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Abstract
This paper describes the participation of the IRIT-PREVISION team at HASOC (Hate Speech and Of-
fensive Content Identification in Indo-European Languages) 2020 shared task. Our approach is based on
fine-tuning a pre-trained transformer based language model BERT (Bidirectional Encoder Representation
from Transformer) [1]. We participated to the English sub-task A. We obtained a macro average F1 of
0.497 (self-computed).
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1. Introduction

Lu et. al. [2] report an increase in the number of users who are subject to or have witnessed
hate speech, offensive languages, etc. online. This phenomenon is worrying and solutions
should be found to detect it or even limit it. Identifying hate speech and aggression in social
media is essential to protect users from such attacks, but manual detection can be very expen-
sive. This finding has led many researchers to focus on building automatic systems for detecting
hate speech, aggression, offensive languages, etc. on social networks. In the same vein, sev-
eral shared tasks have also been organized, including "Abusive Language Online" (ALW) [3],
"Trolling, Aggression and Cyberbullying" (TRAC) [4] and the "Semantic Evaluation" task (Se-
mEval) on identifying offensive language in social media (OffensEval) [5].

HASOC [6, 7] is also a shared task where the goal is to detect hateful content in post published
on social media. This paper describes our participation to the second edition of HASOC (2020).
This second edition consists of two sub-tasks on three languages, namely English, German, and
Hindi. We participated in one sub-task on English language. For this, we create a model by
fine-tuning BERT (Bidirectional Encoder Representation from Transformer) model [1].
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The rest of this paper is organized as follows: Section 2 presents related work in the area
of hate speech detection; Section 3 describes the HASOC 2020 shared task as well as the data
sets provided; Section 4 describes the methodology we proposed to answer the HASOC 2020
challenge as well as the preprocessing we developed; Section 5 presents the results we obtained;
finally, Section 6 concludes this paper and presents some future work.

2. Related Work

Online detection of abusive language, hate speech, aggression, offensive content, etc. is an im-
portant topic. Indeed, the number of users who are subject to or have witnessed hate speech or
offensive languages online is increasing [2] and can concern citizen, public persons, or organiza-
tions. Detecting this type of content on social media platforms such as Facebook and Twitter is
an important challenge that authorities care about as illustrated for example by the recent French
government decisions 1 to force social media to act.

In the past few years, a lot of research have been conducted to detect hate speech [7], offensive
language [5], and aggression [8]. Supervised learning approaches are predominantly used to
solve the problem ranging from deep learning based methods [9] such as convolutional neural
networks (CNN) to traditional machine learning based methods [10] such as support vector
machine (SVM).

During the first edition of HASOC (2019) [7], deep learning based methods were widely used
and achieved the top performances. However, it can also be observed that some of the non-deep
learning systems performances were quite close to the top ones. The team from IIIT-Hyderabad
even obtained the best result on one sub-task in Hindi language with traditional machine learning
[10].

3. Task Description and Data

HASOC is a shared task, where the goal is to detect hateful content in textual posts published on
social media, namely Twitter. This shared task is a multilingual track joining English, German,
and Hindi, and consists of two main sub-tasks:

1. Sub-task A (Identifying Hate, offensive and profane) : it focuses on Hate speech and
Offensive language identification offered for English, German, and Hindi. This sub-task
is a coarse-grained binary classification in which the objective is to classify tweets into
two classes : HOF (Hate and Offensive) and NOT (Non- Hate and Offensive).

2. Sub-task B (Discrimination between Hate, profane and offensive) : it is a fine-grained
classification for English, German, and Hindi. Here, the posts labeled as HOF from the
sub-task A are further classified into three categories : HATE (Hate speech), OFFN (Of-
fenive) and PRFN (Profane).

No context or meta-data like the users’ network are provided [7].

1https://www.theguardian.com/world/2019/jul/09/france-online-hate-speech-law-social-media, accessed on
October 15𝑡ℎ, 2020.
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Table 1
Distribution of training data in HASOC 2020 shared task for English.

Sub-task Train

A
HOF 1,856
NOT 1,852
Total 3,708

B

HATE 158
OFFN 321
PRFN 1,377

Table 1 presents the statistics of the training data set used during HASOC 2020 for English.
More details on the test set can be found in [6]. During the shared task, the training set was
released while test set was not. The training set were used to build models then these models
were submitted to the organizers and tested on a non-shared data set from the organizers. In this
edition, we participated to the English sub-task A. The associated training set is composed of
3,708 tweets. Looking at the distribution of the two classes for sub-task A, the training data set
is balanced with half of the cases HOF, half non-HOF.

4. Methodology

Before building our model, we pre-processed the data set: we converted all the texts into low-
ercase, substituted all "URL" by "http", also substituted emoticon into their text equivalents by
using the online emoji project on github2. Finally, we removed all non UTF-8 words.

During the HASOC 2020 shared task, we submitted only one model. Our model is based
on BERT or Bidirectional Encoder Representations from Transformers [1]. More precisely, we
fine-tuned a pre-trained BERT model called 𝐵𝐸𝑅𝑇_𝐿𝑎𝑟𝑔𝑒_𝑈𝑛𝑐𝑎𝑠𝑒𝑑 which contains 24 layers
of size 1024, 16 self-attention heads and 340M parameters. Fine-tuning a pre-trained BERT
model is less expensive than training a BERT model from scratch and fine-tuning is also very
interesting and works well on small data sets which is the case of the HASOC data set. The pre-
trained model we used was trained at Google on the corpus data composed of English Wikipedia
(2,500M words) and BooksCorpus (800M words) [11]. This pre-trained model is publicly avail-
able on github3.

During the fine-tuning, we used a batch size of 16, the Adam optimizer with a learning rate
of 5e-5 and a number of epochs of 10 as parameters. Each sequence is truncated to max allowed
sequence length of 40 characters. We used the library pytorch-pretrained-bert4 for implementa-
tion. Training was carried out on a Nvidia Geforce GTX 1080TI GPU and took about 14 minutes
in total.

2https://github.com/carpedm20/emoji, accessed on February, 04𝑡ℎ 2020.
3https://github.com/google-research/bert, accessed on February, 04𝑡ℎ 2020.
4https://github.com/shehzaadzd/pytorch-pretrained-BERT, accessed on February, 04𝑡ℎ 2020.
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Table 2
The results of our model and the best three teams on English sub-task A of HASOC 2020. Bold
value is the best performance.

Team Macro average F1
IRIT Prevision 0.4969
IIIT_DWD 0.5152
CONCORDIA_CIT_TEAM 0.5078
AI_ML_NIT_Patna 0.5078

5. Results

This section reports the result our team obtained on the English sub-task A when participating
to HASOC 2020. Table 2 reports the result as well as the three best teams’ results. We obtained
a macro average F1 of 0.4969 which places our team in the twenty-first𝑡ℎ place (out of thirty-
five participants). The difference between our result and the best one is 0.0183. In general, the
differences between participants’ results are very small, where the difference between the best
team and the thirty third team is 0.05815. Only two teams out of thirty five got much lower
results. The data set used for evaluation is non-shared by the organizers.

6. Conclusion and Future Work

In this paper, we presented our participation at the second edition of HASOC shared task in
English language for sub-task A: identifying hate, offensive and profane content. We used a
model that relies on BERT to tackle the problem. Our model achieved a macro average F1 of
0.4969 which ranked our team on the twenty-first place over thirty-five participants. However
the difference with the best team is very small (0.0183).

For the short term future work, we plan to apply our model to the other HASOC 2020 sub-
tasks and on the other two languages. For long term future work, we want to integrate or com-
bine a keyphrase representation in our model [12]. We already created some models based on
keyphrase lexicons but we did not submit it due to lack of time. We would also like to analyse
the cross-domain transfer of some models that we developed to detect weak signals in social
media [13].

Ethical issues. Working on online data raises ethical issues which are out of the scope of
this paper. Training has been made on a publicly available data set while test was ran by the
organizers them-selves.
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