
HAL Id: hal-03040364
https://hal.science/hal-03040364v1

Submitted on 4 Dec 2020 (v1), last revised 6 Jan 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lossless Differential Table Compression for Hardware
Function Evaluation

Maxime Christ, Luc Forget, Florent de Dinechin

To cite this version:
Maxime Christ, Luc Forget, Florent de Dinechin. Lossless Differential Table Compression for Hardware
Function Evaluation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021. �hal-
03040364v1�

https://hal.science/hal-03040364v1
https://hal.archives-ouvertes.fr

1

Lossless Differential Table Compression
for Hardware Function Evaluation

Maxime Christ, Luc Forget, Florent de Dinechin

Abstract—Hsiao et al. recently introduced, in the context of
multipartite table methods, a lossless compression technique that
replaces a table of numerical values with two smaller tables and
one addition. The present work improves this technique and
the resulting architecture by exposing a wider implementation
space, and an exhaustive but fast algorithm exploring this space.
It also shows that this technique has many more applications
than originally published, and that in many of these applications
the addition is for free in practice. These contributions are
implemented in the open-source FloPoCo core generator and
evaluated on FPGA and ASIC, reducing area up to a factor 2.

Index Terms—Table of numerical values, hardware function
evaluation, compression, computer arithmetic, ASIC, FPGA.

I. INTRODUCTION

Tables of precomputed values are pervasive in the design
of application-specific hardware, especially in the field of
elementary function evaluation [1], [2]. For low precisions
(typically up to 12 bits), a look-up table may store the value
of a function for all the possible input values. For larger
precisions, many evaluation methods may be used [1], [2].
These methods often rely on tables of precomputed values
[3], [4], [5], [6], [7], [8]. These table-based methods expose
a trade-off between storage and computation. This enables
FPGA designers to finely tune their architecture to the target
device, and ASIC designers to match the silicon budget or
performance requirements of an application.

Hsiao et al. introduced [6] then improved [7] a technique
for compressing one specific table appearing in multipartite
table methods [3]. This lossless differential table compression
(LDTC) replaces one table with two smaller tables and an
addition (Fig. 1). The present article extends this work in
several ways.

A first contribution is, in Section II, an improvement to
the compression method itself: the space of compression
opportunities is wider than previous works suggest, and can
be explored exhaustively by a simple and fast algorithm.

A second contribution is to show in Section III that this
technique is not limited to multipartite table methods: it is
applicable as soon as the tabulated function presents small
local variations, which is a very common case. Although
LDTC was developed for low-precision function evaluation
(up to 24 bits), it actually improves most function evaluation

Maxime Christ is with Université Grenoble Alpes and CITI-Lab, Univ.
Lyon, INSA-Lyon, Inria.
Luc Forget and Florent de Dinechin are with CITI-Lab, Univ. Lyon, INSA-
Lyon, Inria.
{Maxime.Christ, Luc.Forget, Florent.de-Dinechin}@insa-lyon.fr.
This work was supported by the MIAI and the ANR Imprenum project.

TABLE I
NOTATIONS USED IN THIS ARTICLE

original table T : A 7→ R
input and output sizes wA, wR

subsampling table Tss : B 7→ H
input and output sizes wB = wA− s, wH

difference table Td : A 7→ L
input and output sizes wA, wL

number of overlap bits v = wH +wL−wR

methods, including those that scale to 64-bit precision and
beyond. It could even be used in some software contexts.
Besides, since this compression is errorless, it is very easy
to plug into existing table-based methods, as illustrated with
examples in the open-source core generator FloPoCo.

A last contribution in Section IV is the observation that
in many of these applications, LDTC is lossless in terms of
functionality, but also in terms of performance. Indeed, the
addition in LDTC adds two numbers with only a few bits of
overlap (Fig. 1, Fig. 4). When the table value is itself added
to a bit array [13] to be computed thanks to a compressor tree
[14], [15], then the area overhead will be very little, and there
will usually be no timing overhead.

Section V gathers experimental results that support all the
previous claims.

II. LOSSLESS DIFFERENTIAL TABLE COMPRESSION

Fig. 1(a) shows an uncompressed table T with wA = 8
address bits and wR = 19 output bits. A table T has some
potential for compression if its output for consecutive values
of the address A present small variations with respect to the
full output range of the table1. For instance, the TIV (Table of
Initial Values) of the original article [6] samples a continuous
and differentiable function at regularly spaced points. What is
important, however, is not the possible mathematical properties
(here continuity) of the underlying function, but the “small
local variations” property of the discrete table. For illustration,
Fig. 3 plots the content of two tables that are the result of a
numerical optimization process [16]. There is no closed-form
real function of which such a table is a sampling, the content
of the C3 table is not even monotonic, and still these tables
are perfectly suitable for the compression studied here.

1The only really formal and accurate formulation of this condition is prob-
ably: “a table can be compressed if Algorithm 1 succeeds”, see Section II-C.

2

A

wA

T

R
wR

(a) Without compression

A
s

Tss

B

H
wH

Td

L
wLv

+

R

(b) With compression

Fig. 1. Table compression example (here for the TIV of a multipartite
architecture for sin(π

4 x) on [0,1) with 16-bit inputs and outputs)

A. Previous work

The core idea [6] of LDTC is the following. The original
table T is sub-sampled by a factor 2s, which gives a sub-
sampling table Tss. Obviously, Tss is smaller than T since it
has fewer entries (2wA−s instead of 2wA). Each value of the
original table is then reconstructed by adding, to one entry
of Tss, the difference of this entry to the original value of T .
This difference is stored in a second table Td of 2wA entries
– as many as the original table. However, thanks to “small
local variations” property of the original table, the output
range wL of Td is smaller than that of T (as Td only contains
differences). Hence Td has fewer output bits than the original
table, and is therefore also smaller. There is a compression
as soon as the sum of the sizes of the two smaller tables is
smaller than the original size of T [6]. Reconstructing the
value of T requires an addition, whose architectural cost will
be discussed in Section IV.

In all the following, we call a slice of T the subset of
2s consecutive values to be reconstructed from one value of
Tss. If built as exposed previously, Td systematically has 2s

entries equal to 0, one for each slice. This suggests that a
further optimization is possible (these systematic zeroes should
themselves be somehow compressed). The solution proposed
in [7] is to add, to each entry of Td, the value of the wR−wL
least significant bits (LSB) of the corresponding Tss entry.
Thus, these bits can be removed from Tss, reducing its output
size by wR −wL bits. However, the addition may overflow,
enlarging the output size of Td by one bit.

B. A wider implementation space

The possible overflow bit in Td is expensive, since it is
added to 2wA entries. The refinement introduced in the present
paper attempts to avoid this Td overflow bit. Instead of always
removing the maximum number of output bits from Tss as in
[7], we consider leaving some of these bits, in the hope that
it allows to avoid the overflow bit in Td. If k extra output bits
in Tss allows for a Td without overflow, the extra cost is k×2s

bits and the benefit is 2wA bits, so there is a potential net gain
in storage.

Conversely, once we acknowledge that Td may overflow and
that its output size wL must be enlarged, it is worth attempting

to reduce wH by one bit (its least significant bit) to benefit from
the new freedom that a wider wL provides.

More simply, for a given table T with its input and output
sizes wA and wR, a compression parameter vector is defined
as the triplet (s,wH ,wL). A vector is valid if it possible
to achieve LDTC with these parameters. A vector also has
an implementation cost, estimated thanks to a cost function
cost(wA,s,wH ,wL), further discussed in Section II-D.

The implementation space thus defined is a strict superset
of the one explored in [7]. In particular, as Section V will
show, the optimal solution often shows v = 2 bits of overlap
between H and L (see Figures 1 and 4), and is therefore out
of the space explored by previous approaches [6], [7].

C. Improved LDTC optimization algorithm

A generic LDTC optimization is then provided by Algo-
rithm 1. It simply enumerates this parameter space, and selects
among the valid vectors the one with the smallest cost. This
space is fairly small since s, wH , and wL are numbers of bits.

Algorithm 1: Generic LDTC optimization

function optimizeLDTC(T,wA,wR)
bestVector← (0,wR,0) ; // no compression
bestCost← cost(bestVector) ;
forall (s,wH ,wL) do

c← cost(wA,s,wH ,wL);
if c < bestCost then

if isValid(T,wA,wR,s,wH ,wL) then
bestCost← c;
bestVector← (s,wH ,wL);

end if
end if

end forall
return bestVector

Actually, Algorithm 1 first filters by cost, then by validity,
because cost (see Section II-D) is faster to evaluate than
validity. Algorithm 2 determines if a parameter vector is valid.

Algorithm 2: Is a parameter vector valid ?

function isValid(T,wA,wR,s,wH ,wL)
for B ∈ (0,1, . . . ,2wA−s−1) ; // loop on slices
do

S←{T [j]} j∈{B·2s...(B+1)·2s−1} ; // slice
M←max(S) ; // max on slice
m←min(S) ; // min on slice
mask← 2wR−wH −1 ;
H← m− (m & mask) ; // wH upper bits of m

Mlow←M−H ; // max diff value on this slice
if Mlow ≥ 2wL then

return false ; // one slice won’t fit: exit with false
end if

end for
return true

Note that Algorithm 2 is faster than attempting to fill the
tables: it only needs the max and min of T on each slice,

3

TABLE II
POSSIBLE TABLE COST FUNCTIONS

number of bits cbit(m,n) = 2m×n

number of FPGA LUT cLUT(m,n) = 2min(m−`,0)×n

ASIC standard cells [17] cSC(m,n) = 20.65min(m,n)×20.19|m−n|

which can be computed only once for each value of s, and
memoized. Therefore one invocation of Algorithm 2 require
time proportional to 2wA−s, not to 2wA .

Altogether, with a little obvious pruning of this parameter
space, its exploration is almost instantaneous on current com-
puters for any practical size.

D. Cost functions

The cost of a solution may be evaluated as:

cost(wA,s,wH ,wL)= c(Tss)+ c(Td)+ c(add).

The cost of the addition will be discussed in Section IV.
The hardware cost of a table with m input bits and n output
bits can be estimated in various ways, e.g. those given in
Table II. Most previous works [3], [6], [7] use cbit(m,n),
which counts the total number of stored bits. On FPGAs,
cLUT(m,n) estimates the number of FPGA architectural LUTs
with ` inputs. This model is both pessimistic (it ignores the
optimizations performed by synthesis tools) and optimistic (it
doesn’t count LUTs used as address decoding multiplexers for
large m), but it is accurate for small tables. The third function,
cSC(m,n), defined empirically [17], estimates the cost of a
table implemented in ASIC as standard cells.

III. A REVIEW OF APPLICATIONS

This section gives a non-exhaustive list of applications of
the LDTC technique to function evaluation [1], [2] beyond the
original multipartite approximation.

First, LDTC works, and even works extremely well, for
plain function tables with wA = wR. Such tables are routinely
used for very low precisions (up to 12 bits). Table III shows
that the gain may in such cases exceed 50%.

For larger precisions, approximation techniques must be
used. Many generic function evaluation methods (including
the multipartite methods) are variations or refinements of
piecewise polynomial approximation. Fig. 2 shows a typical
uniform piecewise approximation architecture [18], [19], [8].
The input domain of the function is decomposed in 2wA

segments of identical size by a simple splitting of the input
word X in its wA leading bits (which become the segment
address A) and its remaining least significant bits (which
become the index Y within a segment). On each segment,
a good polynomial approximation is precomputed and its
coefficients Ci are stored in a table indexed by A. It is possible
to use more complex architectures where the segments of the
input domain may have have different sizes [5], [20], there is
nevertheless a coefficient table.

For LDTC, instead of the wide table of Fig. 2, we consider
as many independent tables as there are coefficients. It turns

× + × + × +

Polynomial Coefficient Table

C0C1C2C3

X

A
wA

w

Y

w−wA Ỹ3 Ỹ2 Ỹ1 = Y

finalround
R

Fig. 2. A fixed-point polynomial evaluator, using uniform segmentation and
a Horner scheme with truncated multipliers – see [18] for more details.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

·104

interval index A

co
ef

fic
ie

nt
va

lu
e

C2

0 5 10 15 20 25 30

20

40

60

80

interval index A

C3

Fig. 3. Plot of all the degree-2 and degree-3 coefficients (the values of
C2 and C3 in Fig. 2) of a 24-bit, degree 3 piecewise (wA = 5) polynomial
approximation to log(1+ x) when using machine-efficient polynomials [16].

out that each coefficient table has the property of small local
variations. This is an indirect consequence of a requirement
of all these approximation methods, namely that the function
must be differentiable up to a certain order. For instance, the
degree-one coefficient C1 is closely related to the derivative of
the function, taken somewhere in each segment. As long as the
derivative itself is continuous, C1(A) will present small local
variations. For illustration, Fig. 3 shows C2(A) and C3(A) for
a degree-3 approximation to log(1+ x), and Table III shows
the compression achieved in each of the coefficients of a
degree-2 approximation to the sine function (all obtained using
FloPoCo’s FixFunctionByPiecewisePoly generator).

Another large class of applications consists in function-
specific range reduction algorithms that rely on large tables
of precomputed values. It was pioneered in software by Tang
[21] then used in hardware to implement e.g. exponential [22,
Fig. 2], [23, Fig. 10], logarithm [23, Fig. 6] or trigonometric
functions [12, Fig. 2]. These tables all present small local
variations and are suitable for LDTC, as illustrated by Table III
on the eA table of [22] (obtained using FloPoCo’s FPExp).

Such range reduction techniques may be used iteratively,
as in most CORDIC variants [1], in which case the table
is addressed by the iteration index. It is unclear if there is
compression potential in this case, however there is in hig-
radix iterative algorithms [1] [24, Fig. 1].

Finally, table-based methods have been also used to im-
plement multiplication by constants [9], [10], [11] which are
themselves used in elementary function implementations [22,
Fig. 2] [23, Fig. 6][12, Fig. 2]. Again the tables there are
perfectly suited to LDTC. However, it is less obvious here
that this potential can be exploited, as the tables are already
finely tailored to the LUT-based logic of the FPGAs [10], [11].

IV. WITH COMPRESSION TREES, LDTC IS FOR FREE

If an adder is used to compute the sum, it should be obvious
from Fig. 1(b) that the adder size is only wH bits (the wR−wH
lower bits of the sum are those of L).

4

uncompressed compressed with LDTC
table output:

complete bit heap:

Fig. 4. The dot-diagram overhead of lossless table compression, here for the
24-bit multipartite implementation of sin(π

4 x)

However, in many of the applications reviewed in Sec-
tion III, the table result is added to a value that it itself
computed by a compression tree. This is the case in the
original multipartite method (where it is added to multi-
operand addition) [3, Fig. 7]. It is also the case for all the
coefficients except C3 in Fig. 2: in the Horner evaluation
scheme [1] used there, each Ci is added to a product, and
the best way to implement this product is also a compression
tree [25], [15] (if a parallel evaluation scheme is used [8] only
C0 is added to a product). The table outputs are also summed
in table-based constant multiplication techniques [10], [11],
and in many other cases (e.g. [23, Fig. 6] where the tabulated
E× log(2) is added to another term).

In all these cases, thanks to merged arithmetic [13], the
addition adds only v = wH +wL −wR bits to the bit array.
This is illustrated in Fig. 4. The area cost of the addition
therefore becomes proportional to the overlap v, in other words
negligible. Furthermore, as long as the addition of these v
bits does not entail one more compression stage [15] (this is
definitely the case in Fig. 4), the delay overhead will be zero.

V. EVALUATION

LDTC is now available in FloPoCo (git master branch),
where it will benefit to all the table-based operators. Table III
reports the compression rate in terms of bit count for a repre-
sentative range of application (see section III). Compression
ratio up to 0.36 are possible, to be be compared to the best
ratio of 0.74 in the previous state of the art [7, Table VII].

A general observation on Table III is that the best com-
pression ratios are observed for functions with the smaller
difference between wR and wA. The intuition here is that the
larger table is always Td, and that Td has very few output bits
when wR ≈ wA. Note that LDTC even works when wR < wA.

Looking at the pt results, the compression ratio seems to
improve with the initial table size.

The optimal often has an overlap of v = 2 bits. As the ptl
line shows, this is not a strict rule.

Table IV compares the cbit of the previous state of the art in
multipartite methods [7, Tables 2 and 3] to that achieved by
the multipartite implementation of FloPoCo when enhanced
with LDTC. The function used here is sin(π

4 x), the only one
on which we could reproduce the results of [7]. LDTC always
improves upon MP, but not always over the hierarchical mul-
tipartite method [7] which brings other improvements. There
is one more addition in MP+LDTC than in HMP, however
remark that the total number of bits input to the compressor
tree is smaller for MP+LDTC (7+14+10+8+6+4=49, versus
20+12+10+8+6=56 for HMP) — both observations also hold
in the 24-bit case, not detailed for space. Therefore the cost
of the compressor tree is likely to be smaller for MP+LDTC.

TABLE III
COMPRESSION RESULTS IN TERMS OF BIT STORAGE

plain table LDTC (ratio) Tss Td v

pt:8 2,048 992 (0.48) 224 768
8 ·28 7 ·25 3 ·28 2

pt:9 4,608 2,048 (0.44) 512 1,536
9 ·29 8 ·26 3 ·29 2

pt:10 10,240 4,224 (0.41) 1,152 3,072
10 ·210 9 ·27 3 ·210 2

pt:12 49,152 17,920 (0.36) 5,632 12,288
12 ·212 11 ·29 3 ·212 2

ptl:12 49,152 18,432 (0.38) 6,144 12,288
12 ·212 12 ·29 3 ·212 3

mpt:12 960 800 (0.83) 96 704
15 ·26 6 ·24 11 ·26 2

mpt:14 2,048 1,632 (0.8) 224 1,408
16 ·27 7 ·25 11 ·27 2

mpt:16 4,864 3,808 (0.78) 224 3,584
19 ·28 7 ·25 14 ·28 2

mpt:20 24,576 18,560 (0.76) 1,152 17,408
24 ·210 9 ·27 17 ·210 2

mpt:24 114,688 83,456 (0.73) 5,632 77,824
28 ·212 11 ·29 19 ·212 2

ea:sp:10 28,672 22,656 (0.79) 1,152 21,504
28 ·210 9 ·27 21 ·210 2

ea:dp:10 58,368 52,352 (0.90) 1,152 51,200
57 ·210 9 ·27 50 ·210 2

ea:dp:12 233,472 202,240 (0.87) 5,632 196,608
57 ·212 11 ·29 48 ·212 2

ea:dp:14 933,888 780,288 (0.84) 26,624 753,664
57 ·214 13 ·211 46 ·214 2

C0 17,920 15,360 (0.86) 512 14,848
35 ·29 8 ·26 29 ·29 2

C1 12,800 9,792 (0.76) 576 9,216
25 ·29 9 ·26 18 ·29 2

C2 6,656 4,160 (0.62) 576 3,584
13 ·29 9 ·26 7 ·29 2

all Ci 73 ·29 29,312 (0.78) 26 ·26 54 ·29

pt, ptl plain tabulation of sin(π

4 x) (pt) or log(1+ x) (ptl) on [0,1)
mpt first table of a multipartite approximation [6] to sin(π

4 x) on [0,1)
ea eA table of [22], for single (sp) or double (dp) precision
Ci coefficients of a degree-2 uniform piecewise approximation [18]

to sin(π

4 x) on [0,1) for 32-bit accuracy (wA = 9)

TABLE IV
COMPARISON WITH THE STATE OF THE ART IN MULTIPARTITE METHODS

24 bits 16 bits

HMP [7] 166,528 6,272 = 20 ·27 +12 ·27 +10 ·27 +8 ·26 +6 ·26

MP+LDTC 158,208 6,752 = 7 ·25 +14 ·28 + 10 ·27 +8 ·27 +6 ·26 +4 ·26

TABLE V
FPGA IMPLEMENTATION RESULTS FOR sin(π

4 x) (ADDITION INCLUDED)

case without LDTC with LDTC (ratio)
pt:8 27 LUT 5.5 ns 26 LUT (0.96) 6.4 ns (1.17)
pt:9 61 LUT 6.3 ns 46 LUT (0.75) 6.7 ns (1.08)

pt:10 134 LUT 6.8 ns 83 LUT (0.62) 7.5 ns (1.1)
pt:12 536 LUT 9.8 ns 287 LUT (0.54) 8.7 ns (0.89)

mpt:12 76 LUT 7.6 ns 73 LUT (0.96) 7.7 ns (1.02)
mpt:14 102 LUT 8.1 ns 98 LUT (0.96) 8.1 ns (1.0)
mpt:16 184 LUT 8.9 ns 190 LUT (1.03) 9.3 ns (1.04)
mpt:20 676 LUT 12.8 ns 637 LUT (0.94) 12.5 ns (0.98)
mpt:24 2489 LUT 18.1 ns 2322 LUT (0.93) 16.1 ns (0.89)

Results after implementation on Kintex7 using Vivado 2020.2. The
compressor tree used for mpt is FloPoCo’s default.

5

TABLE VI
ASIC IMPLEMENTATION RESULTS FOR sin(π

4 x) (ADDITION INCLUDED)

case LDTC results (ratio WRT uncompressed table)

pt:8 130 µm2 (0.82) 0.3 ns (1.44) 0.12 mW (0.91)
pt:9 184 µm2 (0.56) 0.3 ns (1.12) 0.16 mW (0.62)
pt:10 298 µm2 (0.54) 0.4 ns (0.82) 0.26 mW (0.58)
pt:12 1,190 µm2 (0.63) 0.6 ns (0.94) 1.06 mW (0.66)

mpt:12 269 µm2 (0.98) 0.6 ns (1.00) 0.34 mW (0.96)
mpt:14 424 µm2 (0.98) 0.7 ns (1.00) 0.50 mW (0.96)
mpt:16 793 µm2 (0.92) 0.8 ns (1.00) 0.88 mW (0.88)
mpt:20 2,888 µm2 (0.84) 1.2 ns (1.12) 2.76 mW (0.67)
mpt:24 11,801 µm2 (0.87) 1.8 ns (1.01) 11.13 mW (0.72)

Results obtained with Synopsys design compiler using STMicroelectronics
28nm FDSOI standard cell library. The compressor tree used for mpt is

FloPoCo’s default, which is currently optimized for FPGAs.

Results for FPGA and ASIC synthesis are reported in Tables
V and VI respectively. All the LDTC were optimized using the
cbit cost function, the other cost functions of Table II failing
to provide any significant improvement so far.

The area compression ratios in the synthesis results are not
as good as those of Table III, and the difference cannot be
explained by the addition cost only: the logic optimization of
synthesis tools somehow discover some of the compression
opportunity exploited by LDTC [17].

The compressed plain tables (pt lines in Table V) include an
adder. Its area overhead is smaller than the area gained on the
tables for precisions larger than 8 bits, however it adds to the
critical path delay. Still, for large tables, LDTC also reduces
the delay, both on ASIC and on FPGA.

In the multipartite cases (mpt lines in Table V), this addition
is merged in the compressor tree (see Figure 4) and the delay is
essentially unchanged in most cases, as expected2. However
the area reduction is less dramatic as only one table out of
several is compressed, and for some precisions LDTC may
even be counter-productive area-wise.

We do not report results targetting FPGAs with block RAM.
Actual savings will depend on the block RAM capabilities
of the target, which are very discrete (e.g. M20k blocks on
Altera/Intel devices can be configured as 29× 40, 210× 20,
or 211×10 bits, while the Xilinx/AMD 36kbit blocks can do
from 29×72 to 215×1). The larger the table, the higher the
chances that LDTC is useful.

VI. CONCLUSION

This work adds one optimization technique to the bag of
tricks of arithmetic designers: lossless differential table com-
pression can reduce up to a factor two the storage requirement
of most tables used in function evaluation, at the cost of
one small integer addition that can be hidden for free in an
existing compressor tree. The optimal solution can be found
by an exhaustive enumeration. This technique is available in
the open-source FloPoCo core generator.

Acknowledgement: Many thanks to Frédéric Pétrot for
his comments and his help with ASIC synthesis.

2The mpt timing variation in Table V are routing artifacts – even the
improvement for mpt:24 is actually due to variations in input buffer net delay.

REFERENCES

[1] J.-M. Muller, Elementary functions, algorithms and implementation,
3rd Edition. Birkhaüser Boston, 2016. [Online]. Available: https://hal-
ens-lyon.archives-ouvertes.fr/ensl-01398294

[2] A. Omondi, Computer-Hardware Evaluation of Mathematical Functions.
Imperial College Press, 2016.

[3] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Transactions on Computers, vol. 54, no. 3, pp. 319–330, 2005.

[4] J. Detrey and F. de Dinechin, “Table-based polynomials for fast hardware
function evaluation,” in Application-specific Systems, Architectures and
Processors. IEEE, 2005, pp. 328–333.

[5] D.-U. Lee, P. Cheung, W. Luk, and J. Villasenor, “Hierarchical segmen-
tation schemes for function evaluation,” IEEE Transactions on VLSI
Systems, vol. 17, no. 1, 2009.

[6] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. K. Meher, “Table size reduction
methods for faithfully rounded lookup-table-based multiplierless func-
tion evaluation,” Transactions on Circuits and Systems II, vol. 62, no. 5,
pp. 466–470, 2015.

[7] S.-F. Hsiao, C.-S. Wen, Y.-H. Chen, and K.-C. Huang, “Hierarchical
multipartite function evaluation,” Transactions on Computers, vol. 66,
no. 1, pp. 89–99, 2017.

[8] D. De Caro, E. Napoli, D. Esposito, G. Castellano, N. Petra, and A. G.
Strollo, “Minimizing coefficients wordlength for piecewise-polynomial
hardware function evaluation with exact or faithful rounding,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 5,
pp. 1187–1200, 2017.

[9] K. Chapman, “Fast integer multipliers fit in FPGAs (EDN 1993 design
idea winner),” EDN magazine, no. 10, p. 80, May 1993.

[10] M. Wirthlin, “Constant coefficient multiplication using look-up tables,”
Journal of VLSI Signal Processing, vol. 36, no. 1, pp. 7–15, 2004.

[11] F. de Dinechin, S.-I. Filip, L. Forget, and M. Kumm, “Table-based versus
shift-and-add constant multipliers for FPGAs,” in 26th IEEE Symposium
of Computer Arithmetic (ARITH-26), Jun. 2019.

[12] F. de Dinechin, M. Istoan, and G. Sergent, “Fixed-point trigonometric
functions on FPGAs,” SIGARCH Computer Architecture News, vol. 41,
no. 5, pp. 83–88, 2013.

[13] E. E. Swartzlander, “Merged arithmetic,” IEEE Transactions onComput-
ers, vol. C-29, no. 10, pp. 946 –950, 1980.

[14] H. Parendeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree
synthesis on commercial high-performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 4, no. 4, 2011.

[15] M. Kumm and J. Kappauf, “Advanced compressor tree synthesis for
FPGAs,” IEEE Transactions on Computers, vol. 67, no. 8, pp. 1078–
1091, 2018.

[16] N. Brisebarre and S. Chevillard, “Efficient polynomial L∞- approxima-
tions,” in 18th Symposium on Computer Arithmetic. IEEE, 2007, pp.
169–176.

[17] O. Gustafsson and K. Johansson, “An empirical study on standard cell
synthesis of elementary function lookup tables,” Asilomar Conference
on Signals, Systems and Computers, pp. 1810–1813, 2008.

[18] F. de Dinechin, M. Joldes, and B. Pasca, “Automatic generation of
polynomial-based hardware architectures for function evaluation,” in
Application-specific Systems, Architectures and Processors. IEEE,
2010.

[19] S.-F. Hsiao, H.-J. Ko, and C.-S. Wen, “Two-level hardware function
evaluation based on correction of normalized piecewise difference func-
tions,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 59, no. 5, pp. 292–296, 2012.

[20] D. Chen and S.-B. Ko, “A dynamic non-uniform segmentation method
for first-order polynomial function evaluation,” Microprocessors and
Microsystems, vol. 36, pp. 324–332, 2012.

[21] P. T. P. Tang, “Table-driven implementation of the exponential function
in IEEE floating-point arithmetic,” ACM Transactions on Mathematical
Software, vol. 15, no. 2, pp. 144–157, 1989.

[22] F. de Dinechin and B. Pasca, “Floating-point exponential functions for
DSP-enabled FPGAs,” in Field Programmable Technologies, Dec. 2010,
pp. 110–117.

[23] M. Langhammer and B. Pasca, “Single precision logarithm and ex-
ponential architectures for hard floating-point enabled FPGAs,” IEEE
Transactions on Computers, vol. 66, no. 12, pp. 2031–2043, 2017.

[24] J.-A. Piñeiro, M. Ercegovac, and J. Bruguera, “High-radix logarithm
with selection by rounding: Algorithm and implementation,” Journal of
VLSI signal processing systems for signal, image and video technology,
vol. 40, no. 1, pp. 109–123, 2005.

[25] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2004.

