thus o(P) is a prime ideal as claimed.

The prime ideals in F,[X] are (0) and the ideals of the form F,[X]q(X), where ¢(X) is a
monic irreducible polynomial in F,[X]. If a(P) = (0), then Z[X]p C P C Ker (a) = Z[X]p, so
P = Z[X]p. We now consider the other possibilty.

Suppose that a(P) = F,[X]q(X), where ¢(X) is a monic irreducible polynomial in F,[X].
There is a polynomial 7(X) € Z[X] such that a(m(X)) = ¢(X). Then n(X) is irreducible modulo
.

We claim that P = Z[X]p 4+ Z[X]n(X). First, PNZ = (p) implies that p € P. C v
7m(X) € Q = a~!(a(P)), which is a proper ideal in Z[X], because 1 ¢ Q. From Corollary 2 (see
below), a nonzero prime ideal in a PID is maximal; as P C ) and P is nonzero, we have P = @,
hence m(X) € P. Therefore Z[X]|p + Z[X]|n(X) C P.

We now show that P C Z[X|p+ Z[X]m(X). Let f(X) € P. There exists g € F,[X] such that
G(X)q(X) = F(X) or g(X)g(X) — F(X) = 0. It follows that g(X)r(X) — f(X) € Z[X]p,
so f(X) € Z[X]p + Z[X|n[X] and we have P C Z[X|p + Z[X]|n(X). Hence the equality
P =7Z[Xp+ Z[X]|r(X).

Maximal ideals in Z[X]

We have seen that the prime ideals of type 4. are maximal. Clearly, if P = (0), then P is
not maximal. If P = Z[X]p, then P is properly contained in Z[X]p + Z[X]X # Z[X], and so
is not maximal. Finally, we consider prime ideals of type 3. To simplify the notation, let us
write (7(X)) for Z[X]m(X). We aim to show that Z[X]/(7(X)) is not a field, which implies that
(m(X)) is not a maximal ideal. As the polynomials 7(X), 7(X)+1 and 7(X) — 1 have at most a
finite number of roots in Z, we can find a € Z such that 7(a) # 0,+1. Let p be a prime number
dividing 7 (a). We consider the mapping

¢ Z[X]/(n(X)) — Z/(p), f(X) + (n(X)) — [f(a) + (p),

where (p) = Zp. The mapping ¢ is a well-defined ring homomorphism, which is not injective,
because Z[X]/(mw(X)) is infinite and Z/(p) is finite. This implies that Ker (¢) # (0). Also, ¢
is not the zero mapping, because ¢(1 + (7)) = 1+ (p) # (p). It follows that (0) C Ker (¢) C
Z[X]/(m(X)), where the inclusions are strict. Since Z[X]/(m(X)) contains a nontrivial ideal, it
is not a field and so (7w(X)) is not a maximal ideal in Z[X].



Heights and Dimensions

If P is a prime ideal in a commutative ring R and
PhbcPC---CP,=P

a chain of distinct prime ideals in P, then we call n the length of the chain. The height of P,
written ht(P), is the supremum of lengths of chains of prime ideals included in P. The dimension
of R, written dim(R), is the supremum of heights of prime ideals in R. We notice that we may
also define dim(R) to be the supremum of lengths of chains of prime ideals in R. A field has
dimension 0, because (0) is its unique prime ideal.

For a general ideal I we define the height as follows:

ht(I) = inf ht(P).
( ) ICP,PIEHSpec(R) ( )

There is no difficulty in seeing that, for a prime ideal P’, we have

inf ht(P) = ht(P’),
P'CP,PeSpec(R)

so this definition of height for a general ideal generalizes that for a prime ideal.

We should also notice that I C .J implies that ht(I) < ht(J). Moreover, if I and J are prime
ideals and the inclusion is strict, then the inequality is strict.

We begin with two elementary lemmas.
Lemma 1 If I is an ideal in a commutative ring R, then
ht(I) + dim(R/I) < dim(R).
PROOF If s < dim(R/I), we may find distinct prime ideals Q; € R, with ¢ = 0,1,..., s, such that
ICQoCQiC-CQs.
Then ht(Qp) > ht(I) = r, so we may find distinct prime ideals P;, with ¢ = 0,1,...,r, such that
PhCcP,C---CP.=0Qo.

Moreover,
PhPCPC---CP=QyCQ1C-CQs

is a chain of distinct prime ideals in R of length r + s. It follows that dim(R) > ht(I) + s and
so dim(R) — ht([) is an upper bound on lengths of chains of distinct prime ideals contained in
R/I, which implies that dim(R) — ht(I) > dim(R/I); O

Lemma 2 If (R, M) is a local ring, then
dim(R) = ht(M).

In particular, if P is prime ideal in a commutative ring R and Rp is the localization of R at P,
then
dim(Rp) = ht(P).



PROOF Any chain of distinct prime ideals in M is a chain of distinct prime ideals in R, hence
ht(M) < dim(R). Now let
PhCcP,C---CP,

be a chain of distinct prime ideals in R. If P, # M, then we may add M to the chain, so any
chain of distinct prime ideals in R is contained in a chain of distinct prime ideals in M. It follows
that dim(R) < ht(M).
For the second part of the lemma, we notice that Rp is a local ring with maximal ideal Rp P,
hence
dlm(Rp) = ht(RPP)

To conclude, it is sufficient to observe that ht(P) = ht(RpP). |

The next result is also elementary.

Proposition 1 A 1-dimensional UFD is a PID. In particular, a Dedekind domain which is not
a field and is a UFD is a PID.

PROOF Let R be a 1-dimensional UFD and P a nontrivial prime ideal in R. Then P has a
nonzero element z. Since R is a UFD, we may write

_ 71 T
xiupl ...pn"7

where the p; are prime elements in R, the r; are positive integers and u is a unit. Since P is
prime, we have p; € P, for some ¢, hence we have a chain of distinct prime ideals (0) ¢ (p;) C P.
As dim R = 1, we must have P = (p;), i.e., P is principal. It follows from Theorem at R is
a PID.

As a Dedekind domain which is not a field is 1-dimensional, if it is a UFD, then it is a PID.O

Lemma 3 Let R be an integral domain and P, = (p1), P» = (p2) distinct nontrivial principal
prime ideals. Then Py ¢ P». In particular, a PID which is not a field has dimension 1.

PROOF Suppose that Py C P,. Then there exists a € R such that p; = aps. Since P is a prime
ideal, either po € P or a € P;. In the first case, P, C P, and so P, = P5, a contradiction. If
a € Py, then we may write a = bp; and so p; = bp1p2, which implies that p1(1 — bps) = 0. Since
R is a domain, either p; = 0 or 1 — bp; = 0. In the first case we have P, = (0), which is a
contradiction. In the second case po is a unit and so P, = R, which is also impossible. It follows
that P1 ¢ P2.

If R is a PID, then all prime ideals are principal, so no chain of distinct prime ideals can
be longer than 1, hence dim(R) < 1. Since R is not a field, R has at least one prime ideal, so
1 < dim(R), and it follows that dim(R) = 1. O

Corollary 2 In a PID every nonzero prime ideal is maximal.

PROOF Let R be a PID and P a nonzero prime ideal in R. There exists a maximal ideal M in R
containing P. As P and M are principal and prime and P C M, we must have P = M. O

PIDleml
We use Lemma b in the next proposition.

Proposition 2 Let R be a UFD and P # (0) a prime ideal in R. Then ht(P) =1 if and only
if P is principal.



PIDlemma2

PROOF Suppose that P is a nonzero prime ideal and let z be a nonzero element of P. Then
x = upy'---p%, where u is a unit, the p; are prime elements and the a; positive integers. As
P is a prime ideal, p; € P, for some i. Therefore (0) C (p;) C P. Thus a nonzero prime ideal
contains a nonzero principal prime ideal.

Suppose that P is a nonzero prime ideal such that ht(P) = 1. As P contains a nonzero
principal prime ideal (p), we have (0) C (p) C P. Given that ht(P) = 1 we have the equality
P = (p).

Now suppose that P is principal, with P = (p). If P contains a nonzero prime ideal @, then @
gopfains a nonzero principal prime ideal (¢) and we have (¢) C @ C P = (p). Applying Lemma
Wbtain (¢) = (p) and so @ = P. Thus ht(P) = 1. |

Dimension of a polynomial ring

First we aim to show that the dimension of a ring R determines bounds on the dimension of
the associated polynomial ring R[X]. We need a preliminary result.

Lemma 4 Let R be an arbitrary commutative ring. If Q & Q' are prime ideals in S = R[X]
whose contractions to R are the same, i.e., P=RNQ = RNQ', then Q = SP.

PROOF First we show that SP is a prime ideal in S, if P is a prime ideal in R. Clearly SP is
an ideal. SP is composed of all polynomials in S with coefficients in P. From hereon we will
write P[X] for SP. Suppose that f(X)=>21";a; X" and g(X) = 3°7_, b; X7 belong to S, with
fg e PIX]. If f ¢ P[X] and g ¢ P[X], then there are coefficients of f and g not in P. Let a,
(resp. b,) be the first coefficient of f (resp. g) not in P. If fg(X) = >_7" ¢, X*, then

Cutv = CLObqu'u + albu+v71 + -+ auflb'qul + CLub'u + au+1bv71 + -+ au+vb0~

All the terms of the sum, with the possible exception of a,b,, clearly lie in P, as does ¢, +,. But
this implies that a,b, lies P. As P is a prime ideal, either a,, or b, belongs to P, a contradiction.
Hence f € P[X] or g € P[X] and it follows that P[X] is a prime ideal.

Suppose now that @ ¢ Q' are prime ideals in R[X] and P= RN Q = RN Q’. Suppose that
P[X] # Q, i.e., P[X] is properly contained in ). Then the three ideals P[X] N R, RN Q and
RN @ all lie in P, hence outside of the set U = R\ P, which is a multiplicative set in R, hence
in R[X]. We deduce that P[X], Q and Q' do not intersect U. We now localise with respect to
U and obtain a chain (C) of distinct prime ideals in U~!(R[X])

UNPX)cU'QcU Q.
In addition, we notice that
U-Y(R[X]) = (U R)[X] = Rp[X] and U~'(P[X]) = (U~"P)[X] = RpP[X],

where RpP is the unique maximal ideal in Rp.

We now note 7 the canonical projection of Rp[X] onto Rp[X]/RpP[X] = (Rp/RpP)[X].
Applying 7 to the chain (C) we obtain a chain (C”) of three distinct prime ideals in (Rp/RpP)[X].
However, (Rp/RpP) is a field, because RpF,is a maximal ideal in Rp and so (Rp/RpP)[X]
is a PID, which is not a field. From Lemma b_fhe—dimension of such a ring is 1. So we have a
contradiction and it follows that @ = P[X]. O

Corollary 3 If R is an arbitrary commutative ring and Q" is a prime ideal in R[X], there is at
most one other prime ideal Q strictly included in Q' such that RNQ = RNQ'. In particular, if
Q' is a nonzero prime ideal in R[X] and RN Q" = (0), then there is no nonzero prime ideal Q
strictly included in Q' such that RN Q = (0).



PROOF If P = RN Q" and Q # @', then Q = P[X]. O
We now may consider the bounds on the dimension of a polynomial ring.

Theorem 2 If R is an arbitrary commautative ring of dimension n, then R[X] is at least (n+1)-
dimensional and at most (2n + 1)-dimensional.

PROOF If
PhCcP,C---CP,CR

is a chain of distinct prime ideals in R, then
R[X]|Py, C R[X]P, C --- C R[X]P, C R[X]
is a chain of distinct prime ideals in R[X]. In addition, R[X]P, is not maximal, because

R[X|P, ¢ (R[X]|P,, X) & R[X].

It follows that R[X] is at least (n + 1)-dimensional.
We now consider a chain of distinct prime ideals in R[X]:

Qo C Qi C- - CQmC R[X].

We set P, = RN Q;, fo ohps, G Suppose that there are s distinct prime ideals among
the P;. From Corollary B at most two prime ideals @; have the same intersection with R. If
2s < m+ 1, then there Eggolgg at least one P; which is the contraction of three prime ideals @,
contradicting Corollary %, hence we have

m+1<2s<2(n+1)=2n+2=m<2n+1,

and so
n+1<dim(R[X]) < 2n+ 1.

This ends the proof. o
Corollary 4 If R is a PID which is not a field, then dim R[X] =

PROOF If R is a PID, which is not a field, then dim(R) = 1, so dim(R[X]) is 2 or 3. If the
dimension is 3, then there is a chain of distinct prime ideals (0) = Qo C Q1 C Q2 C Q3. (The
ideal (3 must be maximal; otherwise (03 is properly contained in a maximal ideal, which is prime
and so we have a chain of distinct prime ideals whose length is at least 4, a contradiction.) Taking
the intersections with R, we obtain a chain of prime ideals ( P%,lcm 1P1 C P, C Pyin R. We
notice tI%?BII;’h (0). If this is not the case, then from Lem i%r\y—eﬁave P, = P, and using
Lemma B again we have P, = P3. However, from Corollary g we cannot have P, = P, = Ps.
Hence P; = (0), as claimed.

Next we notice that P, # (0). If this is n(@% fhe gase, then we have a Q1 C Q2, with Q1 # Q2,
and P1 P, = (0), contradicting Corollary B. Hence there is a prime element p € R such that
Py =

The = R[X]pis a prime ideal included in Q5. If R[X]p = Q2, then, from Proposition
b—% = 1 Wthh is impossible, because ht(Q1) # 0 and ht(Q1) < ht(Q2). Thus we have a
chain of dlstlnct prime ideals R[X]p C Q2 C Q3 in R[X].

Now RN R[X]p = (p) = P». Also, P53 # (p), because we cannot have a chain of three distincf

nonzero prime ideals in R[X] having the same intersection with R (again using Corollary



PIDleml
Thus P, is strictly included in Ps, contradicting Lemma BT Tollows that dim(R[X] # 3 and so
dim(R[X]) = 2, as claimed. m|

We now consider valuation rings. We aim to show that, if R is a 1-dimensional valuation
ring, then dim(R[X]) = 2. We begin with two preliminary results.

Lemma 5 Let S = {a1,...,a,} be a set of elements in a valuation ring R. Then S has a
minimal element, i.e., an element a; which divides all the a;.

PROOF In a valuation ring R, if a,b € R, then a|b or bla; thus, if n = 2, there is nothing to prove.
Suppose now that the result is true up to n — 1. Without loss of generality, let us assume that
aila;, for i =1,...,n— 1. Now ai|a, or ap|a;. In the first case a; is minimal and in the second
case a, is minimal. Hence S has a minimal element. O

Lemma 6 If P is a nonzero prime ideal in a 1-dimensional valuation ring R and Q) a nonzero
prime ideal in R[X] such that
(0) c Q c P[X],
then Q = P[X]. (As above, we write P[X] for R[X|P.)
PRQOE Since @ is a nonzero prime ideal, there is a nonzero polynomial f(X) € Q. From Lemma
) ) has a coefficient which divides all its coefficients. Dividing out by this coefficient we
obtain the expression f(X) = cg(X), where ¢ € P and ¢g(X) € R[X], with at least one coefficient
equal to 1. Then g(X) ¢ P[X], because 1 ¢ P. As @ is a prime ideal, f(X) = cg(X) € Q and

9(X) ¢ Q, we must have ¢ € Q.
Since ¢ # 0, RN Q is a nonzero prime ideal in R. Also,

() CRNQCRNP[X]=P
As dim(R) = 1, we have RN Q = P and so
PIX] = RIX|(RNQ) € RIX]Q € Q.
By hypothesis, Q@ C P[X], hence we have Q = P[X], as required. ]

We now may prove the result alluded to above.
Theorem 3 If R is a I-dimensional valuation ring, then dim(R[X]) = 2.

PROOF Because dim(R[X]) < 3, no chain of prime ideals in R[X] can have a length greater than
3. We aim to show that even this is not possible. Let

(0)=QoCQ1CQ2CQ3

be a chain of distinct prime ideals in R[X]. We set P, = RN Q;. If P, # (0), then P, = Py, = P,
because dim(R) = 1. As this is impossible P; = (0). Now we show that P # (0). If P, = (0),
then we have Py = P; = P», which is impossible, so P5 # (0).
We claim that R[X]|P> = Q2. Clearly, R[X]P> C Q2. Because dim(R) = 1, we must have
P3 = PQ. AISO,
RNRIX]P, = ROR[X](RNQ2) = RN Qs = Py

If R[X]P; is a proper subset of 2, then we have a chain of three distinct prime ideals in R[X]
whose intersection with R is P,. As this is impossible, we must have R[X|P; = Q2. However,



PIDlemd
Q1 C Q2, so, by Lemma %, Qim: R[X]|P, = @2, a contradiction. Tt follows that dim(R[X]) = 2. O

Remark If R is a discrete valuation ring, then it is a PID, so it has dimension 1. It follows from
the result we have just proved that dim(R[X]) = 2.

Radicals
We recall a definition. The spectrum of ring, written Spec(R), is the set of prime ideals in R.

There is a natural question which arises, namely is it possible to characterize the intersection
of the prime ideals (resp. maximal ideals) in a ring. This is in fact the case. The first intersection
is called the nilradical, written N(R), and the second the Jacobson radical, written J(R). Clearly,
N(R) C J(R).

Theorem 4 The nilradical of a ring R is composed of the nilpotent elements in R, namely those
elements x € R for which there exists n € N* such that 2™ = 0.

PROOF Let X be the set of nilpotent elements in R. Suppose that P is a prime ideal in R and
x € X. There exists n € N* such that 2™ = 0 € P. Since P is prime, we have x € P. Thus
X C N(R).

We now consider the converse. It is sufficient to show that a ¢ X implies that a ¢ N(R), and
for this it is sufficient to show that there is a prime ideal which does not contain a. Let a ¢ X
and S be the set of ideals in R which do not contain a positive power of a. S is not empty: Since
a is not nilpotent, no positive power of « lies in (0), so (0) belongs to S. We order S by inclusion.
The union of the ideals in a chain clearly lies in S, thus a chain has a maximum. From Zorn’s
lemma, S has a maximal element, which we note M.

We claim that M is prime. If this is not the case, then there exist z,y ¢ M such that zy € M.
M is strictly contained in the ideal (M,z) = M + (z), which does not belong to S, because M
is maximal. Hence there exists n € N* such that a™ € (M, z). In the same way, there exists
m € N* such that a™ € (M,y) = M + (y). Then

a"t =a"a™ = (my + r1z)(ma + roy) = mima + myrey + rizms + T2y,
where 71,72 € R and my,mas € M. As zy € M, a™™™ € M, which contradicts the fact that
M € S. It follows that M is a prime ideal, as claimed. Since M contains no positive power of
a, a does not belong to M. Hence there exists a prime ideal which does not contain a and so
a ¢ N(R). Therefore N(R) C X and we conclude that N(R) = X O

We now turn to the Jacobson radical.

Theorem 5 The Jacobson radical of a ring R is composed of those elements © € R such that
1 — zy is a unit for all y € R.

PROOF Suppose that z € J(R) and that 1 — xy is a nonunit for some y € R. Since 1 — xy is
a nonunit, there is a maximal ideal M which contains 1 — zy. As z € J(R), zy € M and so
1=(1—-2zy)+ xzy € M, which is impossible because M is a proper ideal in R. Therefore 1 — zy
is a unit for all y € R.

10



We now consider the converse. Suppose that « ¢ J(R). Then there is a maximal ideal M
which does not contain . We have

R=M+(z)={m+zy:me M,y € R}.

In particular, 1 = m + xy, for some y € R. Hence m = 1 — zy, which is a nonunit, because M is
a proper ideal. O

Example Let F be a field, R = [[;2, F and M, the ideal in R which is F on every coordinate
other than j and 0 on the jth coordinate. Each M, is a maximal ideal and the intersection of
the M; is the zero ideal, which is not maximal. It follows that J(R) is not maximal. As the zero
ideal is not prime, J(R) is not even prime. This shows that in general the Jacobson radical is not
prime. Given that the nilradical is contained in the Jacobson radical, we see that the nilradical
is in general not prime.

Remark The nilradical may be strictly contained in the Jacobson radical. Here is an example.
Let R be a local integral domain which is not a field. (An example is R = F[[X]], with F' a field,
since the nonzero ideals of F[[X]] are of the form F[[X]]X™, for some n > 1.) If M is its unique
maximal ideal, then N(R) = (0), because (0) € Spec(R), and J(R) = M.

We say that an element @ in a commutative ring R is quasi-regular, if 1 —a is a unit. Clearly,
all the elements in the Jacobian radical J(R) are quasi-regular. However, we can say a little
more.

Theorem 6 If an ideal I is composed entirely of quasi-regular elements, then I is included in

J(R).

PROOF Let I be an ideal composed entirely of quasi-regular elements. If a € I\ J(R), then a
does not belong to some maximal ideal M. As M is maximal, we have R=1+ M,so 1 =b+c,
with b € I and ¢ € M. However, b is quasi-regular, so ¢ = 1 — b is a unit, which is impossible. It
follows that I C J(R). O

We may generalize the nilradical. For an ideal I in a ring R, we define the radical of I,
which we will note r(I), to be the intersection of the prime ideals in R containing I. Then
r((0)) = N(R). 1T Egt%gof of the following characterization of the radical is analogous to the
proof of Theorem H.

Theorem 7 r(I) is the set of elements x € R such that 2™ € I, for some n € N*.

PROOF Let X be the set of elements z € R such that z™ € I, for some n € N*. Suppose that P
is a prime ideal in R containing I and that x € X. There exists n € N* such that 2" € I C P.
Since P is prime, we have z € P. Thus X C r(I).

We now consider the converse. It is sufficient to show that a ¢ X implies that a ¢ r(I), and
for this it is sufficient to show that there is a prime ideal P containing I such that a ¢ P. Let
a ¢ X and S be the set of ideals in R containing I which do not contain a positive power of a.
We order S by inclusion. As no power of a belongs to I, I belongs to .S, so S is nonempty. The
union of the ideals in a chain clearly lies in .S, thus a chain has a maximum. From Zorn’s lemma,
S has a maximal element, which we note M.

11



We claim that M is prime. If this is not the case, then there exist z,y ¢ M such that xy € M.
M is strictly contained in the ideal (M,z) = M + (z), which does not belong to S, because M
is maximal. Hence there exists n € N* such that o™ € (M,x). In the same way, there exists
m € N* such that a™ € (M,y) = M + (y). Then

a"t™ = a"a™ = (my + r1z) (Mo + roy) = mime + myTey + rixms + rirrey,
where 71,79 € R and my,mg € M. As zy € M, a™™™ € M, which contradicts the fact that
M € S. Tt follows that M is a prime ideal, as claimed. As M contains no positive power of a, a
does not belong to M. Hence there exists a prime ideal containing I which does not contain a
and so a ¢ r(I). Thus r(I) C X and we conclude that r(I) = X O

For ideals whose radical is finitely generated we have the following result:

Proposition 3 If I is an ideal in a ring R whose radical r(I) is finitely generated, then there a
positive power of r(I) included in I.

PROOF Let 7(I) = (z1,...,x). For each z; there exists n, € N* such that z;* € I. We set
n = mny + -+ ng. By the multinomial theorem, r(I)" is generated by the elements of the
form x7* - -- 1’;’“, with 7y + -+ 4+ 7, = n. For each such element, there exists r; > n;, for some i
(otherwise 7 + - -- 4+ 1, < n). Hence z7' ---2;F € I. It follows that r(I1)" € I. O

Corollary 5 If I is an ideal in a noetherian ring R, then there a positive power of the radical
r(I) included in I.

PROOF Every ideal in a noetherian ring is finitely generated. a

We have seen above that in general the nilradical is not equal to the Jacobson radical. How-
ever, for certain rings this is the case. We recall that a ring is artinian if any descending chain of
ideals becomes stationary after a certain point. We will show that for such rings the nilradical
is equal to the Jacobson radical. We need two preliminary results.

Lemma 7 If R is an artinian integral domain, then R is a field.

PROOF Let a be a nonzero element of R. As R is artinian, the descending chain of ideals (a) D

(a?) D --- is stationary after a certain point: there exists n € N* such that (a”) = (a"*1) = ---
As a™ € (a™*1), there exists b € R such that a® = a"'b, which implies that 1 = ab, so a is
invertible. Thus R is a field. O

Lemma 8 If R is an artinian ring and I an ideal in R, then R/I is an artinian ring.

PROOF Let Iy D I; D --- be a descending chain of ideals in R/I. The ideals I; have the form
I; + I and the I; form a descending chain in R. As R is artinian, this chain becomes stationary
after a certain point, hence so does the chain Iy D I; D ---. Therefore R/I is artinian. O

Theorem 8 A prime ideal in an artinian ring is mazximal. Hence the nilradical and the Jacobian
radical are identical in an artinian ring.

PROOF Let R be an artigjap ring and P g prime ideal in R. Then R/P is an integral domain
and artinian by Lemma 8. From Lemma [7, RZ] P is a field and so P is maximal. It follows that
the nilradical of R is equal to its Jacobson radical. O

12
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Remark Suppose that R is an artinian ring. If R is an integral domain, then R is a field, so
the only prime ideal is (0), which implies that dim(R) = 0. On the other hand, if R is not an
integral domain and P is a prime ideal in R, then P is maximal and the only chain contain-
ing P is composed of the unique element P. It follows that all chains of distinct prime ideals
have a single element. Hence dim(R) = 0. Therefore the dimension of an artinian ring is always 0.

Finite intersections and unions

We first consider the case where a finite intersection of ideals is contained in a prime ideal.

Proposition 4 Let I;,..., I, be ideals in a ring R and P a prime ideal in R such that N}_,I; C
P. Then there is an index j such that I; C P. If N}_,I; = P, then I; = P.

PROOF If the statement is not true, then for each ¢ there exists x; € I; such that x; ¢ P. The

product of the x; belongs to the intersection of the I; and so to P. However, P is a prime ideal,

hence there exists some index j such that x; € P, which is a contradiction. Hence I; C P.
Ifﬁ?’zllzzp, thel’lPCIj,SOPZIj. O

We now consider the case where an ideal is contained in a finite union of prime ideals. This
is more difficult.

Theorem 9 (prime avoidance lemma) Let R be a ring and 1, Py, ..., P, be ideals in R, with
P; prime for i > 2. If I is contained in the union of the P;, then there is an index i such that

PROOF We prove the result by induction on n. If n = 1, then there is nothing to prove. Suppose
that n = 2 and that the result is false. Then I C P; U P, and there exists z; € I\ P; and
29 € I\ Py, Asax = a1+ 29 € I, we have z € P, or ¢ € P,. However, if © € P;, then
X1 =2 — 9 € Py (since x5 € I\ P, implies that o € P;), which is a contradiction, so = ¢ P;.
In the same way, = ¢ P5. Hence @ ¢ P, U Py, which contradicts the fact that I C P; U P,. Hence
the result is true for n = 2.

Suppose now that n > 2 and that the result is true up to n — 1, but that the result is false
for n. We may assume that [ is not contained in any collection of n — 1 of the P;. (If this were
the case, then, by the induction hypothesis, I would be contained in one of the P;.) Thus, for
each 7, there exists

x; €1 \ Uj#in.
Now z1-+-a2p1 € PAN---NPy_yand x, ¢ PLU---UP,_1. Let x = (21 xp_1) + x,. We
aim to show that x ¢ P, U---U P,, contradicting the fact that I C P, U---U P,. If z belongs
to PLU---UP,_1, then so does z,,, which is not true, so x does not belong to P, U---U P,_1.

Fori=1,...,n—1,2; ¢ P, (x; € P, = x; € Uj»% P}), hence x - --,,_1 ¢ P,, because P, is
prime. But x,, € P, s0 ¢ ¢ P,. Thusz € [ and ¢ P, U---U P,, a contradiction. It follows
that the result is true for n. O

Remark The contrepositive statement of the theorem goes as follows: Let R be a ring and
I,Py,..., P, beideals in R, with P; prime for ¢ > 2. If I is not a subset of one of the P;, then I
is not contained in the union of the P;. Thus there is an element x in I which belongs to none
of the ideals P;. We could say that = "avoids" the P;. This is the origin of the term "prime
avoidence lemma".

Further properties of artinian (and noetherian) rings

13



Proposition 5 If R is an artinian ring, then the nilradical N(R) is nilpotent, i.e., there exists
n € N* such that N(R)" = (0). As the Jacobson radical is equal to the nilradical, the Jacobson
radical is also nilpotent.

PROOF For simplicity, let us write N for N(R). As R is artinian, the decreasing sequence
N D N? O --. becomes stationary after a certain point, i.e., there exists n € N* such that
N™ = N"tl = ... We claim that [ = N" is the zero ideal.

Suppose that I # (0) and let S be the set of ideals J such that I.J # (0). Clearly R € S,
so S is nonempty. Since R is artinian, any descending chain has a minimum, so, by Zorn’s
lemma, S has a minimal element K. As IK # (0), there exists a € K such that Ia # (0), i.e.,
I(a) # (0). By minimality, we have (a) = K. However, N = N?" implies that I = I?, hence
Ia= (IINa = I(Ia) and so Ia € S. In addition, Ia C (a) = K; by minimality, Ia = (a).

Thus, there exists x € I such that xa = a, from which we deduce that z2a = z(ra) = za = a.
By induction we obtain 2™a = a, for all n € N*. However, € I implies that z € N and so
z® = 0, for some s € N*, which implies that ¢ = z®a = 0, which is a contradiction, because
Ia # (0). It follows that I = N™ = (0), as claimed. O

We now consider the number of maximal ideals in an artinian ring, or equivalently the number
of prime ideals.

Proposition 6 If R is an artinian ring, then the number of mazimal ideals in R is finite.

PROOF Let S be the set of all finite intersections of maximal ideals in R. A descending chain has a
minimum, because R is artinian, so by Zorn’s lemma, .S has a minimal element, say MyN---NM,.
We claim that the maximal ideals in R are the ideals M, ..., M,.

If M is a maximal ideal, then My N---N M, N M C My N---N M,. ByPPBiI%ionbality,
Min---NM,NM=M;N---0M,, hence M;N---N M, C M. From Proposition h—f%gis an
index ¢ such that M; C M. As M; is maximal, we have M; = M. O

It is not so that a noetherian ring is necessarily an artinian ring. We only need to consider the
ring of integers Z, which is noetherian, but not artinian. However, an artinian ring is noetherian,
as we will presently show.

Lemma 9 A vector space V over a field F is artinian (resp. noetherian) if and only if dimV <

+00.

PROOF Suppose that dimV = n < +oo and let C' be a descending chain of subspaces in V. If
C' does not stabilize, then C' contains an infinite subchain Vo D V; D --- of distinct subspaces.
Thus n > dim Vg > dim V4 > --- is an infinite decreasing sequence of nonnegative integers, which

is impossible. Hence R is artinian.

Now suppose that dimV = +o00. We set Vj = V and take vy € Vp, with v; # 0. Then (vq)
has a complement V; in Vj (see Appendix). We now choose vs € Vi, with vy # 0. Then (vy) has
a complement V5 in V3. We now have Vo C Vi C V), where the inclusions are strict. Continuing
in the same way, we obtain an infinite descending chain of distinct subspaces of V', thus V' is not
artinian.

Once again suppose that dimV =n < +oo. If C' is an ascending chain of subspaces which
does not stabilize, then C' contains an infinite subchain Vy C V3 C --- of distinct subspaces, with
dimVy < dimV; < --- < n, which is clearly imposible. So every chain of subspaces stabilizes
and V is noetherian.

Let us now suppose that dim V' = +oo. If V; is a subspace, then we can find a subspace V;;1
strictly containing V;. Hence we can construct an ascending chain of subspaces which does not
stabilize, and so V' is not noetherian. O
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Corollary 6 A vector space is artinian if and only if it is noetherian.
We recall the following fundamental result:

Theorem 10 If R is a commutative ring, M an R-module and N a submodule of M, then M
is artinian (resp. moetherian) if and only if M/N and N are both artinian (resp. noetherian,).

Lemma 10 Let R be a commutative ring and suppose that there are (not necessarily) distinct
mazximal ideals My, ..., My such that My --- My = (0). Then R is artinian if and only if R is
noetherian.

PROOF Consider the chain of R-modules
RO M, D MMs;>D---D>MMsy---M,= (0)

For .Pﬁ)cldfli .8, R/M; is a field and My --- M;_1 /M --- M; an R/M;-vector space. From Corol-
ary %, My~ M;_1/M; ---M; is artinian if and only if it noetherian. We notice that the vector
spaces My -+« M;_1 /My - - - M; are also R-modules, hence they are artinian R-modules if and only
if they are noetherian R-modules. > ID%hm

Suppose now that the ring R is artinian. From Theorem M0, R/M; and M; are artinian.
Applying the theorem again, we see that M; /M; My and M; M, are artinian. Continuing in the
same way, we obtain that the modules My - -+ M;_1 /M - - - M; are all artinian, and in particular,
with ¢ = s, that My --- M, bas grtinian and so noetherian.

We now use Theorem%@n, but in a ’reverse’ direction. Since My -+ Ms_o/My -+ Ms_1
and M - -- My, are noetherian, the module Mj - - - M,_5 is noetherian. Continuing in the same
way, we find that R/M; and M; are both noetherian, hence R is a noetherian R-module, and so
a noetherian ring.

In an analogous manner, we show that if R is noetherian, then R is artinian. O

We now may prove the result alluded to above.

Theorem 11 If R is an artinian ring, then R is noetherian.

PIDprop4 PIDprop3
PROOF From Proposition % the tumber of maximal ideals in R is finite. Also, by Proposition %,
the Jacobson radical is nilpp{;ls}{letmThus there is a finite number of maximal ideals whose product
is (0). Now, using Lemma [0, we obtain that R is noetherian. |

We have seen above that a noetherian ring is not necessarily artinian. However, if we suppose
that the dimension of R is 0, then this is the case. To prove this, we begin by introducing the
notion of an irreducible ideal. An ideal I in a commutative ring R is irreducible, if I = JN K,
for ideals J and K, implies that [ = J or [ = K.

Proposition 7 A prime ideal I in a ring R is irreducible.
PIDprop2
PROOF This is a direct consequence of Proposition b m|
It is not difficult to determine the irreducible ideals in the ring of integers Z.

Proposition 8 An nonzero ideal (a) C Z is irreducible if and only if (a) = (p"), for some prime
number p and nonnegative integer n.
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PROOF Suppose that (p™) = (x)N(y). Then z|p™ and y|p”, which implies that z = p* and y = p',
with k,1 < n. Without loss of generality, suppose that k& < I. Then p*|p!, which implies that
(y) C (x), which in turn implies that (z) N (y) = (y).

Suppose now that (a) # (p"), for some prime number p and nonnegative integer n. Then we
may set a = p{*---pP, where the p; are s > 1 primes and the n; positive integers. We have

(a) = (PT) N (p5?---pPe). As (a) # (p7*) and (a) # (py? - - - p2=), (a) is not irreducible. O
In noetherian rings irreducible ideals play an important role.

Proposition 9 Let R be a noetherian ring.
e 1. An ideal in R is a finite intersection of irreducible ideals.

e 2. If I is an irreducible ideal in R, then the radical r(I) is a prime ideal.

PROOF 1. Suppose that the result is false. Let S be the set of ideals which are not finite
intersections of irreducible ideals. By hypothesis S is nonempty. As R is noetherian, any chain
in S has a maximum, so, by Zorn’s lemma, S has a maximal element, which we note M. As
M € S, M is not irreducible, so we can write M = J N K, where J and K are ideals which both
properly contain M. Given that M is maximal in .S, J and K do not belong to .S and so are
finite intersections of irreducible ideals. However, M = J N K, which implies that M is a finite
intersection of irreducible ideals, a contradiction. Hence S is empty and the result follows.

2. Let us first consider the case where I = (0). Then 7(I) = N(R). If zy € N(R), then there
exists n € N* such that (zy)" =0. If y ¢ N(R), then y™ # 0. We aim to show that this implies
that there exists ¢t € N* such that z* = 0 and so that x € N(R).

We have the chain of ideals

ann(z™) C ann(z*) C ann(z®") C - --

(We recall that ann(z®") is the set of annihilators of x°7, i.e., the elements r € R such that
rz®™ = 0.) As R is noetherian, this chain stabilizes: suppose that ann(z™") = ann(z(™+t") =

We claim that (z™") N (y™) = (0). If a € (y"), then there exists a’ € R such that a = a’y"”
and so az™ = a’y"x™ = 0. Also, if a € (x™"), then there exists b € R such that a = bz™". Thus
we have

0 = az™ = bz™"z" = bzt — b € ann(z™TI") = ann(az™") = ba™" = 0.
Therefore (z™") N (y™) C (0). Given that (0) C (z™")N(y™), we deduce that (0) = (™) N (y").
As (0) is irreducible and (y™) # (0), we have (z™") = (0) and so ™" = 0, which implies that
x € N(R). Hence N(R) is a prime ideal.

We now consider the case where I is a general ideal. We notice that R/I is noetherian and

that the nilradical N(R/I) of R/Iis r(I)/I. If I is irreducible, then so is (0) = I/I, hence r(I)/I
is a prime ideal in R/I and it follows that r(I) is a prime ideal in R. O

We may now prove the result mentioned above, namely

Theorem 12 If R is a noetherian ring whose dimension dim(R) is 0, then R is artinian.
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PROOF Let glkeroa 5noetherian ring. If dim(R) = 0, then every prime ideal is maximal. From
Proposition 9, the 1deal (0) i A finite intersection of irreducible ideals, say 0)=LnNn---N1I.
Moreover, using Proposition E again, we see that the g?ﬁiciggglar(h) of each ideal I; is prime and
so maximal. Let us set r(I;) = M;. From Corollary %,—ﬂﬁ is a positive integer n; such that
M]'" C I;. Then we have

OycMm”---M*Ch---I,chn---NI =(0),
. . . . . PIDlem? . .
hence (0) is a finite product of maximal ideals. Applying Lemma [T0; we obtain the desired result,
namely that R is artinian. m]

Appendix

In finite-dimensional vector spaces there is no difficulty in seeing that any vector subspace
has a complement. We only need to take a basis of the vector subspace and complete it to a
basis of the vector space. In infinite-dimensional vector spaces this is more difficult. Here we
give a proof which covers all cases.

Theorem 13 Let V' be a vector space over a field F' and W a vector subspace in V. Then W
has a complement W' in V.

PROOF Let S be the set of vector subspaces of V' whose intersection with W is {0}. As the zero
subspace belongs to S, the set S is nonempty. S may be ordered by inclusion. Let C = {U, }aca
be a chain in S and U the span of the elements in C. We claim that U is a member of S. By
definition, U is a subspace of V, so we only need to show that WNU = {0}. If z € WNU, then

r may be written
n
x = E apmy,
k=1

with a; € F and my € U,,, for some a; € A. Since C is a chain of subsets, there exists b € A
such that mq,...,m, € Up, hence x is a linear combination of elements in U, and so belongs to
Up. As WNU, = {0}, we have = 0 and it follows that

WU = {0}.

We have shown that the chain C has an upper bound. Thus every chain in S has an upper bound
and we may apply Zorn’s lemma: there exists a maximal element W’ in S. We aim to show that
W’ is a complement of W in V.

Since W' € S, we have WNW' = {0}. It remains to show that W4+W'=V. H W4+ W' £V,
then there exists x € V \ {W + W'}. As 0 € W + W’, the element x is nonzero. We claim that
the vector subspace W' + () belongs to S. If w’ 4+ ax € W, where w' € W’ and a € F, then
ar € W+W'. If a # 0, then z = %am € W + W', a contradiction, hence a = 0 and so w’ € W.
But then w' € W N W' = {0} and so w’ = 0. It follows that the vector subspace W' + (z) is a
member of S, as claimed. However, this contradicts the maximality of W’. We have shown that
W + W' =V, as required. |
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