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Abstract: We investigated nearest-neighbor density-based clustering for hyperspectral image analysis.
Four existing techniques were considered that rely on a K-nearest neighbor (KNN) graph to
estimate local density and to propagate labels through algorithm-specific labeling decisions. We
first improved two of these techniques, a KNN variant of the density peaks clustering method DPC,
and a weighted-mode variant of KNNCLUST, so the four methods use the same input KNN graph and
only differ by their labeling rules. We propose two regularization schemes for hyperspectral image
analysis: (i) a graph regularization based on mutual nearest neighbors (MNN) prior to clustering to
improve cluster discovery in high dimensions; (ii) a spatial regularization to account for correlation
between neighboring pixels. We demonstrate the relevance of the proposed methods on synthetic
data and hyperspectral images, and show they achieve superior overall performances in most cases,
outperforming the state-of-the-art methods by up to 20% in kappa index on real hyperspectral images.

Keywords: clustering methods; density estimation; nearest neighbor search; deterministic algorithm;
unsupervised learning

1. Introduction

Clustering consists of automatically grouping data points (samples) having similar characteristics
(features) without supervision (labels). It is a central problem across many fields such as remote
sensing (e.g., to remove the need for expensive ground truth data), medicine (e.g., to identify
meaningful features and trends among patients), genomics and content-based video indexing. As a
kind of unsupervised learning paradigm, clustering is also increasingly relevant in the context of
artificial intelligence, since the cost of labeled data is currently a major obstacle to the development of
supervised methods [1]. Despite several decades of research and many advances, the ever-increasing
amount, size and dimensionality of data that needs to be mined keeps challenging us with regard
to computational efficiency, but also when it comes to identifying meaningful clusters in the data.
This can indeed be difficult in high-dimensional data such as hyperspectral images due to the
correlation/redundancy between spectral bands and uneven distribution of information across them.

Clustering methods can be classified into the following groups: centroid clustering (C-means [2],
fuzzy C-means [3]); hierarchical clustering (based on minimum-variance [4] or single-link [5]);
density-based clustering (DBSCAN [6], OPTICS [7], MeanShift [8], mode seeking [9,10], density
peaks [11]); clustering based on finite (EM [12], SEM/CEM [13]) or countably infinite mixture resolving
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and Dirichlet process mixture models (DPMM) [14]; spectral clustering (normalized cuts [15] or
kernel C-means [16]); and affinity propagation (AP) [17], information theoretic clustering [18], convex
clustering [19] and sparse subspace clustering [20].

However, clustering remains an ill-posed problem [21], simply because several legitimate
solutions may exist for a given problem [22]. Many popular clustering methods (such as C-means)
require that the user know the number of clusters in the data, which is constraining and often
impossible. This is particularly true for centroid clustering, mixture resolving and spectral clustering
in their baseline implementations. In contrast, hierarchical agglomerative clustering and density-based
methods—including DBSCAN and BIRCH propagation and affinity propagation (AP), DPMM and convex
clustering, can all estimate the number of clusters in the data automatically, although they have
other parameters.

In this work, we consider that a good clustering approach should have the
following characteristics:

• Unsupervised: no labeled samples for training nor the actual number of clusters are available;
• Nonparametric: no information about the clusters’ characteristics (shape, size, density,

dimensionality) is available;
• Easy parametrization: the method only relies on a small number of parameters that are intuitive;
• Deterministic: the clustering results do not depend on a random initialization step and are

strictly reproducible.

These requirements disqualify a number of popular methods which require that the number of
clusters be known (e.g., C-means) or which rely on a random initialization stage (e.g., fuzzy C-means).
In the literature, few methods can satisfy all the above requirements. Among them, DBSCAN [6] is a
density-based method requiring two parameters, i.e., the size of a neighborhood and the minimum
number of samples lying in it. OPTICS [7] was developed to improve DBSCAN for the case of clusters
with unbalanced densities. It has the same parameters as DBSCAN, and another distance threshold
(the accessibility distance) which allows one to tackle the imbalance. DBSCAN and OPTICS can only be
applied to datasets with limited numbers of dimensions [23].

The K-nearest neighbor (KNN) paradigm has been proven very useful to tackle clustering
problems. It allows one to deal with the curse of dimensionality, and with clusters with different
densities and non-convex shapes. In [24], a density-based clustering method named KNNCLUST was
proposed. It iteratively clusters neighbors starting with each sample in its own cluster. In [25],
we introduced KSEM, a stochastic extension of KNNCLUST that assigns labels based a posterior
distribution of class labels of a given point learned from its nearest neighbors. In the same vein,
many recent data clustering methods have been proposed to harness the advantages of the nearest
neighbor paradigm. For instance, the fuzzy weighted KNN method in [26] was adapted from density
peaks clustering (DPC) [11], much in the same way as the Fast Sparse Affinity Propagation (FSAP) [27]
was adapted from AP [17].

Clustering approaches based on nearest neighbor graphs are very attractive when dealing with
large datasets. Nevertheless, it is noteworthy that KNN search (i) relies on the distance/similarity
metric used, which may have a counter-intuitive behavior in high-dimensional spaces [28,29];
(ii) has a quadratic complexity in the number of samples for an exhaustive search (brute force),
though approximate but faster methods exist [30,31]. Moreover, these methods are able to work with
just the pairwise distances between samples, i.e., without the data itself.

In this work, we propose several improvements and extensions to baseline nearest-neighbor
density-based clustering algorithms. While we focus specifically on hyperspectral image analysis,
the proposed framework is applicable to any type of data. The methods studied in the present work
include MODESEEK [9,10], DPC [11], KNNCLUST [24] and GWENN [32]. We first consider a KNN variant
of the DPC method and modify it to avoid using a decision graph and decision thresholds; then we
modify the KNNCLUST method to incorporate ordered point-wise densities into the local labeling
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decision scheme to improve clustering accuracy with respect to the original algorithm. We then propose
two types of clustering regularization specifically tailored for hyperspectral images. The first one is
a KNN graph pruning method based on the mutual nearest neighbors paradigm. Since the notion
of nearest neighbors loses meaningfulness with increasing dimensionality, the idea is to keep only
strongly bonded, confident neighbors, to avoid the merging of close clusters. The second regularization
scheme accounts for the specificity of image data and introduces spatial constraints in the local decision
rules of each nearest-neighbor density-based algorithm. Note that these improvements can be applied
to other algorithms based on the KNN concept.

Each method and its variants was modified to fairly and objectively compare them and to
compare them against state-of-the-art methods. In particular, all the enhanced methods require only
one parameter, namely, the number of nearest neighbors.

The paper is organized as follows. In Section 2, we provide the notation used. We then review
the basic principles of the four density-based methods selected and motivate our choice from the
related literature in Section 3. In Section 4 we propose modifications for two of these methods,
DPC and KNNCLUST, in order to respectively facilitate implementation and improve clustering
performance. In Section 5, we consider the application of these baseline methods to pixel clustering in
HSIs, and introduce the two other improvements: the KNN graph regularization to facilitate cluster
unveiling in high dimensions, and the introduction of a spatial context into the core labeling rules
of each density-based method. Section 6 describes experiments to assess the improvements of the
baseline methods and to compare their clustering properties on synthetic datasets. Then, Section 7
proposes an experimental study, using real datasets, of the four methods adapted to the context of
hyperspectral images; this study includes a comparison with other state-of-the-art clustering methods.
Lastly, we draw our conclusions in Section 8.

2. Notation

Let X = {xi}i=1,...,N be a set of samples, where xi ∈ Rn is an element (sample) of the dataset.
Let us define d as a distance metric between any two samples in X , and dij = d(xi, xj). Let K be the
number of nearest neighbors (NNs); then NK(xi) is the set of KNNs of xi; i.e., NK(xi) ⊂ X such that
|NK(xi)| = K and ∀xj ∈ X\NK(xi), dij ≥ maxxl∈NK(xi)

dil . For the time being K is assumed constant
∀xi. The directed KNN graph G = (X ,NK(X ), {d(X ,NK(X ))}) can be rewritten as a pair of N × K
arrays (D, J) where D is the array of distances (in ascending order) between each sample and its KNNs,
and J = {ji}i=1,...,N , ji =

[
j1i , j2i , . . . , jK

i
]

is the array of corresponding indices of each sample’s KNNs.
Like in [24] and [11], the methods selected in the present work rely on the computation of a local

(point-wise) density function ρ(xi) = ρi, 1 ≤ i ≤ N. In practice, the density function is built from
the set of pairwise distances between each sample xi and its KNNs. Many density functions can be
specified in this manner, as shown below.

Each clustering algorithm outputs a vector of cluster labels c = [c1 . . . cN ]
T with ci ∈ C =

{1 . . . C}—C is the number of output clusters—and the set of cluster representative samples E =

{ec}1≤c≤C ⊂ X , where ec ∈ X is called the exemplar of cluster c ∈ C, in reference to the terminology
used in [17].

3. Relation to Prior Works

3.1. MODESEEK

In its original implementation [10], MODESEEK first estimates the local density at each sample
based on its KNNs, and selects the neighbor with the highest local density. The label of that neighbor is
then given to the sample and this is done iteratively until no more label changing occurs. One important
property of this algorithm is that samples having themselves as neighbors (in the above sense) are
reported as cluster exemplars. MODESEEK is a very simple, fast and quite attractive clustering method,
which does not require the user to specify the number of clusters. MODESEEK is publicly available
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within the PRTools MATLAB package (prtools.org).Note that a similar, but recursive approach,
called KNN graph clustering (KGC) was proposed in [33].

3.2. DENSITY PEAKS CLUSTERING—DPC

More recently, the density peaks clustering (DPC) method proposed by Rodriguez and Laio [11]
has received much attention from the data science community owing to its attractive features: it is non
iterative and deterministic, and it can estimate the number of clusters robustly based on two intuitive
parameters: the local density ρ and δ, defined as the minimum distance between xi and any other
sample of higher density.

In [26], the authors introduced the FKNN-DPC method, suggesting to replace the original
assignment strategy on the basis of KNNs and fuzzy weighted KNNs. In [34], the authors also
reported the difficulty of DPC when it came to performing correctly with clusters that have various
densities. Another weakness of DPC is that it is essentially based on thresholding the ρ vs. δ decision
graph, in order to determine the optimal clustering solution. To the best of our knowledge, there is no
closed-form solution for finding the optimal thresholding, and most existing methods are based on
some kind of gap statistic, which is only viable if the data are relatively noise-free. This is particularly
challenging when the data contains unbalanced clusters [35,36]. Recently, in [37], it was suggested to
incorporate the neighborhood information into DPC via shared nearest neighbors (SNN). However,
this method also necessitates building a decision graph to identify the cluster centers.

3.3. GRAPH WATERSHED USING NEAREST NEIGHBORS—GWENN

In 2016, we introduced a new KNN-based clustering technique named GWENN [32], in reference to
the watershed approach extensively used in image segmentation. Though less known, the watershed
principle was first proposed by Vincent and Soille in relation with morphological operators on
graphs [38], and later with diffusion processes on weighted graphs [39].

In addition to being deterministic, GWENN is also a non iterative procedure. However, unlike
DPC and most of its KNN variants, GWENN can provide an estimate of the number of clusters without
thresholding parameter. The main idea of GWENN is to progressively assign labels to samples, starting
from samples of highest densities. Therefore, after sorting samples by decreasing density, a given
sample takes the most common (mode) label among its KNNs which are already labeled. However,
the original method can lead to local labeling decisions which are not consistent and can bias the
final result: it suffices that, among one sample’s NNs, two or more labels appear with the same
highest number of occurrences to yield an ambiguous labeling decision state. To avoid this problem,
we improved GWENN in [40] to allow labeling disambiguation. More precisely, we proposed to weigh
the count of each label found among the set of nearest neighbors by the local densities of the latter.
The weighted mode of one sample xi is then the label which, among those of its neighbors, has the
maximum weighted sum of local densities:

c(xi) = ci = arg max
`∈∪cQi

∑
x∈Qi

1(c(x)=`) . ρ(x) , (1)

where Qi is defined as the subset of xi’s NNs which have been previously processed, i.e., Qi = Pi ∩
NK(xi), with Pi the set of previously processed samples. In the following, we shall refer to this modified
method as GWENN-WM, which will be one of our baseline methods in the following. The reader can find
the algorithm in [41], though GWENN-WM was applied to the problem of hyperspectral band selection.
Notice that a second labeling pass is set up in GWENN-WM which is aimed at removing weakly
populated clusters found during the main pass. During the latter, the weighted mode is computed
over Qi as defined above; during the second pass the whole set of xi’s NNs, i.e., ji, is considered.

prtools.org
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3.4. KNNCLUST

In 2006, Tran et al. introduced KNNCLUST [24], an iterative version of the supervised KNN
algorithm. In KNNCLUST, all the samples of a dataset are assigned a unique label at initialization.
Then the algorithm successively relabels each sample based on a KNN-kernel Bayes decision rule;
i.e., the class conditional probability p(xi|c) is replaced by maxc′∈C p(xi|c′) ∀xi ∈ X . By doing so,
KNNCLUST forms clusters in order to maximize a total class-conditional density function for all
samples. KNNCLUST has also the advantage with respect to other popular clustering techniques of
automatically estimating the number of clusters. Similarly to other clustering methods, KNNCLUST is
iterative; it is stopped when no more label changes occur. Its main drawback is the computational load
of the first iterations, due to the high number of putative labels to handle.

Note that the label assignment strategies of GWENN and KNNCLUST are similar to each other,
since a label is assigned to each sample xi, by taking into account the labels of its KNNs. This is
why we also proposed to apply the weighted mode procedure described above to KNNCLUST in [40].
The resulting algorithm, named KNNCLUST-WM, will also serve as a baseline method in the following.

3.5. Implementation Choices

Besides the parameter K used to construct the NN graph, two choices are crucial for density-based
methods in general: the distance d and the density function ρ.

In terms of the former, several distances have been proposed to best apprehend the data structure,
from the Minkowski Lp norm with p = 1, p = 2 or even p < 1 for high dimensional datasets [42],
to data-driven distances (e.g., Mahalanobis distance [43], geodesic distance [44,45] or kernel-based
distance [46]). In essence, the nearest-neighbor density-based methods discussed in the present work
are flexible with regard to this choice and can account for specific distance metrics. All the experiments
described below involve the Euclidean norm.

The issue of finding an appropriate density model is more important and deserves attention.
There is a vast amount of literature in the field of local density estimation published since the
mid-twentieth and the advent of kernel estimators [47]. In the present context, density estimation
is necessary to evaluate the local influence, on a given sample xi, of its KNNs. Examples of such
local density estimators used in the literature on nearest-neighbor density-based methods are given in
Table 1. In order to avoid introducing additional parameters to the studied methods, we will focus
only on parameter-free estimators. Thus, in the present work, the experiments have been conducted by
using the distance to the farthest neighbor (i.e., of index K), to estimate the local density. More precisely,
the local density in the neighborhood of sample xi is defined as the inverse of the distance of xi to its
K-th NN:

ρ(xi) = ρi = d−1(xi, xjKi
) =

(
[D]i,K

)−1
. (2)

Note that in the following, we did not investigate the question of optimizing K, which still
deserves study. Instead, we aimed to compare the behaviors of nearest-neighbor clustering methods
using K as a unique parameter, once the metric and density model were chosen.
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Table 1. Some local density estimates ρi based on KNNs.

Density Estimate References

Non-parametric model

(
∑k∈NK(xi) dik

)−1
[32,48]

∑k∈NK(xi) d−1
ik [41]

Parametric model

exp
(
− 1

K ∑k∈NK(xi) d2
ik

)
[34]

∑k∈NK(xi) exp

(
− N.dik

∑N
i=1 dijKi

)
[49](

1
σ
√

2π

)n
∑k∈NK(xi) exp

(
− d2

ik
2σ2

)
[50]

4. Improvements of Two Nearest-Neighbor Density-Based Clustering Algorithms

4.1. Improvement of KNN-DPC: M-KNN-DPC

DPC [11] is based on the idea that cluster centers are characterized by a higher density than
their neighbors and by a relatively large distance from other points with higher densities. However,
the original DPC method has two drawbacks; i.e., it requires the availability of the full pairwise
distance matrix between samples to compute the cut-off distance, and it is not very clear how the
cluster centers can be detected in a decision graph based on the densities {ρi} and the distances
{δi = minj:ρj>ρi dij}, 1 ≤ i ≤ N [36,51].

The improved DPC method described here attempts to alleviate these two difficulties.
A preliminary version of this method was presented in [40]. With regard to the first issue, we propose,
following [26,34,48], to replace the full pairwise distance matrix with the KNN graph structure. This is
motivated by the fact that the local density ρ(xi) can be estimated only from NK(xi), and does not
need to depend on the full pairwise distance matrix; limiting the "scope" of each sample to its KNNs
is therefore expected to better capture the structure of the data under study [34], while still allowing
the use of different kernel functions for density estimation. Moreover, the reduction in storage can be
significant for large datasets, decreasing from O(N(N − 1)/2) to O(KN).

The second issue related to the decision graph (or more generally the decision rule that one
sample is or is not a cluster exemplar), can be easily by-passed owing to a simple observation. Actually,
the first stage of DPC consists of finding the unique neighbor of each sample xi having the minimum
distance among its neighbors of higher density:

NN(xi) = arg min
j∈NK(xi):ρj>ρi

dij ∀xi ∈ X . (3)

The specific neighbor NN(xi) was recently coined as BigBrother(xi) in [48]. Its selection is
common to most variants of DPC. For KNN-based DPC methods, samples which do not have such
neighbors are their own NNs in this respect, and are consequently the cluster exemplars sought. Thus,
the idea of our improvement is very simple: once the set {NN(xi)}, xi ∈ X is obtained, a hill-climbing
of each point to its NN is applied until no more climb is possible, thereby revealing its cluster exemplar.
The difference with the clustering algorithm in [48] relies on the fact that the number of clusters C is
not specified by the user, and therefore it does not need to explicitly sort the set of {δ(xi).ρ(xi)}, xi ∈ X
to find the C cluster exemplars. Additionally, the estimation of a cutoff distance as in the original
method is no longer required, and the parametrization is reduced to K.

These modifications yield a new method, called M-KNN-DPC in the following, which can
be compared with the three other density-based methods strictly under the same conditions.
The pseudo-code of M-KNN-DPC is given in Algorithm 1. Compared to similar KNN DPC methods
which are non iterative, the iterative feature of M-KNN-DPC is in fact not too critical since convergence
is generally ensured within a few iterations, similarly to MODESEEK. In fact, as pointed out in [40],
the above simplification of the labeling rule actually makes M-KNN-DPC very similar to MODESEEK:
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both methods require seeking a unique NN for each sample and proceed by iterative hill-climbing.
However, in MODESEEK, the retained NN of an sample is, among its KNNs, the one with the highest
density, whereas in M-KNN-DPC, the retained NN is the closest in distance among all NNs of higher
density. These rules are illustrated in Figure 1, showing the differences in local labeling decisions
provided by the two methods. Moreover, both methods provide the same set of exemplars by
construction, since samples which have themselves as retained NNs do satisfy the rules for both
methods. Nevertheless, clustering labels for samples with mid- to low-density values are not
guaranteed to coincide.

Algorithm 1 M-KNN-DPC

Input:
X = {xm} , xm ∈ Rn, m = 1, . . . , N; // The set of data samples to classify
K, the number of NNs;

Output: The vector of samples’ labels c = [c1, . . . , cN ]
T ; the set of cluster exemplars E ;

(1) Compute D, the N × K array of distances (in ascending order) between each sample and its
KNNs.
(2) Compute J = {jm}m=1,...,N , jm =

[
j1m, j2m, . . . , jK

m
]
, the N × K array of indices of each sample’s

KNNs.
(3) Compute ρ = [ρi]1≤i≤N , the vector of local densities around each sample, using (D, J).
(4) Find the closest NN with higher density than current point:
for m = 1 : N do

NN(m) = arg minj∈jm :ρj>ρm dmj;
end for
(5) Find the neighbor of each neighbor:
for m = 1 : N do

M(m) = NN(NN(m));
end for
(6) Core loop:
while NN 6= M do

for m = 1 : N do
NN(m)← M(m);

end for
for m = 1 : N do

M(m) = NN(NN(m));
end for

end while
(7) Find E as the set of unique labels in M;
(8) Remap cluster labels in [1 . . . C], C = |E |;
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Figure 1. Illustration of the difference between the neighbor search strategies of MODESEEK and
M-KNN-DPC. MODESEEK retains, among the current sample xi and its K nearest neighbors, the one with
the highest density (here the fourth NN), whereas M-KNN-DPC retains the closest with higher density
than the current sample (here the second NN).

4.2. Improvement of KNNCLUST-WM: M-KNNCLUST-WM

In the original implementation of KNNCLUST, samples can be processed in any order. In this
work, we suggest to use a specific ordering scheme to apply the weighted mode labeling decision rule
within KNNCLUST-WM. More precisely, we propose to process the samples by order of decreasing local
density, similarly to GWENN-WM. This scheme, applied at each iteration of the algorithm, makes local
labeling decisions more robust within denser regions, while postponing the most uncertain decisions,
corresponding to lower local density values.

We call this new adaptation M-KNNCLUST-WM, standing for modified KNNCLUST-WM. The details
of M-KNNCLUST-WM are given in Algorithm 2. In comparison with KNNCLUST-WM, the samples are
processed in turn following the array of indices i, as indicated in Step 4. Recall that KNNCLUST-WM

uses the same decision rule in Equation (1) to label each sample xi, except that the whole set of its NNs
is considered during the iterations, not just the previously labeled ones as is done in GWENN-WM.

Algorithm 2 M-KNNCLUST-WM.

Input:
X = {xm} , xm ∈ Rn, m = 1, . . . , N; // The set of samples to classify
K, the number of NNs;

Output: The vector of samples’ labels c = [c1, . . . , cN ]
T ; the set of cluster exemplars E ;

Steps (1) to (3) are identical to Algorithm 1;
(4) Compute ρ′ = DescendSort(ρ), keep KNNs indices i = [i1, i2, . . . , iN ]

T : ρ′ = ρ(i).
(5) Initialize the label vector c : [c]i = i, and cold :

[
cold]

i = 0, 1 ≤ i ≤ N.
(6) Core loop:
while cold 6= c do

cold ← c;
for m = 1 : N do

cim ← wmode(cjim
);

end for
end while
(7) Find E as the set of unique labels in c;
(8) Remap cluster labels in [1 . . . C], C = |E |;

4.3. Discussion

With the above improvements, we have a benchmark of four baseline clustering techniques,
namely, MODESEEK, M-KNN-DPC, GWENN-WM and M-KNNCLUST-WM. It is important to recall that
all the methods take the same data as input, i.e., the KNN graph. Therefore, once the distance metric
and the way the local densities are estimated are chosen, the only parameter required to run them
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is the number of NNs K. Table 2 summarizes the properties of these methods. They differ by their
initialization stage, their stopping rule and most importantly their internal decision rule. As said above,
MODESEEK, M-KNN-DPC and M-KNNCLUST-WM are iterative methods for which the stopping rule is
implemented as the criterion of convergence to a stable partitioning. The convergence is significantly
slower for M-KNNCLUST-WM than for MODESEEK or M-KNN-DPC, due to the number of distinct labels
to process at initialization.

Additionally, one can see that the decision rules differ between subgroups of methods, namely,
MODESEEK and M-KNN-DPC on the one hand, and M-KNNCLUST-WM, and GWENN-WM on the other
hand. This is expected to produce significantly different clustering results from one subgroup to
the other.

In addition to the KNN search and the density estimation which is common to all these methods,
the computational complexity of their proper core algorithms can be evaluated. For MODESEEK

and M-KNN-DPC, the search for the specific nearest neighbor of each point is O(K.N), and the core
loop is O(itrs.N), where itrs is the number of iterations at convergence. For M-KNNCLUST-WM and
GWENN-WM, first sorting density values has the average complexity of O(N log(N)); then the wmode
procedure applied to each sample is O(C(i).K), where C(i) is the number of clusters at iteration i.
The number of clusters at initialization of M-KNNCLUST-WM is C(0) = N, hence the high computational
load mentioned above. Finally, the complexity of M-KNNCLUST-WM and GWENN-WM is above
O(N log(N) + C.K.N.itrs), with the special case itrs = 2 for GWENN-WM, and C is the final number
of clusters.

Table 2. Some properties of the nearest-neighbor density-based clustering methods.

MODESEEK [10] M-KNN-DPC M-KNNCLUST-WM GWENN-WM

Iterative yes yes yes no

Speed high high low average

Initial labeling none none one label per sample none

Local labeling label of NN with label of closest NN with weighted mode of weighted mode of
decision rule highest density higher density NNs’ labels NNs’ labels

Stopping rule upon convergence upon convergence upon convergence not applicable

5. Improvements of Nearest-Neighbor Density-Based Methods for HSI Pixel Clustering

Hyperspectral image analysis has gained popularity in the remote sensing community during
the past decade, owing to the richness of information such images convey and the applications it
allows one to tackle. Among those, precision agriculture, forestry, natural habitats, coastal shore
surveillance and environmental urban planning now commonly use hyperspectral images to help with
decision making.

Due to the recent release of advanced sensors producing images with ever-increasing spatial
and spectral sizes, clustering remote sensing HSIs at the pixel level has become a challenging task.
However, it remains necessary for the end-user to obtain classification maps within reasonable time,
without requiring one to fine tune a lot of parameters.

With the objective of tackling the problem of HSI pixel partitioning, we propose two improvements
to the methods described above.

The first one is related to the high dimensionality of the spectral features carried in HSIs, which can
reach several hundreds. As of the high correlation between spectral features within image pixels,
hyperspectral data vectors often live in a low-dimensional subspace of the original representation
space, which has led researchers to consider new clustering approaches such as sparse subspace
clustering [20]. Considering the nearest-neighbor density-based methods described above, and to
allow their use for high-dimensional data, we propose recourse to KNN graph regularization prior to
the clustering stage.
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The second improvement is related to the specificity of image data and the high level of
correlation observed between adjacent pixels. To account for this, we propose to modify each of
the baseline density-based methods by incorporating a spatial context in its proper labeling decision
rule. We discuss these modifications below.

5.1. KNN Graph Regularization

Clustering high dimensional data is a difficult problem in general, and specifically for
density-based methods. Here, we seek a solution through KNN graph regularization. The proposed
approach, which is applied prior to clustering itself, is taken from [52]. The idea is to optimize the
KNN graph, by attempting to preserve only the set of relevant NNs of each sample, and to remove
less relevant edges of the graph. Considering an initial directed KNN graph, the approach consists
of removing the edges which are not symmetric, so as to transform it into an undirected graph.
More precisely, any edge (xi, xj) of the directed graph G is retained iff

(
xi ∈ NK(xj)

)
∧
(
xj ∈ NK(xi)

)
.

By doing so, xi and xj are nearest neighbors to each other. In this way, the graph does not longer have
constant K outdegree: samples which are "popular" nearest neighbors among samples, called hubs [29],
have larger outdegrees than samples located on the external borders of clusters. This approach is
referred to as the mutual nearest neighbor (MNN) graph modification in the following. Figure 2
illustrates on a simple 2D example (N = 300, 3 clusters) the effect of applying the MNN graph
modification on the initial NN graph. In this example, we set K = 11. One can observe that the set of
resulting MNN edges no longer connects the three main data clusters, which makes it easier to identify
the latter with density-based methods. However, one drawback of this approach is that it creates small
or even single-sample clusters, mainly around the edges of the main clusters.

Concerning implementation, the MNN procedure proceeds by first computing a N × N sparse
binary adjacency matrix from the indices of each sample’s NNs, and computes the logical AND of this
matrix with its transpose, thereby retaining only symmetric edges. The result is then recombined into
a new NN graph with distance array DMNN .

Figure 2. Illustration of the MNN graph modification on a 2D dataset with K = 11. Left: data samples
and edges of initial graph; right: resulting MNN edges (red lines).

Note that applying MNN naturally associates with each xi a set of Ki ≤ K NNs. Several other
graph modification methods exist [52,53], but from our experience [54], the MNN graph modification
provides better results than the natural nearest neighbor (3N) approach of Zou and Zhu [55].

Once the number Ki of modified neighbors is obtained for each xi by the MNN procedure, the local
density in Equation (2) can be rewritten accordingly as:

ρ(xi) = ρi = Ki d−1(xi, x
j
Ki
i
) = Ki

(
[DMNN ]i,Ki

)−1
. (4)
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We underline that the number of NNs K of the initial graph remains a key parameter of the
clustering methods and must be selected carefully.

5.2. Spatial Regularization

In the case of (multi-component) digital images, pixels are considered as samples, and the feature
space corresponds to the spectral components. Due to the high correlation between neighboring pixels
in images, it can be useful to strengthen their labeling at the local level in the clustering procedure.
To achieve this with the four methods described above, we propose to enlarge the set of neighbors of
each pixel, by including the set of its spatial neighbors in addition to its NNs in the spectral domain.

Due to the difference in their fundamental principles, the spatial contextualization technique
was applied differently to GWENN-WM and M-KNNCLUST-WM on the one hand, and MODESEEK and
M-KNN-DPC on the other hand.

Concerning GWENN-WM, let us consider Equation (1), where Qi is the set of previously processed
NNs of the current sample xi to label. By applying the spatial regularization, Q′i = Pi ∩ (NK(xi)∪ {xj ∈
V(xi)}): the intersection of previously processed samples with the union of the current sample’s
NNs and the set of its spatial neighbors V(xi). This rule reinforces the coherence of local labels at
little computational expense, provided the spatial context is limited. Concerning M-KNNCLUST-WM,
the same scheme can be applied by replacing the set of indices jim in the core loop of Algorithm 2 by
its union with the spatial neighbors of sample im.

Concerning M-KNN-DPC, the NN search in Equation (3) is modified as follows:

NN(xi) = arg min
j∈(NK(xi)∪{xj∈V(xi)}):ρj>ρi

dij ∀xi ∈ X . (5)

The modification is similar for MODESEEK due to the closeness of the NN search:

NN(xi) = arg max
j∈(NK(xi)∪{xj∈V(xi)})

ρj ∀xi ∈ X . (6)

In order to account for spatial coherence, we will limit the spatial context to a 4-neighborhood
in our experiments for each of the four methods; of course the procedure can easily extend to larger
spatial neighborhoods. This issue was not investigated in the present work.

6. Clustering Experiments with the Baseline Methods on Synthetic Datasets

In order to verify the quality of clustering results with the improved baseline methods described
in Section 4, we set up a few experiments with synthetic datasets (https://cs.uef.fi/sipu/datasets/).
After presenting the clustering performance indices used in the present work, in the first experiment,
we wished to assess the improvement of M-KNNCLUST-WM over KNNCLUST-WM. In the second one,
we compared the behavior of the four baseline methods on more challenging clustering problems.

6.1. Cluster Validation Indices

All the datasets used in our work include a ground truth, which enables one to compute external
classification accuracy indices. Some of these indices are derived from a confusion matrix obtained
after optimal pairing of cluster labels with the actual ground truth classes. The cluster-to-class mapping
is based on the Munkres assignment algorithm [56]. Once the optimal assignment is obtained, a new
confusion matrix is obtained which is close to diagonal. From there, standard classification indices can
be derived: the overall accuracy (OA, i.e., the normalized trace of the confusion matrix), the average
accuracy (AA, i.e., the average of per-class accuracies) [57] and Cohen’s kappa index of agreement
(κ) [58]. These indices are widely used in the remote sensing community. Other indices are still available,
like the adjusted Rand index (ARI) [59], purity and normalized mutual information (NMI) [60] and the
centroid similarity index (CSI) [61]. In this work, we also used an internal clustering performance index

https://cs.uef.fi/sipu/datasets/
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named the consistency violation ratio (CVR) [62]. The CVR is defined as Ĥ(c|X )/Ĥ(c), where the
denominator is the entropy of the clustering result c (obtained with the standard plugin entropy
estimate) and the numerator is the entropy of c conditional on the data observation X . In the present
work, the estimate of the latter follows Equation (5) in [62]. By doing this, the computed CVR indices
are positive, lower values meaning better clustering.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. The S4 (left) and Worms_2d (right) datasets. Each color represents a specific cluster.

6.2. Comparison of KNNCLUST Variants

In this experiment, we wished to verify the improvement of M-KNNCLUST-WM over the original
KNNCLUST, its weighted mode variant KNNCLUST-WM and M-KNNCLUST, which is the original
KNNCLUST algorithm modified according to Section 4.2. The objective was to compare their results
in terms of AA as a function of the number of NNs K and to show their ability to provide consistent
clustering results, in terms of identification of the correct number of clusters and in clustering accuracy.
For this we used the S4 dataset [63] (see Figure 3), which has 5000 samples randomly distributed
issued from 15 overlapping Gaussian 2D distributions with various means and covariance matrices.
Both features were first normalized in the [0, 1] range. Figure 4 reports the number of clusters
found as a function of the number of NNs K, and the average accuracy (AA) also versus K. Here,
KNNCLUST and KNNCLUST-WM were run 20 times, each time using a different random ordering of the
samples, chosen during the initialization stage and kept unchanged during the iterations. Boxplots
are displayed on the figures to characterize the distributions of the resulting NC and AA for the
latter methods. In contrast, M-KNNCLUST and M-KNNCLUST-WM sort the samples by decreasing local
density at the start, so that the results are invariant to the order the samples are processed. Apart from
relatively stable results across the clustering results within a large range of NNs K, it was observed
that (i) M-KNNCLUST and M-KNNCLUST-WM are able to approach the correct number of clusters with
lower K than KNNCLUST and KNNCLUST-WM; (ii) relatedly, M-KNNCLUST and M-KNNCLUST-WM

provide higher classification accuracies than KNNCLUST and KNNCLUST-WM on average for low K;
(iii) conversely, for higher values of K, M-KNNCLUST and M-KNNCLUST-WM seem to depart from the
correct number of clusters faster than the original method on average (for K > 180). This is due to
the fact that a smaller number of clusters was found in this situation. Indeed, primarily accounting
for too-distant NNs to label points with high density is likely to result in biased labeling decisions
and the merging of samples issued from close clusters in a single larger one. However, since our
objective is to achieve the best clustering performances at reduced algorithm complexity, this has
no practical relevance. In this sense, the above example seems to indicate that M-KNNCLUST and
M-KNNCLUST-WM must be preferred over the original method. Figure 4 also shows the improvement
of the weighted mode rule (KNNCLUST-WM and M-KNNCLUST-WM) against the classical mode decision
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rule (KNNCLUST and M-KNNCLUST). Similar conclusions were obtained after analyzing the S1, S2
and S3 datasets (available on the same website), which are much easier to partition due to smaller
overlaps between the generating Gaussian distributions.
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Figure 4. Comparison of KNNCLUST (black circles, 10 runs), M-KNNCLUST (blue triangles) and
M-KNNCLUST-WM (red stars) as functions of the number of NNs K on the S4 dataset. Left: Number of
clusters C found (true number of clusters as a dotted line); right: average accuracy.

6.3. Comparison of the Baseline Clustering Methods

To illustrate the behavior of the four baseline clustering methods described above, we have
used the synthetic datasets Worms-2D, with n = 2, and Worms-64D with n = 64 [48]. We have
selected these datasets because they exhibit curve-shaped clusters with a large amount of overlap or
even non-separable data, which represents a very challenging clustering task. Figure 3 displays the
Worms-2D dataset, with N = 105,600 points distributed in Ctrue = 35 clusters. Figure 5 shows the
evolution of the average accuracy (AA) and the number of clusters C as a function of K. The AA values
are lower than in the previous example due to the difficulty to cluster this dataset. Still, a tiny plateau
of C can be observed for K ∈ [550, 650], giving a number of clusters slightly superior to the actual
one. From these figures, one can observe close behaviors between M-KNNCLUST-WM and GWENN-WM

on one hand, and between MODESEEK and M-KNN-DPC on the other hand. M-KNNCLUST-WM and
GWENN-WM provide a few less clusters than MODESEEK and M-KNN-DPC, thereby yielding higher
performance for lower K. For K > 700, M-KNN-DPC provides slightly higher AA values.

The results for the Worms-64D dataset, shown in Figure 6, show that the AA is stable for a very
wide range of K (from 20 to 1000 for M-KNNCLUST-WM and GWENN-WM). Over this range, the correct
number of 25 clusters was identified. Here again, M-KNNCLUST-WM and GWENN-WM outperformed
the two other methods for all K. It is interesting to notice that MODESEEK outperformed M-KNN-DPC for
a large range of K. This illustrates the fact that, for high dimensional data, the choice of the closest NN
with higher density can be less relevant than the one of the NN with highest density used in MODESEEK.
Figure 6 also displays the computation times of the four methods as a function of K; the time necessary
to compute the KNN graph is not taken into account in this figure. MODESEEK and M-KNN-DPC

were the fastest methods, with times increasing linearly with K; in contrast, M-KNNCLUST-WM and
GWENN-WM were slower due to the weighted mode procedure, but GWENN-WM was approximately
four times faster than M-KNNCLUST-WM.
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Figure 5. Comparison of the four baseline methods as a function of the number of NNs K on
the Worms-2D dataset. Left: Number of found clusters C (true number of clusters in dotted line);
right: average accuracy.
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Figure 6. Comparison of the four baseline methods as a function of the number of NNs K on the
Worms-64D dataset. Left: average accuracy; right: computational time (s).

7. Application to Hyperspectral Remote Sensing Images

In this section, we apply and compare the proposed baseline methods and their HSI-adapted
variants to pixel clustering in HSIs. As previously mentioned, this task is challenging due to the high
number of pixels to handle and the high dimensionality of data representation. All the HSIs considered
here are accompanied with ground truth (GT) maps used for clustering assessment. In the first two
experiments, the clustering methods are applied over the whole image support, comprising the pixels
which are not labeled in the ground truth. Therefore, the number of final clusters generally exceeds by
a few units the actual number of clusters specified in the GT. The section ends up with a study of the
clustering results obtained using only the ground truth pixels of three other HSIs.

7.1. AVIRIS—Salinas Hyperspectral Image

This image (https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_
Scenes) was acquired by the AVIRIS sensor in 1998 over agricultural fields in the Salinas Valley,
California [64]. It has 512 × 217 pixels and 204 spectral bands after absorption and noisy band removal.
The ground truth comprises 16 vegetation classes. Figure 7 shows a color composite image, and the
associated ground truth. In this experiment, the spectral bands were first individually normalized
to zero mean and unit variance before computing KNN graphs based on the Euclidean distance in
the representation space (n = 204). The comparison of the proposed approaches was extended to
state-of-the-art methods: FCM, DBSCAN and a KNN version of the fast sparse affinity propagation

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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method (FSAP) proposed by Jia et al. [27]. For DBSCAN, we empirically sought the values of MinPts
and Eps providing the best clustering results. For FCM, the number of output clusters was imposed,
the fuzziness parameter was set to 2 and we performed 20 runs of the method with random initial
labeling. For FSAP, which requires a sequence of two runs of sparse affinity propagation, the preference
parameters were selected so as to optimize the external clustering indices.

Unlabeled

C1: Broccoli gr. wds 1

C2: Broccoli gr. wds 2

C3: Fallow

C4: Fallow rough plow

C5: Fallow smooth

C6: Stubble

C7: Celery

C8: Grapes untrained

C9: Soil vineyard develop

C10: Corn sen. gr. wds

C11: Lettuce romaine 4wk

C12: Lettuce romaine 5wk

C13: Lettuce romaine 6wk

C14: Lettuce romaine 7wk

C15: Vineyard untrained

C16: Vineyard vert. trellis

(a) (b)

Figure 7. Salinas HSI. (a): color composite (bands 30, 20, 10); (b) ground truth map.

Figure 8 depicts the results of these state-of-the-art methods and the proposed approaches
regarding four clustering performance criteria, namely, the AA, the kappa index κ, the adjusted rand
index (ARI) and the CVR index, as functions of the number of clusters provided by the methods.
The proposed clustering methods include the set of four baseline methods (MODESEEK, M-KNN-DPC,
GWENN-WM, M-KNNCLUST-WM), their respective improvements with the MNN graph regularization
(denoted by a -MNN suffix thereafter) and the "spatial" variants of the latter (denoted with a -SP

suffix). For each method but FCM (where the free parameter is the number of sought clusters C), K was
varied in the range [300, 1200] by steps of 100, thereby providing as many clustering results. For FCM,
boxplots are plotted for C ∈ {14, . . . , 20} to observe the average and dispersion of the performance
indices for the 20 runs of the method. Typically, for all the methods and DBSCAN and FSAP, the number
of final clusters decreases with K.

Figure 9 shows the clustering maps obtained from the analysis of this HSI with the baseline
density-based methods and their variants, and FCM, FSAP and DBSCAN. For each method, the best
clustering result in terms of kappa index is displayed, so that these maps correspond to the highest
values of kappa shown in Figure 8. Overall accuracy (OA), average accuracy (AA) and kappa indices
are also given for each map.

From this experiment, several observations can be drawn:

• On average, all the nearest-neighbor density-based methods perform better than DBSCAN,
FSAP and FCM whatever the number of clusters, found or imposed, and especially regarding the
external performance indices. Exceptions to this observation are discussed below.

• Performing MNN graph regularization clearly helps with improving the results for all the
methods, but at the cost of creating a higher number of clusters. These are consequences
of graph pruning, which tends to create low-density clusters at the border of main clusters,
while strengthening the density within the latter, thereby providing more robust results
on average.

• The further inclusion of spatial context impacts differently the two subsets of density-based
methods, i.e., on the one hand MODESEEK-MNN and M-KNN-DPC-MNN, and on the other hand
GWENN-WM-MNN and M-KNNCLUST-MNN. On Figure 8, the performance indices are higher
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than those without spatial context for the latter subset, and they do not clearly improve or even
degrade for the former subset, especially for M-KNN-DPC-MNN-SP.

• The best overall kappa index (κ = 0.794) was obtained for M-KNNCLUST-MNN-SP with K = 900,
providing C = 17 clusters, closely followed by κ = 0.792 for GWENN-WM-MNN-SP with same
K, giving C = 18 clusters. Notice that the running time between those two methods is very
different, with 2338 s for M-KNNCLUST-MNN-SP—mostly induced by the high number of labels
at initialization—scaling down to 22 s for GWENN-WM-MNN-SP. These times exclude the
computation of the original KNN graph, which is about 13 s for K = 1000 using MATLAB
2016 on a DELL 7810 Precision Tower (20-core, 32GB RAM), and the MNN procedure (78 s).

• The CVR internal clustering indices for the various methods are coherent with the results given by
the external indices. It should be mentioned that CVR, contrarily to the other indices, is computed
from the extensive cluster map and the original KNN graph, and therefore accounts for all the
pixels, should they belong to the GT map or not. The best CVR values are obtained with the
subset of GWENN-WM and M-KNNCLUST methods and their MNN and spatial context variants.
FCM provides higher CVR values, sometimes better than MODESEEK and M-KNN-DPC.

• Among the state-of-the-art methods used for comparison, FSAP provides the best results, at least
visually, with a less noisy clustering map. However, there is some amount of confusion between
the output clusters and the GT map which lowers the performance indices.

• The classes C8 (grapes untrained) and C15 (vineyard untrained) could not be retrieved by any
method. Several published papers already show the difficulty to separate these two classes [65].
However, the class C7 (celery) was split into two clusters with visual coherence by all the
density-based methods with MNN graph modification, which confirms the usefulness of this
approach for detecting close clusters. This additional cluster disappears with the further use of
spatial context which forces the links between those two clusters so as to merge in a single one.

• The only exception regarding the good performances of the proposed methods is with the spatial
variant of M-KNN-DPC-MNN, which we recall only differs from MODESEEK by the way the NN of
higher local density is selected (see Figure 1). Actually, including spatial neighbors in addition to
"spectral" neighbors in this method is likely to drive the NN selection to the spectrally closest
spatial neighbors, thereby separating compact clusters into subclusters while achieving the
same final number of clusters as MODESEEK, as said above, hence dramatically reducing the
clustering performance. In comparison, the NN selection rule set up in MODESEEK is more robust
to some extent.
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Figure 8. Clustering results of Salinas HSI as a function of the number of clusters. Left column:
state-of-the-art methods and baseline nearest-neighbor methods; right column: HSI-improved
nearest-neighbor methods. From top to bottom: average accuracy; kappa index; adjusted Rand index;
consistency violation ratio.
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K = 800 OA = 74.67% κ = 0.714

C = 18 AA = 74.92%

K = 800 OA = 76.76% κ = 0.737

C = 18 AA = 78.69%

K = 700 OA = 77.35% κ = 0.744

C = 19 AA = 79.46%

K = 700 OA = 77.33% κ = 0.744

C = 19 AA = 79.47%

K = 1000 OA = 76.85% κ = 0.739

C = 24 AA = 81.62%

K = 1000 OA = 78.35% κ = 0.756

C = 24 AA = 83.55%

K = 900 OA = 78.51% κ = 0.758

C = 24 AA = 84.74%

K = 900 OA = 78.58% κ = 0.759

C = 24 AA = 85.14%

K = 900 OA = 78.34% κ = 0.755

C = 20 AA = 79.75%

K = 400 OA = 67.72% κ = 0.636

C = 32 AA = 71.85%

K = 900 OA = 81.54% κ = 0.792

C = 18 AA = 87.26%

K = 900 OA = 81.74% κ = 0.794

C = 17 AA = 88.01%

C = 24 OA = 64.24% κ = 0.609

AA = 68.19%

K = 900 OA = 69.94% κ = 0.640

C = 15 AA = 44.81%

K = 1000 OA = 65.78% κ = 0.620

C = 15 AA = 63.75%

Figure 9. Best clustering maps with regard to kappa index for Salinas HSI with state-of-the-art and
proposed methods. First row: baseline methods; second row: with MNN; yhird row: with MNN
and spatial context; from first to fourth column, respectively: MODESEEK, M-KNN-DPC, GWENN-WM,
M-KNNCLUST-WM. Fourth row, from left to right: FCM; FSAP; DBSCAN.

7.2. AVIRIS—Hekla Hyperspectral Image

This HSI was acquired in 1991 by AVIRIS over the Hekla volcano in Iceland. The image has
560× 600 pixels (approximately thrice the number of pixels of the previous image) and 157 spectral
bands [66]. Here, the original image was preprocessed with the minimum noise fraction algorithm
(MNF) [67], and 10 principal components were retained for clustering. Figure 10 shows a color
image of the first three MNF components, and the ground truth used for assessment and comprising
12 land-cover classes. The KNN graphs were computed for K in the range [400, 2000] by steps of
100, and the proposed methods were applied and compared similarly as in the above example.
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For this image, it was not possible to find appropriate parameters to run DBSCAN and FSAP, and only
FCM results were computed for C ∈ {10, . . . , 30}. Figure 11 shows the corresponding performance
results. Though the data preprocessing stage was different from the previous example, the conclusions
drawn from these results remained the same and confirmed the superiority of the nearest-neighbor
density-based methods with respect to FCM. The improvement brought by both symmetrizing the
initial KNN graph and introducing the spatial context in the density-based methods is also significant
with this HSI, except again for M-KNN-DPC-MNN-SP, and MODESEEK-MNN-SP to a lower extent. Again,
adding the spatial context after MNN significantly reduces the number of clusters. The best overall
clustering result with regard to the kappa index is obtained by GWENN-WM-MNN with (κ = 0.796 for
K = 400), with a high number of clusters (C = 40) found. The following best ones are provided both
for K = 500 by M-KNNCLUST-MNN-SP (κ = 0.7905, C = 12) and GWENN-WM-MNN-SP (κ = 0.7868,
C = 16). Additionally, similar trends as with the previous HSI regarding the ARI and CVR indices
were obtained.
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Andesite lava 1970

Andesite lava 1980 I

Andesite lava 1980 II

Andesite lava 1991 I

Andesite lava 1991 II

Andesite lava moss cover

Hyaloclastite formation

Lava covered w/ tephra

Rhyolite

Scoria

Firn−glacier ice

Snow

(a) (b)

Figure 10. Hekla HSI. (a) First three components of MNF transform; (b) ground truth.
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Figure 11. Clustering results of Hekla HSI as a function of the number of clusters. Left column:
FCM and baseline nearest-neighbor methods; right column: HSI-improved nearest-neighbor methods.
From top to bottom: average accuracy; kappa index; adjusted Rand index; consistency violation ratio.
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Figure 12 shows the clustering maps corresponding to the best results in terms of kappa index
for the four proposed methods and their variants, along with the best FCM result. Again, the spatial
coherence of the clustering maps is reinforced for GWENN-WM-MNN-SP and M-KNNCLUST-MNN-SP

with respect to their non-spatial counterparts. Contrarily, M-KNN-DPC-MNN-SP totally fails in
retrieving the correct clusters, with a main cluster covering approximately 2/3 of the clustering
map. In comparison, MODESEEK-MNN-SP performs better, like with the Salinas HSI.

K = 600 OA = 73.30% κ = 0.684

C = 16 AA = 60.33%

K = 300 OA = 78.11% κ = 0.747

C = 23 AA = 67.21%

K = 500 OA = 77.72% κ = 0.737

C = 13 AA = 63.97%

K = 600 OA = 71.91% κ = 0.665

C = 11 AA = 57.11%

K = 700 OA = 78.95% κ = 0.755

C = 32 AA = 70.30%

K = 700 OA = 79.88% κ = 0.767

C = 32 AA = 72.28%

K = 400 OA = 82.47% κ = 0.796

C = 40 AA = 74.04%

K = 600 OA = 81.74% κ = 0.787

C = 28 AA = 72.38%

K = 600 OA = 74.19% κ = 0.696

C = 18 AA = 62.33%

K = 300 OA = 38.38% κ = 0.288

C = 28 AA = 27.55%

K = 500 OA = 81.73% κ = 0.787

C = 16 AA = 72.06%

K = 500 OA = 82.05% κ = 0.790

C = 12 AA = 72.55%

C = 13 OA = 69.94% κ = 0.648

AA = 53.13%

Figure 12. Best clustering maps with regard to kappa index for Hekla HSI with FCM and proposed
methods. First row: baseline methods; second row: with MNN; third row: with MNN and
spatial context; from first to fourth column, respectively: MODESEEK, M-KNN-DPC, GWENN-WM,
M-KNNCLUST-WM. Fourth row: FCM.

7.3. Other Hyperspectral Images

A last experiment was set up with a set of three other HSIs:
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• The DC Mall HSI (https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html)
(1280 × 307 pixels, 191 spectral bands), acquired in 1995 over Washington, DC by the HYDICE
instrument; the corresponding ground truth has 43368 pixels distributed in seven thematic
classes [68];

• The Kennedy Space Center (KSC) HSI (https://www.ehu.es/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes) (614 × 512 pixels, 176 spectral bands), acquired
in 1996 over Titusville, Florida, by the AVIRIS sensor; the ground truth has 5211 pixels in
13 classes [53];

• The Massey University HSI (1579 × 1618 pixels, 339 spectral bands), acquired over Palmerston
North, New Zealand, by the AisaFENIX sensor (Specim Ltd., Finland); the ground truth has
9564 pixels in 23 classes [53].

In this experiment, clustering was applied exclusively on the labeled pixels of the GT map.
By doing so, it was not possible to apply the spatial context versions of the nearest-neighbor
density-based methods, so we limited the study to the original methods and their MNN versions.
Therefore, the KNN graphs were calculated from those labeled pixels. FCM (with varying C) and
DBSCAN (with optimized parameters) were also used for comparison. No prior data normalization
was applied the three HSIs.

Table 3 shows the results corresponding to the highest kappa values obtained with the various
approaches after varying K within a large range, specific to each HSI. Several performance indices are
reported, namely, AA, OA, κ, purity, NMI and CVR. The latter three are useful to assess the consistency
of the results; indeed, high values of OA, AA or kappa after cluster assignment are not sufficient to
measure high quality clustering, especially in the case where the number of GT classes is greater than
the number of found clusters.

Again, the nearest-neighbor density-based methods show superior performance to the popular
FCM in all cases. The situation is less clear for DBSCAN which seems to provide better accuracy indices
for the KSC and Massey University HSIs. Actually, for the KSC dataset, the clustering results for
DBSCAN were calculated only over 25% of the number of pixels (so-called “core points”), the remainder
being classified as outliers by DBSCAN. For the Massey University HSI, the number of outliers provided
by DBSCAN exceeded 96% of the number of pixels. Thus, the best OA results provided by DBSCAN

must be considered with caution. However, the high CVR indices given by DBSCAN for these two HSIs
can help with detecting this kind of anomalous situation.

Many of these best kappa results come with an underestimation by a few units of the actual
number of classes present in the GT. However, on average the number of clusters is better approximated
by applying the MNN graph regularization prior to density-based clustering. This was particularly
observed for the Massey University HSI which has roughly twice the dimensionality of the other ones.

To some extent, these results on various hyperspectral datasets are in agreement with the
preceding observations made in the above experiments, as shown by the good performances of
the proposed approaches versus state-of-the-art clustering methods, and the improvement brought by
the MNN graph pruning procedure.

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Table 3. Comparison of several clustering performance indices and numbers of clusters found for
various HSIs and different clustering methods. For each method, these results correspond to the best
kappa index obtained as a function of K.

Optimal K, #Clusters and Criteria → K C AA OA κ Purity NMI CVR

DC Mall : N = 43,368, n = 191, Ctrue = 7

Constant
K

MODESEEK 2200 5 61.72 82.22 0.777 0.874 0.721 1.431
M-KNN-DPC 2200 5 63.57 84.43 0.805 0.898 0.753 0.874
GWENN-WM 3000 5 62.53 82.97 0.787 0.883 0.743 0.716

M-KNNCLUST-WM 3000 5 62.96 83.63 0.795 0.890 0.745 0.706

MNN

MODESEEK-MNN 3000 6 73.07 84.45 0.809 0.873 0.756 0.654
M-KNN-DPC-MNN 3000 6 72.86 84.35 0.808 0.872 0.756 0.657
GWENN-WM-MNN 3000 6 73.05 84.81 0.813 0.877 0.762 0.521

M-KNNCLUST-WM-MNN 3000 6 73.04 84.82 0.813 0.877 0.763 0.521

FCM - 6 71.06 80.01 0.754 0.827 0.717 1.179

DBSCAN 320 5 37.86 76.63 0.608 0.778 0.591 2.116

KSC : N = 5211, n = 176, Ctrue = 13

Constant
K

MODESEEK 120 9 42.44 52.58 0.478 0.685 0.592 1.807
M-KNN-DPC 120 9 45.18 57.15 0.526 0.730 0.641 1.373
GWENN-WM 110 9 44.15 56.75 0.521 0.730 0.633 0.731

M-KNNCLUST-WM 110 9 44.26 56.88 0.523 0.730 0.634 0.713

MNN

MODESEEK-MNN 150 10 43.92 57.59 0.531 0.718 0.628 2.794
M-KNN-DPC-MNN 150 10 46.54 60.45 0.563 0.751 0.672 2.241
GWENN-WM-MNN 140 9 43.86 57.34 0.526 0.752 0.646 1.617

M-KNNCLUST-WM-MNN 130 9 44.04 57.49 0.528 0.752 0.647 1.337

FCM - 11 40.60 52.29 0.471 0.604 0.560 5.383

DBSCAN 70 9 47.68 68.23 0.530 0.692 0.795 104.0

Massey University : N = 9564, n = 339, Ctrue = 23

Constant
K

MODESEEK 130 14 38.33 51.49 0.460 0.725 0.625 2.860
M-KNN-DPC 130 14 39.19 53.32 0.479 0.746 0.672 2.060
GWENN-WM 110 16 41.09 52.97 0.480 0.702 0.664 0.990

M-KNNCLUST-WM 110 16 41.08 52.89 0.480 0.703 0.668 0.949

MNN

MODESEEK-MNN 130 22 45.29 55.73 0.507 0.715 0.669 2.380
M-KNN-DPC-MNN 130 22 50.72 60.78 0.564 0.747 0.729 1.639
GWENN-WM-MNN 110 27 55.39 59.06 0.552 0.684 0.738 0.961

M-KNNCLUST-WM-MNN 110 28 55.27 57.69 0.544 0.621 0.727 1.073
FCM - 21 39.41 40.73 0.371 0.471 0.603 8.859

DBSCAN 450 4 6.28 75.07 0.589 0.751 0.753 87.11

8. Conclusions

In this paper, we have proposed several improvements to existing nearest-neighbor density-based
clustering methods, and considered their application to pixel clustering in hyperspectral images.
These methods use a KNN graph to estimate local (point-wise) density values which are then used to
propagate labeling decisions specific to each method.

Our contributions are twofold. First, we improved two of these methods, namely, KNNCLUST-WM

and a KNN variant of DPC. The former method was modified to account for the local density as prior
information to foster the labeling decisions corresponding to samples by decreasing order of their
density. The latter one was completely revisited to avoid the use of a decision graph and threshold,
and we showed that the resulting algorithm is very close to MODESEEK. Second, we proposed using
two additional procedures to help with tackling the problem of pixel partitioning in hyperspectral
images. The first relies on a KNN graph pruning method based on mutual nearest neighbors (MNN),
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which can facilitate the discovery of clusters in high dimensional datasets. This procedure is applied
prior to the baseline clustering methods. The second one aims to introduce a spatial context in the
core of each clustering method, in order to account for the correlation between adjacent pixels in
hyperspectral images.

The improved KNNCLUST-WM method and the set of baseline nearest-neighbor density-based
methods MODESEEK, M-KNN-DPC, GWENN-WM and M-KNNCLUST-WM were then tested and compared
on synthetic datasets, showing their ability to adequately cluster points issued from highly overlapping
conditional densities in low and high dimensions. The enhanced methods, using the MNN, and then
combining MNN and spatial context, were then applied to a benchmark of real hyperspectral images,
and compared with state-of-the-art methods, namely, FCM, DBSCAN and FSAP. The experimental
results show that the proposed improvements of the baseline nearest-neighbor density-based methods
increase the clustering performance in most cases in terms of standard classification accuracy and
other clustering indices. In particular, the graph and spatial improvements of GWENN and KNNCLUST

provide the best results on average, outperforming the state-of-the-art methods by more than 20% in
optimal kappa index for varying K on real hyperspectral images; while the results of these methods are
close to each other, GWENN is much faster than KNNCLUST due to its non-iterative feature. Additionally,
M-KNN-DPC generally performs better than MODESEEK in the baseline and MNN improved versions;
this is, however, no longer true for their spatial versions, due to the difference pointed out between
their respective core labeling rules, and MODESEEK should then be preferred to M-KNN-DPC. From a
more general viewpoint, unlike other methods like DBSCAN and FSAP which are sensitive to parameter
tuning, the proposed approaches require only one parameter, i.e., the number of nearest neighbors K.

In conclusion, owing to their attractive features, the nearest-neighbor density-based methods
investigated in this paper do constitute a viable alternative to traditional clustering methods in the
context of hyperspectral images: they are able to closely predict the number of clusters present in a
dataset with minimal parametrization; they are strictly deterministic and therefore do not rely on a
random initialization stage.

Although only HSIs were considered here, nearest-neighbor density-based methods can also
be applied to other remote sensing image data, such as very high resolution multispectral images.
To this end, the proposed improvements can be implemented in a multi-resolution framework,
following [32,40].

However, many issues still remain, the most important of which is the automatic tuning of K.
The choices of the best distance metrics among high-dimensional samples and the best local density
model are also critical design choices. These aspects are currently under investigation.
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