Maxime Christ

Luc Forget

Florent De Dinechin

Lossless Differential Table Compression for Hardware Function Evaluation

Keywords: Table of numerical values, hardware function evaluation, compression, computer arithmetic, ASIC, FPGA

recently introduced, in the context of multipartite table methods, a lossless compression technique that replaces a table of numerical values with two smaller tables and one addition. The present work shows that this technique has many more applications than originally published, and that in many of these applications the addition is for free in practice. It also improves this technique and the resulting architecture by exposing a wider implementation space, and an exhaustive but fast algorithm exploring this space. These contributions are implemented in the open-source FloPoCo core generator and evaluated on FPGA and ASIC, reducing area up to a factor 2.

I. INTRODUCTION

Tables of precomputed values are pervasive in the design of application-specific hardware, especially in the field of elementary function evaluation [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF], [START_REF] Omondi | Computer-Hardware Evaluation of Mathematical Functions[END_REF]. For low precisions (typically up to 12 bits), a look-up table may store the value of a function for all the possible input values. For larger precisions, many evaluation methods may be used [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF], [START_REF] Omondi | Computer-Hardware Evaluation of Mathematical Functions[END_REF]. These methods often rely on tables of precomputed values [START_REF] De Dinechin | Multipartite table methods[END_REF], [START_REF] Detrey | Table-based polynomials for fast hardware function evaluation[END_REF], [START_REF] Lee | Hierarchical segmentation schemes for function evaluation[END_REF], [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF], [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF], [START_REF] Caro | Minimizing coefficients wordlength for piecewise-polynomial hardware function evaluation with exact or faithful rounding[END_REF]. Such table-based methods expose a trade-off between storage and computation. This enables FPGA designers to finely tune their architecture to the target device, and ASIC designers to match the silicon budget or performance requirements of an application.

Hsiao et al. introduced [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF] then improved [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF] a technique for compressing one specific table appearing in multipartite table methods [START_REF] De Dinechin | Multipartite table methods[END_REF]. This lossless differential table compression (LDTC) replaces one table with two smaller tables and an addition (Fig. 1). The present article extends this work in several ways.

A first contribution is, in Section II, an improvement to the compression method itself: the space of compression opportunities is wider than previous works suggest. The optimal can be found by a simple and fast exhaustive exploration.

A second contribution is to show in Section III that this technique is not limited to multipartite table methods: it is applicable as soon as the tabulated function presents small local variations, which is a very common case. Although LDTC was developed for low-precision function evaluation (up to 24 bits), it actually improves most function evaluation Maxime Christ is with Université Grenoble Alpes and CITI-Lab, Univ. Lyon, INSA-Lyon, Inria. Luc Forget and Florent de Dinechin are with CITI-Lab, Univ. Lyon, INSA-Lyon, Inria. {Maxime.Christ, Luc.Forget, Florent.de-Dinechin}@insa-lyon.fr. This work was supported by the MIAI and the ANR Imprenum project. A last contribution in Section IV is the observation that in many of these applications, LDTC is lossless in terms of functionality, but also in terms of performance. Indeed, the addition in LDTC adds two numbers with only a few bits of overlap (Fig. 1, Fig. 4). When the table value is itself added to a bit array [START_REF] Swartzlander | Merged arithmetic[END_REF] to be computed thanks to a compressor tree [START_REF] Parendeh-Afshar | Compressor tree synthesis on commercial high-performance FPGAs[END_REF], [START_REF] Kumm | Advanced compressor tree synthesis for FPGAs[END_REF], then the area overhead will be very little, and there will usually be no timing overhead.

Section V gathers experimental results that support all the previous claims.

II. LOSSLESS DIFFERENTIAL TABLE COMPRESSION

Fig. 1(a) shows an uncompressed table T with w A = 8 address bits and w R = 19 output bits. Informally, a table T has some potential for the compression studied here if the values stored at neighbouring addresses present small variations with respect to the full output range of the table 1 . For instance, the TIV (Table of Initial Values) of the original article [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF] samples a continuous and differentiable function at regularly spaced points. What is important, however, is not the possible mathematical properties (here continuity) of the underlying function, but the "small local variations" property of the discrete table. For illustration, Fig. 3 plots the content of two tables that are the result of a numerical optimization process [START_REF] Brisebarre | Efficient polynomial L ∞ -approximations[END_REF]. There is no closed-form real function of which such a table is a sampling, the content of the C 3 table is not even monotonic, and still these tables are perfectly suitable for the compression studied here.

A. Previous work

The core idea [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF] of LDTC is the following. The original table T is sub-sampled by a factor 2 s , which gives a subsampling table T ss . Obviously, T ss is smaller than T since it has fewer entries (2 w A -s instead of 2 w A). Each value of the original table is then reconstructed by adding, to one entry of T ss , the difference between this entry and the original value of T . This difference is stored in a second table T d of 2 w A entries. T d has as many entries as the original table T , but its output range w L is smaller than that of T thanks to the "small local variations" property of T : indeed T d stores local variations. Hence T d has fewer output bits than the original table, and is therefore also smaller. There is a compression as soon as the sum of the sizes of the two smaller tables is smaller than the original size of T [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF]. Reconstructing the value of T requires an addition, whose architectural cost will be discussed in Section IV.

In all the following, we call a slice of T the subset of 2 s consecutive values to be reconstructed from one value of T ss . If built as exposed previously, T d systematically has 2 s entries equal to 0: one for each slice. These systematic zeroes suggest that a further optimization is possible. Indeed, an improvement in [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF] is to add, to each entry of T d , the value of the w Rw L least significant bits (LSB) of the corresponding T ss entry. Thus, these bits can be removed from T ss , reducing its output size by w Rw L bits. However, we now have larger values in T d : in some cases this adds one bit (overflow bit) to the output size of T d .

B. A wider implementation space

The possible overflow bit in T d is expensive, since it is added to 2 w A entries. In the present work, instead of removing the maximum number of LSB output bits from T ss as in [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF], we consider leaving some of these bits when it allows to avoid the overflow bit in T d . If k extra output bits in T ss allow for a T d without overflow, the extra cost is k × 2 s bits and the benefit is 2 w A bits, so there is a potential net gain in storage.

Conversely, once we acknowledge that T d may overflow and that its output size w L must be enlarged, it is worth attempting to reduce w H at the LSB to benefit from the new freedom that a wider w L provides.

To capture all these cases, for a given table T with its input size w A and output size w R , a compression parameter vector is defined as the triplet (s, w H , w L) shown in Fig. 1. A vector is valid if it is possible to achieve LDTC with these parameters. A vector also has an implementation cost, estimated thanks to a cost function c(w A , s, w H , w L), further discussed in Section II-D.

The implementation space thus defined is a strict superset of the one explored in [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF]. In particular, as Section V will show, the optimal solution often shows v = 2 bits of overlap between H and L (see Figures 1 and4), and is therefore out of the space explored by previous approaches [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF], [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF].

C. Improved LDTC optimization algorithm

A generic LDTC optimization is then provided by Algorithm 1. It simply enumerates this parameter space, and selects among the valid vectors the one with the smallest cost. This space is fairly small since s, w H , and w L are numbers of bits. Note that Algorithm 2 is faster than attempting to fill the tables: it only needs the max and min of T on each slice, which can be computed only once for each value of s, and memoized. Therefore one invocation of Algorithm 2 requires time proportional to 2 w A -s , not to 2 w A .

Algorithm 1: Generic LDTC optimization function optimizeLDTC(T, w A , w R) bestVector ← (0, w R , 0) ; // no compression bestCost ← c(bestVector) ; forall (s, w H , w L) do cost ← c(w A , s, w H , w L); if cost < bestCost then if isValid(T, w A , w R ,
Altogether, the exploration of this parameter space on current computers is almost instantaneous for any size for which tabulation is practical.

D. Cost functions

Table II gives possible ways of evaluating the hardware cost c table (m, n) of a table with m input bits and n output bits. Most previous works [START_REF] De Dinechin | Multipartite table methods[END_REF], [START_REF] Hsiao | Table size reduction methods for faithfully rounded lookup-table-based multiplierless function evaluation[END_REF], [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF] use c table bit (m, n), which counts the total number of stored bits. On FPGAs, c table LUT (m, n) estimates the number of FPGA architectural LUTs with inputs. This model is both pessimistic (it ignores the optimizations performed by synthesis tools) and optimistic (it doesn't count LUTs used as address decoding multiplexers for large m), but it is accurate for small tables. The third function, c table SC (m, n), defined empirically [START_REF] Gustafsson | An empirical study on standard cell synthesis of elementary function lookup tables[END_REF], estimates the cost of a table implemented in ASIC as standard cells.

The cost function c(w A , s, w H , w L) used in Algorithm 1 is the sum of the cost of T ss , which is c table (w As, w H), the cost of T d , which is c table (w A , w L), and the cost of the addition c add (w H , w L) converted to the relevant unit from Table II. This addition cost will be further discussed in Section IV.

(m, n) = 2 m × n number of FPGA LUTs c table LUT (m, n) = 2 min(m-,0) × n ASIC standard cells [13] c table SC (m, n) = 2 0.65 min(m,n) × 2 0.19|m-n|

III. A REVIEW OF APPLICATIONS

This section gives a non-exhaustive list of applications of the LDTC technique to function evaluation [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF], [START_REF] Omondi | Computer-Hardware Evaluation of Mathematical Functions[END_REF] beyond the original multipartite approximation. Applications probably also exist beyond function evaluation.

First, LDTC works, and even works extremely well, for plain function tables with w A = w R . Such tables are routinely used for very low precisions (up to 12 bits). Table III shows that the gain may in such cases exceed 50%.

For larger precisions, approximation techniques must be used. Many generic function evaluation methods (including the multipartite methods) are variations or refinements of piecewise polynomial approximation. Fig. 2 shows a typical uniform piecewise approximation architecture [START_REF] De Dinechin | Automatic generation of polynomial-based hardware architectures for function evaluation[END_REF], [START_REF] Hsiao | Two-level hardware function evaluation based on correction of normalized piecewise difference functions[END_REF], [START_REF] Caro | Minimizing coefficients wordlength for piecewise-polynomial hardware function evaluation with exact or faithful rounding[END_REF]. The input domain of the function is decomposed in 2 w A segments of identical size by a simple splitting of the input word X in its w A leading bits (which become the segment address A) and its remaining least significant bits (which become the index Y within a segment). On each segment, a good polynomial approximation is precomputed and its coefficients C i are stored in a table indexed by A. It is possible to use more complex architectures where the segments of the input domain may have have different sizes [START_REF] Lee | Hierarchical segmentation schemes for function evaluation[END_REF], [START_REF] Chen | A dynamic non-uniform segmentation method for first-order polynomial function evaluation[END_REF], but there is always a coefficient table.

For LDTC, instead of the wide table of Fig. 2, we consider as many independent tables as there are coefficients. It turns

× + × + × + Polynomial Coefficient Table C 0 C 1 C 2 C 3 X A wA w Y w -wA Y 3 Y 2 Y 1 = Y final round
R Fig. 2. A fixed-point polynomial evaluator, using uniform segmentation and a Horner scheme with truncated multipliers -see [START_REF] De Dinechin | Automatic generation of polynomial-based hardware architectures for function evaluation[END_REF] for more details. Fig. 3. Plot of all the degree-2 and degree-3 coefficients (the values of C 2 and C 3 in Fig. 2) of a 24-bit, degree 3 piecewise (w A = 5) polynomial approximation to log(1 + x) when using machine-efficient polynomials [START_REF] Brisebarre | Efficient polynomial L ∞ -approximations[END_REF].

out that each coefficient table has the property of small local variations. This is an indirect consequence of a requirement of all these approximation methods, namely that the function must be differentiable up to a certain order. For instance, the degree-one coefficient C 1 is closely related to the derivative of the function, taken somewhere in each segment. As long as the derivative itself is continuous, C 1 (A) will present small local variations. For illustration, Fig. 3 shows C 2 (A) and C 3 (A) for a degree-3 approximation to log(1 + x), and Table III shows the compression achieved in each of the coefficients of a degree-2 approximation to the sine function (all obtained using FloPoCo's FixFunctionByPiecewisePoly generator).

Another large class of applications consists in functionspecific range reduction algorithms that rely on large tables of precomputed values. It was pioneered in software by Tang [START_REF] Tang | Table-driven implementation of the exponential function in IEEE floating-point arithmetic[END_REF] then used in hardware to implement e.g. exponential [18, Fig. 2], [START_REF] Langhammer | Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs[END_REF]Fig. 10], logarithm [START_REF] Langhammer | Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs[END_REF]Fig. 6] or trigonometric functions [20, Fig. 2]. These tables all present small local variations and are suitable for LDTC, as illustrated by Table III on the e A table of [START_REF] De Dinechin | Floating-point exponential functions for DSP-enabled FPGAs[END_REF] (obtained using FloPoCo's FPExp).

Such range reduction techniques may be used iteratively, as in most CORDIC variants [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF], in which case the table is addressed by the iteration index. It is unclear if there is compression potential in this case, however there is in highradix iterative algorithms [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF], [21, Fig. 1].

Finally, table-based methods have been also used to implement multiplication by constants [START_REF] Chapman | Fast integer multipliers fit in FPGAs (EDN 1993 design idea winner)[END_REF], [START_REF] Wirthlin | Constant coefficient multiplication using look-up tables[END_REF], [START_REF] De Dinechin | Table-based versus shift-and-add constant multipliers for FPGAs[END_REF] which are themselves used in elementary function implementations [18, Fig. 2], [START_REF] Langhammer | Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs[END_REF]Fig. 6], [20, Fig. 2]. Again the tables there are perfectly suited to LDTC. However, it is less obvious here that this potential can be exploited, as the tables are already finely tailored to the LUT-based logic of the FPGAs [START_REF] Wirthlin | Constant coefficient multiplication using look-up tables[END_REF], [START_REF] De Dinechin | Table-based versus shift-and-add constant multipliers for FPGAs[END_REF].

IV. WITH COMPRESSION TREES, LDTC IS FOR FREE

If an adder is used to compute the sum, it should be obvious from Fig. 1(b) that the adder size is only w H bits (the w Rw H lower bits of the sum are those of L). However, in many of the applications reviewed in Section III, the table result is added to a value that is itself computed by a compression tree. This is the case in the original multipartite method (where it is added to multioperand addition) [START_REF] De Dinechin | Multipartite table methods[END_REF]Fig. 7]. It is also the case for all the coefficients except C 3 in Fig. 2: in the Horner evaluation scheme [START_REF] Muller | Elementary functions, algorithms and implementation[END_REF] used there, each C i is added to a product, and the best way to implement this product is also a compression tree [START_REF] Ercegovac | Digital Arithmetic[END_REF], [START_REF] Kumm | Advanced compressor tree synthesis for FPGAs[END_REF] (if a parallel evaluation scheme is used [START_REF] Caro | Minimizing coefficients wordlength for piecewise-polynomial hardware function evaluation with exact or faithful rounding[END_REF] only C 0 is added to a product). The table outputs are also summed in table-based constant multiplication techniques [START_REF] Wirthlin | Constant coefficient multiplication using look-up tables[END_REF], [START_REF] De Dinechin | Table-based versus shift-and-add constant multipliers for FPGAs[END_REF], and in many other cases (e.g. [START_REF] Langhammer | Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs[END_REF]Fig. 6] where the tabulated E × log(2) is added to another term).

In all these cases, thanks to merged arithmetic [START_REF] Swartzlander | Merged arithmetic[END_REF], the addition adds only v = w H + w Lw R bits to the bit array. This is illustrated in Fig. 4. The area cost of the addition therefore becomes proportional to the overlap v, in other words negligible. Furthermore, as long as the addition of these v bits does not entail one more compression stage [START_REF] Kumm | Advanced compressor tree synthesis for FPGAs[END_REF], the delay overhead will be zero. It is the case in Fig. 4.

V. EVALUATION

LDTC has been integrated in FloPoCo (git master branch), where it will benefit to all the table-based operators. Table III reports the compression rate in terms of bit count for a representative range of application (see section III). Compression ratio up to 0.36 are possible, to be be compared to the best ratio of 0.74 in the previous state of the art [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF]Table VII].

A general observation on Table III is that the best compression ratios are observed for functions with the smaller difference between w R and w A . The intuition here is that the larger table is always T d , and that T d has very few output bits when w R ≈ w A . Note that LDTC even works when w R < w A . For plain tables, the compression ratio improves with the size of the initial table (see the pt lines in Table III).

Surprisingly, the optimal overlap is often v = 2 bits. However, this is not a strict rule, as the ptl:12 line shows.

Table IV compares the c table bit of the state of the art hierarchical multipartite methods including the best previous compression (hmp) [7, Tables 2 and3] to that achieved by the (older, non hierarchical) multipartite implementation of FloPoCo, enhanced with LDTC (mpt+LDTC). The function used here is sin(π 4 x), the only one on which we could reproduce the results of [START_REF] Hsiao | Hierarchical multipartite function evaluation[END_REF]. There is one more addition in mpt+LDTC than in hmp, however the total number of bits input to the compressor tree is smaller for mpt+LDTC (on 16 bits, 20+12+10+8+6=56 bits for hmp, versus 7+14+10+8+6+4=49 bits for mpt+LDTC). Both observations also hold in the 24-bit case, not detailed for lack of space. This experiment suggests that integrating our The pt architectures include an adder which costs area and adds to the delay. Conversely, the mpt evaluators use a compressor tree, in which case Section IV claimed that the compression is for free, both in terms of area (see Figure 4) and delay. The ratios reported in Tables V and VI support this claim 2 . The power consumption is essentially proportional to the area, and is therefore improved by LDTC.

In both Tables V and VI, the area compression ratios are not as good as those of Table III: this shows that the logic optimization of synthesis tools discover some of the compression opportunity exploited by LDTC [START_REF] Gustafsson | An empirical study on standard cell synthesis of elementary function lookup tables[END_REF].

We do not report results targetting FPGAs with block RAM, since actual savings will depend on the block RAM capabilities of the target, which are very discrete (e.g. M20k blocks on Altera/Intel devices can be configured as 2 9 × 40, 2 10 ×20, or 2 11 ×10 bits, while the Xilinx/AMD 36kbit blocks can do from 2 9 ×72 to 2 15 ×1). The larger the table, the higher the chances that LDTC is useful in this case.

VI. CONCLUSION

This work adds one optimization technique to the bag of tricks of arithmetic designers: lossless differential table compression can reduce up to a factor two the storage requirement of most tables used in function evaluation, at the cost of one small integer addition that can be hidden for free in an existing compressor tree. The optimal compression can be found by exhaustive enumeration. This technique is available in the open-source FloPoCo core generator.

 Fig. 1.Table compression example (here for the TIV of a multipartite architecture for sin(π 4 x) on [0, 1) with 16-bit inputs and outputs)

TABLE I

 I

	NOTATIONS USED IN THIS ARTICLE
	original table	T : A → R
	input and output sizes	w A , w R
	subsampling table	T ss : B → H
	input and output sizes	w B = w A -s, w H
	difference table	T d : A → L
	input and output sizes	w A , w

L

number of overlap bits v = w H + w Lw R methods, including those that scale to 64-bit precision and beyond. It could even be used in some software contexts. Besides, since this compression is errorless, it is very easy to plug into existing table-based methods, as illustrated with examples in the open-source core generator FloPoCo.

Table compression

 compression

	example (here for the TIV of a multipartite
	architecture for sin(π 4 x) on [0, 1) with 16-bit inputs and outputs)

TABLE II POSSIBLE

 II TABLE COST FUNCTIONS number of bits c table bit

 Fig.[START_REF] Detrey | Table-based polynomials for fast hardware function evaluation[END_REF]. The dot-diagram overhead of lossless table compression, here for the 24-bit multipartite implementation of sin(π 4 x)

	uncompressed	compressed with LDTC
	table output:	
	complete bit heap:	

 • 2 5 + 14 • 2 8 + 10 • 2 7 + 8 • 2 7 + 6 • 2 6 + 4 • 2 6 158,208improved LDTC to the hierarchical multipartite method will improve the state of the art of multipartite methods.Results for FPGA and ASIC synthesis are reported in Tables V and VI respectively. All the LDTC were optimized using the c table bit cost function, the other cost functions of Table II failing to provide any significant improvement so far.

		TABLE IV	
	COMPARISON WITH THE STATE OF THE ART IN MULTIPARTITE METHODS
		16 bits	24 bits
	hmp [7]	6, 272 = 20 • 2 7 + 12 • 2 7 + 10 • 2 7 + 8 • 2 6 + 6 • 2 6	166,528
	mpt+LDTC	6, 752 = 7	

 µm 2 (0.84) 1.2 ns (1.12) 2.76 mW (0.67) mpt:24 11,801 µm 2 (0.87) 1.8 ns (1.01) 11.13 mW (0.72) Synthesis results obtained through Synopsys design compiler using a 28nm FDSOI standard cell library from STMicroelectronics. Timing includes an estimation of interconnect delays. The compressor tree used for mpt is FloPoCo's default. Uncompressed synthesis results are not shown due to lack of space, only the ratio is given.

		TABLE VI	
	ASIC IMPLEMENTATION RESULTS FOR sin(π 4 x) (ADDITION INCLUDED)
	case	LDTC results (ratio WRT uncompressed table)
	pt:8	130 µm 2 (0.82) 0.3 ns (1.44)	0.12 mW (0.91)
	pt:9	184 µm 2 (0.56) 0.3 ns (1.12)	0.16 mW (0.62)
	pt:10	298 µm 2 (0.54) 0.4 ns (0.82)	0.26 mW (0.58)
	pt:12	1,190 µm 2 (0.63) 0.6 ns (0.94)	1.06 mW (0.66)
	mpt:12	269 µm 2 (0.98) 0.6 ns (1.00)	0.34 mW (0.96)
	mpt:14	424 µm 2 (0.98) 0.7 ns (1.00)	0.50 mW (0.96)
	mpt:16	793 µm 2 (0.92) 0.8 ns (1.00)	0.88 mW (0.88)
	mpt:20	2,888	

A more formal but less intuitive definition will come in Section II-C: a table T can be compressed if Algorithm 1, presented there, succeeds.

The mpt timing variations in Table V are routing artifacts -even the improvement for mpt:24 is actually due to variations in input buffer net delay.

Acknowledgement: Many thanks to Frédéric Pétrot for his comments and his help with ASIC synthesis.