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1. Introduction

We consider the following stochastic partial differential equations (SPDEs for short) in Rd:

dut(x) +
[1

2
∆ut(x) + ft(x, ut(x),∇ut(x)) + divgt (x, ut (x)∇ut (x))

]
dt

+ ht(x, ut(x),∇ut(x)) ·
←−
dBt = 0 ,

(1)

over the time interval [0, T ], with a given final condition uT = Ψ and f, g =
(
g1, · · · , gd

)
,

h =
(
h1, · · · , hd1

)
non-linear random functions. The differential term with

←−
dBt refers to the back-

ward stochastic integral with respect to a d1-dimensional Brownian motion on
(
Ω,F ,P, (Bt)t≥0

)
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(for the backward integral see [11], Page 111-112). We use the backward notation because our
approach is fundamentally based on the doubly stochastic framework introduced in the seminal
paper by Pardoux and Peng [15]. The class of stochastic PDEs as in (1) and their extensions is an
important one, since it arises in a number of applications, ranging from asymptotic limits of partial
differential equations (PDEs for short) with rapid (mixing) oscillations in time, phase transitions
and front propagation in random media with random normal velocities, filtering and stochastic
control with partial observations, path-wise stochastic control theory, mathematical finance. The
main difficulties with equations like (1) are even in the deterministic case, there are no smooth and
no explicit solutions in general.
The starting point of the theory of SPDEs was with classical solutions in a linear context, wellposed-
ness results having been obtained notably by Pardoux [16], Dawson [2], or Krylov and Rozovsk̆ı
[10]. In the case when the coefficient g = 0, extensions have been obtained later, notably by Par-
doux and Peng [15] (see also Krylov and Rozovsk̆ı [10], Bally and Matoussi [1]) by introducing
backward doubly stochastic differential equations (BDSDEs for short), which allowed them to give
a nonlinear Feynman-Kac formula for SPDE (1) . The theory of BDSDEs has then been extended
in several directions, notably by Matoussi and Scheutzow [13] who considered a class of BDSDEs
where the nonlinear noise term is given by the more general Itô-Kunita stochastic integral, thus
allowing them to give a probabilistic interpretation of classical and Sobolev solutions of semi–linear
parabolic SPDEs driven by Kunita-type martingale fields with specific spatial covariance structure.
Given two obstacles v and v, our aim in this paper, is to study the two-obstacle problem for SPDE
(1), i.e. we want to find a solution of (1) which satisfies "v ≤ u ≤ v". The obstacles should be
"regular" in some sense (see Section 3.1).
Matoussi and Stoica [14] have proved an existence and uniqueness result for the one-obstacle prob-
lem for SPDE (1). The method is based on the probabilistic interpretation of the solution by using
the backward doubly stochastic differential equation. They have proved that the solution is a pair
(u, ν) where u is a predictable continuous process which takes values in a proper Sobolev space
and ν is a random regular measure satisfying minimal Skohorod condition. In particular they gave
the regular measure ν a probabilistic interpretation in terms of the continuous increasing process
K in the solution (Y,Z,K) of a reflected generalized BDSDE.
The aim of this work is to apply the same approach (as in [14]) in the case of two obstacles by
introducing two reflected generalized BDSDEs, allowing a probabilistic representation of solutions
to SPDEs with two obstacles. But, similarly to BSDEs theory, this generalization to the case of
two obstacles is not so obvious, and we’ll have to impose separability on the obstacles and a kind
of Mokobodsky condition (hypothesis (HO)-(iii)), see [3, 8, 9, 12] for the BSDEs case. More
precisely, we first have to give a sense to the following DOSPDE:

du(t, x) +
1

2
∆u(t, x)dt+ f(t, x, ut(x),∇ut(x))dt+ divg(t, x, ut(x),∇ut(x))dt

+ h(t, x, ut(x),∇ut(x)) ·
←−
dBt + ν+(dt, x)− ν−(dt, x) = 0,

v(t, x) ≤ u(t, x) ≤ v(t, x),∫ T

0

∫
Rd

(ũ(t, x)− v(t, x)) ν+(dt, dx) =

∫ T

0

∫
Rd

(v(t, x)− ũ(t, x)) ν−(dt, dx) = 0,

uT = Ψ,

(2)

where ν+ (resp. ν−) is a measure pushing up (resp. pushing down) the solution when it reaches the
lower barrier (resp. upper barrier) and ũ a quasi-continuous version of the solution. Then, we prove
the existence and uniqueness under Lipschitz conditions on the coefficients by using a penalization
argument.
Let us mention that in Denis, Matoussi and Zhang [6], an existence and uniqueness result for the
one-obstacle problem of forward quasilinear stochastic PDEs on an open domain in Rd and driven
by an infinite dimensional Brownian motion is proved. The method is based on analytical technics
coming from the parabolic potential theory. The key point was to construct a solution which admits
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a quasi-continuous version defined outside a polar set and the regular measures which in general
are not absolutely continuous w.r.t. the Lebesgue measure, do not charge polar sets. Unfortunately,
up to now, we are not able to generalize this analytical approach to the two-obstacle case. Let us
explain the difficulties we face in the analytical case: a natural approach consists in considering the
solution of the SPDE which is reflected on the lower barrier and penalized on the above barrier:

dun(t, x) +
1

2
∆un(t, x)dt+ f(t, x, unt (x),∇unt (x))dt+ divg(t, x, unt (x),∇unt (x))dt

+ h(t, x, unt (x),∇unt (x)) ·
←−
dBt − n(un(t, x)− v(t, x))+ + ν+,n(dt, x) = 0,

v(t, x) ≤ un(t, x),∫ T

0

∫
Rd

(un(t, x)− v(t, x)) ν+,n(dt, dx) = 0,

unT = Ψ,

and to make n tend to +∞.
The convergence of the measures ν+,n and ν−,n = n(un(t, x)− v(t, x))+dtdx is not obvious even if
we can control both the H1-norm of un and the sequence of signed measures νn = ν+,n− ν−,n but
when passing to the limit, we are not able to “separate” the limit measure in two regular measures
ν+ and ν−. Whereas in the probabilistic approach, we succeed thanks to the fact that each regular
measure is associated with a continuous increasing process (see [14], Theorem 2, assertion (v)) and
to pass to the limit we apply a very strong result of convergence for semimartingales due to Peng
and Xu in [17], known as the stochastic monotonic convergence theorem, see Lemma 3 and the
beginning of Section 4.3 below.
The paper is divided as follows: in the second section, we recall the objects coming from the
potential theory that we will use and introduce the notion of random extended regular measure.
In Section 3, we set the hypotheses and present the main result of this paper. The fourth section
is devoted to proving the existence and uniqueness of the solution. To do that we begin with the
linear case, and then by Picard iteration we get the result in the nonlinear case. We also establish
an Itô’s formula and a comparison theorem. The last section is an Appendix in which we give the
proofs of several lemmas.

2. Preliminaries

2.1. Functional spaces

The basic Hilbert space of our framework is L2
(
Rd
)
and we employ the usual notations for its

scalar product and its norm:

(u, v) :=

∫
Rd

u(x)v(x)dx and ‖u‖ :=

(∫
Rd

u2(x)dx

) 1
2

.

Our evolution problem will be considered over a fixed time interval [0, T ] and the norm for a
function L2

(
[0, T ]× Rd

)
will be denoted by

‖u‖2,2 =

(∫ T

0

∫
Rd

|u(t, x)|2dxdt

) 1
2

.

Another Hilbert space that we use is the first order Sobolev space H1(Rd) = H1
0 (Rd). Its natural

scalar product and norm are

(u, v)H1(Rd) := (u, v) + (∇u,∇v) and ‖u‖H1(Rd) :=
(
‖u‖2 + ‖∇u‖2

) 1
2

,
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where we denote the gradient by ∇u(t, x) = (∂1u(t, x), · · · , ∂du(t, x)).
Of special interest is the subspace F̃ ⊂ L2([0, T ];H1(Rd)) consisting of all functions u(t, x) such
that t 7−→ ut = u(t, ·) is continuous in L2(Rd). The natural norm on F̃ is

‖u‖T :=

(
sup

0≤t≤T
‖ut‖2 +

∫ T

0

‖∇ut‖2dt

) 1
2

.

The Lebesgue measure on Rd will be sometimes denoted by m. The space of test functions which
we employ in the definition of weak solutions is DT := C∞

(
[0, T ]

)
⊗ C∞c

(
Rd
)
, where C∞

(
[0, T ]

)
denotes the space of real functions which can be extended as infinite differentiable functions in the
neighborhood of [0, T ] and C∞c

(
Rd
)
is the space of infinite differentiable functions with compact

support in Rd.

2.2. Parabolic potential theory notions and regular measures

We present in this subsection the main notions and objects coming from the parabolic potential
theory we shall use, for more details we refer to [14] Section 2. We also introduce what we call
extended regular measures.

The operator 1
2∆ is probabilistically interpreted by the Bownian motion in Rd. We shall view the

Brownian motion as a Markov process, (Wt)t≥0, defined on the canonical space Ω′ = C
(
[0,∞);Rd

)
,

by Wt(ω) = ω(t), for any ω ∈ Ω′, t ≥ 0. The canonical filtration Ft = σ (Ws; s ≤ t) is completed
by the standard procedure. We shall also use the backward filtration of the future events F ′t =
σ (Ws; s ≥ t) for t ≥ 0. P0 is the Wiener measure, which is supported by the set Ω′0 = {ω ∈
Ω′, w(0) = 0}. We also set Π0(ω)(t) := ω(t) − ω(0), t ≥ 0, which defines a map Π0 : Ω′ → Ω′0.
Then Π := (W0,Π0) : Ω′ → Rd × Ω′0 is a bijection. For each measure µ on Rd, the measure Pµ of
the Brownian motion started with the initial distribution µ is given by

Pµ = Π−1
(
µ⊗ P0

)
.

In particular, for the Lebesgue measure on Rd, which we denote by m = dx, we have

Pm = Π−1
(
dx⊗ P0

)
,

and we’ll denote by Em the “expectation” w.r.t. the measure Pm.
It is known that each component (W i

t )t≥0 of the Brownian motion, i = 1, · · · , d, is a martingale
under any of the measures Pµ.
The parabolic operator ∂t+ 1

2∆ can be viewed as the generator of the time-space Brownian motion,
with the state space [0, T [× Rd. Its associated semigroup will be denoted by (P̃t)t>0. It acts as a
strongly continuous semigroup of contractions on the spaces L2

(
[0, T [× Rd

)
:= L2

(
[0, T [ ;L2

(
Rd
))

and L2
(
[0, T [ ;H1

(
Rd
))
.

The next definition introduces the important notions of quasi-continuity and regular potential:

Definition 1. (i) A function ψ : [0, T ]× Rd → R is called quasicontinuous provided that for each
ε > 0, there exists an open set, Dε ⊂ [0, T ]× Rd, such that ψ is finite and continuous on Dc

ε and

Pm
({
ω ∈ Ω′

∣∣ ∃ t ∈ [0, T ] s.t. (t,Wt (ω)) ∈ Dε

})
< ε.

(ii) A function u : [0, T ]×Rd → [0,∞] is called a regular potential, provided that its restriction to
[0, T [×Rd is excessive with respect to the time-space semigroup, it is quasicontinuous, u ∈ F̃ and
limt→T ut = 0 in L2

(
Rd
)
.
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Observe that if a function ψ is quasicontinuous, then the process (ψt (Wt))t∈[0,T ] is continuous.
The basic properties of the regular potentials are stated in the following theorem (see Theorem 2
in [14]):

Theorem 1. Let u ∈ F̃ . Then u has a version which is a regular potential if and only if there
exists a continuous increasing process A = (At)t∈[0,T ] which is

(
Ft
)
t∈[0,T ]

-adapted and such that
A0 = 0, Em

[
A2
T

]
<∞ and

ut(Wt) = Em
[
AT
∣∣Ft]−At, Pm−a.e., (i)

for any t ∈ [0, T ] . The process A is uniquely determined by these properties. Moreover, the following
relations hold

ut (Wt) = AT −At −
d∑
i=1

∫ T

t

∂ius (Ws) dW
i
s , Pm − a.e., (ii)

‖ut‖2 +

∫ T

t

∥∥∇us∥∥2
ds = Em (AT −At)2

, (iii)

(u0, ϕ0) +

∫ T

0

1

2

(
∇us,∇ϕs

)
+
(
us, ∂sϕs

)
ds =

∫ T

0

∫
Rd

ϕ (s, x) ν (ds, dx) , (iv)

for any test function ϕ ∈ DT , where ν is the measure defined by

ν (ϕ) = Em
∫ T

0

ϕ (t,Wt) dAt, ϕ ∈ Cc
(
[0, T ]× Rd

)
, (v)

and Cc([0, T ]× Rd) is the set of continuous functions on [0, T ]× Rd with compact support.

We now introduce the class of measures which intervene in the notion of solution to the one-obstacle
problem.

Definition 2. A nonnegative Radon measure ν defined on [0, T ] × Rd is called regular provided
that there exists a regular potential u such that relation (iv) from the above theorem is satisfied.

We denote byM([0, T ] × Rd) the collection of all regular measures on [0, T ] × Rd and by A2 the
set of continuous additive functionals A associated to regular measures by relation (v) above.
As a consequence of the preceding theorem, we see that the regular measures are always represented
as in relation (v) of the theorem, with a certain increasing process. We also note the following
properties of a regular measure, with the notations from the theorem.

1. A set B ∈ B
(
[0, T ]× Rd

)
satisfies the relation ν (B) = 0 if and only if

∫ T
0
1B (t,Wt) dAt =

0, Pm − a.e..

2. If a set B ∈ B
(
]0, T [× Rd

)
is polar, in the sense that

Pm
({
ω ∈ Ω′

∣∣ ∃t ∈ [0, T ] , (t,Wt (ω)) ∈ B
})

= 0,

then ν (B) = 0.

3. If ψ1, ψ2 : [0, T ] × Rd → R are Borel measurable and such that ψ1(t, x) ≥ ψ2(t, x), dt ⊗
dx − a.e., and the processes

(
ψit (Wt)

)
t∈[0,T ]

, i = 1, 2, are a.s. continuous, then one has
ν
(
ψ1 < ψ2

)
= 0.

In the case of two obstacles we are obliged to consider a wider class of measures, that’s why we
introduce the following definition:
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Definition 3. We denote by A1 the set of continuous increasing processes (At)t∈[0,T ] with A0 = 0
and Em[AT ] < +∞ which are uniform limit of a sequence of elements in A2 in the sense that there
exists a sequence (An) in A2 such that for all t ∈ [0, T ]:

lim
n→+∞

sup
t∈[0,T ]

|Ant −At| = 0, a.e..

Let us remark that as a consequence of this definition, any element in A1 is an additive functional.
Naturally such a process is associated with a measure:

Proposition 1. Let A ∈ A1, then there exists a unique Radon measure ν on [0, T ]×Rd such that

∀ϕ ∈ Cc([0, T ]× Rd), ν(ϕ) = Em
∫ T

0

ϕ(t,Wt)dAt. (3)

Moreover, ν does not charge polar sets. We shall call such measure an extended regular measure.

Proof. As a consequence of Daniell’s theorem, it is clear that the relation above defines a unique
Radon measure on [0, T ]× Rd and that by uniqueness for any Borel set B ⊂ [0, T ]× Rd we have

ν(B) = Em
∫ T

0

1B(t,Wt)dAt,

ensuring that ν does not charge polar sets.

2.3. The probabilistic interpretation of the divergence term

Let f and |g| belong to L2
(
[0, T ]× Rd

)
, Ψ be in L2(Rd) and u ∈ F̃ be the solution of the deter-

ministic equation ∂tu(t, x) +
1

2
∆u(t, x) + f(t, x) + divg(t, x) = 0,

uT = Ψ.
(4)

Let us denote by ∫ t

s

gr ∗ dWr =

d∑
i=1

(∫ t

s

gi(r,Wr)dW
i
r +

∫ t

s

gi(r,Wr)
←−−
dW i

r

)
. (5)

Then one has the following representation (see Theorem 3.2 in [18]):

Theorem 2. The following relation holds Pm-a.e. for any 0 ≤ s ≤ t ≤ T ,

ut(Wt)− us(Ws) =

d∑
i=1

∫ t

s

∂iur(Wr)dW
i
r −

∫ t

s

fr(Wr)dr +
1

2

∫ t

s

gr ∗ dWr . (6)

Remark 1. If g is regular with respect to the space variable, then (see [18])∫ t

s

gr ∗ dWr = −2

∫ t

s

divg(r,Wr) dr.

Moreover, since W is a reversible Markov process w.r.t. to the invariant measure m, by the time
change u = T − r, it appears that, under Pm, the process (

∫ t
0
gi(r,Wr)

←−−
dW i

r)t∈[0,T ] has the same
"law" as (

∫ T
T−t gi(T − u,Wu)dW i

u)t∈[0,T ], hence for example Em[
∫ t
s
gr ∗ dWr] = 0 and the process

(
∫ t

0
gr ∗ dWr)t∈[0,T ] satisfies the Burkholder-Davis-Gundy inequality.



7

2.4. The doubly stochastic framework

LetB := (Bt)t≥0 be a standard d1-dimensional Brownian motion on a probability space
(
Ω,FB ,P

)
.

Over the time interval [0, T ] we define the backward filtration
(
FBt,T

)
t∈[0,T ]

where FBt,T is the

completion in FB of σ(Br −Bt; t ≤ r ≤ T ).
We denote by HT the space of H1(Rd)-valued FBt,T -adapted processes (ut)0≤t≤T such that the
trajectories t→ ut are in F̃ a.s. and

E sup
t∈[0,T ]

‖ut‖2 + E
∫ T

0

‖∇ut‖2dt < +∞.

We now remind the quasicontinuity result of the solution of the linear equation, i.e. when f, g, h
do not depend on u and ∇u. To this end we first extend the doubly stochastic Itô’s formula to our
framework. We start by recalling the following result from [5] and [14]:

Theorem 3. Let f ∈ L2
(
Ω× [0, T ]× Rd;R

)
, g ∈ L2

(
Ω× [0, T ]× Rd;Rd

)
and h ∈ L2(Ω× [0, T ]×

Rd;Rd1) be predictable processes w.r.t. the backward filtration (FBt,T )t∈[0,T ] and Ψ ∈ L2(Rd). Let
u ∈ HT be the unique solution of the equationdut +

1

2
∆utdt+

(
ft + divgt

)
dt+ ht ·

←−
dBt = 0,

uT = Ψ.

Then, for any 0 ≤ s ≤ t ≤ T , one has the following stochastic representation, Pm-a.e.,

u (t,Wt)−u (s,Ws) =
∑
i

∫ t

s

∂iu (r,Wr) dW
i
r −

∫ t

s

fr (Wr) dr+
1

2

∫ t

s

gr ∗ dWr −
∫ t

s

hr (Wr) ·
←−
dBr.

(7)

We remark that FT and FB0,T are independent under Pm⊗P which is the product measure defined

on Ω′⊗Ω and therefore in the above formula the stochastic integrals with respect to dWt and
←−−
dW t

act independently of FB0,T and similarly the integral with respect to
←−
dBt acts independently of FT .

In particular, the process (ut(Wt))t∈[0,T ] admits a continuous version which we usually denote by
Y = (Yt)t∈[0,T ] and we introduce the notation Zt := ∇ut(Wt). As a consequence of this theorem
we have the following result:

Corollary 1. Under the hypotheses of the preceding theorem, one has the following stochastic
representation for u2, P⊗ Pm-a.e., for any 0 ≤ t ≤ T ,

u2
t (Wt)−Ψ2

(
WT

)
= 2

∫ T

t

[(
usfs

)
(Ws)−

1

2
|∇us|2(Ws)− 〈∇us, gs〉(Ws) +

1

2
|hs|2(Ws)

]
ds

−
∫ T

t

(
usgs

)
(Ws) ∗ dWs − 2

∑
i

∫ T

t

(
us∂ius

)
(Ws) dW

i
s + 2

∫ T

t

(
ushs

)
(Ws) ·

←−
dBs.

(8)

Moreover, one has the estimate

E sup
t≤s≤T

‖us‖2 + E
∫ T

t

‖∇us‖2 ds ≤ c

[
‖Ψ‖2 + E

∫ T

t

[
‖fs‖2 + ‖gs‖2 + ‖hs‖2

]
ds

]
, (9)

for any t ∈ [0, T ].
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Remark 2. With the notation introduced above one can rewrite relation (8) as

|Yt|2 +

∫ T

t

|Zr|2dr = |YT |2 + 2

∫ T

t

Yrfr(Wr)dr − 2

∫ T

t

〈Zr, gr(Wr)〉 dr −
∫ T

t

Yrgr(Wr) ∗ dWr

− 2
∑
i

∫ T

t

YrZi,rdW
i
r + 2

∫ T

t

Yrhr(Wr) ·
←−
dBr +

∫ T

t

|hr|2(Wr)dr.

(10)

In the deterministic case, it was proven in [18] that the solution of a quasilinear equation has a
quasicontinuous version. The same property holds for the solution of an SPDE (see Proposition 1
in [14]):

Proposition 2. Under the hypotheses of Theorem 3, there exists a function ũ : [0, T ]×Ω×Rd → R
which is a quasicontinuous version of u, in the sense that for each ε > 0, there exists a predictable
random set Dε

ω ⊂ [0, T ]×Ω×Rd such that P-a.s. the section Dε
ω is open and ũ (·, ω, ·) is continuous

on its complement (Dε
ω)
c and

P⊗ Pm
(
(ω, ω′)

∣∣ ∃t ∈ [0, T ] s.t. (t, ω,Wt(ω
′)) ∈ Dε

ω

)
≤ ε.

In particular, the process
(
ũt(Wt)

)
t∈[0,T ]

has continuous trajectories, P⊗ Pm-a.e..

The measures intervening in our equations to force the solution of the SPDE to stay between
obstacles are random, so we need to introduce the notion of a random regular measure:

Definition 4. We say that u ∈ HT is a random regular potential provided that u(·, ω, ·) has
a version which is regular potential, P(dω)-a.s.. The random variable ν : Ω −→ M

(
[0, T ]× Rd

)
with values in the set of regular measures on [0, T ]×Rd is called a regular random measure, provided
that there exits a random regular potential u such that the measure ν(ω)(dt, dx) is associated to the
regular potential u(·, ω, ·), P(dω)-a.s..

The relation between a random measure and its associated random regular potential is described
by the following proposition (see [14], Proposition 2):

Proposition 3. Let u be a random regular potential and ν be the associated random regular
measure. Let ũ be the excessive version of u, i.e. ũ (·, ω, ·) is a.s. a

(
P̃t
)
t>0

-excessive function
which coincides with u (·, ω, ·), dtdx-a.e.. Then we have the following properties:

(i) For each ε > 0, there exists a
(
FBt,T

)
t∈[0,T ]

-predictable random set Dε
ω ⊂ [0, T ] × Ω × Rd such

that P-a.s. the section Dε
ω is open and ũ (·, ω, ·) is continuous on its complement (Dε

ω)
c and

P⊗ Pm ((ω, ω′) | ∃t ∈ [0, T ] s.t. (t, ω,Wt (ω′)) ∈ Dε
ω) ≤ ε.

In particular the process
(
ũt(Wt)

)
t∈[0,T ]

has continuous trajectories, P⊗ Pm-a.e..

(ii) There exists a continuous increasing process A := (At)t∈[0,T ] defined on Ω × Ω′ such that
As − At is measurable with respect to the P ⊗ Pm-completion of FBt,T ∨ σ (Wr, r ∈ [t, s]), for any
0 ≤ t ≤ s ≤ T , and such that the following relations are fulfilled almost surely, with any ϕ ∈ DT
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and t ∈ [0, T ] ,

(a) (ut, ϕt) +

∫ T

t

(
1

2
(∇us,∇ϕs) + (us, ∂sϕs)

)
ds =

∫ T

t

∫
Rd

ϕ (s, x) ν (ds, dx) ,

(b) ut(Wt) = Em
[
AT
∣∣Ft]−At ,

(c) ut (Wt) = AT −At −
d∑
i=1

∫ T

t

∂ius (Ws) dW
i
s ,

(d) ‖ut‖2 +

∫ T

t

∥∥∇us∥∥2
ds = Em (AT −At)2

,

(e) ν (ϕ) = Em
∫ T

0

ϕ (t,Wt) dAt .

We remark that, taking the expectation in relation (ii-d) above proposition, one gets

EEm
[
A2
T

]
= E

[
‖u0‖2 +

∫ T

0

∥∥∇ut∥∥2
dt

]
.

In a natural way, we define the notion of random extended regular measure as following:

Definition 5. A random measure ν defined on (Ω,FB) and taking values in the set of Radon
measures on [0, T ]×Rd is a random extended regular measure if there exists an increasing process
A such that

∀ϕ ∈ Cb([0, T ]× Rd), ν(ϕ) = Em
[∫ T

0

ϕ(t,Wt)dAt

]
,

where A satisfies the following hypotheses:

1. A0 = 0 and EEm[AT ] < +∞.

2. There exists a sequence of processes (An) associated with random regular measures as in
Proposition 3 such that

lim
n→+∞

sup
t∈[0,T ]

|At −Ant | = 0, P⊗ Pm − a.e..

3. Hypotheses and main result

We consider the following quasilinear parabolic SPDE with two obstacles that, for the moment,
we formally write as

du(t, x) +
1

2
∆u(t, x)dt+ f(t, x, ut(x),∇ut(x))dt+ divg(t, x, ut(x),∇ut(x))dt

+ h(t, x, ut(x),∇ut(x)) ·
←−
dBt + ν+(dt, x)− ν−(dt, x) = 0,

v(t, x) ≤ u(t, x) ≤ v(t, x),∫ T

0

∫
Rd

(ũ(t, x)− v(t, x)) ν+(dt, dx) =

∫ T

0

∫
Rd

(v(t, x)− ũ(t, x)) ν−(dt, dx) = 0,

uT = Ψ.

(11)

Remark 3. As explained in [14] (Remark 1, p. 1157), we can consider the more general case where
the operator 1

2∆ is replaced by a strictly elliptic operator in divergence form L :=
∑
ij ∂ia

ij∂j, where
a :=

(
aij
)

: Rd → Rd × Rd is symmetric and measurable.
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3.1. Hypotheses

In the remainder of this paper we assume that the final condition Ψ is a given function in L2(Rd)
and the functions appearing in (11)

f : [0, T ]× Ω× Rd × R× Rd → R ,

g := (g1, ..., gd) : [0, T ]× Ω× Rd × R× Rd → Rd ,

h := (h1, ..., hd1) : [0, T ]× Ω× Rd × R× Rd → Rd
1

are random functions predictable with respect to the backward filtration
(
FBt,T

)
t∈[0,T ]

. We set

f(·, ·, ·, 0, 0) =: f0, g(·, ·, ·, 0, 0) =: g0 = (g0
1 , ..., g

0
d), h(·, ·, ·, 0, 0) =: h0 = (h0

1, ..., h
0
d1)

and assume the following hypotheses:

Assumption (H): There exist non-negative constants C, α, β such that

(i) |f(t, ω, x, y, z)− f(t, ω, x, y′, z′)| ≤ C
(
|y − y′|+ |z − z′|

)
;

(ii)
(∑d

i=1 |gi(t, ω, x, y, z)− gi(t, ω, x, y′, z′)|2
) 1

2 ≤ C |y − y′|+ α |z − z′|;

(iii)
(∑d1

j=1 |hj(t, ω, x, y, z)− hj(t, ω, x, y′, z′)|2
) 1

2 ≤ C |y − y′|+ β |z − z′|;

(iv) the contraction property: α+
β2

2
<

1

2
.

Remark 4. In the case when the operator 1
2∆ is replaced by a strictly elliptic operator in divergence

form L :=
∑
ij ∂ia

ij∂j with a :=
(
aij
)

: Rd → Rd × Rd symmetric and measurable and such that

λ |ξ|2 ≤
∑
ij

aij (x) ξiξj ≤ Λ |ξ|2 .

The contraction property becomes : α+
β2

2
< λ (see [14], Remark 1, p. 1157).

Assumption (HD2):
E
(∥∥f0

∥∥2

2,2
+
∥∥g0
∥∥2

2,2
+
∥∥h0
∥∥2

2,2

)
< +∞ .

Assumption (HO) : The two obstacles v(t, ω, x) and v(t, ω, x) are predictable random functions
with respect to the backward filtration

(
FBt,T

)
t∈[0,T ]

. We also assume that

(i) t→ v(t, ω, x) and t→ v(t, ω, x) are P⊗m−a.e. continuous on [0, T ].

(ii) v(T, ·) ≤ Ψ(·) ≤ v(T, ·).

(iii) There exist f̃ ∈ L2
(
Ω× [0, T ]× Rd;R

)
, g̃ ∈ L2

(
Ω× [0, T ]× Rd;Rd

)
, h̃ ∈ L2(Ω × [0, T ] ×

Rd;Rd1), predictable processes w.r.t. the backward filtration
(
FBt,T

)
t∈[0,T ]

and Ψ̃ ∈ L2(Rd)
such that if we denote by z the solution of the following linear SPDEdzt +

1

2
∆ztdt+ f̃tdt+ divg̃tdt+ h̃t ·

←−
dBt = 0,

zT = Ψ̃,
(12)

then vt ≤ zt ≤ vt a.e. ∀t ∈ [0, T ].
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(iv) Strict separability of the obstacles: there exists a positive constant κ such that vt − zt ≤
−κ < 0 ≤ vt − zt.

Remark 5. The condition (iv) is similar to the so-called Mokobodski condition used in stochastic
Dynkin games.

Remark 6. By Theorem 8 in [5] we have the existence and uniqueness of z. Moreover, we know
that EEm[supt∈[0,T ] |zt(Wt)|2] < +∞. Hence, hypothesis (iii) of (HO) ensures that

EEm
[

sup
t∈[0,T ]

(v+(t, ·,Wt))
2

]
< +∞ and EEm

[
sup
t∈[0,T ]

(v−(t, ·,Wt))
2

]
< +∞.

3.2. The weak solution for the two-obstacle problem

We now precise the definition of the solution of our obstacle problem. We recall that the datum
satisfy the hypotheses of Section 3.1.

Definition 6. We say that a triplet (u, ν+, ν−) is a weak solution of the two-obstacle problem for
SPDE (1) associated to (Ψ, f, g, h, v, v), if

(i) u ∈ HT , v(t, x) ≤ u(t, x) ≤ v(t, x) dP⊗ dt⊗ dx− a.e. and u(T, x) = Ψ(x), dP⊗ dx− a.e.;

(ii) ν+ and ν− are random extended regular measures on [0, T ]× Rd;

(iii) for any ϕ ∈ DT and t ∈ [0, T ], the following relation holds almost surely,∫ T

t

[
(us, ∂sϕs) +

1

2
(∇us,∇ϕs)

]
ds−

(
Ψ, ϕT

)
+
(
ut, ϕt

)
=

∫ T

t

[ (
fs
(
us,∇us

)
, ϕs
)
−
(
gs
(
us,∇us

)
,∇ϕs

) ]
ds

+

∫ T

t

(hs (us,∇us) , ϕs) ·
←−
dBs +

∫ T

t

∫
Rd

ϕs(x) (ν+ − ν−)(ds, dx);

(13)

(iv) u admits a quasi-continuous version, ũ, and we have∫ T

0

∫
Rd

(ũs (x)− vs (x)) ν+ (ds, dx) =

∫ T

0

∫
Rd

(vs (x)− ũs (x)) ν− (ds, dx) = 0, a.s..

3.3. The main theorem

Here is the main result of our paper :

Theorem 4. Suppose that Assumptions (H), (HD2) and (HO) hold. Then there exists a unique
weak solution (u, ν+, ν−) of the two-obstacle problem for SPDE (1) associated to (Ψ, f, g, h, v, v).
Moreover, the quadruple of processes

(
Yt, Zt,K

+
t ,K

−
t

)
t∈[0,T ]

, the unique solution of the following
doubly reflected backward doubly stochastic differential equation (in short DRBDSDE) :

Yt = Ψ (WT ) +

∫ T

t

fs (Ws, Ys, Zs) ds−
1

2

∫ T

t

gs (Ws, Ys, Zs) ∗ dWs +

∫ T

t

hs (Ws, Ys, Zs) ·
←−
dBs

−
∑
i

∫ T

t

Zi,sdW
i
s +K+

T −K
+
t −K−T +K−t

(14)



12 L. Denis, A. Matoussi and J. Zhang

with Lt ≤ Yt ≤ Ut, ∀ t ∈ [0, T ],
(
K+
t

)
t∈[0,T ]

and
(
K−t

)
t∈[0,T ]

being increasing continuous processes
and ∫ T

0

(Yt − Lt)dK+
t =

∫ T

0

(Ut − Yt)dK−t = 0 (15)

is given by: Yt = u(t,Wt), Zt = ∇u(t,Wt), Lt = v(t,Wt), Ut = v(t,Wt) and for any ϕ ∈ DT ,

ν+ (ϕ) = Em
∫ T

0

ϕ (t,Wt) dK
+
t and ν− (ϕ) = Em

∫ T

0

ϕ (t,Wt) dK
−
t .

4. Proof of Theorem 4

In order to solve the problem, we will use the backward stochastic differential equation technics.
We shall begin with the linear case whose proof is based on the penalization procedure and then
use a fixed point argument. Since we are first going to consider the solution of our SPDE reflected
on the lower obstacle and penalized on the upper obstacle, we recall the result in the one-obstacle
case.

4.1. The probabilistic interpretation of the solution of the one-obstacle problem

In [14], the one-obstacle problem was studied, it corresponds to the case of two-obstacle problem
by taking v = +∞ and ν = ν+:

(i′) u ≥ v, dP⊗ dt⊗ dx− a.e.,

(ii′) dut(x) +
[ 1

2
∆ut(x) + ft(x, ut(x),∇ut(x)) + divgt (x, ut (x) ,∇ut (x))

]
dt

+ ht(x, ut(x),∇ut(x)) ·
←−
dBt = −ν(dt, x), a.s.,

(iii′) ν
(
u > v

)
= 0, a.s.,

(iv′) uT = Ψ, dP⊗ dx− a.e..

(16)

The main result in Matoussi and Stoica [14] (see Theorem 4 and Corollary 2) is the following which
gives a probabilistic interpretation of the solution:

Theorem 5. Assume (H), (HD2) and that the lower obstacle v satisfies:

1. v(t, ω, x) is a predictable random function with respect to the backward filtration
(
FBt,T

)
t∈[0,T ]

,

2. t 7→ v(t, ω,Wt) is P⊗ Pm-a.e. continuous on [0, T ],

3. v(T, ·) ≤ Ψ(·),

4. EEm
[
supt∈[0,T ](v

−(t, ·,Wt))
2
]
< +∞.

Then OSPDE (16) has a unique solution u in HT .
Moreover, the triple of processes (Yt, Zt,Kt)t∈[0,T ], the unique solution of the following reflected
backward doubly stochastic differential equation (in short RBDSDE) :

Yt = Ψ (WT ) +

∫ T

t

fs (Ws, Ys, Zs) ds+KT −Kt −
1

2

∫ T

t

gs (Ws, Ys, Zs) ∗ dWs

+

∫ T

t

hs (Ws, Ys, Zs) ·
←−
dBs −

∑
i

∫ T

t

Zi,sdW
i
s

(17)
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with Yt ≥ Lt, ∀ t ∈ [0, T ], (Kt)t∈[0,T ] being an increasing continuous process, K0 = 0 and∫ T

0

(Yt − Lt)dKt = 0 (18)

is given by: Yt = u(t,Wt), Zt = ∇u(t,Wt), Lt = v(t,Wt) and for any ϕ ∈ DT ,

ν (ϕ) = Em
∫ T

0

ϕ (t,Wt) dKt .

4.2. Approximation by the penalization method in the linear case

We begin with the linear case, i.e. assume that f , g and h do not depend on (u,∇u) . In other
words we consider the following DOSPDE:

du(t, x) +
1

2
∆u(t, x)dt+ ft(x)dt+ divgt(x)dt+ ht(x) ·

←−
dBt + ν+(dt, x)− ν−(dt, x) = 0,

v(t, x) ≤ u(t, x) ≤ v(t, x),∫ T

0

∫
Rd

(ũ(t, x)− v(t, x)) ν+(dt, dx) =

∫ T

0

∫
Rd

(v(t, x)− ũ(t, x)) ν−(dt, dx) = 0,

uT = Ψ,

(19)

where f = f0, g = g0, h = h0 satisfy hypothesis (HD2) and the obstacles v and v satisfy (HO).
For n ∈ N, let (un, ν+,n) be the solution of the following SPDE with lower obstacle:

dunt (x) +
1

2
∆unt (x)dt+ ft(x)dt− n(unt (x)− vt(x))+dt+ divgt(x)dt+ ht(x) ·

←−
dBt + ν+,n(dt, x) = 0,

un(t, x) ≥ v(t, x),∫ T

0

∫
Rd

(ũn(t, x)− v(t, x)) ν+,n(dt, dx) = 0, (20)

unT = Ψ.

We denote by Y nt = un(t,Wt), Znt = ∇un(t,Wt), Lt = v(t,Wt), Ut = v(t,Wt) and ξ = Ψ(WT ).
From Theorem 4 in Matoussi and Stoica [14] and for each n ∈ N, there exists a unique quasi-
continuous solution un of the obstacle problem (20). Thus, Y n is P ⊗ Pm-a.e. continuous and
by Corollary 2 in [14], the triplet

(
Y n, Zn,K+,n

)
solves the RBSDE associated to the data

(Ψ, fn, g, h, L) with fn = f − n (Y n − U)+,

Y nt = ξ +

∫ T

t

fs(Ws)ds− n
∫ T

t

(Y ns − Us)+ds− 1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs(Ws) ·
←−
dBs

−
∑
i

∫ T

t

Zni,sdW
i
s +K+,n

T −K+,n
t ,

Y nt ≥ Lt ,∫ T

0

(Y nt − Lt)dK
+,n
t = 0 .

(21)

From now on, we denote K−,nt := n

∫ t

0

(Y ns − Us)+ds.

Remark 7.
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1. In (21), (Bt)0≤t≤T and (Wt)0≤t≤T are two mutually independent Brownian motions, with
values respectively in Rd1 and in Rd. The backward filtration FBt,T has been defined in
Subsection 2.4 and let FBT := FB0,T . We also consider the following family of σ−fields
FWt := σ(Ws, 0 ≤ s ≤ t). For any t ∈ [0, T ], we define

Ft := FWt ∨ FBt,T and Gt := FWt ∨ FBT .

Note that the collection (Ft)t∈[0,T ] is neither increasing nor decreasing and it does not con-
stitute a filtration. However, (Gt)t∈[0,T ] is a filtration.

2. Thanks to the comparison theorem (Lemma 10 in the Appendix), (Y n)n is a non-increasing
sequence since fn = f − n (Y n − U)+is a non-increasing sequence.

We denote by Ỹt = z(t,Wt), Z̃t = ∇z(t,Wt) where z satisfies the equation (12), then from Theorem
3, (Ỹ , Z̃) solves the following BDSDE:

Ỹt = ξ̃ +

∫ T

t

f̃s(Ws)ds−
1

2

∫ T

t

g̃s ∗ dWs +

∫ T

t

h̃s(Ws) ·
←−
dBs −

∫ T

t

Z̃s dWs, (22)

where ξ̃ = Ψ̃(WT ). Moreover, we have the following relation :

Lt − Ỹt ≤ −κ < 0 ≤ Ut − Ỹt.

Lemma 1. There exists a constant C independent of n such that

EEm sup
t∈[0,T ]

|Y nt |2 + EEm
∫ T

0

|Znt |2dt+ EEm|K+,n
T −K−,nT |2 ≤ C. (23)

Proof. Applying Itô’s formula to (Y n − Ỹ )2 (see Lemma 9), for any t ∈ [0, T ], we have almost
surely

|Y nt − Ỹt|2 +

∫ T

t

|Zns − Z̃s|2ds = |ξ − ξ̃|2 + 2

∫ T

t

(Y ns − Ỹs)(fs(Ws)− f̃s(Ws)) ds

−
∫ T

t

(Y ns − Ỹs)(gs − g̃s) ∗ dWs + 2

∫ T

t

(Y ns − Ỹs)(hs(Ws)− h̃s(Ws)) ·
←−
dBs

− 2

∫ T

t

(Y ns − Ỹs)(Zns − Z̃s) dWs − 2

∫ T

t

〈Zns − Z̃s, gs(Ws)− g̃s(Ws)〉 ds

+

∫ T

t

|hs(Ws)− h̃s(Ws)|2ds+ 2

∫ T

t

(Y ns − Ỹs)dK+,n
s − 2n

∫ T

t

(Y ns − Ỹs)(Y ns − Us)+ds.

(24)

From the Skorokhod condition (21), we get∫ T

t

(Y ns − Ỹs)dK+,n
s =

∫ T

t

(Ls − Ỹs)dK+,n
s ≤ 0

and

n

∫ T

t

(Y ns − Ỹs)(Y ns − Us)+ds = n

∫ T

t

(Y ns − Us + Us − Ỹs)(Y ns − Us)+ds

=

∫ T

t

n((Y ns − Us)+)2ds+

∫ T

t

n(Us − Ỹs)(Y ns − Us)+ds ≥ 0.
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Therefore, using Cauchy-Schwarz’s inequality, trivial inequalities such as 2ab ≤ 2a2 +
b2

2
and then

taking expectation under P⊗ Pm, we obtain

EEm|Y nt − Ỹt|2 + EEm
∫ T

t

|Zns − Z̃s|ds ≤ E|ξ − ξ̃|2 + EEm
∫ T

t

|Y ns − Ỹs|2ds+
1

2
EEm

∫ T

t

|Zns − Z̃s|2ds

+ EEm
∫ T

t

[
|(fs − f̃s)(Ws)|2 + 2|(gs − g̃s)(Ws)|2 + |(hs − h̃s)(Ws)|2

]
ds.

(25)

Hence,

EEm|Y nt − Ỹt|2 ≤ C + EEm
∫ T

t

|Y ns − Ỹs|2ds ,

where C is a constant independent of n which may vary from line to line.
From Gronwall’s inequality it then follows that

sup
0≤t≤T

EEm|Y nt − Ỹt|2 ≤ C

and again from (25), we have

EEm
∫ T

0

|Zns − Z̃s|2ds ≤ C.

Coming back to (24) and using Bukholder-Davis-Gundy’s inequality and the above estimates, we
get

EEm sup
t∈[0,T ]

|Y nt − Ỹt|2 ≤ C.

Then, combining with the estimate for (Ỹ , Z̃) (see for example Theorem 2.1 in [5]), we obtain

EEm sup
t∈[0,T ]

|Y nt |2 + EEm
∫ T

0

|Znt |2dt ≤ C.

Finally, we conclude since

K+,n
T −K−,nT = Y n0 − ξ −

∫ T

0

fs(Ws)ds+
1

2

∫ T

0

gs ∗ dWs −
∫ T

0

hs(Ws) ·
←−
dBs +

∫ T

0

Zns dWs .

Now we introduce a function ψ ∈ C2 which satisfies ψ(x) = x when x ∈ (−∞,−κ], ψ(x) = 0 when
x ∈ [−κ2 ,+∞).

Lemma 2. The sequence (K+,n
T )n is bounded in L1(P⊗ Pm).

Proof. Applying Itô’s formula to ψ(Y n − Ỹ ), we have almost surely, ∀t ∈ [0, T ],

ψ(Y nt − Ỹt) =ψ(ξ − ξ̃) +

∫ T

t

ψ′(Y ns − Ỹs)dK+,n
s −

∫ T

t

ψ′(Y ns − Ỹs)n(Y ns − Us)+ds

+

∫ T

t

ψ′(Y ns − Ỹs)(fs(Ws)− f̃s(Ws))ds−
1

2

∫ T

t

ψ′(Y ns − Ỹs)(gs − g̃s) ∗ dWs

+

∫ T

t

ψ′(Y ns − Ỹs)(hs(Ws)− h̃s(Ws)) ·
←−
dBs −

∫ T

t

ψ′(Y ns − Ỹs)(Zns − Z̃s)dWs

− 1

2

∫ T

t

ψ′′(Y ns − Ỹs)|Zns − Z̃s|2ds+
1

2

∫ T

t

ψ′′(Y ns − Ỹs)|hs(Ws)− h̃s(Ws)|2ds

−
∫ T

t

ψ′′(Y ns − Ỹs)〈gs(Ws)− g̃s(Ws), Z
n
s − Z̃s〉ds.

(26)
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We note that ∫ T

t

ψ′(Y ns − Ỹs)dK+,n
s =

∫ T

t

ψ′(Ls − Ỹs)dK+,n
s = K+,n

T −K+,n
t

and ∫ T

t

ψ′(Y ns − Ỹs)n(Y ns − Us)+ds = 0,

then, combining with Lemma 1 and using the fact that ψ′ and ψ′′ are bounded, we deduce that,
there exists a constant c > 0 such that

EEm[K+,n
T ] ≤ c. (27)

Thus the sequence of processes K+,n
t is uniformly bounded in L1(Ω × Ω′ × [0, T ]). Moreover, by

comparison theorem (see Lemma 10), we have dK+,n+1 ≥ dK+,n.
Therefore the sequence (K+,n

t )n converges to a process denoted by K+ and by Fatou’s lemma, we
get

EEm[K+
T ] ≤ c. (28)

Moreover, by Lemma 3.2 in [17], we have the following result:

Lemma 3. (K+
t )t≥0 is an increasing and continuous process.

Moreover, by the comparison theorem (see Lemma 10), we know that (Y n)n is non-increasing and
bounded in L2, as a consequence it converges to a process that we denote by Y and we have

lim
n→+∞

EEm
[∫ T

0

|Y nt − Yt|2dt

]
= 0.

We are now going to prove that the process (Yt)t∈[0,T ] admits a continuous version which solves
(14).

4.3. The fundamental lemma

We recall that for all n ∈ N,

Y nt = ξ +

∫ T

t

fs(Ws)ds− n
∫ T

t

(Y ns − Us)+ ds− 1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs(Ws) ·
←−
dBs

−
∑
i

∫ T

t

Zni,sdW
i
s +K+,n

T −K+,n
t .

First of all, by extracting a subsequence if necessary, we can assume that (Zn)n converges weakly
to a process Z in L2(Ω× Ω′ × [0, T ]).
Let ζ be a positive function in L2(Rd), we introduce, for each N > 0, the Gt−stopping time

τN := inf
{
t ≥ 0, K+

t = Nζ(W0)
}
∧ T.

Since K+
T is integrable and ζ > 0, P ⊗ Pm-a.e., τN = T for N large enough. Moreover, as K+

τN ≤
Nζ(W0)∧K+

T , K
+
τN belongs to L2(P⊗ Pm)

⋂
L1(P⊗ Pm). Clearly for each N , (Zn·∧τN )n converges
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weakly to Z·∧τN in L2(Ω× Ω′ × [0, T ]).
We have

Y nt∧τN =Y n0 −
∫ t∧τN

0

fs(Ws)ds+
1

2

∫ t∧τN

0

gs ∗ dWs −
∫ t∧τN

0

hs(Ws) ·
←−
dBs

+

∫ t∧τN

0

Zns dWs −K+,n
t∧τN + n

∫ t∧τN

0

(Y ns − Us)+ ds .

(29)

Let us remark that for fixed N , the sequence of processes (K+,n
·∧τN ) is non-decreasing in n, bounded

in L2 and for each n and 0 ≤ s ≤ t ≤ T , K+,n+1
t∧τN −K+,n+1

s∧τN ≥ K+,n
t∧τN −K

+,n
s∧τN by the comparison

theorem. Moreover, by Lemma 1 this implies that the sequence of processes (K−,n·∧τN ) is also bounded
in L2.
Then, as a consequence of the stochastic monotonic convergence theorem due to Peng and Xu (see
Theorem 3.1 in [17]) we conclude that there exists an increasing process K− such that, for each
N > 0 and t ∈ [0, T ], Y nt∧τN converges to

Yt∧τN =Y0 −
∫ t∧τN

0

fs(Ws)ds−
1

2

∫ t∧τN

0

gs ∗ dWs −
∫ t∧τN

0

hs(Ws) ·
←−
dBs

+

∫ t∧τN

0

ZsdWs −K+
t∧τN +K−t∧τN ,

(30)

where both K+
·∧τN and K−·∧τN hence Y·∧τN are càdlàg. Making N tend to infinity we conclude that

Y and K− are càdlàg.

Lemma 4. (Fundamental Lemma) We have

lim
n→+∞

EEm
[(

sup
t∈[0,T ]

(Y nt − Ut)+
)2
]

= 0.

Proof. We first note that for all n, Y n − Ỹ is the solution of the RBSDE associated to the data
(Ψ(WT )− Ψ̃(WT ), fn − f̃ , g − g̃, h− h̃, L− Ỹ ). By Itô’s formula (see Remark 9 in the appendix),
we have

|(Y n0 − Ỹ0)+|2 = |(ξ − ξ̃)+|2 −
∫ T

0

1{Y n
s −Ỹs>0}|Z

n
s − Z̃s|2ds− 2

∫ T

0

(Y ns − Ỹs)+(Zns − Z̃s)dWs

+ 2

∫ T

0

(Y ns − Ỹs)+ dK+,n
s + 2

∫ T

0

(Y ns − Ỹs)+(fs(Ws)− f̃s(Ws))ds−
∫ T

0

(Y ns − Ỹs)+(gs − g̃s) ∗ dWs

+ 2

∫ T

0

(Y ns − Ỹs)+(hs(Ws)− h̃s(Ws)) ·
←−
dBs +

∫ T

0

1{Y n
s −Ỹs>0}|hs(Ws)− h̃s(Ws)|2ds

− 2

∫ T

0

1{Y n
s −Ỹs>0}〈gs(Ws)− g̃s(Ws), Z

n
s − Z̃s〉ds− 2n

∫ T

0

(Y ns − Ỹs)+(Y ns − Us)+ds, a.s..

(31)

Since Ỹ ≥ L, we have
∫ T

0
(Y ns − Ỹs)

+ dK+,n
s ≤ 0. Now taking the expectation in the previous

inequality, we easily get that n
∫ T

0
(Y ns − Ỹs)+(Y ns − Us)+ds is bounded in L1, which yields:

lim
n→+∞

EEm
[∫ T

0

(Y ns − Ỹs)+(Y ns − Us)+ds

]
= 0.

Hence, since Ỹ ≤ U ,

lim
n→+∞

EEm
[∫ T

0

(
(Y ns − Us)+

)2
ds

]
= 0.



18 L. Denis, A. Matoussi and J. Zhang

So we have EEm[
∫ T

0
((Ys − Us)+)2ds] = 0.

Since Y is càdlàg process and U is continuous process, we deduce that P ⊗ Pm-a.e., for all
t ∈ [0, T ], Yt ≤ Ut. Hence limn→+∞(Y nt − Ut)

+ = 0. By Dini’s lemma ([4], p. 202), we get
limn→+∞ supt∈[0,T ](Y

n
t − Ut)

+ = 0, a.s. and we conclude by the dominated convergence theo-
rem.

Lemma 5. For each N > 0, there exists a constant CN such that for all n ∈ N,

EEm[(K+,n
τN )2] + EEm[(K−,nτN )2] ≤ CN .

Proof. This is an obvious consequence of Lemma 1 and the fact thatK+,n is dominated byK+.

Since we have the following estimate (see Lemma 1)

EEm
(

sup
0≤t≤T

|Y nt |2
)

+ EEm
∫ T

0

|Zns |2ds ≤ C, (32)

by Fatou’s lemma , one gets

EEm
(

sup
0≤t≤T

|Yt|2
)
≤ C.

4.4. Convergence of (Y n, Zn,K+,n,K−,n)

Lemma 6. The limiting processes Y , K+ and K− are continuous and we have:

lim
n→+∞

EEm
[

sup
0≤t≤T

|Y nt − Yt|2
]

= 0 , (33)

and for any N > 0,

lim
n→+∞

EEm
[∫ τN

0

|Znt − Zt|2dt
]

= 0 . (34)

Moreover, we have Lt ≤ Yt ≤ Ut, ∀ t ∈ [0, T ] and∫ T

0

(Ys − Ls)dK+
s =

∫ T

0

(Us − Ys)dK−s = 0, P⊗ Pm-a.e..

Proof. The continuity of process K+ has been proved in Lemma 3.
From (29), we have, for n ≥ p and any t ∈ [0, T ],

Y nt∧τN − Y
p
t∧τN = (Y n0 − Y

p
0 )− (K+,n

t∧τN −K
+,p
t∧τN ) + (K−,nt∧τN −K

−,p
t∧τN ) +

∫ t∧τN

0

(Zns −Zps )dWs. (35)

Then, Itô’s formula gives almost surely,

|Y nt∧τN − Y
p
t∧τN |

2 = |Y n0 − Y
p
0 |2 − 2

∫ t∧τN

0

(Y ns − Y ps ) d
(
K+,n
s −K+,p

s

)
+ 2

∫ t∧τN

0

(Y ns − Y ps ) d
(
K−,ns −K−,ps

)
+

∫ t∧τN

0

|Zns − Zps |2ds

+ 2
∑
i

∫ t∧τN

0

(Y ns − Y ps )
(
Zni,s − Z

p
i,s

)
dW i

s .

(36)
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Then taking expectation and noting that, as n ≥ p, due to the comparison theorem (Lemma 10 in
the Appendix), we know that Y n ≤ Y p, hence thanks to the definition of K−,n, we get

−2

∫ t∧τN

0

(Y ns − Y ps ) d
(
K−,ns −K−,ps

)
≤ − 2

∫ t∧τN

0

(Y ns − Y ps ) dK−,ns

=− 2

∫ t∧τN

0

(Y ns − Us) dK−,ns + 2

∫ t∧τN

0

(Y ps − Us) dK−,ns

≤ 2

∫ t∧τN

0

(Y ps − Us) dK−,ns

= 2

∫ t∧τN

0

[
(Y ps − Us)+ − (Y ps − Us)−

]
n(Y ns − Us)+ds

≤ 2

∫ t∧τN

0

(Y ps − Us)
+
dK−,ns

≤ 2 sup
s∈[0,T ]

(Y ps − Us)
+
K−,nτN .

(37)

By Lemma 4, Cauchy-Schwarz’s inequality and the fact that (K−,nτN )n is bounded in L2, we get

lim
n,p→+∞

EEm
[

sup
s∈[0,T ]

(Y ps − Us)
+
K−,nτN

]
= 0,

hence

lim sup
n,p→+∞

EEm
[

sup
t∈[0,T ]

(
−
∫ t∧τN

0

(Y ns − Y ps ) d
(
K−,ns −K−,ps

))]
≤ 0. (38)

Moreover, for fixed N , the sequence (Y nt∧τN )n∈N is decreasing and bounded in L2 hence converges
in L2, so

lim
n,p→+∞

EEm
[∣∣Y nt∧τN − Y pt∧τN ∣∣2] = 0.

Finally, remarking the following relation:

2

∫ t∧τN

0

(Y ns − Y ps )d(K+,n
s −K+,p

s )

= 2

∫ t∧τN

0

(Y ns − Ls + Ls − Y ps )d(K+,n
s −K+,p

s )

= 2

∫ t∧τN

0

(Y ns − Ls)d(K+,n
s −K+,p

s ) + 2

∫ t∧τN

0

(Y ps − Ls)d(K+,p
s −K+,n

s )

= 2

∫ t∧τN

0

(Ls − Y ns )dK+,p
s + 2

∫ t∧τN

0

(Ls − Y ps )dK+,n
s ≤ 0,

and coming back to (36), we get for any t ∈ [0, T ],

0 ≤ lim sup
n,p→+∞

EEm
∫ t∧τN

0

|Zns − Zps |2ds ≤ lim sup
n,p→+∞

−2EEm
∫ t∧τN

0

(Y ns − Y ps )d(K−,ns −K−,ps ) ≤ 0.

Finally, taking supremum over [0, T ] in (36), thanks to the Burkholder-Davis-Gundy inequality
and (38), we have

EEm
[

sup
t∈[0,τN ]

|Y nt − Y
p
t |2 +

∫ τN

0

|Znt − Z
p
t |2dt

]
−→ 0, as n, p→∞. (39)
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Hence, there exists a pair (Y, Z) of progressively measurable processes with values in R×Rd such
that

EEm
[

sup
0≤t≤τN

|Y nt − Yt|2 +

∫ τN

0

|Znt − Zt|2dt
]
−→ 0.

Therefore, the process Y admits a continuous version that we still denote by Y and by equality
(30) we deduce that the process K− is also continuous. Then as a consequence of Dini’s lemma,
supt∈[0,T ] |Y nt − Yt| converges to 0 a.e., hence by the dominated convergence theorem, we have

lim
n→+∞

EEm
[

sup
t∈[0,T ]

|Y nt − Yt|2
]

= 0.

Similarly, Dini’s lemma and the dominated convergence theorem also yield

EEm
[

sup
t∈[0,T ]

∣∣K+,n
t −K+

t

∣∣] = 0.

From identity (35), making p tend to +∞, we have

sup
t∈[0,T ]

|K−,nt∧τN −K
−
t∧τN | ≤ |Y

n
0 − Y0|+ sup

t∈[0,T ]

|Y nt − Yt|+ sup
t∈[0,T ]

|K+,n
t −K+

t |

+ sup
t∈[0,T ]

∣∣∣∣∫ t∧τN

0

(Zns − Zs)dWs

∣∣∣∣ .
We have proved that each term on the right hand side tends to 0 in L2 or L1, hence by standard
arguments based on a diagonal extraction procedure we can extract a subsequence (K−,δ(n))n such
that for all N ,

lim
n→+∞

sup
t∈[0,T ]

|K−,δ(n)
t∧τN −K−t∧τN | = 0, a.e..

Hence, since τN = T a.e. for N large enough, we obtain

lim
n→+∞

sup
t∈[0,T ]

|K−,δ(n)
t −K−t | = 0, a.e..

Moreover, from Lemma 4 we know that P ⊗ Pm−a.e., Yt ≤ Ut, ∀ t ∈ [0, T ], which yields that∫ T
0

(Ys − Us)dK−s ≤ 0. But, we also have∣∣∣∣∣
∫ T

0

(Ys − Us)dK−s −
∫ T

0

(Y ns − Us)dK−,ns

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

(Ys − Us)dK−s −
∫ T

0

(Ys − Us)dK−,ns

∣∣∣∣∣
+

∫ T

0

|Ys − Y ns |dK−,ns .

Now sinceK−,δ(n) tends toK−, we deduce that almost surely, the sequence (dK−,δ(n))n of measures
on [0, T ] converges weakly to dK−. Since s→ Ys − Us is continuous, we have

lim
n→+∞

∫ T

0

(Ys − Us)dK−,δ(n)
s =

∫ T

0

(Ys − Us)dK−s .

Then, for all n,N > 0,∫ τN

0

|Ys − Y δ(n)
s |dK−,δ(n)

s ≤ sup
t∈[0,T ]

|Yt − Y δ(n)
t |K−,δ(n)

τN .
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By Cauchy-Schwarz’s inequality and Lemma 5, limn→+∞ EEm[supt∈[0,T ] |Yt − Y nt |K−,nτN ] = 0, so
by extracting another subsequence if necessary we have

lim
n→+∞

∫ τN

0

|Ys − Y δ(n)
s |dK−,δ(n)

s = 0, a.e.,

this yields∫ τN

0

(Ys − Us)dK−s = lim
n→+∞

∫ τN

0

(Y δ(n)
s − Us)dK−,δ(n)

s = lim
n→+∞

∫ τN

0

δ(n)((Y δ(n)
s − Us)+)2ds ≥ 0.

Hence,
∫ τN

0
(Ys − Us)dK−s = 0. Using similar arguments, we prove∫ τN

0

(Ys − Ls)dK+
s = lim

n→+∞

∫ τN

0

(Y ns − Ls)dK+,n
s = 0.

Finally, as τN = T almost surely for N large enough, we conclude that∫ T

0

(Ys − Ls)dK+
s =

∫ T

0

(Us − Ys)dK−s = 0, P⊗ Pm-a.e..

As a consequence of the last proof, by passing to the limit in (29) a.e., we obtain the following
generalization of the DRBSDE introduced in [7]:

Corollary 2. The limiting quadruple of processes
(
Yt, Zt,K

+
t ,K

−
t

)
t∈[0,T ]

is a solution of the fol-
lowing DRBDSDE:

Yt = Ψ (WT ) +

∫ T

t

fr (Wr) dr −
1

2

∫ T

t

gr ∗ dWr +

∫ T

t

hr (Wr) ·
←−
dBr

−
∑
i

∫ T

t

Zi,rdW
i
r +K+

T −K
+
t −K−T +K−t

(40)

with Lt ≤ Yt ≤ Ut, ∀ t ∈ [0, T ],
(
K+
t

)
t∈[0,T ]

and
(
K−t

)
t∈[0,T ]

are increasing continuous processes
and ∫ T

0

(Yt − Lt)dK+
t =

∫ T

0

(Ut − Yt)dK−t = 0. (41)

4.5. End of the proof of Theorem 4 in the linear case

At this stage, we have built the solution of the DRBDSDE associated to our DOSPDE. It remains
to make the link with the solution of this DOSPDE.
We keep all the notations of the preceding section.

Lemma 7. There exists u ∈ HT which admits a quasi-continuous version that we still denote by
u such that

∀t ∈ [0, T ], Yt = u(t,Wt) and Zt = ∇u(t,Wt), P⊗ Pm − a.e..

Proof. First of all, as a consequence of [14], for each n ∈ N there exists un ∈ HT , quasi-continuous,
such that

∀t ∈ [0, T ], Y nt = un(t,Wt) and Znt = ∇un(t,Wt), P⊗ Pm − a.e..

Since the sequence (Zn) is bounded in L2, by Mazur’s lemma, we can construct a sequence of
convex combination

Z̃n :=
∑
i∈In

αni Z
i,
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which converges to Z in L2([0, T ]× Ω× Ω′). We put

Ỹ n :=
∑
In

αni Y
i and ũn :=

∑
In

αni u
i,

then we clearly have

sup
t∈[0,T ]

‖ũnt − ũ
p
t ‖2 +

∫ T

0

‖∇ũnt −∇ũ
p
t ‖2 dt ≤ Em

[
sup
t∈[0,T ]

|Ỹ nt − Ỹ
p
t |2 +

∫ T

0

|Z̃nt − Z̃
p
t |2 dt

]
,

so the sequence
(
ũn
)
n∈N is a Cauchy sequence in HT and hence has a limit u in this space. The

end of the proof is then obvious.

Finally, we have the desired result:

Lemma 8. The triple (u, ν+, ν−), where

∀ϕ ∈ Cb([0, T ]× Rd),
∫ T

0

∫
Rd

ϕ(t, x) ν+
(
dt, dx

)
= Em

∫ T

0

ϕt(Wt) dK
+
t

and

∀ϕ ∈ Cb([0, T ]× Rd),
∫ T

0

∫
Rd

ϕ(t, x) ν−
(
dt, dx

)
= Em

∫ T

0

ϕt(Wt) dK
−
t ,

is a solution of the linear SPDE with two obstacles (19) .

Proof. Let (Y 1, Z1) be the solution of the backward doubly SDE without obstacle

Y 1
t = Ψ (WT ) +

∫ T

t

fr (Wr) dr −
1

2

∫ T

t

gr ∗ dWr +

∫ T

t

hr (Wr) ·
←−
dBr −

∑
i

∫ T

t

Z1
i,rdW

i
r ,

then we know that Y 1
t = u1(t,Wt), Z1

t = ∇u1(t,Wt), where u1 ∈ HT is quasi-continuous and the
solution of the SPDE:

du1(t, x) +
1

2
∆u1(t, x)dt+ ft(x)dt+ divgt(x)dt+ ht(x) ·

←−
dBt = 0

with terminal condition u1
T = Ψ.

We put Y 2 = Y −Y 1, Z2 = Z−Z1, then (Y 2, Z2,K+,K−) is a solution of the following backward
doubly stochastic SDE with lower obstacle Lt − Y 1

t and upper obstacle Ut − Y 1
t :

Y 2
t = −

∑
i

∫ T

t

Z2
i,rdW

i
r +K+

T −K
+
t −K−T +K−t .

Now, we put u2 = u− u1, then u2 ∈ HT is quasi-continuous, and moreover,

Y 2
t = u2(t,Wt) and Z2

t = ∇u2(t,Wt).

Let ϕ ∈ DT , then by Itô’s formula, we have for all t ∈ [0, T ]:

ϕt(Wt)Y
2
t = −

∫ T

t

(
Y 2
s ∇ϕs(Ws) + ϕs(Ws)Z

2
s

)
dWs −

∫ T

t

∂sϕs(Ws)Y
2
s ds−

1

2

∫ T

t

∆ϕs(Ws)Y
2
s ds

−
∫ T

t

∇ϕs(Ws) · Z2
sds+

∫ T

t

ϕs(Ws) dK
+
s −

∫ T

t

ϕs(Ws) dK
−
s ,
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then taking expectation w.r.t. Em and remarking that for example

Em
∫ T

t

∆ϕs(Ws)Y
2
s ds =

∫ T

t

(
∆ϕs, u

2
s

)
ds = −

∫ T

t

(
∇ϕs,∇u2

s

)
ds,

we get∫ T

t

[(
u2
s, ∂sϕs

)
+

1

2

(
∇u2

s,∇ϕs
)]
ds+

(
u2
t , ϕt

)
=

∫ T

t

∫
Rd

ϕs(x) (ν+ − ν−)(ds, dx), a.s..

This proves that (u2, ν+, ν−) solves

du2(t, x) +
1

2
∆u2(t, x)dt+ ν+(dt, x)− ν−(dt, x) = 0,

v(t, x)− u1(t, x) ≤ u2(t, x) ≤ v(t, x)− u1(t, x),∫ T

0

∫
Rd

(
u2(t, x)− (v(t, x)− u1(t, x))

)
ν+(dt, dx) =

∫ T

0

∫
Rd

(
(v(t, x)− u1(t, x))− u2(t, x)

)
ν−(dt, dx) = 0,

u2
T = 0.

It is now easy to conclude since u = u1 + u2.

The next proposition will ensure the uniqueness of solution.

Proposition 4. Let (u, ν+, ν−) be a solution of the linear SPDE with two obstacles (19). We
consider that u is the quasi-continuous version and denote by K+ and K− the processes such that:

∀ϕ ∈ Cb([0, T ]× Rd),
∫ T

0

∫
Rd

ϕ(t, x) ν+
(
dt, dx

)
= Em

∫ T

0

ϕt(Wt) dK
+
t

and

∀ϕ ∈ Cb([0, T ]× Rd),
∫ T

0

∫
Rd

ϕ(t, x) ν−
(
dt, dx

)
= Em

∫ T

0

ϕt(Wt) dK
−
t .

We define the processes:

∀t ∈ [0, T ], Yt = u(t,Wt) and Zt = ∇u(t,Wt).

Then (Y,Z,K+,K−) is a solution to DRDBSDE of Corollary 2.

Proof. As seen in the proof of the preceding lemma and as a consequence of Theorem 3 in [14], we
just need to prove the result in the case where f = g = h = 0. So, let u be a solution of

du(t, x) +
1

2
∆u(t, x)dt+ ν+(dt, x)− ν−(dt, x) = 0,

v(t, x) ≤ u(t, x) ≤ v(t, x),∫ T

0

∫
Rd

(u(t, x)− v(t, x))) ν+(dt, dx) =

∫ T

0

∫
Rd

(v(t, x)− u(t, x)) ν−(dt, dx) = 0,

uT = 0.

(42)

Since u is in HT , we can approximate it by a sequence of functions un ∈ C∞c ([0, T ]×Rd) such that

lim
n→+∞

E

[
sup
t∈[0,T ]

‖unt − ut‖2 +

∫ T

0

‖∇(unt − ut)‖2dt

]
= 0.
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Set Y nt := un(t,Wt) and Znt := ∇un(t,Wt). As a consequence of Itô’s formula, we have

Y nt = un0 (W0) +

∫ t

0

(
∂su

n
s (Ws) +

1

2
∆uns (Ws)

)
ds+

∫ t

0

Zns dWs. (43)

Define Kn
t := un0 (W0)+

∫ t
0

(
∂su

n
s (Ws) + 1

2∆uns (Ws)
)
ds, and Kt = K+

t −K−t , then for any ϕ ∈ DT ,
by integration by parts argument we obtain

Em
∫ T

0

ϕt(Wt)dK
n
t = −

∫ T

0

(uns , ∂sϕs)ds−
1

2

∫ T

0

(∇uns ,∇ϕs) ds.

Making n tend to infinity, we get, since u solves (42),

lim
n→+∞

Em
∫ T

0

ϕt(Wt)dK
n
t = Em

∫ T

0

ϕt(Wt)dKt .

But, since Y n and Zn converge in L2, we deduce that for all t, Kn
t converges in L2 to a limit which

necessarily is nothing but Kt as Kn and K belong to A2 P-a.s.
Finally coming back to equation (43) and making n tend to +∞, we conclude that (Y,Z,K+,K−)
satisfies the desired DRDBSDE.

4.6. Itô’s formula

In this section we will prove the Itô’s formula for the solution of DOSPDE. Let us also remark
that any solution of the nonlinear equation (1) may be viewed as the solution of a linear one, so
we only need to establish the Itô’s formula in the linear case i.e. for the solution of equation (19).

Theorem 6. Under assumptions (HD2) and (HO), let (u, ν+, ν−) be the solution of linear SPDE
with two obstacles (19) and Φ : R+ × R→ R be a function of class C1,2. We denote by Φ′ and Φ′′

the derivatives of Φ with respect to the space variables and by ∂Φ
∂t the partial derivative with respect

to time. We assume that there exists a constant C > 0, such that |Φ′′| ≤ C, |∂Φ
∂t | ≤ C(|x|2 ∨ 1),

and Φ′(t, 0) = 0 for all t ≥ 0. Then P− a.s. for any t ∈ [0, T ],

∫
Rd

Φ(t, ut(x))dx+
1

2

∫ T

t

∫
Rd

Φ′′(s, us(x)) |∇us(x)|2 dxds =

∫
Rd

Φ(T,Ψ(x))dx−
∫ T

t

∫
Rd

∂Φ

∂s
(s, us(x))dxds

+

∫ T

t

(Φ′(s, us), fs)ds−
d∑
i=1

∫ T

t

∫
Rd

Φ′′(s, us(x))∂ius(x)gi(x)dxds+

d1∑
j=1

∫ T

t

(Φ′(s, us), hj)
←−
dBjs

+
1

2

d1∑
j=1

∫ T

t

∫
Rd

Φ′′(s, us(x))(hj,s(x))2dxds+

∫ T

t

∫
Rd

Φ′(s, us(x))(ν+ − ν−)(ds, dx).

Proof. We begin with the penalization equation of the corresponding DRBDSDE:

Y nt = ξ +

∫ T

t

fs(Ws)ds− n
∫ T

t

(Y ns − Us)+ ds− 1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs(Ws) ·
←−
dBs

−
∑
i

∫ T

t

Zni,sdW
i
s +K+,n

T −K+,n
t .
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For (Y n, Zn,K+,n), we have the following Itô’s formula (see Lemma 9): ∀t ∈ [0, T ], P-a.s.,

Φ(t, Y nt ) = Φ(T, Y nT )−
∫ T

t

∂Φ

∂s
(s, Y ns )ds+

∫ T

t

Φ′(s, Y ns )fs(Ws)ds−
∫ T

t

Φ′(s, Y ns )n(Y ns − Us)+ds

− 1

2

∫ T

t

Φ′(s, Y ns )gs ∗ dWs +

∫ T

t

Φ′(s, Y ns )hs(Ws) ·
←−
dBs −

∫ T

t

Φ′(s, Y ns )Zns dWs +

∫ T

t

Φ′(s, Y ns )dK+,n
s

+
1

2

∫ T

t

Φ′′(s, Y ns ) |hs(Ws)|2 ds−
∫ T

t

Φ′′(s, Y ns )〈gs(Ws), Z
n
s 〉ds−

1

2

∫ T

t

Φ′′(s, Y ns )|Zns |2ds.

It is clear that all the terms in the above equality converge to the desired terms except those
involving the process Zn and the terms

∫ T
0

Φ′(s, Y ns )dK+,n
s and

∫ T
0

Φ′(s, Y ns )dK−,ns .
For each N ∈ N, thanks to Lemma 6, it is easy to verify that for example

∫ t∧τN
0

Φ′′(s, Y ns )|Zns |2ds
converges in L1 to

∫ t∧τN
0

Φ′′(s, Ys)|Zs|2ds, which implies the convergence almost sure by a diagonal
extraction procedure of

∫ t
0

Φ′′(s, Y ns )|Zns |2ds to
∫ t

0
Φ′′(s, Ys)|Zs|2ds for all t ∈ [0, T ].

Since ∣∣∣∣∣
∫ T

t

Φ′(s, Y ns )dK+,n
s −

∫ T

t

Φ′(s, Ys)dK
+
s

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

t

(
Φ′(s, Y ns )− Φ′(s, Ys)

)
dK+,n

s +

∫ T

t

Φ′(s, Ys)d (K+,n
s −K+

s )

∣∣∣∣∣ .
It is clear that∣∣∣∣∣

∫ T

t

(
Φ′(s, Y ns )− Φ′(s, Ys)

)
dK+,n

s

∣∣∣∣∣ ≤ C sup
s∈[t,T ]

∣∣Y ns − Ys∣∣K+,n
T → 0, as n→∞.

As K+,n tends to K+, we deduce that almost surely the sequence (dK+,n)n of measures on [0, T ]
converges weakly to dK+. Combing with the fact that the map s → Φ′(s, Ys) is continuous, then
we have ∫ T

t

Φ′(s, Ys)d (K+,n
s −K+

s )→ 0, as n→∞.

Similar arguments can be done for
∫ T

0
Φ′(s, Y ns )dK−,ns , or more precisely, for

∫ T
0

Φ′(s, Y
δ(n)
s )dK

−,δ(n)
s

where (δ(n))n is the subsequence in the proof of Lemma 6.
At last, using the relation between (u, ν+, ν−) and (Y,Z,K+,K−), we get the desired formula.

Remark 8. We also need the Itô’s formula for the difference between two DOSPDEs which is
fundamental to do the fixed point argument in the nonlinear case (see Subsection 4.7) and to get
the comparison theorem (see Theorem 7). The proof will be similar to that of Theorem 6. The only
difference is that we begin with the Itô’s formula for the difference between the penalized solutions
of two OSPDEs (see Theorem 6 in [6]). We postpone this in the appendix.

4.7. Proof of Theorem 4 in the nonlinear case

Let us consider the Picard sequence (Y n, Zn)n defined by (Y 0, Z0) = (0, 0) and for all n ∈ N we
denote by (Y n+1, Zn+1,K+,n+1,K−,n+1) the solution of the linear DRBSDE as in the previous
subsection

Y n+1
t = ξ +

∫ T

t

fs(Ws, Y
n
s , Z

n
s )ds− 1

2

∫ T

t

gs(Y
n
s , Z

n
s ) ∗ dWs +

∫ T

t

hs(Ws, Y
n
s , Z

n
s ) ·
←−
dBs

−
∫ T

t

Zn+1
s dWs +K+,n+1

T −K+,n+1
t −K−,n+1

T +K−,n+1
t

(44)
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with Lt ≤ Y n+1
t ≤ Ut, ∀ t ∈ [0, T ],

(
K+,n+1
t

)
t∈[0,T ]

and
(
K−,n+1
t

)
t∈[0,T ]

being increasing continu-
ous processes and ∫ T

0

(Y n+1
t − Lt)dK+,n+1

t =

∫ T

0

(Ut − Y n+1
t )dK−,n+1

t = 0.

From now on, we introduce positive constants µ and ε that we’ll fix precisely later.
Applying Itô’s formula to eµt(Y n+1

t − Y nt )2, we have almost surely, for all t ∈ [0, T ],

eµt|Y n+1
t − Y nt |2 +

∫ T

t

eµs|Zn+1
s − Zns |2ds+ µ

∫ T

t

eµs|Y n+1
s − Y ns |2ds

= 2

∫ T

t

eµs(Y n+1
s − Y ns )

[
fs(Y

n
s , Z

n
s )− fs(Y n−1

s , Zn−1
s )

]
ds

+ 2

∫ T

t

eµs(Y n+1
s − Y ns )d(K+,n+1

s −K+,n
s )− 2

∫ T

t

eµs(Y n+1
s − Y ns )d(K−,n+1

s −K−,ns )

− 2

∫ T

t

eµs〈Zn+1
s − Zns , gs(Y ns , Zns )− gs(Y n−1

s , Zn−1
s )〉ds

−
∫ T

t

eµs(Y n+1
s − Y ns )

[
gs(Y

n
s , Z

n
s )− g(Y n−1

s , Zn−1
s )

]
∗ dWs

− 2

∫ T

t

eµs(Y n+1
s − Y ns )(Zn+1

s − Zns )dWs +

∫ T

t

eµs|hs(Y ns , Zns )− hs(Y n−1
s , Zn−1

s )|2ds

+ 2

∫ T

t

eµs(Y n+1
s − Y ns )

[
hs(Y

n
s , Z

n
s )− hs(Y n−1

s , Zn−1
s )

]
·
←−
dBs .

(45)

Remarking the following relations:∫ T

t

eµs(Y n+1
s − Y ns )d(K+,n+1

s −K+,n
s )

=

∫ T

t

eµs(Y n+1
s − Ls)dK+,n+1

s −
∫ T

t

eµs(Y ns − Ls)dK+,n+1
s

−
∫ T

t

eµs(Y n+1
s − Ls)dK+,n

s +

∫ T

t

eµs(Y ns − Ls)dK+,n
s ≤ 0

and

−
∫ T

t

eµs(Y n+1
s − Y ns )d(K−,n+1

s −K−,ns )

=

∫ T

t

eµs(Y ns − Us)dK−,n+1
s +

∫ T

t

eµs(Us − Y n+1
s )dK−,n+1

s

−
∫ T

t

eµs(Y ns − Us)dK−,ns −
∫ T

t

eµs(Us − Y n+1
s )dK−,ns ≤ 0.

Let ε ≤ 1. The Lipschitz condition and Cauchy-Schwarz’s inequality yield

2(Y n+1
t − Y nt )

[
ft(Y

n
t , Z

n
t )− ft(Y n−1

t , Zn−1
t )

]
≤ 1

ε

∣∣Y n+1
t − Y nt

∣∣2 + ε
∣∣ft(Y nt , Znt )− ft(Y n−1

t , Zn−1
t )

∣∣2
≤ 1

ε

∣∣Y n+1
t − Y nt

∣∣2 + Cε
∣∣Y nt − Y n−1

t

∣∣2 + Cε
∣∣Znt − Zn−1

t

∣∣2
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and

2〈Zn+1
t − Znt , gt(Y nt , Znt )− gt(Y n−1

t , Zn−1
t )〉

≤ 2
∣∣Zn+1
t − Znt

∣∣ (C ∣∣Y nt − Y n−1
t

∣∣+ α
∣∣Znt − Zn−1

t

∣∣)
≤Cε

∣∣Zn+1
t − Znt

∣∣2 +
C

ε

∣∣Y nt − Y n−1
t

∣∣2 + α
∣∣Zn+1
t − Znt

∣∣2 + α
∣∣Znt − Zn−1

t

∣∣2 .
Moreover, ∣∣ht(Y nt , Znt )− ht(Y n−1

t , Zn−1
t )

∣∣2 ≤ (C|Y nt − Y n−1
t |+ β|Znt − Zn−1

t |)2

=C2|Y nt − Y n−1
t |2 + 2Cβ|Y nt − Y n−1

t ||Znt − Zn−1
t |+ β2|Znt − Zn−1

t |2

≤C2(1 +
1

ε
)|Y nt − Y n−1

t |2 + β2(1 + ε)|Znt − Zn−1
t |2.

Therefore,

2EEm
∫ T

t

eµs(Y n+1
s − Y ns )

[
fs(Y

n
s , Z

n
s )− fs(Y n−1

s , Zn−1
s )

]
ds

≤ 1

ε
EEm

∫ T

t

eµs|Y n+1
s − Y ns |2ds+ CεEEm

∫ T

t

eµs
[
|Y ns − Y n−1

s |2 + |Zns − Zn−1
s |2

]
ds

and

2EEm
∫ T

t

eµs〈Zn+1
s − Zns , gs(Y ns , Zns )− gs(Y n−1

s , Zn−1
s )〉ds

≤(Cε+ α)EEm
∫ T

t

eµs
∣∣Zn+1
s − Zns

∣∣2 ds+
C

ε
EEm

∫ T

t

eµs
∣∣Y ns − Y n−1

s

∣∣2 ds
+ αEEm

∫ T

t

eµs
∣∣Zns − Zn−1

s

∣∣2 ds.
Also, we get

EEm
∫ T

t

eµs|hs(Y ns , Zns )− hs(Y n−1
s , Zn−1

s ))|2ds

≤C2(1 +
1

ε
)EEm

∫ T

t

eµs|Y ns − Y n−1
s |2ds+ β2(1 + ε)EEm

∫ T

t

eµs|Zns − Zn−1
s |2ds.

We deduce that

(µ− 1

ε
)EEm

∫ T

t

eµs|Y n+1
s − Y ns |2ds+ (1− α− Cε)EEm

∫ T

t

eµs|Zn+1
s − Zns |2ds

≤C(C + 1)(1 +
1

ε
)EEm

∫ T

t

eµs|Y ns − Y n−1
s |2ds+ (Cε+ α+ β2(1 + ε))EEm

∫ T

t

eµs|Zns − Zn−1
s |2ds.

We take the norm

‖(Y, Z)‖2µ,δ := EEm
∫ T

0

eµs(δ |Yt|2 + |Zt|2)dt .

We can choose ε small enough and then µ such that

Cε+ α+ β2(1 + ε) < 1− α− Cε and
µ− 1/ε

1− α− Cε
=

C(C + 1)(1 + 1/ε)

Cε+ α+ β2(1 + ε)
.
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If we set δ = µ−1/ε
1−α−Cε and δ0 = Cε+α+β2(1+ε)

1−α−Cε ∈ (0, 1), we have the following inequality:∥∥(Y n+1 − Y n, Zn+1 − Zn)
∥∥2

µ,δ
≤ δ0

∥∥(Y n − Y n−1, Zn − Zn−1)
∥∥2

µ,δ

≤ ...

≤ δn0
∥∥(Y 1, Z1)

∥∥2

µ,δ
.

Since δn0 → 0 when n→∞, we conclude that (Y n, Zn) is a Cauchy sequence in the L2-space hence
converges to a couple (Y,Z) w.r.t the norm ‖ · ‖µ,δ.
Now, coming back to equality (45), similar calculations to the previous ones plus Burkholder-
Davies-Gundy’s inequality yield

EEm
[

sup
t∈[0,T ]

|Y n+1
t − Y nt |2

]
≤CEEm

[∫ T

0

|Y ns − Y n−1
s |2 + |Zns − Zn−1

s |2 ds

]

+ CEEm
(∫ T

0

|Y n+1
s − Y ns |2

∣∣gs(Y ns , Zns )− g(Y n−1
s , Zn−1

s )
∣∣2 ds)1/2


+ CEEm

(∫ T

0

|Y n+1
s − Y ns |2

∣∣hs(Y ns , Zns )− h(Y n−1
s , Zn−1

s )
∣∣2 ds)1/2


+ CEEm

(∫ T

0

|Y n+1
s − Y ns |2

∣∣Zn+1
s − Zns

∣∣2 ds)1/2


and then we remark that

EEm
(∫ T

0

|Y n+1
s − Y ns |2

∣∣gs(Y ns , Zns )− g(Y n−1
s , Zn−1

s )
∣∣2 ds)1/2


≤EEm

 sup
t∈[0,T ]

|Y n+1
t − Y nt |

(∫ T

0

∣∣gs(Y ns , Zns )− g(Y n−1
s , Zn−1

s )
∣∣2 ds)1/2


≤ ε′EEm

[
sup
t∈[0,T ]

|Y n+1
t − Y nt |2

]
+

1

4ε′
EEm

[∫ T

0

∣∣gs(Y ns , Zns )− g(Y n−1
s , Zn−1

s )
∣∣2 ds]

≤ ε′EEm
[

sup
t∈[0,T ]

|Y n+1
t − Y nt |2

]
+ CEEm

[∫ T

0

|Y ns − Y n−1
s |2 + |Zns − Zn−1

s |2 ds

]
,

where ε′ is arbitrary small. We do the same trick for the last two terms and finally obtain the
following estimate:

EEm
[

sup
t∈[0,T ]

|Y n+1
t − Y nt |2

]
≤C

∥∥(Y n − Y n−1, Zn − Zn−1)
∥∥2

µ,δ
+ C

∥∥(Y n+1 − Y n, Zn+1 − Zn)
∥∥2

µ,δ
≤ Cδn−1

0 .

So, by standard arguments, we obtain the following convergence:

lim
n→+∞

EEm
[

sup
t∈[0,T ]

|Y nt − Yt|2 +

∫ T

0

|Znt − Zt|2 dt

]
= 0,
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here again this ensures that we can choose for Y a time-continuous version.
It now remains to prove the convergences of K+,n and K−,n, to the end we recall the function ψ
introduced in Section 4.2 which "separates" the two obstacles and which is defined as a function
ψ ∈ C2 satisfying ψ(x) = x when x ∈ (−∞,−κ] and ψ(x) = 0 when x ∈ [−κ2 ,+∞). We have
almost surely for n,m ∈ N and ∀t ∈ [0, T ],

ψ(Y nt − Ỹt)− ψ(Y mt − Ỹt)

=

∫ T

t

ψ′(Y ns − Ỹs)dK+,n
s −

∫ T

t

ψ′(Y ms − Ỹs)dK+,m
s −

∫ T

t

ψ′(Y ns − Ỹs)dK−,ns

+

∫ T

t

ψ′(Y ms − Ỹs)dK−,ms −
∫ T

t

ψ′(Y ns − Ỹs)(Zns − Z̃s)dWs +

∫ T

t

ψ′(Y ms − Ỹs)(Zms − Z̃s)dWs

− 1

2

∫ T

t

ψ′′(Y ns − Ỹs)|Zns − Z̃s|2ds+
1

2

∫ T

t

ψ′′(Y ms − Ỹs)|Zms − Z̃s|2ds

+

∫ T

t

ψ′(Y ns − Ỹs)(fs(Y n−1
s , Zn−1

s )− f̃s)ds−
∫ T

t

ψ′(Y ms − Ỹs)(fs(Y m−1
s , Zm−1

s )− f̃s)ds

− 1

2

∫ T

t

ψ′(Y ns − Ỹs)(gs(Y n−1
s , Zn−1

s )− g̃s) ∗ dWs +
1

2

∫ T

t

ψ′(Y ms − Ỹs)(gs(Y m−1
s , Zm−1

s )− g̃s) ∗ dWs

+

∫ T

t

ψ′(Y ns − Ỹs)(hs(Y n−1
s , Zn−1

s )− h̃s) ·
←−
dBs −

∫ T

t

ψ′(Y ms − Ỹs)(hs(Y m−1
s , Zm−1

s )− h̃s) ·
←−
dBs

+
1

2

∫ T

t

ψ′′(Y ns − Ỹs)|hs(Y n−1
s , Zn−1

s )− h̃s|2ds−
1

2

∫ T

t

ψ′′(Y ms − Ỹs)|hs(Y m−1
s , Zm−1

s )− h̃s|2ds

−
∫ T

t

ψ′′(Y ns − Ỹs)〈gs(Y n−1
s , Zn−1

s )− g̃s, Zns − Z̃s〉ds+

∫ T

t

ψ′′(Y ms − Ỹs)〈gs(Y m−1
s , Zm−1

s )− g̃s, Zms − Z̃s〉ds.

Noting that by the strict separability condition (HO)-(iv) and the structure of ψ, we get

∫ T

t

ψ′(Y ns − Ỹs)dK+,n
s =

∫ T

t

ψ′(Ls − Ỹs)dK+,n
s = K+,n

T −K+,n
t ,∫ T

t

ψ′(Y ms − Ỹs)dK+,m
s =

∫ T

t

ψ′(Ls − Ỹs)dK+,m
s = K+,m

T −K+,m
t ,

and

∫ T

t

ψ′(Y ns − Ỹs)dK−,ns =

∫ T

t

ψ′(Us − Ỹs)dK−,ns = 0 ,∫ T

t

ψ′(Y ms − Ỹs)dK−,ms =

∫ T

t

ψ′(Us − Ỹs)dK−,ms = 0 .
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Therefore,

|K+,n
T −K+,n

t − (K+,m
T −K+,m

t )|

≤ |ψ(Y nt − Ỹt)− ψ(Y mt − Ỹt)|+

∣∣∣∣∣
∫ T

t

(
ψ′(Y ns − Ỹs)(Zns − Z̃s)− ψ′(Y ms − Ỹs)(Zms − Z̃s)

)
dWs

∣∣∣∣∣
+

1

2

∫ T

t

∣∣ψ′′(Y ns − Ỹs)|Zns − Z̃s|2 − ψ′′(Y ms − Ỹs)|Zms − Z̃s|2∣∣ds
+

∫ T

t

∣∣∣ψ′(Y ns − Ỹs)(fs(Y n−1
s , Zn−1

s )− f̃s)− ψ′(Y ms − Ỹs)(fs(Y m−1
s , Zm−1

s )− f̃s)
∣∣∣ ds

+
1

2

∣∣∣∣∣
∫ T

t

(
ψ′(Y ns − Ỹs)(gs(Y n−1

s , Zn−1
s )− g̃s)− ψ′(Y ms − Ỹs)(gs(Y m−1

s , Zm−1
s )− g̃s)

)
∗ dWs

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

t

(
ψ′(Y ns − Ỹs)(hs(Y n−1

s , Zn−1
s )− h̃s)− ψ′(Y ms − Ỹs)(hs(Y m−1

s , Zm−1
s )− h̃s)

)
·
←−
dBs

∣∣∣∣∣
+

1

2

∫ T

t

∣∣∣ψ′′(Y ns − Ỹs)|hs(Y n−1
s , Zn−1

s )− h̃s|2 − ψ′′(Y ms − Ỹs)|hs(Y m−1
s , Zm−1

s )− h̃s|2
∣∣∣ ds

+
1

2

∫ T

t

∣∣∣ψ′′(Y ns − Ỹs)〈gs(Y n−1
s , Zn−1

s )− g̃s, Zns − Z̃s〉 − ψ′′(Y ms − Ỹs)〈gs(Y m−1
s , Zm−1

s )− g̃s, Zms − Z̃s〉
∣∣∣ ds,

then, taking the supremum in t and the expectation, thanks to the Burkholder-Davies-Gundy
inequality, we obtain

EEm
[

sup
t∈[0,T ]

∣∣K+,n
T −K+,n

t − (K+,m
T −K+,m

t )
∣∣]

≤EEm
 sup
t∈[0,T ]

∣∣∣ψ(Y nt − Ỹt)− ψ(Y mt − Ỹt)
∣∣∣+

(∫ T

0

∣∣∣ψ′(Y ns − Ỹs)(Zns − Z̃s)− ψ′(Y ms − Z̃s)(Zms − Z̃s)∣∣∣2 ds
)1/2


+ EEm

[∫ T

0

∣∣∣ψ′′(Y ns − Ỹs)|Zns − Z̃s|2 − ψ′′(Y ms − Ỹs)|Zms − Z̃s|2∣∣∣ ds
]

+ EEm
[∫ T

0

∣∣∣ψ′(Y ns − Ỹs)(fs(Y n−1
s , Zn−1

s )− f̃s)− ψ′(Y ms − Ỹs)(fs(Y m−1
s , Zm−1

s )− f̃s)
∣∣∣ ds]

+ EEm
(∫ T

0

(
ψ′(Y ns − Ỹs)(gs(Y n−1

s , Zn−1
s )− g̃s)− ψ′(Y ms − Ỹs)(gs(Y m−1

s , Zm−1
s )− g̃s)

)2

ds

)1/2


+ EEm
(∫ T

0

∣∣ψ′(Y ns )hs(Y
n−1
s , Zn−1

s )− ψ′(Y ms )hs(Y
m−1
s , Zm−1

s )
∣∣2 ds)1/2


+ EEm

[∫ T

0

∣∣∣∣ψ′′(Y ns − Ỹs) ∣∣∣hs(Y n−1
s , Zn−1

s )− h̃s
∣∣∣2 − ψ′′(Y ms − Ỹs) ∣∣∣hs(Y m−1

s , Zm−1
s )− h̃s

∣∣∣2∣∣∣∣ ds
]

+ EEm
[∫ T

0

∣∣∣ψ′′(Y ns − Ỹs)〈gs(Y n−1
s , Zn−1

s )− g̃s, Zns − Z̃s
〉
− ψ′′(Y ms − Ỹs)

〈
gs(Y

m−1
s , Zm−1

s )− g̃s, Zms − Z̃s
〉∣∣∣ ds] .

By extracting a subsequence if necessary, we can assume that supt∈[0,T ] |Y nt −Yt| tends to 0 almost-
everywhere, this ensures that all the terms on the right hand side of the previous inequality tend
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to 0 as n,m→ +∞. To see it, let us study the second term:

EEm
[∫ T

0

∣∣∣ψ′′(Y ns − Ỹs)|Zns − Z̃s|2 − ψ′′(Ys − Ỹs)|Zs − Z̃s|2∣∣∣ ds
]

≤ EEm
[∫ T

0

∣∣∣ψ′′(Y ns − Ỹs)∣∣∣ ∣∣∣|Zns − Z̃s|2 − |Zs − Z̃s|2∣∣∣ ds
]

+ EEm
[∫ T

0

∣∣∣ψ′′(Ys − Ỹs)− ψ′′(Y ns − Ỹs)∣∣∣ ∣∣∣Zs − Z̃s∣∣∣2 ds
]
.

The first term of the right member tends to 0 since ψ′′ is bounded and the second by use of the
dominated convergence theorem. Repeating these kinds of arguments, we get that, for a subse-
quence, K+,n converges uniformly on t in L1 to an increasing continuous process K+. In the same
way we have the convergence of K−,n to an increasing continuous process K−.
The fact that K+ and K− satisfy the minimal Skohorod condition can be proven as in the proof of
Lemma 6. Now passing to the limit in (44) for a well-chosen subsequence we get that (Y,Z,K+,K−)
solves the DRBSDE

Yt = ξ +

∫ T

t

fs(Ws, Ys, Zs)ds−
1

2

∫ T

t

gs(Ys, Zs) ∗ dWs +

∫ T

t

hs(Ws, Ys, Zs) ·
←−
dBs

−
∫ T

t

ZsdWs +K+
T −K

+
t −K−T +K−t .

We end this proof by establishing that this solution may be viewed as the solution of a linear
DRBSDE, so that all the results of the previous section apply. More precisely, let (Ȳ , Z̄, K̄+, K̄−)
be a solution of the linear DRBSDE (with same obstacles U and L):

Ȳt = ξ +

∫ T

t

fs(Ws, Ys, Zs)ds−
1

2

∫ T

t

gs(Ys, Zs) ∗ dWs +

∫ T

t

hs(Ws, Ys, Zs) ·
←−
dBs

−
∫ T

t

Z̄sdWs + K̄+
T − K̄

+
t − K̄−T + K̄−t .

Then, Yt − Ȳt = −
∫ T
t

(Zs − Z̄s)dWs + (K+
T − K̄

+
T ) − (K+

t − K̄+
t ) − (K−T − K̄

−
T ) + (K−t − K̄−t )

hence is a Gt-semi-martingale. Now applying the Itô-Tanaka formula to ((Yt − Ȳt)+)2, we obtain
by similar arguments to those used in the proof of Theorem 1.3 in [9] that Y = Ȳ , hence as a
consequence of Doob-Meyer’s theorem, Z = Z̄ and K+ − K− = K̄+ − K̄−. Applying one more
time Itô’s formula to ψ(Yt − Ỹt) = ψ(Ȳt − Ỹt), we immediately get K+ = K̄+ and K− = K̄−.
�

Then we can do a similar argument as in the proof of Theorem 4 in the linear case to get the result
on u. Precisely, the above proof provides that the Picard sequence (Y n, Zn) is a Cauchy sequence,
then using the relation between (un,∇un) and (Y n, Zn), we obtain that the corresponding Picard
sequence un is a Cauchy sequence in HT and hence has a limit u in this space.

4.8. Comparison theorem

We can also establish the comparison theorem for the solution of our two-obstacle problem.

Theorem 7. Let Ψ2, f2, v2, v2 be similar to Ψ1, f1, v1, v1 and let
(
u1, ν1,+, ν1,−) be the solution of

the two-obstacle problem corresponding to
(
Ψ1, f1, g, h, v1, v1

)
and

(
u2, ν2,+, ν2,−) be the solution

corresponding to
(
Ψ2, f2, g, h, v2, v2

)
. Assume that the following conditions hold
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(i) Ψ1 ≤ Ψ2, dx⊗ dP -a.e.,

(ii) f1
(
u1,∇u1

)
≤ f2

(
u1,∇u1

)
, dtdx⊗ P -a.e.,

(iii) v1 ≤ v2 and v1 ≤ v2, dtdx⊗ P -a.e..

Then one has u1 ≤ u2, dtdx⊗ P−a.e..

Proof. We put û = u1−u2, Ψ̂ = Ψ1−Ψ2, f̂t = f1(t, u1
t ,∇u1

t )−f2(t, u2
t ,∇u2

t ), ĝt = g(t, u1
t ,∇u1

t )−
g(t, u2

t ,∇u2
t ) and ĥt = h(t, u1

t ,∇ut)− h(t, u2
t ,∇u2

t ).
One starts with the following version of Itô’s formula (see Lemma 9 and Remark 9), written with
some quasicontinuous versions ũ1, ũ2 of the solutions u1, u2 in the terms involving the regular
measures ν1,+, ν1,−, ν2,+, ν2,−,

E
∥∥û+

t

∥∥2
+ E

∫ T

t

∥∥∇û+
s

∥∥2
ds = E

∥∥Ψ̂+
∥∥2 − 2E

∫ T

t

(
û+
s , f̂s

)
ds+ 2E

∫ T

t

(
∇û+

s , ĝs
)
ds

+ E
∫ T

t

∥∥1I{ûs>0}
∣∣ĥs∣∣∥∥2

ds+ 2E
∫ T

t

∫
Rd

û+
s (x)

(
ν1,+ − ν2,+

)
(ds, dx)

− 2E
∫ T

t

∫
Rd

û+
s (x)

(
ν1,− − ν2,−) (ds, dx) .

Remark that on {u1 ≤ u2}, (u1 − u2)+ = 0 and on {u1 > u2}, ν1,+(ds, dx) = 0, then

2E
∫ T

t

∫
Rd

û+
s (x)

(
ν1,+ − ν2,+

)
(ds, dx) ≤ 0.

Similarly, on {u1 ≤ u2}, (u1 − u2)+ = 0 and on {u1 > u2}, ν2,−(ds, dx) = 0, then

2E
∫ T

t

∫
Rd

û+
s (x)

(
ν1,− − ν2,−) (ds, dx) ≥ 0.

And then one concludes the proof by Gronwall’s lemma.

5. Appendix

The aim of this Appendix is to prove the Itô’s formula in the one-obstacle case. To this end, we are
given ξ ∈ L2(Rd) and predictable (linear) coefficients f = f0, g = g0, h = h0 satisfying Assumption
(HD2).

Lemma 9. Let Φ be the function satisfying the conditions in Theorem 6 and (Y,Z,K) be the
solution of the lower obstacle problem for BDSDE:

Yt = ξ +

∫ T

t

fsds−
1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs ·
←−
dBs −

∫ T

t

ZsdWs +KT −Kt ,

Yt ≥ Lt ,∫ T

0

(Yt − Lt)dKt = 0 .

(46)

Then, the following Itô’s formula holds almost surely, for any t ∈ [0, T ],

Φ(t, Yt) = Φ(T, YT )−
∫ T

t

∂Φ

∂s
(s, Ys)ds+

∫ T

t

Φ′(s, Ys)fsds−
1

2

∫ T

t

Φ′(s, Ys)gs ∗ dWs

+

∫ T

t

Φ′(s, Ys)hs ·
←−
dBs −

∫ T

t

Φ′(s, Ys)ZsdWs +
1

2

∫ T

t

Φ′′(s, Ys)|hs|2ds

−
∫ T

t

Φ′′(s, Ys)〈gs, Zs〉ds−
1

2

∫ T

t

Φ′′(s, Ys)|Zs|2ds+

∫ T

t

Φ′(s, Ys)dKs .



33

Proof. We consider the following penalization equation

Y nt = ξ +

∫ T

t

fsds−
1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs ·
←−
dBs −

∫ T

t

Zni,sdW
i
s +

∫ T

t

n(Y ns − Ls)−ds. (47)

Using the same arguments as in the proof of Lemma 4.3 in [18] and the Itô formula for doubly
stochastic Itô processes, see Lemma 1.3 in [15], we get that, for all t ∈ [0, T ], almost surely,

Φ(t, Y nt ) = Φ(T, Y nT )−
∫ T

t

∂Φ

∂s
(s, Y ns )ds+

∫ T

t

Φ′(s, Y ns )fsds−
1

2

∫ T

t

Φ′(s, Y ns )gs ∗ dWs

+

∫ T

t

Φ′(s, Y ns )hs ·
←−
dBs −

∫ T

t

Φ′(s, Y ns )Zns dWs +
1

2

∫ T

t

Φ′′(s, Y ns )|hs|2ds

−
∫ T

t

Φ′′(s, Y ns )〈gs, Zns 〉ds−
1

2

∫ T

t

Φ′′(s, Y ns )|Zns |2ds+

∫ T

t

Φ′(s, Y ns )n(Y ns − Ls)−ds.

From [14], we know that the triple (Y n, Zn,Kn) strongly converges to (Y,Z,K) which is the
solution of the lower obstacle problem for SPDE (1). Hence, all the terms in the above equality
converge. We get the desired formula by taking limits.

Lemma 10. (Comparison theorem for the linear reflected BDSDEs) Let ξ ∈ L2(Rd) and pre-
dictable coefficients f , g, h satisfying Assumption (HD2). Let (Y, Z,K) be the solution of the
reflected BDSDEs (46). Let ξ′ ∈ L2(Rd) and f ′ another predictable coefficient satisfying (HD2).
Let (Y ′, Z ′,K ′) be the solution of the reflected BDSDEs with coefficients f ′, g, h, terminal value
ξ′ and same lower obstacle L. If

1. ξ ≤ ξ′, P− a.s.,

2. f ≤ f ′, dt⊗ P− a.e..

Then we have P-almost surely, Yt ≤ Y ′t for all t ∈ [0, T ] and dKt ≥ dK ′t.

Proof. We consider the following two penalized equations:

Y nt = ξ+

∫ T

t

fs(Ws)ds−
1

2

∫ T

t

gs∗dWs+

∫ T

t

hs(Ws) ·
←−
dBs−

∑
i

∫ T

t

Zni,sdW
i
s−n

∫ T

t

(Y ns −Ls)−ds,

Y
′n
t = ξ′+

∫ T

t

f ′s(Ws)ds−
1

2

∫ T

t

gs∗dWs+

∫ T

t

hs(Ws)·
←−
dBs−

∑
i

∫ T

t

Z
′n
i,sdW

i
s−n

∫ T

t

(Y
′n
s −Ls)−ds.

We denote
Ft(Y

n
t ) = ft − n(Y nt − Lt)− and F ′t (Y

n
t ) = f ′t − n(Y nt − Lt)−,

due to assumption 2, we have that Ft(Y nt ) ≤ F ′t (Y nt ), dt⊗P−a.e.. Therefore, applying Itô’s formula
to
(
(Y nt −Y

′n
t )+

)2 and standard arguments as the comparison theorem for BSDEs (non-reflected),
we get that ∀t ∈ [0, T ], Y nt ≤ Y

′n
t , P− a.s., thus n(Y nt − Lt)− ≥ n(Y

′n
t − Lt)−, which implies by

passing to the limit that dKt ≥ dK ′t for any t ∈ [0, T ].

Next we prove the Itô’s formula for the difference between the solutions of two DOSPDEs.
We still consider (u, ν+, ν−) the solution of linear equation as in Subsection 4.2du(t, x) +

1

2
∆u(t, x)dt+ f(t, x)dt+ divg(t, x)dt+ h(t, x) ·

←−
dBt + ν+(dt, x)− ν−(dt, x) = 0,

v(t, x) ≤ u(t, x) ≤ v(t, x),

and consider another linear equation with adapted coefficients f̄ , ḡ, h̄ respectively in L2(Ω× [0, T ]×
Rd;R), L2(Ω × [0, T ] × Rd;Rd) and L2(Ω × [0, T ] × Rd;Rd1) and the obstacles o and o satisfying
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Assumption (HO). We denote by (y, ν̄+, ν̄−) the unique solution to the associated DOSPDE with
terminal condition yT = uT = Ψ:dy(t, x) +

1

2
∆y(t, x)dt+ f̄(t, x)dt+ divḡ(t, x)dt+ h̄(t, x) ·

←−
dBt + ν̄+(dt, x)− ν̄−(dt, x) = 0,

o(t, x) ≤ y(t, x) ≤ o(t, x).

Lemma 11. Let Φ as in Theorem 6, then the difference of the two solutions satisfy the following
Itô’s formula: ∀t ∈ [0, T ], P−a.s.,∫

Rd

Φ(t, ut(x)− yt(x))dx+
1

2

∫ T

t

Φ′′(s, us − ys)|∇(us − ys)|2ds = −
∫ T

t

∫
Rd

∂Φ

∂s
(s, us − ys)dxds

+

∫ T

t

(Φ′(s, us − ys), fs − f̄s)ds−
d∑
i=1

∫ T

t

∫
Rd

Φ′′(s, us − ys)∂i(us − ys)(gis − ḡis)dxds

+

d1∑
j=1

∫ T

t

(Φ′(s, us − ys), hjs − h̄js)
←−
dBjs +

1

2

d1∑
j=1

∫ T

t

∫
Rd

Φ′′(s, us − ys)(hjs − h̄js)2dxds

+

∫ T

t

∫
Rd

Φ′(s, ũs − ỹs)(ν+ − ν̄+)(ds, dx)−
∫ T

t

∫
Rd

Φ′(s, ũs − ỹs)(ν− − ν̄−)(ds, dx).

(48)

Proof. We begin with the penalization equations of the corresponding DRBDSDEs, with obvious
notations:

Y nt = ξ +

∫ T

t

fs(Ws)ds− n
∫ T

t

(Y ns − Us)+ds− 1

2

∫ T

t

gs ∗ dWs +

∫ T

t

hs(Ws) ·
←−
dBs

−
∑
i

∫ T

t

Zni,sdW
i
s +K+,n

T −K+,n
t

and

Ȳ nt = ξ +

∫ T

t

f̄s(Ws)ds− n
∫ T

t

(Ȳ ns − Ūs)+ds− 1

2

∫ T

t

ḡs ∗ dWs +

∫ T

t

h̄s(Ws) ·
←−
dBs

−
∑
i

∫ T

t

Z̄ni,sdW
i
s + K̄+,n

T − K̄+,n
t ,

where Ȳt = y(t,Wt), Z̄t = ∇y(t,Wt) and Ūt = o(t,Wt).
Applying Itô’s formula to Φ(Y n − Ȳ n), for any t ∈ [0, T ], we have almost surely,

Φ(t, Y nt − Ȳ nt ) = −
∫ T

t

∂Φ

∂s
(s, Y ns − Ȳ ns )ds−

∫ T

t

Φ′(s, Y ns − Ȳ ns )(n(Y ns − Us)+ − n(Ȳ ns − Ūs)+)ds

+

∫ T

t

Φ′(s, Y ns − Ȳ ns )(fs(Ws)− f̄s(Ws))ds−
1

2

∫ T

t

Φ′(s, Y ns − Ȳ ns )(gs(Ws)− ḡs(Ws)) ∗ dWs

+

∫ T

t

Φ′(s, Y ns − Ȳ ns )(hs(Ws)− h̄s(Ws)) ·
←−
dBs −

∫ T

t

Φ′(s, Y ns − Ȳ ns )(Zns − Z̄ns )dWs

+

∫ T

t

Φ′(s, Y ns − Ȳ ns )d(K+,n
s − K̄+,n

s ) +
1

2

∫ T

t

Φ′′(s, Y ns − Ȳ ns )|hs(Ws)− h̄s(Ws)|2ds

− 1

2

∫ T

t

Φ′′(s, Y ns − Ȳ ns )〈gs(Ws)− ḡs(Ws), Z
n
s − Z̄ns 〉ds−

1

2

∫ T

t

Φ′′(s, Y ns − Ȳ ns )|Zns − Z̄ns |2ds.
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Noting the following relation∣∣∣∣∣
∫ T

t

Φ′(s, Y ns − Ȳ ns )d(K+,n
s − K̄+,n

s )−
∫ T

t

Φ′(s, Ys − Ȳs)d(K+
s − K̄+

s )

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

t

Φ(s, Y ns − Ȳ ns )dK+,n
s −

∫ T

t

Φ′(s, Ys − Ȳs)dK+
s

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

t

Φ(s, Y ns − Ȳ ns )dK̄+,n
s −

∫ T

t

Φ′(s, Ys − Ȳs)dK̄+
s

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

t

(Φ(s, Y ns − Ȳ ns )− Φ′(s, Ys − Ȳs))dK+,n
s +

∫ T

t

Φ′(s, Ys − Ȳs)d(K+,n
s −K+

s )

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

t

(Φ(s, Y ns − Ȳ ns )− Φ′(s, Ys − Ȳs))dK̄+,n
s +

∫ T

t

Φ′(s, Ys − Ȳs)d(K̄+,n
s − K̄+

s )

∣∣∣∣∣ .
Then we can do a similar argument as in the proof of Theorem 6. Finally, due to the relation between
(u, ν+, ν−), (y, ν̄+, ν̄−) and (Y,Z,K+,K−), (Ȳ , Z̄, K̄+, K̄−), we get the desired result.

Remark 9. In the last two lemmas, we have proved an Itô formula for a function Φ twice differ-
entiable in space. Standard arguments based on an approximation of the function x −→ (x+)2, see
for example the proof of Lemma 7 in [6], permit to show that formulas of Lemma 9 and Lemma
11 still hold with Φ(x) = (x+)2 and in that case Φ′(x) = 2x+ and Φ′′(x) = 21{x>0}.
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