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Abstract 

Heart failure (HF) is a worldwide major cause of mortality and morbidity for which many predictive 

scores have been defined. Selecting which explanatory variables to include in a given score is a 

common difficulty, as a balance must be found between statistical fit and practical application. This 

article presents a methodology for constructing parsimonious event scores combining a stepwise 

selection of variables with ensemble scores obtained by aggregation of several scores, using several 

classifiers, bootstrap samples and various modalities of random selection of variables. The stepwise 

selection allows constructing a succession of scores, with the practitioner able to choose which score 

best fits his needs. The methods proposed herein can be reproduced on any set of variables as long as 

the training dataset comprises a sufficient number of cases. 

Three methods were compared in an application to construct parsimonious short-term scores in 

chronic HF patients, two involving a backward selection of the variables based on their coefficients in 

an ensemble score and the third involving a forward selection of the variables maximizing the AUC. 

The working sample consisted of 11,411 (patient, visit) couples from the GISSI-HF database, with 5,595 

events (duplicated in order to balance the sample) and 5,816 non-events. Sixty-two candidate 

explanatory variables were studied. The outcome was the composite endpoint of death or 

hospitalization for worsening HF within 180 days of a visit. The three methods yielded a selection of 

50, 59 and 26 variables, respectively. For a given number of selected variables, most were common to 

the three methods. Focusing on the fastest method, four scores were constructed, yielding out-of-bag 

AUCs ranging from 0.81 (26 variables) to 0.76 (2 variables). These results are slightly better than those 

obtained by other scores reported in the literature using a similar number of variables. 

1. Introduction  

Heart failure (HF) is a global and major cause of mortality and morbidity. This disease carries a burden 

both on the patients themselves, who suffer from a lower quality of life and reduced life expectancy, 
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as well as for the healthcare systems, particularly due to hospitalization costs [1,2]. Successfully 

predicting the course of the disease could therefore help alleviate this burden. 

The association between HF outcomes (death, hospitalization, device implantation, transplantation, 

etc.) and a large number of variables (whether demographic, clinical, biochemical, biomarkers, etc.) 

has been widely highlighted in the literature. A common approach to usefully synthesize the 

information provided by this large number of predictor variables is to create a risk score aimed at 

predicting the probability of adverse events. Many predicting scores and models have already been 

published: in a recent literature review, Di Tanna et al. [3] identified 58 risk-prediction models for HF 

in 40 articles published between 2013 and 2018. A much larger number of these models have 

furthermore been published over the last three decades [4–7].  

Scores are mainly constructed using “classic” statistical methods. Among the 40 recent articles studied, 

Di Tanna et al. [3] counted 11 studies using logistic regressions (mostly binary and multivariate) and 22 

using Cox regressions (mostly multivariate and stepwise). Scores using other methods, such as machine 

learning methods, are rarer although increasingly proposed nowadays [8–10]. In the study of Duarte 

et al. [11], the authors proposed a methodology for constructing a short-term event risk score in HF 

patients based on the use of an ensemble method involving two classification rules (logistic regression 

and linear discriminant analysis), bootstrap samples as well as introducing random selections of 

variables in the construction of predictors. The principle of an ensemble method is to build a collection 

of predictors and thereafter aggregate the predictions [12], a well-known example being the random 

forests method [13]. An ensemble predictor is expected to be better than each of the individual 

predictors, provided that (i) each single predictor is relatively good and (ii) single predictors are 

sufficiently different from each other [14]. Other studies have used various forms of ensemble 

methods without designating the latter as such, for example by constructing multiple imputed 

datasets, drawing bootstrap samples on each of these datasets, and subsequently building models on 

each sample prior to their aggregation [15–17]. 
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A common difficulty in the construction of prognostic scores is to choose which variables to include in 

the model. Indeed, the more variables are contained in a model, the more complicated its use in clinical 

practice. Therefore, a balance must be found between increasing the number of variables to allow for 

a better statistical fit and keeping this number sufficiently small to facilitate practical application. With 

the increased number of potential predictors (through the use of "big data" from both electronic 

medical records and the increasing number of available biomarkers), the need for the statistical 

selection of variables also increases, particularly if the goal is to continue building parsimonious and 

effective models. Variables can be selected using a literature review in order to assess which variables 

are the most clinically relevant [18,19]. This often constitutes a preliminary step before using various 

methods of statistical selection. Among the statistical methods, a simple method is to retain only the 

significant variables derived from univariate analyses [20–22] or from a full multivariate model [23,24]. 

Slightly more elaborate methods such as stepwise selection can also be used [15,25]. Finally, certain 

studies select variables with more complex methods, using bootstrapping [17], random forests and 

decision trees [10,26] or other selection methods [27]. Since the primary goal in the present study is 

to construct a score using an already-defined ensemble method, most of the above selection methods 

are not easily applicable in this setting. For example, the likelihood ratio test based on a probabilistic 

model can be used to achieve a stepwise selection for a given classifier such as logistic regression but 

not directly for an ensemble method. Other selection criteria must hence be defined. 

Given this context, this article presents a methodology for constructing parsimonious event scores 

combining a stepwise preselection of variables and the use of ensemble scores. In particular, we define 

herein three methods, two of which involve a backward selection based on the variables’ coefficients 

in an ensemble score, and the third involving the combination of a forward selection using the area 

under the ROC curve (AUC) as criterion and an ensemble score. Due to the stepwise selection, a 

succession of scores is constructed which allows the user to choose which of the latter yield the best 

balance between performance and the number of variables. As a concrete illustration, these three 
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methods of construction of parsimonious scores are compared according to AUC and processing time 

in an application aimed at constructing short-term scores in chronic heart failure (CHF) patients. 

2. Methods 

2.1. First exclusion of variables 

Univariate tests (Wilcoxon test for continuous variables and Fisher’s exact test for categorical 

variables) were first used to test the association between the response variable and each explanatory 

variable. Variables with a p-value greater than 0.2 were excluded. 

2.2. Construction of an ensemble score 

The methodology detailed in Duarte et al. [11] was adapted to construct the scores. Basically, it used 

an ensemble method, where several models were built using various classification methods, different 

samples and different variable selections, and were subsequently aggregated in a unique score by 

averaging. This method can be described in seven phases (with specific choices summarized in Figure 

1), as follows: 

1. n1 classifiers are chosen. Two classifiers, linear discriminant analysis (LDA), which is equivalent 

to linear regression on binary outcomes, and logistic regression (LR) were chosen. 

2. n2 bootstrap samples are drawn from the working sample. Each bootstrap sample is used n1 

times (each sample is used by each classifier). In the present instance, n2 = 1000. 

3. n3 modalities of selection of variables are chosen, “modality” representing a means to select 

the variables. In the present instance, n3 = 2: namely, one modality to randomly draw a defined 

number of variables, the other to randomly draw a defined number of groups of related 

variables (correlated or linked by construction) and, for each selected group, randomly draw 

one variable. The groups of related variables used in the application are shown Table 1. 

4. n1n2n3 models are built, each using a different combination of classifiers, bootstrap samples 

and modalities of selection of variables. 
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5. A first aggregation by classifiers is performed. The coefficients of the models are averaged to 

yield n1 intermediate scores. In the present instance, one score was constructed for linear 

discriminant analysis (SLDA) and the other for logistic regression SLR. 

6. The coefficients of the intermediate scores are normalized such that the scores themselves are 

between 0 and 100, using the same method as in Duarte et al. ([11], Subsection 4.4.2). The 

two normalized scores were denoted 𝑆�̅�𝐷𝐴 and 𝑆�̅�𝑅. 

7. The final score is constructed by taking an affine combination of the intermediate scores. In 

the present instance, 𝑆̅ = 𝜆 𝑆�̅�𝐷𝐴 + (1 −  𝜆)𝑆�̅�𝑅 (0 ≤ 𝜆 ≤ 1); the optimal value of λ was 

determined by testing values from 0 to 1 using incremental 0.01 steps and selecting the value 

maximizing the out-of-bag AUC (see below). 

Figure 1. Methodology of construction of the ensemble score 

Compared to the methodology presented in Duarte et al. [11], a balanced sample was used, and the 

normalization of the coefficients was carried out before rather than after the final aggregation. The 

latter change was made to balance the intermediate scores in the event that their raw coefficients 

would have different orders of magnitude. 

2.3. Preselection of variables and construction of 

parsimonious scores 

As the number of explanatory variables after the first exclusion of variables still remained too large to 

create a parsimonious score, a second phase was added in order to preselect a fewer number of 

variables. Three different methods with an additional preselection were proposed and their results 

compared.  

2.3.1.  Method 1 

Preselection of variables: For LDA and for LR, a stepwise preselection using the Akaike Information 

Criterion (AIC) was performed on the working sample, without bootstrapping. Thus, two sets of 
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preselected variables were created. The union of these two sets was used as initial preselection. Let 𝑠 

be the number of preselected variables. 

Note that herein, the AIC can be used as criterion since both LDA and LR are probabilistic models. With 

non-probabilistic classification rules, AIC could not be used. However, in general, any preselection 

method could be used in this phase.  

Construction of scores: For i = 1, 2, …, s: at step i: an ensemble score was constructed from j = s – i + 1 

variables (i.e., for i = 1, j = s ; for i = s, j = 1), using two classifiers (LDA and LR), 1000 bootstrap samples, 

two modalities of selection of variables (all variables or all groups of related variables). The variable 

with the lowest normalized and standardized coefficient in absolute value in this score was excluded 

for the step i + 1 (backward selection). 

This allowed determining the evolution of the AUC OOB according to the number of selected variables, 

as well as the order of removal of the variables. Parsimonious scores with few variables can be chosen 

among this sequence of s scores. 

2.3.2.  Method 2 

Preselection of variables: No initial preselection of variables was performed; all of the 64 explanatory 

variables were included. 

Construction of scores: For i = 1, 2, …, 64: at step i: an ensemble score was constructed from j = 64 – i 

+ 1 variables (i.e., for i = 1, j = 64 ; for i = 64, j = 1), using two classifiers (LDA and LR), 1000 bootstrap 

samples and two modalities of selection of variables (a random selection of 75% of the variables or of 

75% of the groups of related variables). The variable with the lowest normalized and standardized 

coefficient in absolute value in this score was excluded for the step i + 1. 

Again, this process allowed determining the evolution of the AUC OOB according to the number of 

selected variables, as well as the order of removal of the variables, and parsimonious scores with few 

variables can be chosen among this sequence of 64 scores. 
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2.3.3. Method 3 

Preselection of variables: A forward preselection using AUC as criterion was performed using LR. Let t 

denote a stopping time. For i = 1, 2, …, t, at step i: i – 1 variables denoted V1, …, Vi-1 were available from 

step i - 1; for every set of variables V1, …, Vi-1, Vj with j ≠ 1, …, i - 1, a logistic regression was performed 

on the entire sample without bootstrap; the variable, denoted Vi, yielding the maximal AUC in 

resubstitution was included for the step i + 1, provided that the AUC significantly increased using 

DeLong’s test; otherwise, the inclusion of variables was stopped (t = i).  

Note that, contrary to the preselection phase of Method 1 with AIC, there is no need in this instance 

for a probabilistic model. Indeed, the AUC can be computed as long as there is a prediction for each 

statistical unit, without assumption on the manner with which this prediction was obtained. 

Construction of intermediate scores: For each classifier, intermediate scores using only the preselected 

variables, with the transformations corresponding to the classifier (see Subsection 3.2.4), were 

constructed, using 1000 bootstrap samples (the same for both classifiers) and two modalities of 

selection of variables (all variables or all groups of related variables).  

Construction of final scores: The two intermediate scores using the same number of preselected 

variables were aggregated in a final score by averaging their prediction for each statistical unit.  

Other methods were tested although not shown here. Their descriptions and results are available as 

Supplementary Material (Part A). 

2.4. Comparison criteria between the methods  

The area under the ROC curve (AUC) for the out-of-bag (OOB) estimations was used as internal 

validation and as the main criterion to compare the different scores. The OOB AUC was computed as 

follows: for a given statistical unit, the scores obtained from bootstrap samples that did not include 

this statistical unit were aggregated to obtain an OOB prediction. By applying this method for all 

statistical units, OOB predictions for the entire sample were used to compute the AUC OOB. Three AUC 
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OOB were studied: the AUC OOB for the intermediate linear score, the AUC OOB for the intermediate 

logistic score and, mainly, the AUC OOB for the global score. 

Sensitivity (Se) and specificity (Sp) corresponding to the highest Youden index (Se + Sp - 1), as well as 

the number of selected variables and processing time, were also taken into account. 

3. Application for short-term predictions in chronic heart 

failure patients 

3.1. Description of the original data 

The data used in this study are derived from the GISSI-HF trial: a multicenter, randomized, double-

blind, placebo-controlled trial designed to assess the effect of n-3 polyunsaturated fatty acids in 

patients with CHF. The detailed protocol and main results of this trial have already been described 

elsewhere [28,29]. 

Eligible patients were adult men and women with clinical evidence of HF of any cause, with a New York 

Heart Association (NYHA) class II–IV, and having had a left ventricular ejection fraction (LVEF) 

measured within 3 months prior to enrolment. Patients with a LVEF greater than 40% had to have been 

admitted at least once to hospital for HF in the preceding year to meet the inclusion criteria. In addition 

to contraindications linked to the studied treatment, exclusion criteria included acute coronary 

syndrome or revascularization procedure within the preceding 1 month; and planned cardiac surgery 

expected to be performed within 3 months after randomization.  

After randomization and the baseline visit, patients underwent scheduled visits at 1, 3, 6, 12 months 

and every 6 months thereafter until the end of the trial. Data collected at baseline included patient 

description, medical history, etiology of HF, LVEF measurements, electrocardiogram data, clinical and 

cardiovascular examination, blood chemistry tests, pharmacological treatments and dietary habits. 

During the follow-up visits, collected data consisted of patient description, clinical and cardiovascular 
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examination, LVEF measurement, electrocardiogram data, blood chemistry tests (only at 1, 3, 6, 12, 

24, 36 and 48 months), pharmacological treatment (including the study treatment) and dietary habits. 

Events of interest were also recorded. The entire GISSI-HF trial included 7046 eligible and randomized 

patients, with the final sample analyzed in [29] and comprised of 6975 patients. 

The present study used a subsample of the GISSI-HF data containing 1231 patients with N-terminal 

prohormone brain natriuretic peptide (NT-proBNP) measurements. The dataset included baseline and 

follow-up visits for these patients, as well as their associated health events.  

3.2. Data management 

3.2.1.  Statistical unit: (patient, visit) couples 

(Patient, visit) couples were used herein as statistical units, i.e. each observation was associated to a 

patient for a given visit. We assumed that the short-term future of a patient was only dependent on 

the most recent measurements. Thus, the links between several couples pertaining to the same patient 

were not taken into account, as in [11,30]. This yielded an initial sample of 12,882 (patient, visit) 

couples. 

3.2.2.  Variable pre-processing 

Several variables were derived from the available data, either for the follow-up visits (when values 

were available at baseline but not for the follow-up) or for all visits: mean blood pressure (BP) 

(1/3*systolic BP + 2/3*diastolic BP); estimated plasma volume (ePVS) ((100-hematocrit)/hemoglobin 

as defined in [31]); estimated glomerular filtration rate (eGFR) (using the MDRD formula [32]); age and 

body mass index (BMI). Binary variables for the therapeutic classes of drugs were also derived from 

detailed information pertaining to pharmacological treatments in order to indicate the consumption 

of ACE-inhibitors, beta-blockers, calcium antagonists or diuretics. 

Categorical variables were recoded as binary dummy variables. In particular, in the case of ordinal 

variables (i.e. NYHA class and peripheral edema), an ordinal encoding was used, namely constructing 
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the binary variables NYHA ≥ II, NYHA ≥ III and NYHA ≥ IV and, similarly, peripheral edema ≥ ankles, 

peripheral edema ≥ knee, peripheral edema ≥ above. 

Since some variables were only available at baseline but were unlikely to change over time (e.g. sex), 

their values were copied for follow-up visits. Similarly, certain medical history variables available at 

baseline (such as previous acute myocardial infarction (AMI), previous stroke, angina pectoris, 

coronary artery bypass graft (CABG), previous hospitalization for worsening HF) were copied for follow-

up visits and, when possible, updated using the information from the events.  

NT-proBNP values were only measured at baseline and at the 3-months follow-up. Due to the 

importance of this variable in the literature [27,33–35], it was decided to retain and interpolate its 

value for the other visits as follows: the value for the 1-month follow-up visit was computed as 

2/3*(baseline value) + 1/3*(3-months value). Value of the 3-months visit was copied for the 

subsequent visits. 

Lastly, the response variable was defined as the occurrence of a composite event (death for worsening 

HF or hospitalization for worsening HF) within 180 days of a visit.  

3.2.3.  Exclusion of variables and observations 

Since the laboratory tests for measuring blood parameters were performed only at baseline, 1, 3, 6, 

12, 24, 36 and 48 months, only the observations corresponding to these visits were retained. 

Incomplete observations (with missing values) were also excluded. 

Several variables not relevant to this study were excluded (e.g. “technical variables”, such as 

identification numbers or dates, or “intermediary variables” used to build other variables, such as the 

cause of death or drug doses), as well as variables with more than 1,000 missing values. The remaining 

variables are shown Table 1. 

3.2.4. Transformation of the variables 
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In order to eliminate outliers without excluding the associated observations, all continuous variables 

were winsorized: all values lower than the 1st percentile (respectively greater than the 99th percentile) 

were set to the value of the 1st percentile (resp. the 99th percentile). This method was used to avoid 

excluding more observations, since the number of cases was already small compared to the controls 

and to avoid reducing the number of patients with event.  

Continuous variables were then transformed to satisfy the linearity assumption of logistic regression. 

For each continuous variable, a similar method to that described in Duarte et al. [11] was used. First, 

the restricted cubic splines method with 3 knots was used to test the linearity assumption for each 

variable under the univariate logistic model: using a likelihood ratio test, the nullity of the coefficient 

associated with the cubic component of the spline was tested [17,27]. Then, for each variable with a 

significantly non-null coefficient with a 5% threshold, a graphical representation of the links between 

the variable and the logit was performed. If the relationship was monotonous, simple monotonic 

transformations of the form f(x) = xa with 𝑎 ∈ {−2, −1, − 1 2⁄ , 1 2⁄ , 1, 2} or f(x) = ln(x) were tested. If 

the relationship was not monotonous, quadratic transformations of the form f(x) = (x – k)² were tested, 

with k situated between the minimum and the maximum of the variable by incremental 0.1 steps. To 

determine the values of a or k, all possible values were tested and the transformation which yielded a 

non-significant p-value for the linearity test and a minimal p-value for the test of nullity of the 

coefficient in univariate logistic regression was retained.  

This transformed dataset was used for Methods 1, 2 and the LR intermediate score of Method 3. A 

similar technique was used for the LDA intermediate score of Method 3, but with transformation of 

the variables in order to satisfy the linearity assumption for linear regression. 

3.2.5. Sample balancing 

Given the large imbalance between cases and controls, the sample was balanced by duplicating each 

case 15 times. This is equivalent to giving each case fifteen times more weight than a control. 
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Preliminary analyses (not shown) showed that using a sample that was rebalanced in this manner 

resulted in better performance compared to using the unbalanced sample. 

4. Results 

Summary statistics of the sample prior to data management (winsorization, transformation of the 

variables and sample balancing) are available in the Supplementary Material (Part B). Summary 

statistics of the sample after winsorization and sample balancing, but before the transformation of the 

variables, are provided in Table 1. 

Table 1. Descriptive statistics of the explanatory variables after winsorization and sample balancing 

performed before transformation of the variables 

Variables Groups of related 
variables 

Mean (SD) or N (%) 

Female b,d - 2227 (19.5%) 

Age a,g - 68.10 (10.20) 

Years of school education d,g - 6.92 (3.65) 

Weight g 
Obesity 

75.87 (14.33) 

BMI a,g 26.96 (4.48) 

Smoker or ex-smoker b,d - 6645 (58.2%) 

Heart Rate g - 72.49 (13.38) 

Diastolic blood pressure g 

Blood pressure 

76.28 (10.17) 

Systolic blood pressure g 125.21 (19.41) 

Mean blood pressure a,g 92.58 (12.17) 

NYHA class c 
(ref: “NYHA I”) 

≥ II 

NYHA 

10837 (95.0%) 

≥ III 3061 (26.8%) 

≥ IV 242 (2.1%) 

Peripheral edema c,d 
(ref: “No”) 

≥ Ankles 

Peripheral edema 

1768 (15.5%) 

≥ Knee 316 (2.8%) 

≥ Above 159 (1.4%) 

Main cause of HF b 
(ref: “Ischemic”) 

Cardiomyopathy - 3126 (27.4%) 

Hypertension - 1726 (15.3%) 

Other - 346 (3.0%) 

Not known - 175 (1.5%) 

Ascites b,d - 147 (1.3%) 

Hepatomegaly b,d - 2188 (19.2%) 

Mitral insufficiency b,d - 5461 (47.9%) 

CVP > 6cm H20 b,d - 1139 (10.0%) 

Basal pulmonary rales b,d - 1732 (15.2%) 

Mid-apical pulmonary rales b,d - 79 (0.7%) 

Pulmonary rales b,d - 599 (5.2%) 

Aortic stenosis b,d - 315 (2.8%) 

Third heart sound (S3) b,d - 2177 (19.1%) 

Hematocrit g 

Hematology 

40.16 (4.53) 

Hemoglobin g 13.40 (1.60) 

ePVS a,g 4.57 (0.92) 

Serum creatinine g 
Renal function 

1.27 (0.44) 

eGFR a,g,h 64.08 (22.63) 
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Serum potassium g - 4.48 (0.50) 

Serum sodium g - 139.49 (3.33) 

Uricemia g - 6.43 (1.94) 

Triglycerides g - 137.92 (84.01) 

Cholesterol HDL g 
Cholesterol 

47.58 (13.19) 

Total Cholesterol g 175.10 (44.48) 

Bilirubin g - 0.84 (0.42) 

Glycemia g - 122.98 (46.60) 

NT-proBNP f,g - 1856.60 (2194.91) 

Diabetes mellitus b,d - 3481 (30.5%) 

Hypertension b,d - 6470 (56.7%) 

Previous AMI b,e - 5421 (47.5%) 

Previous stroke b,e - 643 (5.6%) 

Previous hosp. for worsening HF b,e - 6526 (57.2%) 

Angina pectoris b,e - 2060 (18.1%) 

Coronary angioplasty b,d - 1478 (13.0%) 

Transient ischemic attack (TIA) b,d - 1228 (10.8%) 

COPD b,d - 2348 (20.6%) 

CABG b,e - 2847 (24.9%) 

Implantable defibrillator b,d - 1020 (8.9%) 

Paroxystic AF b,d - 2756 (24.2%) 

Neoplasia b,d - 592 (5.2%) 

Definitive pace maker b,d - 1944 (17.0%) 

Waiting for cardiac transplantation b,d - 122 (1.1%) 

LVEF d,g - 32.58 (10.05) 

Bundle branch block b - 3883 (34.0%) 

Atrial fibrillation b - 2087 (18.3%) 

Left ventricular hypertrophy b - 1885 (16.5%) 

Pathological Q waves b - 2236 (19.6%) 

Normal ECG evaluation b - 415 (3.6%) 

ACE-inhibitors a,b - 8782 (77.0%) 

Beta-blockers a,b - 7430 (65.1%) 

Calcium antagonists a,b - 803 (7.0%) 

Diuretics a,b - 10813 (94.8%) 
a derived variable; b binary variable encoding; c ordinal encoding; d baseline value copied 
to follow-up visits; e baseline value copied to follow-up visits and updated when possible; 
f interpolated values; g winsorized variable 
SD: standard deviation; BMI: body mass index; NYHA: New York Heart Association; HF: 
heart failure; CVP: central venous pressure; ePVS: estimated plasma volume; eGFR: 
estimated glomerular filtration rate; HDL, high-density lipoprotein; AMI: acute myocardial 
infarction; COPD: chronic obstructive pulmonary disease; CABG: coronary artery bypass 
graft; AF: atrial fibrillation; LVEF: left ventricular ejection fraction; ACE: angiotensin-
converting enzyme  
 

4.1. Variable transformations 

For the logistic regression, eleven of 23 continuous variables had a significantly non-null coefficient 

associated with the cubic component of the restricted cubic spline when tested, i.e. necessitated 

transformation in order to obtain a linear relation with the logit of the probability of event. 

Among these eleven variables, six (mean blood pressure, eGFR, triglycerides, cholesterol HDL, total 

cholesterol and NT-proBNP) had a monotonic relationship with the logit. All except eGFR and NT-

proBNP had x-2 for optimal transformation, while the optimal transformation for eGFR and NT-proBNP 
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was 1/x and ln(x) respectively. The remaining five variables (BMI, systolic blood pressure, hematocrit, 

uricemia and LVEF) had a quadratic relationship with the logit and were transformed accordingly. After 

the transformation, the coefficient associated with the cubic component of the spline was non-

significantly different from 0 for each of the transformed variables.  

For the linear discriminant analysis, a similar procedure was used on a duplicate dataset to transform 

the variables. Fifteen variables were transformed: ten were transformed using a quadratic (x – k)² 

transformation (BMI, systolic blood pressure, diastolic blood pressure, mean blood pressure, 

hematocrit, hemoglobin, ePVS, serum sodium, uricemia, total cholesterol and LVEF); three using an 

inverse square x-2 transformation (eGFR, triglycerides, cholesterol HDL); one using a square 

transformation (serum creatinine); and one using a square root transformation (NT-proBNP). 

The p-values of the tests, before and after transformation, as well as the transformation functions 

applied to the variables both for the LR and for the LDA are available as Supplementary Material (Part 

C). 

4.2. First exclusion of variables  

The exclusion of variables led to exclude six binary variables (p-value > 0.2): gender = female, main 

cause of HF = hypertension, main cause of HF = other, history of coronary angioplasty, left ventricular 

hypertrophy, pathological Q waves.  

4.3. Working sample  

After the exclusions, the working sample consisted in 11,411 observations of 62 explanatory variables, 

with 5,595 (duplicated) events and 5,816 non-events. Summary statistics of the working sample are 

provided in Table 1.  

4.4. Results for the preselections of variables by the three 

methods  
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The detailed preselections with their corresponding AUC are given in Table 2. The number of variables 

needed to obtain a given AUC OOB for each of the three methods are provided in Table 3. 
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Table 2. Preselections of variables obtained with the three methods and corresponding AUC OOB of the associated scores 

 Method 1 Method 2 Method 3 

Variables 
AUC 

OOB* 
Variables 

AUC 
OOB* 

Variables 
AUC 

OOB** 
(LR part) 

AUC 
OOB**  

(LDA part) 

AUC 
OOB*** 

(all) 

1 NT-proBNP 0.7246 NT-proBNP 0.7246 NT-proBNP 0.7246 0.7246 0.7246 

2 NYHA ≥ III 0.7482 NYHA ≥ III 0.7482 NYHA ≥ III 0.7482 0.7523 0.7523 

3 Periph. edema ≥ 'above' 0.7547 Heart rate 0.7529 NYHA ≥ II 0.7550 0.7579 0.7579 

4 Glycemia 0.7620 Systolic BP 0.7591 Glycemia 0.7621 0.7642 0.7642 

5 Systolic BP 0.7671 NYHA ≥ II 0.7647 Periph. edema ≥ 'above' 0.7687 0.7688 0.7694 

6 Beta-blockers 0.7730 Beta-blockers 0.7696 Beta-blockers 0.7731 0.7714 0.7736 

7 NYHA ≥ II 0.7787 Glycemia 0.7764 Systolic BP 0.7791 0.7761 0.7792 

8 Cholesterol HDL 0.7829 Periph. edema ≥ 'above' 0.7810 Cholesterol HDL 0.7835 0.7796 0.7835 

9 Mean BP 0.7827 Cholesterol HDL 0.7852 Paroxystic AF 0.7864 0.7831 0.7867 

10 Diastolic BP 0.7840 Uricemia 0.7885 Uricemia 0.7902 0.7866 0.7904 

11 Heart rate 0.7861 Bilirubin 0.7912 Bilirubin 0.7925 0.7876 0.7926 

12 Uricemia 0.7897 Diuretics 0.7913 Implantable defibrillator 0.7948 0.7908 0.7950 

13 Third heart sound 0.7922 Previous AMI 0.7932 Neoplasia 0.7966 0.7924 0.7968 

14 Bilirubin 0.7950 Paroxystic AF 0.7953 Third heart sound 0.7984 0.7947 0.7985 

15 Previous AMI 0.7967 Third heart sound 0.7982 Heart rate 0.8001 0.7963 0.8002 

16 Paroxystic AF 0.7988 LVEF 0.7990 Previous AMI 0.8020 0.7977 0.8020 

17 Implantable defibrillator 0.8010 Triglycerides 0.8006 Triglycerides 0.8038 0.7993 0.8038 

18 Neoplasia 0.8027 Neoplasia 0.8028 LVEF 0.8052 0.8010 0.8052 

19 LVEF 0.8045 Ascitis 0.8038 Hypertension 0.8067 0.8021 0.8067 

20 Triglycerides 0.8064 Implantable defibrillator 0.8060 Mitral insufficiency 0.8080 0.8040 0.8080 

21 Diuretics 0.8070 Hemoglobin 0.8058 Smoker or ex-smoker 0.8091 0.8053 0.8091 

22 Ascitis 0.8085 ePVS 0.8061 Ascitis 0.8104 0.8060 0.8104 

23 Mid-apical pulmonary rales 0.8091 Hematocrit 0.8070 Periph. edema ≥ 'ankles' 0.8116 0.8069 0.8116 

24 Smoker or ex-smoker 0.8099 Smoker or ex-smoker 0.8080 NYHA ≥ IV 0.8119 0.8071 0.8119 

25 Mitral insufficiency 0.8108 Mitral insufficiency 0.8086 BMI 0.8130 0.8084 0.8130 

26 Hypertension 0.8121 BMI 0.8103 Mid-apical pulmonary rales 0.8137 0.8084 0.8137 

27 BMI 0.8131 Hypertension 0.8119     

28 Periph. edema ≥ 'ankles' 0.8144 Previous hosp. for worsening HF 0.8119     

29 Periph. edema ≥ 'knee' 0.8151 Mid-apical pulmonary rales 0.8127     

30 CABG 0.8157 Diabetes 0.8127     

31 Calcium antagonists 0.8161 CABG 0.8133     

32 Previous hosp. for worsening HF 0.8166 Periph. edema ≥ 'knee' 0.8136     

33 Bundle branch block 0.8170 Diastolic BP 0.8137     
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34 NYHA ≥ IV 0.8176 NYHA ≥ IV 0.8145     

35 Serum sodium 0.8178 Bundle branch block 0.8147     

36 Diabetes 0.8180 Calcium antagonists 0.8153     

37 COPD 0.8181 Total cholesterol 0.8149     

38 Previous stroke 0.8184 Mean BP 0.8151     

39 Years of school education 0.8187 COPD 0.8150     

40 Age 0.8186 Periph. edema ≥ 'ankles' 0.8163     

41 Weight 0.8186 Atrial fibrillation 0.8166     

42 Serum creatinine 0.8185 Cause of HF = 'not known' 0.8165     

43 eGFR 0.8186 Previous stroke 0.8167     

44 Total cholesterol 0.8184 Aortic stenosis 0.8167     

45 Aortic stenosis 0.8185 Age 0.8164     

46 Cause of HF = 'not known' 0.8186 Angina pectoris 0.8164     

47 Atrial fibrillation 0.8187 Years of school education 0.8166     

48 Pulmonary rales 0.8186 Waiting for cardiac transplantation 0.8168     

49 Basal pulmonary rales 0.8188 Serum sodium 0.8170     

50 Transient ischemic attack 0.8187 Definitive pace maker 0.8171     

51   Basal pulmonary rales 0.8168     

52   Weight 0.8169     

53   eGFR 0.8169     

54   Transient ischemic attack 0.8170     

55   Hepatomegaly 0.8165     

56   Pulmonary rales 0.8168     

57   ECG evaluation 0.8167     

58   ACE-inhibitors 0.8172     

59   Serum creatinine 0.8168     

60   Serum potassium 0.8170     

61   CVP>6cm H20 0.8170     

62   Cause of HF = 'cardiomyopathy' 0.8167     

* AUC OOB obtained for the score including the variable in the row as well as all previous variables. 
** The AUC OOB of these columns were obtained by building an intermediate score using only LDA (respectively LR) for the linear part (resp. logistic part) from the 
selected variables. 
*** The AUC OOB of this column was obtained by constructing a full ensemble score with the same number of variables for both LDA and LR, using the optimal 𝜆 for 
each score. 
See Table 1 for abbreviations 
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Table 3. Number of variables needed to obtain an AUC above given thresholds 

AUC OOB Method 1 Method 2 Method 3 Number of variables 
common to all methods 

≥ 0.750 3 3 2 2 

≥ 0.760 4 5 4 2 

≥ 0.770 6 7 6 4 

≥ 0.780 8 8 8 7 

≥ 0.790 13 11 10 9 

≥ 0.800 17 17 15 13 

≥ 0.810 25 26 22 21 

Note: even if the methods necessitated the same number of variables to obtain a 
given AUC, the variables themselves may not be the same 

 

For Method 1, 50 variables were preselected during the stepwise selection phase, after which the 

maximum AUC OOB was obtained for the score using 49 variables. The total runtime for the first 

method was approximately 1h30 (5min for the two stepwise preselections and 1h25 for the backward 

selection using scores).  

Comparatively, for Method 2, the maximum AUC OOB corresponded to the score using 58 variables. 

The total runtime of the second method was approximately 1h35 (exclusively for the backward 

selection using scores). 

For Method 3, the logistic forward preselection yielded 26 variables, mostly clinical or biological, after 

which the AUC no longer increased significantly. The total runtime of the third method was 

approximately 1h05 minutes if all the scores were constructed (less than 5min for the preselection and 

30min for each of the successions of scores). However, unlike the other two methods, it is not 

mandatory to construct all of the scores with Method 3 and one could construct only one score after 

the preselection of variables. In this case, the total runtime would be reduced to less than 10min (less 

than 5min for the preselection and 2-5min to construct one score). 

Preselected variables were extremely similar between all 3 methods. For Methods 1 and 2, three 

variables were needed to obtain an AUC OOB greater than 0.75 (for Method 3, only two were needed). 

Among these variables, two were common to all methods: NT-proBNP and NYHA ≥ III. In order to 

obtain an AUC OOB above 0.78, all methods necessitated eight variables, seven of which were common 

to the three methods: NT-proBNP, NYHA ≥ III, Glycemia, systolic blood pressure, beta-blockers, 
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peripheral edema ≥ “above” and NYHA ≥ II. Lastly, for an AUC OOB threshold of 0.80, Methods 1 and 

2 necessitated 17 variables, while Method 3 necessitated 15. In this case, 13 variables were common 

to the three methods: added to the six aforementioned variables were: cholesterol HDL, heart rate, 

uricemia, third heart sound, bilirubin and paroxystic atrial fibrillation. Globally, the three selections 

were very similar. 

For a fixed number of variables, the three methods yielded extremely similar AUC OOB, even when the 

selections of variables themselves were different. Since Method 3 generally yielded the best AUC OOB 

for a given number of selected variables and with a faster runtime, only the results for parsimonious 

scores constructed by this method are given at the end of this section. 

4.5. Results for parsimonious scores constructed by Method 3 

Four scores constructed by Method 3 were particularly studied: the score including all variables 

selected by the forward preselection, denoted S3.26 (the number of the method and the number of 

variables used), and three “parsimonious” scores, denoted S3.15, S3.8 and S3.2, which yielded an AUC 

OOB above certain thresholds (0.80, 0.78 and 0.75). To attain these thresholds, 15, 8 and 2 variables 

were respectively needed. The AUC OOB with λ = 0.5 and the optimal λ, as well as the optimal 

sensitivity and specificity according to the maximum Youden index of these four scores are given in 

Table 4.  

Table 4. Summary of the characteristics of the parsimonious scores constructed using Method 3 

Score designation S3.26 S3.15 S3.8 S3.2 

Data Working sample defined in sections “Data management” and “First statistical selection of the 
variables”. Variables transformed differently for the linear intermediate score and the logistic 

intermediate score. 

Number of bootstrap samples 1000 

Number of variables used 26 15 8 2 

Number of modalities 2 

𝝀 value 𝜆 = 0.5 𝜆 = 0 
(optimal) 

𝜆 = 0.5 𝜆 = 0.09 
(optimal) 

𝜆 = 0.5 𝜆 = 0.06 
(optimal) 

𝜆 = 0.5 𝜆 = 1 
(optimal) 

AUC OOB of the LDA 0.8084 0.7963 0.7796 0.7523 

AUC OOB of the LR 0.8137 0.8001 0.7835 0.7482 

AUC OOB of the final score 0.8121 0.8137 0.7996 0.8002 0.7830 0.7835 0.7502 0.7523 

Sensitivity* 0.861 0.823 0.759 0.724 0.713 0.748 0.810 0.826 

Specificity* 0.611 0.651 0.689 0.719 0.707 0.675 0.551 0.547 

Maximum Youden index 0.472 0.474 0.448 0.443 0.420 0.423 0.361 0.373 

* Sensitivity and specificity associated with the maximum value of the Youden index 
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Score S3.2 had an AUC OOB of 0.7523 with an optimal λ = 1 (i.e. only LDA was used). Score S3.8 had an 

AUC OOB of 0.7835 with an optimal λ = 0.06. Score S3.15 had an AUC OOB of 0.8001 with an optimal 

λ = 0.09. Finally, the full score including all preselected variables had an AUC OOB of 0.8137 with an 

optimal λ = 0 (i.e. only LR was used).  

Note that the final AUC OOB was greater or equal to the AUC OOB of the intermediate scores in the 

four scores, which illustrates the ability of ensemble methods to yield better performances than their 

individual components. However, it is interesting to note that for score S3.2, only LDA was used while 

for score S3.26 only LR was used. Thus, both classifiers are useful. 

5. Discussion 

5.1. Methodological discussion 

In this article, we presented and compared different methods of construction of parsimonious 

ensemble scores, with the construction of short-term event scores for CHF as a concrete illustration. 

Parsimonious scores were obtained by combining stepwise selections of variables and the use of an 

ensemble score. Since classic criteria of stepwise selection based on probabilistic models cannot be 

used in the case of an ensemble score, we proposed using a criterion based on the absolute values of 

the coefficients of variables in an ensemble score and a second criterion based on the AUC. 

An advantage of a stepwise selection of predictors is that it allows automatically building a succession 

of scores and therefore choosing which of the latter has the best balance between performance and 

the number of variables, according to the desired quality objectives. Once this choice is made, the 

selected score can be used as a “classic” score. The use of an ensemble method to construct this score 

also provides confidence in the stability and performance of the results. Indeed, ensemble methods 

generally yield better results than a single predictor, provided that the predictors constituting the 

ensemble perform sufficiently well individually and are sufficiently different from each other [14]. The 
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downside is that since the method relies on estimating a large number of models before their 

aggregation, this approach takes longer than estimating a single model. However, in the present 

context, it is only necessary to perform this procedure once to obtain the selection of variables and 

their associated coefficients, after which a simple linear combination is sufficient to obtain the score 

for any new observation. 

Other selection methods could have been tested, for example by building all possible ensemble scores 

at each step with one more variable than in the previous step, keeping only the variable yielding the 

largest increase in AUC OOB. However, this would have entailed a lengthy processing time due to the 

large number of ensemble scores to construct and preliminary results (not shown) conclude that they 

would not have yielded a better performance than the presented methods. Variants of Method 3 could 

also be used, e.g. preselecting variables using LDA as opposed to LR. Summarized results for these 

alternative methods are presented in the Supplementary Material.  

Within the ensemble method used to construct the scores, other methods, such as support vector 

machine or even an alternative existing predictive score, could also be used in lieu of or in addition to 

LDA and LR. 

5.2. Application discussion 

Regarding the variables used, when applying our method to the construction of a short-term score in 

patients with CHF, the most predictive variable was systematically NT-proBNP, which is a well-known 

predictor of HF [3,23,27,33–35]. Other explanatory variables, such as NYHA class, systolic blood 

pressure, LVEF, BMI, beta-blocker medication, uricemia, atrial fibrillation, heart rate or smoking status, 

have also often been selected in other studies [3,5,6,15,24,27,35]. Note that in a previous study on the 

1231 patients from the GISSI-HF trial with NT-proBNP, Barlera et al. [23] constructed a score using a 

Cox model and 14 variables: NT-proBNP, hs-cTnT, NYHA class, age, COPD, systolic blood pressure, 

diabetes, eGFR, sex, uricemia, LVEF, hemoglobin, BMI and aortic stenosis. In the present study, certain 

variables used in a number of scores were included in the original set of variables but were not selected 
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in the final scores, such as age, gender, diabetes, serum creatinine, eGFR, hemoglobin or serum 

sodium. Sex was not significant in univariate analysis and the remainder of these variables were not 

retained during the forward AUC preselection phase in Method 3. However, it should be noted that 

these variables were selected in Methods 1 and 2, generally in the second half of the selection. Finally, 

the preselection of Method 3 also included less common variables such as glycemia, peripheral edema, 

cholesterol HDL, bilirubin, implantable defibrillator, neoplasia, triglycerides, mitral insufficiency, as 

well as history of AMI, hypertension or ascites.  

All variables included in the parsimonious scores S3.15, S3.8 and S3.2 are easily available from either 

the patient’s medical history (paroxystic atrial fibrillation, previous AMI, implantable defibrillator, 

neoplasia), the patient’s drug consumption (beta-blockers), a clinical examination (NYHA class, 

peripheral edema, heart rate, blood pressure, third heart sound), or laboratory blood tests (NT-

proBNP, glycemia, cholesterol HDL, bilirubin, uricemia, triglycerides). 

To our knowledge, no study has presented a score for short-term (180 days) events in CHF. Therefore, 

comparing the performance of our scores with others in the literature is difficult. Recent existing scores 

were generally constructed to predict long-term events for CHF patients, often at 1 or 2 years 

[23,25,27,35,36] and sometimes longer [15,22], or to predict either short- or long-term events for 

acute HF patient [11,34]. For instance, regarding CHF:  

 In Voors et al. [17], several models were compared to predict different outcomes in CHF 

patients. Their models using 15 or 9 variables (including NT-proBNP) to predict a composite 

endpoint of all-cause mortality or HF hospitalization yielded an AUC of 0.71 or 0.69 in 

derivation, respectively. This is lower than the 0.80 and 0.78 AUC OOB values obtained by 

scores S3.15 and S3.8 respectively in the present study using a comparable number of 

variables.  

 The performance of score S3.8 is similar to that of the score proposed by Spinar et al. [35] 

to assess the 2-year prognosis of CHF (all-cause mortality, heart transplantation, device 
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implantation), which yielded an AUC of 0.79 without cross-validation nor external 

validation for a model using 7 variables.  

 The MAGGIC risk score [15], which has been shown to feature one of the best accuracies 

to predict 1-year mortality in Canepa et al. [36] using 13 variables and subsequently 

studied on many validation cohorts, had an AUC between 0.64 and 0.74 in the studies 

without NT-proBNP [30,34,36,37], and of 0.74 with NT-proBNP [34]. Note that the AUC for 

the composite endpoint of death and hospitalization, as used in the current study, is 

generally lower than the AUC for all-cause death only. Yet, score S3.8 achieved a slightly 

higher AUC OOB using less variables.  

The main limitation of our application study is that only one dataset was used in our tests. However, 

the present work is mostly a “proof of concept” of the usefulness of the presented methods of 

construction of parsimonious ensemble scores. 

6. Conclusion 

In this article, we have proposed to construct parsimonious ensemble scores using sample balancing, 

several classifiers, bootstrap samples and different variable selection methods in this setting. As a 

concrete application, we constructed a short-term event (death or hospitalization for HF at 180 days) 

score for CHF patients, yielding slightly better results than other scores in this field. The methods 

proposed and tested in this article can be reproduced on any delay, any set of variables and any 

other settings (other types of HF or other diseases) as long as there is a sufficient number of cases, 

i.e. a sufficiently large training dataset. Applications on other datasets, both in HF patients or in other 

diseases, should be conducted in order to confirm the applicability of the proposed methods. 
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