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Abstract: Lossy compression is widely used to decrease the size of multichannel remote sensing
data. Alongside this positive effect, lossy compression may lead to a negative outcome as making
worse image classification. Thus, if possible, lossy compression should be carried out carefully,
controlling the quality of compressed images. In this paper, a dependence between classification
accuracy of maximum likelihood and neural network classifiers applied to three-channel test and
real-life images and quality of compressed images characterized by standard and visual quality
metrics is studied. The following is demonstrated. First, a classification accuracy starts to decrease
faster when image quality due to compression ratio increasing reaches a distortion visibility threshold.
Second, the classes with a wider distribution of features start to “take pixels” from classes with
narrower distributions of features. Third, a classification accuracy might depend essentially on the
training methodology, i.e., whether features are determined from original data or compressed images.
Finally, the drawbacks of pixel-wise classification are shown and some recommendations on how to
improve classification accuracy are given.

Keywords: remote sensing; lossy compression; image quality; image classification; visual
quality metrics

1. Introduction

Nowadays, remote sensing (RS) is used in numerous applications [1–3] due to the following
main reasons. Different types of useful information can be potentially retrieved from RS images,
especially high resolution and multichannel data (i.e., a set of co-registered component images of
the same territory acquired for different wavelengths, polarizations, even by different sensors [3–6]).
The modern RS sensors often offer a possibility of fast and frequent data collection—good examples
are multichannel sensors Sentinel-1 and Sentinel-2 which have been launched recently and started to
produce a great amount of valuable RS data [7,8].

Therefore, the volume of RS data greatly increases due to the aforementioned factors: better
spatial resolution, a larger number of channels, more frequent observations. This causes challenges
in RS data processing that relate to all basic stages of their processing: co-registration, calibration,
pre- or post-filtering, compression, segmentation, and classification [9,10]. One of the most serious
challenges is the compression of multichannel RS images [11–13]. Compression is applied to diminish
data size before their downlink transferring from spaceborne (more rarely, airborne, UAV) sensors,
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to store acquired images in on-land centers of RS data collecting or special depositories, to pass images
to potential customers. Lossless compression is often unable to meet requirements to compression
ratio (CR) that should be provided, since, even in the most favorable situations of high inter-band
correlation of component images [14], CR attained by the best existing lossless compression techniques
reaches 4 . . . 5 [12].

Lossy compression can provide considerably larger CR values [12,13,15–17] but at the expense of
introduced distortions. It is always a problem to reach an appropriate compromise between compressed
image quality (characterized in many different ways) and CR [11–13,18–20]. There are several reasons
behind this. First, compression providing a fixed CR often used in practice [21,22] leads to compressed
images whose quality can vary in wide limits [23]. For a given CR and simpler structure images,
introduced distortions are smaller and compressed image quality is higher, whilst for images, having
a more complex structure (containing many small-sized details and textures), losses are larger and,
thus, image quality can be inappropriate since some important information can be inevitably lost,
which is undesired. Certainly, some improvements can be reached due to the employment of a better
coder, adaptation to image content [24], use of inter-channel correlation by three-dimensional (3D)
compression [12,13,21,22], or some other means. However, the positive effect can be limited, and/or
there can be some restrictions, e.g., the necessity to apply image compression standard [12,19,21].

Thus, we are more interested in a different approach that presumes lossy compression of
multichannel RS images with a certain control of introduced distortions combined with simultaneous
desire to provide a larger CR. Let us explain the advantages of such an approach, when it can be
reasonable, and what the conditions are for its realization. Recall here that RS data compressed in
a lossy manner can be useful if: (a) introduced losses do not lead to sufficient reduction of solving
the final tasks of RS image processing such as segmentation, object detection, spectral unmixing,
classification, parameter estimation [17,25–34]; (b) distortions due to lossy compression do not appear
themselves as artifacts leading to undesired negative effects (e.g., appearing of ghost artifacts) in
solving the aforementioned final task.

Below, we consider the impact of lossy compression on multichannel RS image
classification [27,28,33–35]. Specifically, we focus on the case of a limited number of channels, e.g.,
color, multi-polarization, or multispectral images, due to the following reasons: (a) it is simpler to
demonstrate the effects that take place in images due to lossy compression and how these effects
influence classification just for the case of a small number of image components; (b) an accurate
classification of multichannel images with a small number of components is usually a more difficult
task than the classification of hyperspectral data (images with a relatively large number of components)
because of a limited number of available features and the necessity to reliably discriminate classes in
feature space.

Returning to the advantages of lossy compression of multichannel RS data, we can state the
following. First, images compressed in a lossy manner might be classified better than original
images [27,34]. Such an effect usually takes place if original images are noisy and coder parameters are
adjusted so that the noise removal effect due to lossy compression [13,36–38] is maximal. However,
even if the noise in images is absent (or, more exactly, peak signal-to-noise ratio (PSNR) values in
original images are high and noise is not seen in visualized component images), the accuracy of image
classification may remain practically the same for a relatively wide range of CR variation [27,34,38].

This range width can be different [39]. Its width depends on the following main factors:

• Used classifier, how efficient it is, how it is trained;
• Applied compression technique (coder);
• How well classes are discriminated, and which features are used;
• How many classes are present in each multichannel image;
• How “complex” is a considered image (is it highly textural, does it contain many small-sized or

prolonged objects, what is the mean size of fragments belonging to each class).
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Therefore, researchers have a wide field of studies intended on understanding how to set a CR
or a coder’s parameter that controls compression (PCC) for a given multichannel image, used lossy
compression technique, and considered classifier. Here we would like to recall some already known
aspects and dependencies that will be exploited below. First, for the same CR, considerably larger
distortions can be introduced into images with higher complexity [40]. Moreover, larger distortions can
be introduced into more complex and/or noisier images for the same PCC, for example, quantization
step (QS) of coders based on orthogonal transforms (discrete cosine transform (DCT) or wavelets [40]).
Second, the desired quality of a compressed image (a value of a metric that characterizes image quality)
can be nowadays predicted and provided with an appropriate accuracy [40,41], at least, for some
coders based on DCT as, e.g., the coder AGU [42]. Third, there exist certain dependencies between
values of conventional (e.g., PSNR) and/or visual quality metrics and accuracy of correct classification
of an entire image or classes [43]. Classification accuracy for classes mainly represented by large
size homogeneous objects (water surfaces, meadows) better correlates with the conventional metrics
whilst probability of correct classification for classes mainly represented by textures, small-sized and
prolonged objects (forests, urban areas, roads, narrow rivers) correlates with visual quality metrics.
Besides, classification accuracies for classes can depend on PCC or CR differently [38]. For the latter
type of classes, the reduction of probability of correct classification with an increase of CR is usually
faster. Fourth, different classifiers produce classification results that can significantly differ both in
the sense of obtained classification maps and quantitative characteristics as the total probability of
correct classification, probabilities for classes, and confusion matrices [43,44]. Fifth, there are quite
successful attempts to predict the total probability of correct classification (TPCC) of compressed RS
images based on the fractal models [28].

Aggregating all these, we assume the following:

• There are strict dependencies between distortions due to lossy compression (that can be
characterized by certain metrics) and TPCC for multichannel RS images;

• Having such dependences, it is possible to recommend what metrics’ values must be provided to
ensure practically the same TPCC for compressed data as for original data;

• It is possible to provide the recommended metrics’ values, at least, for some modern compression
techniques based on DCT;

• Metric’s thresholds might depend upon a classifier used and properties of a multichannel image
subject to lossy compression;

• Classifier performance might also depend on how it is trained (for example, using an original or
compressed multichannel image).

The goal of this paper is to carry out a preliminary analysis are these assumptions valid. The main
contributions are the following. First, we show that it is worth applying lossy compression with
distortions around their invisibility threshold to provide either some improvement of TPCC (achieved
for simple structure images) or acceptable reduction of TPCC (for complex structure images) compared
to TPCC for the corresponding original image. Moreover, we show how such compression can be
carried out for a particular coder. Second, we demonstrate that classifier training for compressed data
usually provides slightly better results than training for original (uncompressed) images.

The paper structure is the following. Section 2 deals with a preliminary analysis of the performance
criteria used in lossy compression of RS images. In Section 3, two popular methods of RS data
classification based on the maximum likelihood method (MLM) and neural network (NN) are
described. Section 4 contains the results of classifier testing for the synthetic three-channel test image.
Section 5 provides the results of experiments carried out for real-life three-channel image. Discussion
and analysis of some practical peculiarities are presented in Section 6; the conclusions are shown in
Section 7.
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2. Performance Criteria of Lossy Compression and Their Preliminary Analysis

Consider an image It
ij where i, j denote pixel indices and IIm, JIm define the processed image size.

If one deals with a multichannel image, index q can be used. Let’s start with the consideration of the
case of a single-component image. To characterize compression efficiency, we have used the following
three metrics. The first one, traditional PSNR, is defined by

PSNRinp = 10 log10

DR2/
IIm∑
i=1

JIm∑
j=1

(
Ic
ij − It

ij

)2
/(IIm × JIm)

 = 10 log10

(
DR2/MSE

)
(1)

where DR denotes the range of image representation, Ic
ij is the compressed image, MSE is the mean square

error of distortions introduced by lossy compression. In general, DR in remote sensing applications
might sufficiently differ from 255, which is common for processing RGB color images. Below, we will
mainly consider single and multichannel RS images having DR = 255 but will also analyze what should
be done if DR is not equal to 255.

PSNR is the conventional metric widely used in many image processing applications. Meanwhile,
the drawbacks of PSNR are well known. The main drawback of PSNR is that it is not adequate
in characterizing image visual quality [45,46]. Currently, there are numerous other, so-called HVS
(human vision system) metrics, that are considered to be more adequate [45–47]. Some of the existing
HVS-metrics can be applied only to color images. As we need some metrics that should be good enough
and applicable to single component images, we apply the metrics PSNR-HVS and PSNR-HVS-M. The
former HVS-metric takes into account less sensitivity of human vision to distortions in high-frequency
spectral components, the latter one also takes into consideration a masking effect of image texture and
other heterogeneities [47]. These metrics are defined by

PHVSM = 10 log10

(
DR2/MSEHVS

)
(2)

PHVSMout = 10 log10

(
DR2/MSEHVS−M

)
(3)

where MSEHVS and MSEHVS−M are MSEs determined considering the aforementioned effects.
If PSNR-HVS is approximately equal to PSNR, then the distortions due to lossy compression have
properties similar to an additive white Gaussian noise. If PSNR-HVS is smaller than PSNR, this
evidences that distortions are more similar to either non-Gaussian (heavy-tailed), or spatially correlated
noise, or both [47] (see also [48] for details). If PSNR-HVS-M is considerably larger than PSNR, then a
masking effect of image content is sufficient (most probably, an image is highly textural). In turn, if
PSNR-HVS-M is approximately equal or smaller than PSNR, then a masking effect is absent, and/or
distortions are like spatially correlated noise.

Figure 1a,c,e present three grayscale test RS images of different complexity—the image Frisco has
the simplest structure whilst the image Diego is the most textural. Figure 1b,d,f represent dependences
of the considered metrics in Equations (1)–(3) on quantization step which serves as PCC in the coder
AGU [42] (this compression method employs 2D DCT in 32 × 32 pixel blocks, the advanced algorithm
of coding uniformly quantized DCT coefficients, and embedded deblocking after decompression).
As one may expect, all metrics become smaller (worse) if QS increases. Meanwhile, for the same
QS, compressed image quality is not the same. As an example, for the case of QS = 20, PSNR and
PSNR-HVS-M for the test image Frisco are practically the same (about 40 dB). For the test images
Airfield and Diego that have more complex structures, PSNR-HVS-M values are also about 40 dB whilst
PSNR values are about 34 dB. This means the following: (1) there are masking effects, i.e., textures
and heterogeneities still sufficiently mask introduced distortions; (2) the introduced distortions can be
noticed by visual inspection (comparison of original and compressed images). Recall that distortion
visibility thresholds are about 35 . . . 38 dB according to the metric PSNR and about 40 . . . 42 dB
according to the metric PSNR-HVS-M [45].
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Figure 1. Test grayscale images Frisco (a), Airfield (c), and Diego (e), all of size 512 × 512 pixels, and 
dependences of the considered metrics (PSNR, PSNR-HVS, PSNR-HVS-M, all in dB) on the 
quantization step (QS) for the coder AGU for these test images ((b), (d), and (f), respectively). 

Note that distortions’ invisibility happens if QS is smaller than 18…20 for grayscale images 
represented as 8-bit data arrays [23] (more generally, if QS ≤ DR / (12…13)). One should also keep in 
mind that the use of the same QS leads to sufficiently different CR. For example, for QS = 20, CR 
values are equal to 26.3, 4.6, and 4.5 for the considered test images Frisco, Airfield, and Diego, 
respectively. These facts and dependences are given in Figure 1 confirm the basic statements 
presented in the Introduction. 

Figure 1. Test grayscale images Frisco (a), Airfield (c), and Diego (e), all of size 512 × 512 pixels, and
dependences of the considered metrics (PSNR, PSNR-HVS, PSNR-HVS-M, all in dB) on the quantization
step (QS) for the coder AGU for these test images ((b), (d), and (f), respectively).

Note that distortions’ invisibility happens if QS is smaller than 18 . . . 20 for grayscale images
represented as 8-bit data arrays [23] (more generally, if QS ≤ DR / (12 . . . 13)). One should also keep
in mind that the use of the same QS leads to sufficiently different CR. For example, for QS = 20,
CR values are equal to 26.3, 4.6, and 4.5 for the considered test images Frisco, Airfield, and Diego,
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respectively. These facts and dependences are given in Figure 1 confirm the basic statements presented
in the Introduction.

Alongside differences in metrics’ values for the same QS considered above for QS ≈ 20 (similar
differences take place for QS > 20, compare the corresponding plots in Figure 1b,d,f), there are
interesting observations for QS ≤ 10 (more generally, QS ≤ DR / 25). In this case, MSE ≈ QS2 / 12 [20],
PSNR exceeds 39 dB and PSNR-HVS-M is not smaller than PSNR and exceeds 45 dB. Thus, the
introduced distortions are not visible and the desired PSNRdes (or, respectively, MSEdes) can be easily
provided by a proper setting of QS as QS ≈ (12MSEdes)1/2.

Certainly, there are numerous quality metrics proposed so far. Below we carry our study based on
PSNR-HVS-M because of the following reasons. First, it is one of the best component-wise quality
metrics [49] that can be calculated efficiently. Second, the cross-correlation between the best existing
quality metrics is high (see data in Supplementary Materials Section). Therefore, other quality metrics
can be used in our approach under the condition of carrying out a corresponding preliminary analysis
of their properties. Note that we have earlier widely used PSNR-HVS-M in image compression and
denoising applications [23] utilizing well its main properties.

3. Considered Approaches to Multichannel Image Classification

As has been mentioned above, there are numerous approaches to the classification of multichannel
images. Below we consider two of them. The first one is based on the maximum likelihood method
(MLM) [50,51] and the second one relies on a neural network (NN) training [50]. In both cases, the
pixel-wise classification is studied. There are many reasons behind using the pixel-wise approach and
just these classifiers: (a) to simplify the classification task and to use only Q features (q = 1, . . . , Q),
i.e., the values of a given multichannel image in each pixel; (b) to show the problems of pixel-wise
classification; (c) MLM and NN based classifiers are considered to be among the best ones [50].

The note that classifiers of RS data classification can be trained in different ways. One option is to
train a classifier in advance using earlier acquired images, e.g., uncompressed ones stored for training
or other purposes. Another option is to use a part of the obtained compressed image for classifier
training and its use for entire image classification [39]. One can expect that classification results would
be different where both options have both advantages and drawbacks.

3.1. Maximum Likelihood Classifier

The classification (recognition) function for MLM is based on the calculation of some metric in the
feature space

Φ =

1, ρ

(
→
x
∗

,
→
x s

)
≥ tr;

0, ρ

(
→
x
∗

,
→
x s

)
< tr,

(4)

where
→
x
∗

,
→
x s are feature (attribute) vectors for current and sample objects (image pixel in our case);

ρ(•, •) is a used metric of vector similarity; tr denotes the decision undertaking threshold.
As components of the feature vector, in general, one can consider both original ones (pixel (voxel)

values of a multichannel image) and “derivative” features calculated on their basis (e.g., ratios of
these values).

If Φ = 1, then a current object (pixel) determined by the feature vector
→
x
∗

, is related to a class as.
Taking into account the stochastic nature of the features

→
x ,
→
x ∈ Rc, information about each object

class is contained in parameters
→

θ of joint probability density functions (PDFs) fc

(
→
x ;
→

θ

)
.

This information is used for creating statistical decision rules

L =
fc

(
→
x
∗

;
→

θ | a2

)
fc

(
→
x
∗

;
→

θ | a1

) ≥ tr (5)
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where L is the likelihood ratio. The threshold tr is determined by a statistical criterion used; for
example, the Bayesian criterion provides getting the optimal classifier when the following information
is available: PDFs for all sets of patterns, probabilities of each class occurrence, and losses connected
with probabilities of misclassifications.

In most practical cases, for object description, statistical sample information is used, i.e., statistical
estimates of PDFs obtained at the training stage are employed in likelihood ratio L. Then, sample size,
reliability of information about observed objects, and efficiency of using this information in decision
rule mainly determine the quality of undertaken decisions.

Training samples are formed using pixels representing a given class; usually, it is some area (or
areas, a set of pixels) in an image identified based on some true data for a sensed terrain. The main
requirement for the data of training samples is their representativeness—the pixels of the sample
must correspond to one class on the ground; such a class should occupy a territory that is fairly well
represented by pixels in the image with a given resolution. In other words, the number of pixels in the
selected area of the image should ensure the adoption of statistically significant decisions.

When constructing a multi-alternative decision rule (K > 2), the maximum likelihood criterion
is used; the threshold tr in the Equation (5) is assumed to be equal to 1. The maximum likelihood
criterion makes it possible to eliminate the uncertainty of the solution (when none of the classes can
be considered preferable to the others), does not require knowledge of the a priori probabilities of
the classes and the loss function, allows evaluating the reliability of the solutions, and can be easily
generalized to the case of many classes. In accordance with this criterion, it is believed that the control
sample (measured values of features in the current image pixel) belongs to the class, 1 ≤ u ≤ K, for
which the likelihood function (or rather, its estimate obtained at the training stage) is maximum:

fc

(
→
x
∗

;
→

θ | au

)
= max

1≤k≤K

{
fc

(
→
x
∗

;
→

θ | ak

)}
⇒
→
x
∗

∈ au. (6)

If the assumptions about the normal law of distribution of the feature vector are true, the maximum
likelihood method Equation (6) provides optimal recognition. The assumption of normality of features,
on the one hand, simplifies the estimation of the parameters of distribution laws (DL) and makes
it possible to take into account the presence of mutual correlation relationships between data in
different channels in models of classes. On the other hand, it is known that the distributions of real
multichannel data are often non-Gaussian. Even with the assumption of the normalization of DL
observations due to the central limit theorem, the nonlinearity introduced during the reception and
primary processing of information, which manifests itself in a change in the shape and parameters of
the observed distribution, cannot be ignored.

To increase the accuracy of approximating empirical non-Gaussian distributions of features and to
take into consideration the possible presence of strong correlation relationships, it is advisable to apply
multiparameter distribution laws based on non-linear transformations of normal random variables.
These transformations include Johnson’s transformations.

For describing a class of spectral features, we propose to apply Johnson SB-distribution [52,53]:

f(x) =
ηλ

√
2π(x− ε)(ε+ λ− x)

e−
1
2 (γ+η ln x−ε

ε+λ−x )
2

(7)

where η and γ are two shape parameters connected with skewness and kurtosis (η > 0, γ ∈ (−∞,+∞));
ε and λ are two scale parameters of a random variable x (ε(−∞,+∞),ε ≤ x ≤ ε+ λ).

Due to a large number of parameters, the model in Equation (4) is quite universal and able to
approximate almost any unimodal distribution as well as a wide spectrum of bimodal distributions.
Besides, since Johnson distributions are based on nonlinear transformations of normal random variables,
their use in describing empirical distributions allows staying within correlation theory framework,
which is important for the considered features characterized by non-Gaussian distributions (see
examples below) and the presence of strong inter-channel correlation.
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The estimates of the parameters for PDFs
→

θ |ak =
{
εk, λk,ηk,γk

}
can be found by a numerical

optimization of the loss function minimizing integral MSE of empirical distribution (histogram)
representation by the theoretical model in Equation (7).

The multidimensional variant of Equation (7) is the following [52]:

fc(
→
x |a ) = (2π)−c/2

‖Ξ‖−1/2
c∏
ν=1

ηνλν
(xν−εν)(εν+λν−xν)

×

× exp
[
−

1
2

c∑
ν,κ=1

Ξ−1
νκ

(
γν + ην ln xν−εν

εν+λν−xν

) (
γκ + ηκ ln xκ−εκ

εκ+λκ−xκ

)] (8)

where c is the size of the feature vector
→
x ; Ξ is the sample correlation matrix.

Thus, to construct a multidimensional statistical model of correlated data, processing consists
of several stages. At the first stage, a traditional statistical analysis is performed by estimating
the moments of distributions and histograms of the components of the random vector. Sample
estimates of the cross-correlation coefficients of the components

→
x are also found. At the second stage,

one-dimensional statistical models of the form Equation (7) are constructed for each of the components
of multidimensional data. The initial estimation of the distribution density (the histogram of the
feature xν) is used as a target for the desired model f(xν) described by the Johnson DL parameter

vector
→

θ . The multidimensional statistical model is built based on multidimensional histograms f̂c
(
→
x
)
.

To construct a multidimensional model as in Equation (8) for a class ak, one needs to evaluate the
matrix of distribution parameters Θk = [εck, λck,ηck,γck] : 4× c and the sample correlation matrix Ξ.

After the process of creation and estimation of the training samples, image pixels are sorted
(related) to the classes based on the decision rule (#3). If the pixel-wise classification is applied, data for
each pixel with coordinates (i, j) are processed separately (independently). Value vector for a current
pixel

→
x
∗

ij is put into mathematical models of the class target in Equation (5). The obtained results

f̂c

(
→
x
∗

ij

)
| ak , k = 1 . . . K are compared between each other and a maximal estimate of the likelihood

function is chosen; its number is the number of the class the current pixel (i, j) is referred to.

3.2. NN Classifier Description

As the classifier is based on a neural network for image processing, a feedforward neural network
is used. Nowadays there exist many NNs and approaches to their training and optimization [54].
We have chosen a simple but efficient NN for our application that can be easily implemented or placed
on different platforms and devices. The employed classifier is an all-to-all connected perceptron
combined with a self-organizing map to treat obtained weights or probabilities of the pixel belonging
to one of the classes. The architecture details are the following: input layer for incoming data of
three-color components, one hidden neuron layer with 30 fully connected neurons (this number has
shown to perform equally well with larger possible numbers of hidden layer neurons). For the hidden
layer, the tanh activation function is exploited. Scaled conjugate gradient backpropagation is used
as a global training function. As has been mentioned above, the output layer of the used NN is a
self-organized map fully connected with neurons of the hidden layer. It provides the mapping of
output probabilities of the decision to the list of classes as vectors.

Training and validation processes have been performed in the following way. For this purpose,
a certain image is divided into a set of pixel color value vectors. Hereby, the obtained set of vectors is
permuted to introduce non-ordinary allocation for each training. For NN training, we have taken 70%
of the produced set, the other 30% of data is used for validation. The self-dataset validation at this
first stage has to be performed to prove the chosen NN architecture and NN parameters, and other
training process peculiarities. We have considered different configurations of NN-based classifiers,
especially varying the number of hidden layers, neurons, and connections among them. It has been
established that complex architectures, like multi-layer perceptron, do not provide better efficiency of
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the classification and even cause over-fitting using the same training dataset. As the result, the chosen
architecture was NN with one hidden layer with a fully optimal number of training epochs equal to 50
for the given NN. The proposed classifier is easy to use, and it is fast (which is the crucial point for the
application of classification to remotely sensed data). The overall training process was repeated 100
times with full permutation of the dataset and the obtained classifier has been applied to test images.

4. Analysis of Synthetic Three-Channel Image

4.1. MLM Classifier Results

Creating a test multichannel image, we have taken into account the following typical properties
of classes that might take place in real-life RS images:

Property 1. Features rarely have distributions close to Gaussian; since in our case, color component values (see
the test color image and its components in Figure 2a–d, respectively) are the used features, then this property
relates to them;
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Figure 2. Three-channel test image: original (a), its three components (b–d), compressed with providing
PSNR-HVS-M = 36 dB (e), compressed with providing PSNR-HVS-M = 30 dB (f).

Property 2. Objects that relate to a certain class are rarely absolutely homogeneous (even water surface usually
cannot be considered as absolutely homogeneous); many factors lead to diversity (variations) of pixel values as
variations of physical and chemical characteristics of reflecting or irradiating surface, noise, etc.

Property 3. Features overlap (intersect) in the feature space; just this property usually leads to misclassifications
especially if such overlapping takes place for many features;

Property 4. The numbers of pixels belonging to different classes in each RS image can differ a lot, it might be so
that a percentage of pixels belonging to one class is less than 1% whilst for another class, there can be tens of
percent of the corresponding pixels.

Property 5. There can be objects of two or even more classes in one pixel [54,55] that requires the application of
unmixing methods but we do not consider such, more complex, situations in our further studies (usually more
than three components of multichannel RS data are needed to carry out efficient unmixing).

Let us show that we have, in a more or less extent, incorporated these properties in our test
image. Table 1 contains data about seven classes, histograms for them, and approximations using
Johnson SB-distribution. Class 1 can be conditionally treated as “Roads”, Class 2—as agricultural fields
(Field-Y), Class 3—as agricultural fields of another color (Field-R), Class 4—as “Water”, Class 5—as
“Grass”, Class 6—as “Trees”, Class 7—as some very textural or heterogeneous class like urban area or
vineyard (“Texture”).
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Table 1. Information about classes.
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As one can see, Property 1 (non-Gaussian distribution) holds for practically all particular
distributions. Property 2 (internal heterogeneity) takes place for all classes, especially for Classes 2 and
7. Property 3 (intersection of features) takes place for many classes—all three features for Classes 1 and
2, all three features for Classes 5 and 6; features of Class 7 overlap practically with all other classes
(intersection of features can be also seen from a comparison of component images where some classes
can be hardly distinguished, e.g., Classes 2 and 4 in Green component, Figure 2c). Property 4 is also
observed—there is a small percentage of pixels belonging to Class 1 whilst quite many pixels belong to
Classes 4, 5, and 7.

Figure 3a presents the true map of classes where Class 1 is shown by light brown, Class 2—by
yellow; Class 3—by red, Class 4—by blue; Class 5—by light green, Class 6—by dark green, Class
7—by white.
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Figure 3. Classification results: true map (a); classification map for original image (b); classification
map for image compressed with PSNR-HVS-M = 36 dB (c); classification map for image compressed
with PSNR-HVS-M = 30 dB (d).

MLM classifier applied to original image pixel-wise (Figure 3a) produces a classification map
given in Figure 3b. As one can see, there are quite many misclassifications. Classes 4 and 6 are classified
in the best way (probabilities of correct classification P44 and P66 are equal to 0.85 and 0.82, respectively)
whilst Class 5 is recognized in the worst manner (P55 = 0.19). Classes 1 and 7 are not recognized well
(P11 and P77 are equal to 0.48 and 0.42, respectively). Classes 2 and 3 are characterized with P22 = 0.67
and P33 = 0.77, respectively.
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Quite low probabilities of classification can be explained by several factors. Some of them have
been already mentioned above—intersections in feature space are sufficient. One more possible reason
is that the MLM classifier is based on distribution approximations and these approximations can be
not perfect (see histograms and their approximations in Table 1).

Quite many pixels are erroneously related to Class 7 (“Texture”) for which distributions are very
wide and they intersect with distributions for other classes.

Figure 2e,f presents images compressed providing PSNR-HVS-M ≈ 36 dB and PSNR-HVS-M ≈ 30 dB.
In these cases, CR values are about 4.5 and 8.9, respectively (for component-wise lossy compression).
For the case of PSNR-HVS-M≈36 dB, introduced distortions are visible [45]. They mostly appear
themselves as smoothing of variations in quasi-homogeneous regions (consider the fragments for Class
6 (dark blue) for images in Figure 2a,e). The effects of such suppression of noise or high-frequency
variations due to lossy compression are known for lossy compression [36,37] and they might have even
a positive effect for classification (under certain conditions). For the case of PSNR-HVS-M ≈ 30 dB, the
distortions due to lossy compression (see the compressed image in Figure 2f) appear themselves in
variations’ smoothing and edge/object smearing (this can be seen well for Class 1). Clearly, such effects
might have an impact on classification.

Probabilities of correct classification for classes are given in Table 2. Note that the MLM classifier
has been “trained” using distribution approximations obtained for the original (uncompressed)
three-channel image. As one can see, probabilities for particular classes depend on compressed image
quality and compression ratio in a different manner. P11 steadily decreases and becomes close to zero.
This happens because of two reasons. First, features for Class 1 sufficiently intersect with features for
Class 2. Second, due to lossy compression, feature distribution after compression differs from feature
distribution for the original image (for which the MLM classifier has been trained) where this difference
increases with the reduction of PSNR-HVS-M and CR increase. This is illustrated by distributions
presented in Table 3 for Class 1 and, partly, in Table 4 for Class 2.

Table 2. Probabilities of correct classifications for particular classes depending on image quality.

PSNR-HVS-M, dB P11 P22 P33 P44 P55 P66 P77

∞ (original image) 0.475 0.667 0.773 0.854 0.193 0.822 0.415
48 0.190 0.781 0.686 0.384 0.093 0.809 0.579
45 0.147 0.795 0.652 0.308 0.077 0.777 0.623
42 0.101 0.804 0.615 0.253 0.058 0.712 0.665
36 0.031 0.802 0.568 0.163 0.040 0.545 0.777
30 0.001 0.753 0.478 0.177 0.042 0.556 0.843

Table 3. Illustration of distribution changes due to lossy compression for Class 1.

PSNR-HVS-M,
dB

Red (Histogram and
Approximation)
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Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for 
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy 
compression) results in a reduction of probabilities of correct classification (analyze data in columns 
for P33, P44, P55, and P66). Meanwhile, there are classes, for which probabilities of correct classification 
increase—see data for P77. This is because of the decrease in misclassifications in the texture area 
(see the maps in Figure 3c,d). There is also one class (Class 2) for which P22 is the largest for 
PSNR-HVS-M about 40 dB (due to noise filtering effect) but it reduces for smaller PSNR-HVS-M 
(larger CR). 

One probable reason why the MLM classifier trained for original images and applied to 
compressed ones loses efficiency is that feature distributions observed for compressed data differ 
from those ones observed for original RS data and used for classifier training. 

Then, one can expect that the MLM classifier has to be trained for compressed images. We 
have carried out the corresponding study and the results are presented in Table 5. The conclusion 
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Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for 
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy 
compression) results in a reduction of probabilities of correct classification (analyze data in columns 
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Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for 
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy 
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Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for 
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy 
compression) results in a reduction of probabilities of correct classification (analyze data in columns 
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increase—see data for P77. This is because of the decrease in misclassifications in the texture area 
(see the maps in Figure 3c,d). There is also one class (Class 2) for which P22 is the largest for 
PSNR-HVS-M about 40 dB (due to noise filtering effect) but it reduces for smaller PSNR-HVS-M 
(larger CR). 

One probable reason why the MLM classifier trained for original images and applied to 
compressed ones loses efficiency is that feature distributions observed for compressed data differ 
from those ones observed for original RS data and used for classifier training. 

Then, one can expect that the MLM classifier has to be trained for compressed images. We 
have carried out the corresponding study and the results are presented in Table 5. The conclusion 

36

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 35 

 

36 

180 200 220 240 260

0.02

0.04

 100 150 200 250

0.01

 0 20 40 60

0.02

0.04

 

30 

160 180 200 220 240 260

0.01

0.02

 150 200

0.02

 0 20 40 60

0.02

0.04

 

Table 4. Illustration of distribution changes due to lossy compression for Class 2. 

PSNR-HVS-M, 
dB 

Red (Histogram and 
Approximation) 

Green (Histogram and 
Approximation) 

Blue (Histogram and 
Approximation) 

∞ (original 
image) 

160 180 200 220 240

0.02

0.04

 50 100 150 200 250

0.01

0.02

 
20 30 40 50

0.05

 

36 

160 180 200 220 240

0.01

0.02

 50 100 150 200 250

0.02

 0 100 200

0.02

0.04

 

30 

160 180 200 220 240 260

0.01

0.02

 50 100 150 200 250

0.01

0.02

 0 20 40 60

0.02

0.04

 

Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for 
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy 
compression) results in a reduction of probabilities of correct classification (analyze data in columns 
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Analysis of data in Table 2 also shows the following. There are some classes (Classes 3–6) for
which a larger CR and smaller PSNR-HVS-M (that correspond to more sufficient lossy compression)
results in a reduction of probabilities of correct classification (analyze data in columns for P33, P44, P55,

and P66). Meanwhile, there are classes, for which probabilities of correct classification increase—see
data for P77. This is because of the decrease in misclassifications in the texture area (see the maps in
Figure 3c,d). There is also one class (Class 2) for which P22 is the largest for PSNR-HVS-M about 40 dB
(due to noise filtering effect) but it reduces for smaller PSNR-HVS-M (larger CR).

One probable reason why the MLM classifier trained for original images and applied to compressed
ones loses efficiency is that feature distributions observed for compressed data differ from those ones
observed for original RS data and used for classifier training.

Then, one can expect that the MLM classifier has to be trained for compressed images. We
have carried out the corresponding study and the results are presented in Table 5. The conclusion
that follows from the analysis of data in Table 5 might seem trivial—it is needed to train the MLM
classifier for compressed images with the same characteristics of compression. Following this rule
leads to a considerable improvement in classification accuracy. For example, if original data are used in
training and then the MLM classifier is applied to data compressed providing PSNR-HVS-M = 42 dB,
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then Pcc = 0.501. At the same time, if the image compressed providing PSNR-HVS-M = 42 dB was
used in training, Pcc radically increases and becomes equal to 0.579. Even more surprising results
are observed for cases of images compressed producing PSNR-HVS-M equal to 36 and 30 dB. Pcc for
the corresponding training reaches 0.597 and 0.527, respectively. Note that Pcc = 0.627 for original
image classified using training for the original image. Then, it occurs that for images compressed with
PSNR-HVS-M about 40 dB almost the same Pcc is observed if they are trained for the corresponding
compressed images.

Table 5. Total probabilities of correct classification Pcc for different images depending upon
“training” data.

Image Used for Training

Total Probabilities of Correct Classification for
Compressed Images

PSNR-HVS-M =
42 dB

PSNR-HVS-M =
36 dB

PSNR-HVS-M =
30 dB

0 Original (uncompressed) 0.501 0.434 0.442

1 Compressed with providing
PSNR-HVS-M = 42 dB 0.579 0.566 0.563

2 Compressed with providing
PSNR-HVS-M = 36 dB 0.519 0.597 0.599

3 Compressed with providing
PSNR-HVS-M = 30 dB 0.408 0.446 0.527

Classification maps obtained for this methodology of training are presented in Figure 4a,b.
They can be compared to the maps in Figure 3c,d, respectively. This comparison clearly demonstrates
that training for the corresponding compressed data is preferable. Many classes are recognized
sufficiently better. One interesting point is that many classifications might appear in the neighborhoods
of sharp edges in multichannel images (near edges of Class 4). This is because such edges are
smeared by lossy compression and pixels with “intermediate values” that can be referred to as “wrong
classes” appear.
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maximum likelihood method (MLM) classifier trained for the same compressed image (a); compressed
image with providing PSNR-HVS-M = 30 dB using MLM classifier trained for the same compressed
image (b).
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4.2. NN-Based Classification

Let us start by analyzing data for classifying the original three-channel image using NN training
for this image. The obtained confusion matrix is presented in Table 6. The corresponding map is given
in Figure 5a. As one can see, several classes are recognized well: Field-R (Class 3), Water (class 4),
Trees (Class 6). There are many misclassifications for Classes “Roads” (with Class Field-Y that has
practically the same colors) and “Texture” (its pixels can be erroneously related to classes “Water”,
“Trees”, “Grass”, and, more rarely, Field-Y). The results are relatively bad for Class 2 and Class 5. Thus,
even for this almost ideal case (classified image is the same as that one used for training, the NN-based
classifier able to work with non-Gaussian distributions of features is applied), the classification results
are far from being perfect.

Table 6. Confusion matrix for the original image classified by neural networks (NN) trained for
this image.

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.356 0.645 0 0 0 0 0
Field-Y 0.109 0.608 0.002 0 0 0 0.281
Field-R 0 0.004 0.996 0 0 0 0
Water 0 0 0 0.986 0 0 0.014
Grass 0 0 0 0 0.744 0.245 0.012
Tree 0 0 0 0 0.072 0.923 0.005

Texture 0 0.03 0 0.26 0.116 0.153 0.441
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Figure 5. Classification results: for compressed image (PSNR-HVS-M = 42 dB) (a), for compressed
image (PSNR-HVS-M = 36 dB) (b); for compressed (PSNR-HVS-M = 30 dB) (c).

Taking into account the results for the MLM classifier, we also considered the case when the NN
classifier has been trained for the original image and then applied to compressed images. The data
obtained for the cases of PSNR-HVS-M equal to 42 dB, 36 dB, and 30 dB are given in Tables 7–9,
respectively. Analysis of data in Table 7 shows the following. As was expected, all probabilities have
changed. Let us consider the diagonal elements marked by Bold that correspond to probabilities of
correct classification of particular classes. In this sense, there are interesting observations (compare
the corresponding data in Tables 6 and 7): some probabilities have decreased sufficiently (see P11),
some decreased slightly (P33, P44, P66, P77). Meanwhile, some probabilities have slightly increased (P22

and P55).
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Table 7. Confusion matrix for compressed image classified by NN trained for the original image and
applied for the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.299 0.699 0 0 0 0 0
Field-Y 0.089 0.627 0 0 0 0 0.276
Field-R 0 0.018 0.982 0 0 0 0
Water 0 0 0 0.980 0 0 0.020
Grass 0 0 0 0 0.753 0.219 0.028
Tree 0 0 0 0 0.084 0.911 0.006

Texture 0 0.03 0 0.26 0.116 0.153 0.441

Table 8. Confusion matrix for compressed image classified by NN trained for original image and
applied for the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.271 0.728 0.001 0 0 0 0
Field-Y 0.078 0.631 0.012 0 0.001 0 0.279
Field-R 0 0.027 0.973 0 0 0 0
Water 0 0 0 0.979 0 0 0.021
Grass 0 0 0 0 0.721 0.22 0.059
Tree 0 0 0 0 0.078 0.915 0.007

Texture 0 0.049 0 0.253 0.123 0.148 0.426

Table 9. Confusion matrix for compressed image classified by NN trained for the original image and
applied for the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.217 0.766 0 0 0 0 0.017
Field-Y 0.067 0.646 0.007 0 0.005 0 0.275
Field-R 0 0.05 0.946 0.004 0 0 0
Water 0 0 0 0.992 0 0 0.008
Grass 0 0 0 0 0.658 0.21 0.131
Tree 0 0 0 0 0.051 0.925 0.025

Texture 0 0.067 0 0.243 0.141 0.131 0.418

Analysis of data in Tables 8 and 9 shows that lossy compression negatively influences P11, i.e.,
Probability of correct classification for the Class “Road”. Recall that the same effect has been observed
for the MLM. With a larger CR (smaller provided PSNR-HVS-M), probabilities P33 and P77 continue
to decrease. P22 slowly increases. P44 remains practically the same and very high. P66 also remains
practically the same. Finally, P55 decreases. Thus, we can state that being trained for the original image,
the NN classifier continues working well for PSNR-HVS-M about 40 dB and then its performance
starts making worse faster (with further increase of CR).

Figure 5 shows classification results for the test image compressed providing three different values
of PSNR-HVS-M. The results are quite similar. However, some differences can be noticed:

1. Less misclassifications are observed for PSNR-HVS-M = 30 dB for the class “Water”.
2. There are quite many misclassifications around the edge of Class “Water”.
3. More misclassifications appear for the class “Grass” when CR increases.
4. Many pixels and even some objects that belong to Class 2 (Field-Y) are classified as “Texture”

(white color). This example one more time shows the problems in image classification if an image
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to be classified contains a class like “Texture”. The problems occur for the class “Texture” itself
and the classes for which there is an intersection of features with features of the class “Texture”.

Let us now check what happens if compressed images are used for training. Table 10 presents
the confusion matrix obtained for the case of NN training using image compressed providing
PSNR-HVS-M = 42 dB. These data can be compared to the corresponding data in Table 7. If compressed
image is employed for training, probabilities P11, P55, and P77 are sufficiently better, probability P22 is
sufficiently worse, other probabilities are slightly worse. Thus, the quality of classification, in general,
slightly improves. The classification map is presented in Figure 6b.

Table 10. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.455 0.545 0.001 0 0 0 0
Field-Y 0.137 0.561 0.014 0 0 0 0.289
Field-R 0 0.026 0.974 0 0 0 0
Water 0 0 0 0.961 0 0 0.039
Grass 0 0 0 0 0.820 0.165 0.015
Tree 0 0 0 0 0.068 0.929 0.004

Texture 0 0.029 0 0.234 0.124 0.153 0.461
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Figure 6. Results of image classification by NN trained for the same image: original (a), compressed
with PSNR-HVS-M = 42 dB (b), compressed with PSNR-HVS-M = 36 dB (c), compressed with
PSNR-HVS-M = 30 dB (d).
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The next considered case is the classification of the image compressed producing
PSNR-HVS-M = 36 dB. The obtained probabilities are given in Table 11, the classification map
is presented in Figure 6c. The probabilities of correct classification in Table 11 are almost the same as
the corresponding values in Table 10. Comparing the data in Tables 8 and 11, it is possible to state that
it is worth using a compressed image for training (most probabilities of correct classification for classes
are better in this case). The classification map is given in Figure 6c and it is quite similar to those in
Figure 6a,b. This means that there is no considerable degradation of classification accuracy compared
to the previous two cases.

Table 11. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.507 0.492 0.002 0 0 0 0
Field-Y 0.127 0.562 0.005 0 0.001 0 0.305
Field-R 0 0.069 0.931 0 0 0 0
Water 0 0 0 0.989 0 0 0.01
Grass 0 0 0 0 0.901 0.087 0.013
Tree 0 0 0 0 0.039 0.956 0.005

Texture 0 0.029 0 0.236 0.142 0.141 0.452

Finally, the last case is the classification of the image compressed providing PSNR-HVS-M = 30 dB,
i.e., with considerable distortions. The confusion matrix is given in Table 12, the classification map is
represented in Figure 6d. Compared to the corresponding data in Table 9, a sufficient increase of P11,
P55, P66, and P77 is observed, P22, P33, and P44 have increased a little too. This means that it is worth
using the compressed image for training, especially if compression is carried out with a large CR.

Table 12. Confusion matrix for compressed image classified by NN trained for this image
(PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Road Field-Y Field-R Water Grass Trees Texture

Road 0.692 0.304 0 0 0.002 0.001 0.01
Field-Y 0.055 0.654 0.009 0 0.019 0 0.263
Field-R 0 0.033 0.967 0.004 0 0 0
Water 0 0 0 0.994 0 0 0.006
Grass 0 0 0 0 0.939 0.035 0.026
Tree 0 0 0 0 0.023 0.972 0.005

Texture 0 0.049 0 0.221 0.113 0.131 0.486

Attentive analysis of the classification map in Figure 6d allows noticing quite many
misclassifications near the edge between classes “Water” and “Trees” where these misclassified
pixels are related to “Texture”. We associate this effect with edge smearing and other effects that
happen near high contrast edges if the compression ratio is quite high.

4.3. Preliminary Conclusions

Summarizing the obtained results and conclusions, we can state the following:
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1. Classification by any classifier is not perfect if features intersect in feature space and/or if not all
possible features are used; here we mean that pixel-wise classification is unable to exploit spatial
information that can be useful for improving classification accuracy;

2. If a classifier is trained for original (uncompressed) data and then applied to compressed images,
then more compression (a larger CR, a smaller PSNR or PSNR-HVS-M) leads to classification
worsening (in general); meanwhile, the difference in Pcc and probabilities of correct classification
for particular classes can be negligible; classification accuracy for some particular classes can even
improve due to noise/variation suppression (if noise or high frequency variations are present);

3. It is worth training a classifier (at least, MLM and NN-based classifiers) for “conditions” they will
be applied; these conditions can be described by quality metrics’ values that are planned to be
provided at compression stage or QS value that will be used;

4. Different classifiers can produce sufficiently different classification maps for the same RS data;
quantitative parameters that characterize classification can be considerably different as well; a
good example are data for Class 6—the MLM classifier does not recognize it well enough whilst
the NN classifier performs sufficiently better, the situation is the opposite for Class 7;

5. Lossy compression negatively influences classes that are mainly associated with small-sized and
prolonged objects such as roads, narrow rivers, and cricks, small houses; the reason is that lossy
compression smears such kinds of objects and changes feature distributions; in this sense, the use
of visual quality metrics and setting desired values for them at compression stage can be useful
to avoid sufficient degradation of classification accuracy for such classes;

6. For pixel-wise classification, the misclassifications usually appear as isolated pixels; if distortions
due to compression are larger, the misclassifications might appear as groups of pixels, especially
in the neighborhoods of high contrast edges in RS images; this is undesired and it is worth
avoiding such situations that mostly happen if distortions due to lossy compression are visible
(in our experiments, if PSNR-HVS-M = 30 dB and, more rarely, if PSNR-HVS-M = 36 dB);

7. This runs us into the idea that, possibly, it is worth carrying out lossy compression either
without visually noticeable distortions or with distortions relating to partial suppression of
noise in quasi-homogeneous image regions; this can be controlled by either setting the desired
PSNR-HVS-M (≈40 dB) or the corresponding PCC for the used coder (e.g., QS for AGU).

Certainly, these conclusions are based on analysis of only one test image, and more studies are
needed. One opportunity is to check them for real-life RS data.

5. Analysis of Real-Life Three-Channel Image

Our experiments with real-life images have been done using a three-channel Landsat TM image
earlier used in our studies [38,39]. This test image (shown in pseudo-color representation in Figure 7a)
contains three component images acquired in optical bands with central wavelengths equal to 0.66
µm, 0.56 µm, and 0.49 µm, respectively. They have been associated with R, G, and B components of
the color image that has a size of 512 × 512 pixels. The image has five recognizable classes, namely,
“Soil” (Class 1), “Grass” (Class 2), “Water” (Class 3), “Urban (Roads and Buildings)” (Class 4), and
“Bushes” (Class 5). The image fragments used in classifier training are shown in Figure 7b whilst the
pixel used for verification of classifiers are marked by the same colors in Figure 7c. Details concerning
the numbers of pixels are given in [39]. Class 1 is marked by red color, Class 2—by green, Class 3—by
dark blue; Class 4—by yellow, Class 5—by azure.



Remote Sens. 2020, 12, 3840 21 of 35

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 35 

 

 

   
(a) (b) (c) 

Figure 7. The three-channel image in pseudo-color representation (a); pixel groups used for training 
(b), pixel groups used for verification (c). 

As one can see, the total number of classes is less than for the test image in the previous 
section, but some classes are the same or similar. Class 1 is similar to Field-R, Class 5—to Class 
“Texture”. As in test RS data, color features for many classes intersect (consider Classes “Grass” 
and “Soil”, Classes “Soil” and Bushes”). This means that classification is not a simple task. 

A part of data concerning lossy compression of this image component-wise are presented in 
Table 13 (more details can be found in [39]). As one can see, to provide PSNR-HVS-Mdes = 42 dB, 
one has to use QS ≈ 17.3. To provide PSNR-HVS-Mdes = 42 dB, QS ≈ 29.3. This is in good agreement 
with the data in Figure 1 for other test images. Thus, it is possible to give recommendations on what 
QS to use for providing PSNR-HVS-Mdes (see details in [23]). 

Table 13. Compression parameters. 

Component PSNR-HVS-M Desired QS PSNR-HVS-M Provided CR 

Pseudo-red 
42 dB 17.372 41.941 6.008 
36 dB 29.825 36.059 8.952 
30 dB 55.558 30.007 16.503 

Pseudo-green 
42 dB 17.285 41.936 5.994 
36 dB 29.856 35.992 8.968 
30 dB 55.134 29.996 16.445 

Pseudo-blue 
42 dB 17.227 41.847 6.016 
36 dB 29.729 35.998 8.993 
30 dB 55.014 30.0008 16.577 

Note that the provided CR can be quite large. It is about 6 for PSNR-HVS-Mdes = 42 dB and 
reaches 16.5 for PSNR-HVS-Mdes = 30 dB. 

We have carried out the analysis for six values of PSNR-HVS-M (45, 42, 39, 36, 33, and 30 dB). 
Figure 8 presents the considered three-channel image (in pseudo-color representation) compressed 
providing PSNR-HVS-M equal to 42 dB, 36 dB, and 30 dB. They are all very similar between each 
other and similar to the original image. A more attentive analysis allows finding differences for 
images in Figure 8b,c that mainly appear themselves in the neighborhoods of small-sized objects 
and high contrast edges. 

Figure 7. The three-channel image in pseudo-color representation (a); pixel groups used for training
(b), pixel groups used for verification (c).

As one can see, the total number of classes is less than for the test image in the previous section,
but some classes are the same or similar. Class 1 is similar to Field-R, Class 5—to Class “Texture”. As in
test RS data, color features for many classes intersect (consider Classes “Grass” and “Soil”, Classes
“Soil” and Bushes”). This means that classification is not a simple task.

A part of data concerning lossy compression of this image component-wise are presented in
Table 13 (more details can be found in [39]). As one can see, to provide PSNR-HVS-Mdes = 42 dB, one
has to use QS ≈ 17.3. To provide PSNR-HVS-Mdes = 42 dB, QS ≈ 29.3. This is in good agreement with
the data in Figure 1 for other test images. Thus, it is possible to give recommendations on what QS to
use for providing PSNR-HVS-Mdes (see details in [23]).

Table 13. Compression parameters.

Component PSNR-HVS-M Desired QS PSNR-HVS-M Provided CR

Pseudo-red
42 dB 17.372 41.941 6.008
36 dB 29.825 36.059 8.952
30 dB 55.558 30.007 16.503

Pseudo-green
42 dB 17.285 41.936 5.994
36 dB 29.856 35.992 8.968
30 dB 55.134 29.996 16.445

Pseudo-blue
42 dB 17.227 41.847 6.016
36 dB 29.729 35.998 8.993
30 dB 55.014 30.0008 16.577

Note that the provided CR can be quite large. It is about 6 for PSNR-HVS-Mdes = 42 dB and
reaches 16.5 for PSNR-HVS-Mdes = 30 dB.

We have carried out the analysis for six values of PSNR-HVS-M (45, 42, 39, 36, 33, and 30 dB).
Figure 8 presents the considered three-channel image (in pseudo-color representation) compressed
providing PSNR-HVS-M equal to 42 dB, 36 dB, and 30 dB. They are all very similar between each other
and similar to the original image. A more attentive analysis allows finding differences for images
in Figure 8b,c that mainly appear themselves in the neighborhoods of small-sized objects and high
contrast edges.
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Figure 8. Three-channel image in pseudo-color representation: compressed with providing
PSNR-HVS-M = 42 dB (a), compressed with providing PSNR-HVS-M = 36 dB (b); compressed
with providing PSNR-HVS-M = 30 dB (c).

5.1. MLM Classifier Results

Let us start by considering the results of applying the MLM classifier trained for the original image.
Tables 14–17 present the obtained data in the form of confusion matrices. As it is seen, probabilities of
correct classification for particular classes vary from 0.75 to 0.99 and the smallest probabilities take
place for rather heterogeneous classes “Soil” and “Bushes”.

Table 14. Classification probabilities for the MLM method trained for the original image and applied
to it.

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.747 0.027 0 0.037 0.189
Grass 0.173 0.812 0 0.008 0.007
Water 0 0 0.967 0 0.033
Urban 0.004 0 0 0.989 0.007
Bushes 0.091 0.068 0.013 0.016 0.812

Table 15. Classification probabilities (confusion matrix) for the MLM method trained for the original
image and applied to the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.732 0.025 0 0.043 0.199
Grass 0.177 0.808 0 0.008 0.006
Water 0 0 0.963 0 0.037
Urban 0.005 0 0 0.987 0.008
Bushes 0.118 0.07 0.014 0.018 0.779

If the same classifier is applied to a compressed image (PSNR-HVS-M=42 dB), the results are slightly worse
(see data in Table 15). Reduction of probabilities of correct classification by 0.002 . . . 0.033 takes place. The largest
reduction is observed for the most heterogeneous class “Bushes”.
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Table 16. Classification probabilities (confusion matrix) for the MLM trained for the original image and
applied to the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.744 0.028 0 0.043 0.185
Grass 0.185 0.799 0 0.009 0.007
Wate» 0 0 0.959 0 0.041
Urban 0.005 0 0 0.985 0.010
Bushes 0.133 0.074 0.016 0.018 0.758

Table 17. Classification probabilities (confusion matrix) for the MLM trained for the original image and
applied to the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.724 0.026 - 0.044 0.206
Grass 0.178 0.809 0 0.006 0.007
Water - 0 0.942 0 0.058
Urban 0.007 - 0 0.982 0.011
Bushes 0.145 0.079 0.016 0.019 0.741

Consider now the data obtained if the MLM classifier is applied to the image compressed
with visible distortions (PSNR-HVS-M = 36 dB). The confusion matrix is given in Table 16. Most
probabilities of correct classification for particular classes continue to decrease although this reduction
is not essential—up to 0.021 compared to the previous case (Table 15).

Finally, let us analyze data for a compressed image (PSNR-HVS-M = 30 dB) to which the MLM
classifier has been applied. The data are presented in Table 17. The tendency is the same—most
probabilities of correct classification for particular classes continue to decrease but, again, the reduction
is not large.

Classification maps for three images are presented in Figure 9. They are quite similar although some
differences can be found. Compression does not lead to radical degradation of classification accuracy.
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One can be interested in the behavior of Pcc depending on compression. For original image
Pcc = 0.865; for compressed images it equals to 0.853, 0.854, 0.853, 0.849, 0.842, and 0.839 for
PSNR-HVS-M equal to 45, 42, 39, 36, 33, and 30 dB, respectively. So, it is possible to state that lossy
compression providing PSNR-HVS-M about 40 dB does not lead to sufficient reduction of Pcc for the
considered case. Moreover, if training is done for the image compressed with the same conditions as
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an image subject to classification, classification results can improve. For example, if training has been
done for the compressed image (PSNR-HVS-M = 36 dB) and then applied to this image (to verification
set of pixels), Pcc increases to 0.855.

We have analyzed distributions of features before and after compression. One reason why Pcc

does not radically reduce with CR increase is that the corresponding distributions do not differ a lot.
The largest differences are observed for the classes “Soil” and “Bushes”. It might be slightly surprising
that the class “Urban” is recognized so well. The reason is that, for the considered image, features for
this class do not sufficiently overlap with features for other classes.

5.2. NN Classifier Results

Consider now the results of the NN-based classification of the real-life image. The ideal case data
(NN trained for original image is applied to the original image) are given in Table 18. The results can
be compared to the data in Table 14. The NN classifier better recognizes the classes “Soil” and “Grass”,
the results for the class “Water” are approximately the same.

Table 18. Classification probabilities for the NN-based method trained for the original image and
applied to it.

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.950 0 0 0 0.05
Grass 0 1 0 0 0
Water 0 0 0.952 0 0.048
Urban 0.098 0 0 0.767 0.135
Bushes 0.187 0.009 0.02 0.009 0.774

Suppose now that this classifier (NN trained for the original image) is applied to compressed images.
The results for different qualities of compressed data are presented in Tables 19–21. If PSNR-HVS-M
is equal to 42 dB or 36 dB, the results keep practically the same. Only the probability of correct
classification for “Bushes” steadily decreases. Reduction of classification accuracy occurs to be larger
for the image compressed with PSNR-HVS-M equal to 30 dB. Mainly, reduction takes place for the
classes “Water” and “Urban”.

Table 19. Classification probabilities (confusion matrix) for the NN-based method trained for the
original image and applied to the compressed image (PSNR-HVS-M = 42 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.942 0 0 0 0.058
Grass 0 0.999 0 0 0.001
Water 0 0 0.942 0 0.058
Urban 0.01 0 0 0.765 0.136
Bushes 0.207 0.016 0.018 0.009 0.751
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Table 20. Classification probabilities (confusion matrix) for the NN-based method trained for original
image and applied to the compressed image (PSNR-HVS-M = 36 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.944 0 0 0 0.057
Grass 0 1 0 0 0
Water 0 0 0.941 0 0.059
Urban 0.108 0 0 0.761 0.131
Bushes 0.236 0.022 0.017 0.007 0.718

Table 21. Classification probabilities (confusion matrix) for the NN-based method trained for the
original image and applied to the compressed image (PSNR-HVS-M = 30 dB).

Class
Probability of Decision

Soil Grass Water Urban Bushes

Soil 0.941 0 0 0 0.059
Grass 0 0.999 0 0 0.001
Water 0.001 0 0.919 0 0.08
Urban 0.099 0 0 0.747 0.153
Bushes 0.247 0.028 0.014 0.004 0.707

Some classification maps are presented in Figure 10. They do not differ a lot from each other.
Some pixels that belong to the class “Water” for the narrow river (see the left low corner in Figure 10c)
“disappear” (become misclassified). This is because of the effects of smearing prolonged objects due to
lossy compression. The MLM classifier training for compressed images was performed using training
samples for fragments shown in Figure 7b. Due to the usage of the same data for both training and
validation, noticeable classification improvement can be observed (at least, for several classes).
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5.3. Brief Analysis for Sentinel-2 Three-Channel Images

One can be interested whether the observed dependences hold for other images or their fragments,
other imagers, and other compression techniques. Sentinel-2 offers wide possibilities to check this since
it provides a huge amount of data that can be exploited for different purposes. For our study, we have
taken three-channel images of the Kharkiv region (Ukraine) in visible range acquired on 30 August
2019 when there were practically no clouds (images are available at [56]). The analyzed 512 × 512 pixel
fragments are for the neighborhood of Staryi Saltiv (45 km north-east from Kharkiv, Ukraine, set 1)
and north part of Kharkiv (set 2)—see Figure 11. The main reason for choosing these fragments is
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the availability of ground truth data that allow easy marking of four typical classes: Urban, Water,
Vegetation, and Bare Soil. One more reason is that the image in Figure 11a is considerably less complex
(textural) than the image in Figure 11b.
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Figure 11. Fragments of Sentinel-2 images of Staryi Saltiv (a) and north part of Kharkiv (b).

First, these fragments have been compressed component-wise with providing a set of PSNR-HVS-M
values using three coders: AGU used in the previous part of this paper, SPIHT [57] which can be
considered as an analog of JPEG2000 standard, and Advanced DCT coder (ADCTC) [58] that uses
partition scheme optimization for better adaptation to image content. Basic data on compression
performance are given in Table 22. The observed dependences are predictable. CR for all coders
increases if desired PSNR-HVS-M reduces. CR values for different components for the same desired
PSNR-HVS-M and set differ but not considerably. CR for AGU is usually slightly larger than for SPIHT
(for the same conditions), ADCTC outperforms both coders. CR values for set 2 images are several
times smaller than for the corresponding set 1 images due to the higher complexity of set 2 RS data.

Table 22. CR comparison for real-life data for three coders, both sets.

Color Desired PSNR-HVS-M CR for AGU CR for SPIHT CR for ADCTC

Pseudo-Red, set 1
45.000 10.338 9.467 11.306
39.000 18.383 16.631 20.362
33.000 32.929 29.303 36.465

Pseudo-Red, set 2
45.000 3.317 3.283 3.498
39.000 4.520 4.762 4.886
33.000 7.121 7.360 7.986

Pseudo-Green, set 1
45.000 7.179 5.957 7.513
39.000 12.666 10.914 13.513
33.000 23.907 20.833 26.030

Pseudo-Green, set 2
45.000 3.214 3.150 3.363
39.000 4.356 4.564 4.684
33.000 6.784 7.105 7.573

Pseudo-Blue, set 1
45.000 6.665 5.727 7.216
39.000 11.942 10.336 12.740
33.000 24.914 22.346 27.191

Pseudo-Blue, set 2
45.000 3.212 3.252 3.418
39.000 4.314 4.698 4.785
33.000 6.882 7.380 7.817
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Second, classifier training has been performed and probabilities of correct classification for all four
classes as well as the total probability of correct classification have been obtained. For the NN classifier
and AGU coder, the data are presented in Tables 23 and 24. Here and below abbreviation SS1 means
that classification has been done for an original (uncompressed) image 1 whilst, e.g., SS1_45 means
that classification has been done for the image compressed with providing PSNR-HVS-M = 45 dB.
Training has been done for the original image. As one can see, compression results for the Set 1 image
practically do not depend on compressed image quality. Even for PSNR-HVS-M = 30 dB probabilities
of correct classification are practically the same as for original data. Meanwhile, for the Set 2 image, the
situation is another. There is a tendency for classification accuracy degradation if compressed image
quality becomes worse. This is mainly due to the reduction of correct classification probabilities for
more heterogeneous classes, e.g., vegetation. For this image, it is possible to recommend compression
with providing PSNR-HVS-M about 42 dB to avoid considerable reduction of classification accuracy.

Table 23. Probabilities of correct classification depending on compressed image quality for Set 1, AGU
coder, NN classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.774 0.777 0.775 0.777 0.778 0.773 0.786
Water 0.998 0.998 0.998 0.999 0.999 0.999 0.998

Vegetation 0.915 0.913 0.914 0.915 0.918 0.921 0.927
Bare soil 0.809 0.811 0.809 0.809 0.812 0.798 0.801

Ptotal 0.874 0.875 0.874 0.875 0.877 0.873 0.878

Table 24. Probabilities of correct classification depending on compressed image quality for Set 2, AGU
coder, NN classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.877 0.872 0.871 0.865 0.861 0.861 0.864
Water 0.654 0.659 0.662 0.661 0.654 0.644 0.647

Vegetation 0.857 0.825 0.815 0.801 0.788 0.797 0.788
Bare soil 0.890 0.867 0.865 0.869 0.866 0.860 0.870

Ptotal 0.820 0.810 0.803 0.799 0.792 0.791 0.792

We have also analyzed the possibility of using compressed images for training. The probability of
correct classification has improved by about 0.01 for Set 1 image and remained practically the same for
Set 2 image.

Another part of our study relates to classification by MLM (the same maps have been used for
training the NN and MLM). MLM has been applied to data compressed by three aforementioned
coders. For the AGU coder, the obtained data are presented in Tables 25 and 26.

Table 25. Probabilities of correct classification depending on compressed image quality for Set 1, AGU
coder, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.727 0.727 0.735 0.745 0.743 0.771
Water 0.979 0.99 0.992 0.992 0.993 0.992 0.988

Vegetation 0.9 0.896 0.896 0.895 0.899 0.901 0.902
Bare soil 0.85 0.852 0.851 0.849 0.852 0.831 0.826

Ptotal 0.856 0.866 0.866 0.868 0.872 0.867 0.872
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Table 26. Probabilities of correct classification depending on compressed image quality for Set 2, AGU
coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.914 0.913 0.913 0.91 0.913 0.918
Water 0.923 0.902 0.893 0.885 0.873 0.873 0.857

Vegetation 0.691 0.667 0.647 0.645 0.634 0.631 0.619
Bare soil 0.856 0.819 0.815 0.817 0.812 0.802 0.812

Ptotal 0.847 0.826 0.817 0.815 0.807 0.805 0.801

It is seen that lossy compression leads to a positive effect for the Set 1 image. For all classes except
Bare Soil, the probabilities of correct classification improve or remain the same. Total probability also
improves and remains at approximately the same level for all considered qualities of the compressed
image (Table 25). Meanwhile, for the Set 2 image, larger CR leads to a steady reduction of total
probability and decreasing of probabilities for most classes Table 26).

We have also checked whether or not it is worth carrying out training for compressed images
instead of uncompressed ones. The answer, as earlier, is yes. In particular, for images compressed with
providing PSNR-HVS-M = 42 dB. The total probabilities equal to 0.893 for the Set 1 data and 0.858 for
the Set 2 image. Thus, it is worth using those data in training that have been obtained with the same
compression conditions as images subject to classification.

Data obtained for the SPIHT coder are presented in Tables 27 and 28. Their analysis shows
the following. Again, lossy compression has a small impact on the classification of the Set 1 data.
An optimum is observed for PSBR-HVS-M about 40 dB. The impact of compression for the Set 2 data is
also small. For some classes, probabilities of correct classification improve, for others become slightly
worse. In aggregate, the total probability remains almost the same.

Table 27. Probabilities of correct classification depending on compressed image quality for Set 1, SPIHT
coder, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.721 0.724 0.728 0.735 0.742 0.759
Water 0.979 0.991 0.991 0.993 0.993 0.992 0.985

Vegetation 0.9 0.899 0.901 0.9 0.904 0.908 0.906
Bare soil 0.85 0.856 0.864 0.858 0.858 0.848 0.816

Ptotal 0.856 0.866 0.87 0.87 0.872 0.873 0.867

Table 28. Probabilities of correct classification depending on compressed image quality for Set 2, SPIHT
coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.915 0.915 0.917 0.916 0.92 0.924
Water 0.923 0.918 0.913 0.903 0.892 0.884 0.875

Vegetation 0.691 0.686 0.688 0.692 0.697 0.699 0.707
Bare soil 0.856 0.847 0.858 0.862 0.853 0.861 0.859

Ptotal 0.847 0.841 0.843 0.843 0.839 0.841 0.841

Consider now the data obtained for ADCTC. They are presented in Tables 29 and 30. Their analysis
shows the same tendencies as those observed for the SPIHT coder.
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Table 29. Probabilities of correct classification depending on compressed image quality for Set 1,
ADCTC, ML classifier.

Classes SS1 SS1_45 SS1_42 SS1_39 SS1_36 SS1_33 SS1_30

Urban 0.695 0.723 0.725 0.734 0.736 0.751 0.76
Water 0.979 0.992 0.994 0.995 0.995 0.995 0.995

Vegetation 0.9 0.898 0.9 0.901 0.901 0.91 0.913
Bare soil 0.85 0.863 0.855 0.85 0.864 0.84 0.827

Ptotal 0.856 0.869 0.869 0.87 0.874 0.874 0.874

Table 30. Probabilities of correct classification depending on compressed image quality for Set 2,
ADCTC coder, ML classifier.

Classes SS2 SS2_45 SS2_42 SS2_39 SS2_36 SS2_33 SS2_30

Urban 0.917 0.914 0.911 0.91 0.911 0.912 0.915

Water 0.923 0.918 0.912 0.906 0.909 0.901 0.898

Vegetation 0.691 0.674 0.688 0.682 0.664 0.67 0.693

Bare soil 0.856 0.848 0.848 0.847 0.843 0.859 0.868

Ptotal 0.847 0.838 0.84 0.836 0.832 0.836 0.844

6. Discussion

Above, we have considered tendencies for one test and three real-life three-channel images
presented as 8-bit 2D data for each component. In practice, images can be presented differently, for
example, by 16-bit data [13] or by 10-bit data after certain normalization [59]. Then, a question arises
how to provide the desired PSNR-HVS-M (e.g., 40 dB) for a given multichannel image to be compressed.
To answer this question, let us consider some data. First, Figure 11 taken from [60] presents the
dependences of PSNR-HVS-M on QS for nine 8-bit grayscale test images of different complexity for
AGU. The average curve obtained for these nine test images is also given. It is seen that this average
curve allows the approximate setting of QS to provide the desired PSNR-HVS-M. For example, to
provide PSNR-HVS-M ≈ 43 dB, one has to set QSrec ≈ 15. To provide PSNR-HVS-M ≈ 40 dB, it is
possible to set QSrec ≈ 20. If D is not equal to 255, then the recommended QS is

QSrecD = QSrecD/255, (9)

where QSrec is determined from the average curve in Figure 11. As it follows from the analysis of data
in Figure 11, the use of QSrec or QSrecD provides PSNR-HVS-M approximately, errors can be up to 1 . . .
2 dB depending upon the complexity of an image to be compressed. Such accuracy can be treated
as acceptable, since, as it is shown in the previous Section, change of PSNR-HVS-M by even 2 dB
does not lead to radical changes of Pcc and probabilities of correct classification for particular classes.
Second, if errors in providing the desired PSNR-HVS-M are inappropriate, accuracy can be improved
by applying a two-step procedure proposed in [60]. As it has been shown in Table 13, QS that should
be used in component-wise compression is practically the same for all components. This means that it
is enough to determine QSrec or QSrecD for one component image and then apply it for compressing
other components (this can save time and resources at the data compression stage). Moreover, QSrec or
QSrecD determined according to recommendations given above can be used in joint compression of all
components of multichannel images or groups of components [59] by the 3D version of AGU. In this
case, the positive effect is twofold. First, a larger CR is provided compared to the component-wise
compression. Second, a slightly larger quality of the compressed image can be ensured.

Figure 12 demonstrates the dependences PSNR-HVS-M on QS for different test images. Figure 13
shows the RS data processing flowchart. Acquired images (e.g., on-board) are subject to “careful”
lossy compression in Quality Control Compression Unit where PCC (e.g., QS) is determined using
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the desired threshold for a chosen quality metric (e.g., 40 dB for PSNR-HVS-M) and rate/distortion
curves obtained in advance (like those in Figure 12). PCC corrections can be done if, e.g., images are
normalized before compression. In the Image Classification Unit, RS data are subject to classification
where the classifier can be trained using either earlier processed images or data that have been just
received. If time limitations are not strict, the second option seems preferable (according to results
obtained in our analysis).

1 
 

 

Figure 12. Dependences PSNR-HVS-M on QS for nine test images (see the list in the upper part of the
plot) and the average curve for AGU.
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Another question that has arisen several times is the following—is it possible to improve
classification accuracy? One answer that easily follows from our analysis is that the pixel-wise
classification (at least, its simple version used by us) does not allow exploiting information from
neighboring pixels. Such information can be of different types and it can be used differently. For
example, a pixel can be preliminarily classified as belonging to a homogeneous, textural, or locally active
area (by locally active, we mean pixel belonging to a small-sized object or edge or their neighborhood).
Then, different features can be determined and used for such pre-classified pixels. However, this
approach is out of the scope of this paper.

There are also two other approaches possible. They have been proposed in [39]. First, several
elementary classifiers (for example, MLM, NN, and SVM ones) can be applied in parallel, and then
their outputs can be combined. Second, post-processing of classification results with preliminary
detection of edges can be performed. Note that these approaches can lead to a sufficient (up to 0.1 . . .
0.2) increase of Pcc, especially if it is low for originally classified data. Meanwhile, more experiments
for verifying the methods developed in [39] are needed.

Finally, the last question is how to improve CR without losing classification performance for
multichannel RS data? In our opinion, 3D compression should be applied. However, in this case,
additional studies are also desired.

7. Conclusions

We have considered the task of lossy compression of multichannel images by introducing different
levels of distortions to analyze their influence on classification accuracy. Two classifiers, namely
MLM and NN, have been studied. The DCT-based coder AGU has been used. In addition, two other
transform-based coders have been employed with a brief analysis of their performance. One artificial
and three real-life three-channel images have been thoroughly analyzed. Component-wise compression
has been addressed with quality controlled (characterized) by visual quality metric PSNR-HVS-M.

The following has been shown for the case of classifier training for original (uncompressed) data;

- there is no sufficient decrease in classification accuracy if images are compressed without visible
distortions (PSNR-HVS-M exceeds 40 . . . 42 dB); in some cases, TPCC can even increase compared
to TPCC for original (uncompressed) data;

- lossy compression might have no considerable negative impact on classification accuracy even
if distortions are visible (PSNR-HVS-M < 40 dB) but this happens if a compressed image has a
simple structure;

- distortions of the aforementioned level result in different CR depending upon image complexity;
this means that images with complex structure have to be compressed with smaller CR to avoid
considerable reduction of Pcc;

- dependences of probabilities of correct classification of particular classes on compression
parameters are different; for classes mostly represented by large-size objects, lossy compression is
not so crucial; it might even happen that lossy compression can improve classification accuracy if
noise or high-frequency variations are partly suppressed due to it;

- for classes represented by small-sizes and prolonged objects as well as some textures, lossy
compression might lead to sufficient reduction of classification accuracy. This is due to the image
smearing effect that transforms features.

The situation is slightly different if the training is done for compressed data. Then, it is worth
using for training such compressed data that are characterized by the same quality (for example,
approximately the same PSNR-HVS-M value) as data to which classification will be applied. Then,
even for PSNR-HVS-M about 36 dB, the classification can be almost as good enough as for the original
image classified by the classifier trained for original data.

It has been also shown that the main dependencies are observed for different coders (in particular,
compression techniques based on DCT and wavelets) and for data provided by different multispectral
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systems. We also believe that other than PSNR-HVS-M visual quality metrics can be applied within
the proposed approach to lossy compression. Thus, the approach is quite general.

Finally, practical recommendations on how to set coder parameters to avoid sufficient reduction
of classification accuracy are given. Possibilities of classification improvement are briefly mentioned
and directions of future research are described.
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