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Abstract: This paper presents a new strategy of supervisory control applied to heating room system that is able to adapt to 

different operating conditions, in order to reduce the energy consumption and guaranteed a good thermal comfort for the 

occupants. The aim is to design a multi-model and multi-controller supervisor by using neural networks with a view to 

overcome the limitations of using a single controller and to deal with nonlinearities, parameters uncertainties and the time 

constant of the heating system. The proposed methodology is based on three model/controller pairs, a monitoring signal 

generator and a switching logic. Three architectures of neural network architectures, namely multilayer perceptron neural 

networks, radial basis function and memory neuron networks are used to evaluate this control technique and to design the 

different controller/model pairs which correspond to the same work office and a specific isolation state. A comparative study 

is associated to this work in order to recognize the best neural network in terms of performance and simulation time. The results 

obtained for three scenarios addressed herein show the importance and the effectiveness of this method. 

Keywords: Supervisory control, neural networks, thermal control, building control 

 

1 Introduction 

Buildings are considered as a major consumer of energy among all economic sectors. They account 

for about 31% of the global energy used in the world [1]. This part of the consumption increases 

continuously due to the high rate of urbanization, climate change, and other driving factors [2, 3, 4]. 

Nearly half of this energy is related to heating, ventilation and air conditioning (HVAC) systems [5]. 

Reducing the building energy costs has become an urgent task, due to the increasing environmental 

concerns and energy price. It is important that these systems are well controlled in order to reduce energy 

consumption and to maintain good comfort for the occupants. 

Different types of controllers of  heating systems may be used to optimize the energy efficiency and 

to ensure a certain level of comfort for the occupants, these controllers are of type proportional–integral–

derivative (PID) controllers, auto-tuning methods of PID parameters [6, 7], fuzzy logic controllers [8], 

genetic algorithms [9], distributed iterative learning temperature control [10], predictive control [11, 12] 

and other work such as [13, 14, 15, 16, 17, 18, 19, 20]. All these methods require adjustments and are 

generally based on linear model. They have a single controller that does not guarantee the desired 

behaviour, or they do not take into consideration climate changes and the different disturbances that 

affect the system, making them unsatisfactory or limited. Therefore, it seems to be prominent to search 

for a new advanced approach or algorithm that is able to maintain the desired behaviour in the presence 

of various disturbances, for this purpose, we have developed a supervisory control technique based on 

three model/controller pairs applied to this heating system by taking into consideration situations and 

circumstances. Three neural network architectures have been used to evaluate this control method. 

Recently, a growing interest has been granted to the advanced control strategies based on 

supervisory and switching algorithms to control complex and nonlinear systems. Several controllers are 

defined for different operating environments. A supervisor based on a switching logic makes it possible 

to determine at each instant the operating mode of the system and to select the appropriate controller. 

The logic of this selection is based on the values of monitoring signals, which are obtained by taking 
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performance criteria based on the multi-model estimation errors. The principal idea behind the switching 

strategy is to determine which of the monitoring signals is the smallest, which permits to choose the 

corresponding controller [21]. The need for switching stems from the fact that generally no single 

controller can guarantee the desired behaviour when connected with the complex nonlinear poorly 

modeled process. Different schemes for supervisory control based on switching logic algorithms have 

been presented in the literature, which differ on when and how to choose the suitable controller [22, 23, 

24]. 

On the other hand, our vision is to use an intelligent technique based on learning to overcome the 

limitations of conventional methods which have often shown their inadequacy, especially when the 

systems to be studied present high non-linearities. The failure of classical methods is due to the lack of 

a priori knowledge necessary for the elaboration of the mathematical model. In the face of this problem, 

it is possible to use neural networks (NNs). The use of these neural networks to design identifiers and 

controllers has increased significantly in recent years [25]. NNs can be considered as universal 

approximators [26, 27] that have a capacity to adapt to a dynamic that evolves over time. The various 

applications related to energy management in buildings increase considerably. Artificial neural networks 

(ANNs) have been used for HVAC control [28, 29, 30], in the prediction of energy consumption [31], 

in wind energy systems [32, 33, 34], in renewable energy systems [35, 36] and for fault diagnostic [37].  

This paper is an extension of [38] and its novelty is to add other neural networks architectures and 

integrating the hysteresis to avoid the frequent switching between various controllers. This can 

overcome the oscillations in the indoor temperature and ensure the perfect tracking of setpoint. The case 

study is a working office in a building that can be considered as a complex nonlinear process taken from 

the Simbad toolbox integrated in Matlab [39]. The control proposed in this paper is more adapted to 

different situations, it consist of three model/controller pairs, a monitoring signal generator and a 

switching logic. Each pair corresponding to the same working office, which defined for three states of 

insulation (well, medium and poorly insulated). To evaluate the proposed method we used two feed-

forward neural networks namely, multilayer perceptron neural networks (MLP) and radial basis function 

(RBF), and a recurrent network which is the memory neuron networks (MNN) [40, 41, 42]. The aim of 

this controller is to regulate the ambient temperature inside this office in order to guarantee a perfect 

tracking of the desired temperature in order to maintain a good comfort and to reduce the waste of 

energy, in spite of the presence of different disturbances and constraints. This work is fulfilled by a 

comparative study between these architectures in order to choose the best one.  

The remainder of the paper is organized as follows: Section 2 describes the process. Section 3 is 

devoted to recall the methodology of identification and supervisory control using three architectures of 

neural networks (MLP, RBF and MNN). Application of these neural networks for identification and 

supervisory control for regulating the ambient temperature in building zone is the subject of section 4. 

Conclusions and perspectives are drawn in the last section. 

2 The building zone with electrical heater case study 

2.1 Zone model description 

A building zone model consists of a detailed envelope, simplified radiation and convection sub-

models. A central node has been used to represent the resultant temperature in the zone. The different 

inputs and output of the model are described in Fig. 1. 
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            Fig. 1. The simulation model of the room with different inputs and output 

The Fig. 1 represents the inputs and output of the monozone building heating system (working office) 

which is depicted directly from Simulink/Simbad environment [39]. These inputs can be divided into 

five groups: 

1. The inputs provided by the weather data 1 2( , , , )vert vert ext inE E T Air , their values are given by the integrated 

toolbox SIMBAD and correspond to good approximation to values encountered in practice. 

2. Blind position input which switches between open and close position ( )posBlind . 

3. The heat gains delivered by the electrical equipment and the occupants ( , )elec occQ Q . 

4. The resultant temperature of the adjacent room in contact with the floor, the ceiling and the internal walls of 

the treated room ( , , )lower upper adjT T T . 

5. The heat flux provided by the electrical heater  EMQ w .  

The output taken into account is the ambient temperature inside the room ( )ambT . 

The electrical heater has a normalized control input limited between 0 and 1 which is used to control the 

heat flux  EMQ w . 

2.2 Simulation parameters 

The case study chosen for application is an office room, these types of buildings are occupied only 

during working days between certain hours relatively fixed between 8h00 and 17h00. The room 

characteristics used for simulation are given in Table 1.  
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The different values mentioned below (heat emission equipment per m2, Fresh air supply, mean 

outside temperature) are default values proposed by SIMBAD (toolbox) and they represent good 

approximations for the values encountered in practice. 

 

Table 1  
Simulation parameters  

Designation and heat transfer factor Dimension 

Room dimensions 

Window surface 

4×4×3 m3 

2 m2 (closed during the period of occupation) 

Wall, floor and ceiling heat transfer coefficients [0.25 0.0001 0.25] W/m2/k 

Initial temperature 10 ºC 

Reference temperature while occupancy 19 ºC 

Electric heater nominal power 1500 W 

Number of occupants 2 persons 

Weather data ( )1 2, ,vert vert extE E T  Rennes (region in France) 

Heat emission equipment per m2 1 W/m2 

Fresh air supply 40 m3/h/pers    

Mean outside temperature 6.5 °C 

 

3 Artificial neural networks (ANNs) 

ANNs are the distributed processing systems that have been inspired from the biological nerve 

system, which consists of processing elements (neurons), and association between them with weights 

that constitute the neuronal structure.   

The three neural network architectures utilized in this article have been used in many applications 

either for identification or for control [25]. The first (MLP) is considered as the most widely used 

network in the literature, the second (RBF) has recently attracted a great deal of attention due to its good 

generalization capability and a simple network structure that avoids unnecessary and lengthy 

computations. The third is a recurrent network. The three types of networks have been used to determine 

which network gives the best results for this application. 

3.1 Multilayer perceptron neural networks architecture 

The MLP neural networks is a class of feedforward neural networks; the network is composed of an 

input layer, one or more hidden layers and one output layer. Each layer has a specific number of neurons 

which are the basic processing elements of artificial neural networks. The neurons in layer l are 

associated with the other neurons in layer 1l + by weights [43, 44]. Neurons in the input layer have 

generally a linear activation function, the hidden and output layers use some nonlinear activation 

functions such as tangent sigmoid and logarithmic functions. A structure of an MLP neural network with 

two hidden layers and one neuron in the output layer is presented in     Fig. 2. 
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Fig. 2. Structure of an MLP neural network with two hidden layers  

The output of the jth neuron in layer l at time k is given by equation (1) 

               
1

1 1

1

( ) ( ) ( ) ; 1, 2,..., ; 1, 2,...,
lN

l l l
j ij i l

i

y k f w k y k j N l L
−

− −

=

 
 = = =
 
 
                                                                   (1) 

where
1l

i jw −
is the connection weight between the ith neuron of layer 1l − to jth  neuron of layer l , L the 

number of layer including hidden and output, lN the number of neuron in layer l and (.)f the activation 

function. 

3.2 Radial basis function neural networks architecture 

Recently, RBF neural networks have drawn much attention and are considered as the neural network 

type most used after the MLP because of their good generalization ability and a simple network structure 

that avoids useless and long computation. Previous research on the approximation theorems using these 

networks showed that any nonlinear function over a compact set could be approximated with arbitrary 

accuracy by RBF neural networks [45, 46, 47]. Moreover, RBF neural networks can be used to control 

of complex nonlinear systems [48, 49, 50]. 

RBF neural networks have three layers called input, hidden and output layers. Neurons in the hidden 

layer are activated by a radial basis function. The RBF structure is illustrated in Fig. 3 

 

Fig. 3. Structure of an RBF neural network  

The output of the jth neuron in the output layer is given by equation (2) 

                  

1
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m
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i
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=
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where i jw is the connection from ith neuron of hidden layer to jth neuron of output layer, m is the number 

of neurons in hidden layer, L the number of neurons in output layer and ( )ih u the radial basis gaussian 

function given by equation (3). 
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where i pic c =   is the center of gaussian functions, pu u =   is the input vector, 1,2,...,p n=  and i is the 

widths of gaussian functions. 

3.3 Memory neural networks architecture 
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The structure of MNN used in this paper is similar to the one reported in [41]. The structure is the 

same as that of a feed-forward artificial neural networks aside from the memory neurons attached to 

each network unit. The memory neuron takes its input from its self-feedback and the corresponding 

neuron. This conduct to accumulation of past data of the neuron in the memory. All the memory neurons 

and the neurons of each level send their outputs to the neurons of the following level. In the output layer, 

each neuron can have one or a cascade of memory neurons and each sends its output to that neuron in 

the output layer. A structure of an MNN neural network with two input nodes, one output node and a 

single hidden layer is presented in Fig. 4. 

 

 

 

Fig. 4. Structure of an MNN  

The output of each element of layer ,1l l L  at time k  is given by equation (4) and the output of output 

layer according to (5). 
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where
1l

i jw −
is the weight of the connection from the ith  neuron of layer 1l − to jth neuron of layer l ,

1l
iv −

is 

the output of the memory neuron of the ith neuron in layer 1l − ,1 l L  . 
1l

i jf −
is the weight of the 

connection from the memory neuron corresponding to the ith neuron of layer 1l −  to the jth neuron of layer

l ,
L
ji  is the weight of connection from the ith  memory neuron of the jth neuron to the jth neuron in the 

output layer,
jM the number of memory neurons associated with the jth neuron of the output layer and 

(.)f the activation function. 

The output of all memory neurons except for those of the output layer is given equation (6) and the 

memory neurons in the output layer according to (7). 

           ( ) ( 1) (1 ) ( 1)l l l l l
j j j j jv k y k v k = − + − −                                                                                                         (6) 

              1( ) ( 1) (1 ) ( 1)L L L L L
ji ji ji ji jiv k v k v k −= − + − −                                                                                                                           (7) 

http://www.jsoftcivil.com/article_49580.html
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where L
ji  is the weight of the connection from the ( 1)i th−  memory neuron to the ith memory neuron of 

the jth neuron in the output layer. 

3.4 learning algorithm of the three neural networks 

The neural networks learn by adapting their weights according to some specified rule called learning 

algorithm. Many different learning algorithms have been reported in the literature, among these 

algorithms we can quote, methods of the gradient descend [51, 52, 53], RTRL [54] and ALOPEX [55] 

for MLP and MNN; Least mean square [56], particle swarm optimization [57] genetic algorithm [58] 

for RBF. 

Throughout this paper, we have used online learning algorithm for perceptron training, which 

depends on instantaneous error. The main purpose is to adjust the connection weights, in view of 

minimizing the prediction error made by the perceptron in its current state. The great advantage of this 

learning strategy seems to be more dynamic, in updating the current estimate based on the observation 

of one by one new data. The algorithm delineated previously takes into account the observing data 

iteratively and gradually, it demands less memory, few calculations, real time adaptation and it 

undergoes the order in which the observations are accessible. This learning procedure is generally slow 

but is recommended to this case of study. 

4 Application of different structures of neural networks for identification and supervisory control of the 

building heating system 

4.1 Identification of the process in open loop 

As we mentioned in the introduction, the objective of identification algorithm is to select and to 

compute a consistent model with observation of the output of the system. For identification of the system 

described in    section 2, we have picked three structures of neural networks used as an identifier. To 

take into account the dynamic aspect of the process, the input vector of the network is often reinforced 

by signals corresponding to the previous values of the outputs of the system or network. In our case, we 

use the process outputs (Fig. 5), which is named series-parallel structure.  

The neural networks identifiers have two inputs and one output as illustrated in Fig. 5. The neural 

networks are trained online, and produces an appropriate ambient temperature in order to track that of 

system. The hidden layers have nonlinear activation functions which are the sigmoid (8) for MLP and 

MNN, the gaussian (3) for RBF, and the output layer have a linear activation function. The MLP and 

RBF weights are updated according to the errors between network output and desired output. Hence, 

this algorithm was called as a back propagation algorithm   [51, 52], and the MNN weights are updated 

by using the squared error criterion and the back-propagation   algorithm [53].  

                                                
1

( )
1 x

f x
e −

=
+

                                                                                                  (8) 
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Fig. 5. Series-parallel identification structure 

The parameters of the identifiers are updated by using the equations below.  

                      ˆ( ) ( ( ), ( 1))y k RN u k y k= −                                                                                                                          (9) 

                      1 ( , ( ))k k if e k + = ; where ˆ( ) ( ( ) ( ))ie k y k y k= −                                                                                      (10) 

where RN is the neural network, ˆ ( )y k is the output of identifier at time k , 0 fk t t  −   training period, 

( )u k is the input of system, ( )y k is the output of system, ( )ie k the identification error at time k , k

parameter vector at time k and (.)f  the learning algorithm used to adjust the different parameters of the 

neural networks. 

4.1.1 Simulation results 

Now that, the three structures of neural networks have been chosen, we can consider the results 

obtained by applying this approach to the case of a building during one day, for a sampling time of 200s, 

which let us to define the training base of samples. Note that in our scenario, the external temperature 

varies according to the conditions of Rennes weather data. 

We note that, after several simulations experiences the number of layers and neurons of each network 

as shown in Table 2 is sufficient to get the desired results and to avoid the complexity of the model.  

 

 
Table 2  
Identifiers structure (MLP, RBF and MNN)  

Architecture MLP RBF MNN 

Input neurons 2 2 2 

Output neurons 1 1 1 

Hidden layer 2 1 1 

Hidden neurons in first layer 5 3 3 

Hidden neurons in second layer 6 / / 

Input memory / / 2 

Hidden memory in hidden layer / / 3 

Output memory  / / 3 

 

The figure below is obtained after several experiments from which we have taken the parameters 

adjusted and injected them again in order to guarantee a good follow-up even at the beginning of the 

simulation period, so this figure represents the result of the last experience applied to the learning 

sequence. 

 

Fig. 6. The outputs of identifiers and system during training phase 

As indicated in Fig. 6, we can observe that the output of the three neural networks models have 

followed the desired output during the training phase with a very small mean square errors as shown in 
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Table 3. 

4.1.2 Validation 

To validate the performance of the identifiers, we use these neural networks identifiers on another day whose 

weather conditions are not the same as the first region (Nancy region). Fig. 7 represents the desired output and the 

three neural networks identifiers (models) outputs during validation phase, and the validation errors are shown in 

Table 3. 

 

Fig. 7. The outputs of identifiers and system during validation phase 

To evaluate performance of these network architectures for identification and to compare between 

them, we have used the mean square error (MSE) criteria that is classical index to validate the 

performance of the model as in [25, 40, 42]. 

This performance index (MSE) is given according to the error signal as shown in equation (11). 

                                         
2

1

1
ˆ( ( ) ( ))

N

k

MSE y k y k
N

=

= −                                                                                     

(11) 

where ˆ ( )y k is the output of the identifier and ( )y k is the ambient temperature output of the system. 

The Table 3 represents the performance index for the three architectures used for identification. 

Table 3  
Mean Square Error (MSE) during the occupation period 

 MLP  RBF MNN 

 MSE training 1.0799×10-12 5.8487×10-8 1.7758×10-9 

 MSE validation 0.0013 0.0051 0.0010 

 

As indicated in Fig. 7, we can observe that the output of the three neural networks models have 

followed the desired output during the validation phase with a very small mean square errors as shown 

in Table 3. The change of the region and the presence of the different disturbances have no influence on 

the output response of the system. These results show the capacity and the effectiveness of these kinds 

of networks (MLP, RBF and MNN) for the identification of highly nonlinear thermal systems. 

We can also see in table 3 that the error with MNN is small compared to the others, which reflects 

the good tracking of the desired output. 

4.2 Neural networks for control  

The three neural networks controllers have four inputs and one output as illustrated in Fig. 9. The 

neural networks are trained online, and produce control in order to track the setpoint. The activations 

functions of the hidden layers for the MLP and RBF are the sigmoid (8), the gaussian (3) for RBF, and 
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the output layer have a linear activation function. The parameters of the controllers are updated by using 

the error between the output of the process and the reference model. 

The parameters of the controllers are updated by using the equations below. 

                       ( )( ) ( ), ( ), ( 1), ( 1)ru k RN y k y k y k u k= − −                                                                                               (12) 

                       1 ( , ( ))k k cf e k + = ; where ( ) ( ( ) ( ))c re k y k y k= −                                                                                (13) 

where RN is the neural network, ( )y k is the output of the process at time k , 0 fk t t  −   training period, 

( )ry k the setpoint, ( )u k is the input of process, k parameter vector at time k , ( )ce k the control error at 

time k and (.)f  the learning algorithm used to adjust the different parameters of the neural networks. 

The control structure is given in Fig. 9. 

 
Fig. 9. Control structure 

The learning procedure applied for the three types of models corresponding to the same working office (zone), 

which defined for three states of insulation well, medium and poor with these respective coefficients vectors          

([0 0 0], [0.25 0.0001 0.25], [0.6 0.6 0.6]) in the same order are that of back-propagation. 

For various network architectures leads to a choice of unique structure that is given in Table 4. 

Table 4  
Controllers structures  

 MLP RBF MNN 

Cont1 Cont2 Cont3 Cont1 Cont2 Cont3 Cont1 Cont2 Cont3 

Hidden layer 1                1                1 1                1                1 1                 1               1 

Input neurons 

Hidden neurons 

Output neurons 

4                4                4 

6                6                6 

1                1                1 

4                 4               4 

6                 6               6 

1                 1               1 

4                 4               4 

6                 6               6 

1                 1               1 

Input memory  

Hidden memory  

Output memory 

/                 /                 / 

/                 /                 / 

/                 /                 / 

/                   /               / 

/                   /               / 

/                   /               / 

4                 4               4 

6                 6               6 

3                 3               3 

 

We have simulated the heating system several times on a one-day profile in order to show the 

performance of each controller on the different configurations (models). To evaluate performance of 

these network architectures for control, we have used the mean square error (MSE) criteria given by 

equation (14). 

                                            
2

1

1
( ( ) ( ))

N

r

k

MSE y k y k
N

=

= −                                                                                    

(14) 

where ( )ry k  is the setpoint and ( )y k the ambient temperature output of the system. 

The Table 5 represent the performance of each pair controller/model for the three stuctures of neural networks 

given in the Table 4 by using equation (14). 
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Table 5  

Mean Square Error (MSE) during the occupation period 

Controller/Model MLP RBF MNN 

Cont1/Model1  0.0077 0.0086 0.0053 

Cont1/Model2 0.2176 0.2002 0.2045 

Cont1/Model3 3.64 4.0752 3.6498 

Cont2/Model1  0.0653 0.1111 0.0240 

Cont2/Model2 0.0075 0.0200 0.0123 

Cont2/Model3 0.2436 0.2850 0.3560 

Cont3/Model1  0.1238 0.0890 0.0830 

Cont3/Model2 0.0495 0.0212 0.0683 

Cont3/Model3 0.0121 0.0183 0.0205 

 

From Table 5, we can see that the performance of each controller is good for the model it has been 

trained for and less good for the other models. For this, it seems that the supervised control is a solution 

to ensure a good tracking of the setpoint in order to maintain good comfort for the occupants, what we 

explain in the next subsection.  

4.3 Supervisory adaptive control of nonlinear systems 

The proposed supervisory control architecture facilitates the decision-making task related to control 

actions for enhancing the operation of complex dynamic processes which may consist of interconnected 

subsystems characterized according to various operating modes and conditions, generally subjected to 

external disturbances [59]. This structure is made out of two levels, named regulatory control level and 

supervisory level. A supervisor based on a switching logic allows to determine at any time the effective 

mode of the systems and to select the appropriate controller. 

Fig. 8 represents the supervisory control scheme introduced initially in [60] and discussed by such 

others as in [21, 61, 62], which contains several models, a monitoring signal generator and switching 

logic that allow choosing the selection of the appropriate controller. 

 

 

 

 

 
Fig. 8. Supervisory control architecture  

First, each model lM generates an estimated output ˆ
ly . The difference between ˆ

ly and y gives an 
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estimation error ˆ( ) ( ) ( )l le k y k y k= − . These errors are translated into performance indices 0lJ  by the 

monitoring signal generator, which express the fitness of the models. A popular choice of performance 

criteria is given below.  

                                            2 2

0

( ) ( ) ( ); ( 1,..., )

k
k j

l l l l ll

j

J k e k e j l n   −

=

= + =                                                               

(15)       

The designed parameters ( , , )l l l   are positives, where l and l are used respectively to weight 

the impact of the instantaneous measures given by ( )2
le k and long-term ones given by the second part 

- 2

0
( )

k k j
llj

e j
= . l is considered as a forgetting factor that gives more importance to the recent values of the 

error, [0,1]  . The implementation of the supervisor depends directly on the choice of these parameters. 

The selection of the best controller is based on the smallest error signal, which correspond to the best 

performance index lJ . The presence of noisy measurements and disturbances may cause too fast and 

frequent switching, which motivated the hysteresis switching logic presented in [29]. Suppose that the 

last switch occurred at time jt and the switching signal is now ( ) ,t l I =   where l is the index of the 

active controller. Under hysteresis switching, the value of σ remains fixed until a time 1jt + , where 

1 1(1 ) min ( ) ( )p j l jh J t J t+ ++  under the constant 1j jt t +  + . 

with hysteresis constant 0.h   The stay time is then bounded below by a limited  . At 1jt + , the 

switching signal takes the value ( )1( ) argmin l jt J t += until the hysteresis exchanging condition is 

satisfied at the next time. 

4.4 Supervisory adaptive control of temperature regulation in building zone 

In this subsection, we consider the controllers and the models defined previously by adding a 

monitoring signal generator and switching logic that orchestrate the selection of the appropriate 

controller, in order to ensure proper monitoring of the setpoint whatever the state of the room.   

The selection of the controller is based on the evaluation of the performance criteria lJ given in (15) 

with these parameters ( 0.5, 0.7, 0.9 1,2,3),l l l for l  = = = = the hysteresis constant 64 10 .h −=   

   

4.4.1 Simulation results 

Three scenarios are considered. The first scenario corresponds to one day for each room 

configuration, the second corresponds to three working days with a change of configuration and the 

third one corresponds to a building configuration different from the ones taken before to validate the 

performance of the proposed approach. The Supervisory adaptive control scheme for temperature 

regulation in a building zone is presented in Fig. 10. 
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Fig. 10. Supervisory adaptive control scheme for temperature regulation in a building zone 

4.4.1.1 The first scenario (one day) 

In this scenario, we have simulated the proposed control approach for one day using three structures 

of neural networks (MLP, RBF and MNN), for three building configurations. 
 

a. First case  

The simulation results concern the well-insulated zone are given in Figs. 11, 12 and 13. 

 
Fig. 11. The output of the process and the reference model 

 
Fig. 12. Control signal         
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Fig. 13. The controller selected by the supervisor       

b. Second case 

The simulation results in the case of medium insulated zone are given in Figs. 14, 15 and 16. 

 
Fig. 14. The output of the process and the reference model       

 
Fig. 15. Control signal         

 
Fig. 16. The controller selected by the supervisor   
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c. Third case 

The simulation results in the case of the poorly insulated zone are given in Figs. 17, 18 and 19. 

 
Fig. 17. The output of the process and the reference model 

 
Fig. 18. Control signal    

      
Fig. 19. The controller selected by the supervisor         

The mean square errors of the three case with different networks as given in the table below 

Table 6  
Mean Square Error (MSE) during the occupation period 

Convective heat transfer coefficients MLP RBF MNN 

Well insulation [0  0  0] 0.0087 0.0085 0.0021 

Medium insulation [0.25 0.0001 0.25] 0.0089 0.0199 0.0046 

Poor insulation [0.6  0.6  0.6] 0.0119 0.0208 0.0097 

 

We notice from the Figs. 11, 14 and 17 that the ambient temperature of the process in each case 

tracks the desired setpoint with a very small mean square errors for three neural networks structures as 

mentioned in          Table 6, despite the large variations in the external temperature presented in the same 

figures in the red lines. The control signals presented in Figs. 12, 15 and 18 remain in suitable regions 

which are always less than one (the power is less than 1500W), some oscillations appeared due to the 

different disturbances. The supervisor in three case select between the three controllers as shown in the 
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Figs. 13, 16 and 19 respectively. Generally, we can say that in the first scenario we recognize the 

building and ensure a good control. 

 

4.4.1.2 The second scenario (three days) 

In this scenario, we have simulated the process during the period of three days, for the two first days 

we consider the zone is well insulated, but for the third day the insulation is decreased to the state of 

medium insulation. The simulation results are shown in Figs. 20 and 21. 

 
Fig. 20. The output of the process and the reference model   

 
Fig. 21. The controller selected by the supervisor      

From Fig. 20, we observe that for three days the output temperature inside the room follows perfectly 

the desired temperature, in spite of the insulation decline. Fig. 21 shows that the controller selected by 

the supervisor at each instant, is the appropriate one. 

4.4.1.3 The third scenario (Performance of supervisory control) 

To validate the performance of supervisory control, we use this method to control another building with other 

coefficients between the second and the third case. Figures 22, 23 and 24 show the results of simulation. 
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Fig. 22. The output of the process and the reference model 

 

Fig. 23. Control signal         

 

Fig. 24. The controller selected by the supervisor 

Table 7  
Mean Square Error (MSE) during the occupation period 

Convective heat transfer coefficients MLP RBF MNN 

 [0.5 0.4 0.5] 0.0462 0.0173 0.0994 

Fig. 22 shows that the output of the three neural networks followed the setpoint with very small errors 

as shown in Table 7. Fig. 23 shows the control signal and Fig. 21 presents the appropriate controller 

selected by the supervisor. 

The results of this scenario reveal that when applied to an unknown configuration of the building, 

the supervisor selects the appropriate controller to ensure good comfort. 

4.4.2 Numerical evaluation  

 To verify the effectiveness and demonstrate the stability of the proposed method and to show the 

capacity and the efficacy of these neural networks architectures in control and supervision, we define four 

indices. The first two translate the energy consumed and the comfort of the occupants during the 

occupation period (8h00 ( 0t ) and       17h00 (
ft )) [13]. The last two do not have a direct impact on 

consumption or comfort but are also important in automatic control engineering. They measure the 

oscillations in the temperature difference and the control signal to get the stability assessment. The 

objective is to have the best possible indices. 

The four indices are given below. 

1. The comfort index ( )comfI corresponds to a difference between the temperature of the room ( )ambT and 

the reference temperature ( )refT , but only during the periods of occupation of the room. 
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0

( ) ( ) [ ]

ft

comf ref amb

t

I T t T t dt Ch= −                                                                         

(16) 

2. The consumption index ( )consI , used to measure the energy consumption between 0t and ft .       

                                       

0

( ) [ ]

ft

cons

t

I P t dt kWh=                                                                                              (17) 

3. The temperature stability index ( )TSI corresponds to the temperature oscillations and is given by 

this equation: 

                                      ( )( )max ( ) ( ) [ ]amb ref

while occupancy

TSI local T t T t C= −                                                                      (18)                                 

4. The control stability index ( )CSI corresponds to a weighted average of the control variation, and it 

depend on the time between two successive control values ( )u t and ( 1)u t + which can be considered as 

a sampling            time .sT  

                                       
( )( 1) ( )

s

mean u t u t
CSI

T

+ −
=                                                                                         (19) 

Table 8 shows the performance indices for supervisory control approach using three neural network 

architectures (MLP, RBF and MNN) in the first and third scenarios. For the second scenario, the values 

are approximately the same with the first scenario, for this reason, they are not considered in this paper. 

Table 8  
Performances indices  

Control 

law 

Convective heat 

transfer coefficients 

Comfort 

index [°Ch] 

Consumption 

index [kWh] 

Temperature 

stability index [°C] 

Command 

stability index 

MLP [0 0 0] 0.6977 5.0429 1.4144 2.7743×10-5 

 [0.25 0.0001 0.25] 0.7492 6.8030 3.7818 5.0291×10-5 

 [0.6  0.6  0.6] 0.8941 8.8471 3.2205 9.4755×10-5 

 [0.5  0.4  0.5] 1.0708 8.3601 4.7750 8.1774×10-5 

RBF [0 0 0] 0.7364 5.0455 2.7176 4.2183×10-5 

[0.25 0.0001 0.25] 1.1449 6.7092 4.7764 2.6900×10-5 

[0.6  0.6  0.6] 0.9379 8.7148 3.4005 5.2405×10-5 

 [0.5  0.4  0.5] 1.6428 8.1061 6.0983 2.5174×10-5 

MNN [0 0 0] 0.3481 4.1462 2.4146 3.3145×10-5 

[0.25 0.0001 0.25] 0.5201 4.8656 2.4228 3.4954×10-5 

[0.6  0.6  0.6]  0.7136 5.5843 2.8914 5.2678×10-5 

 [0.5  0.4  0.5] 0.7502 8.2348 3.6789 3.5558×10-5 

 

From the results given in Table 8, we note that on the one hand, the values of the comfort index are 

very low which specify that the error between the setpoint and the ambient output temperature converges 

to zero during the occupation time and that means comfort is maintained. In the other hand, the small 

values of the consumption index reflect the low energy consumption. On the basis of the two last 

columns of this table, we remark that the maximum local points are not far from the setpoint and the 

command signal is stable. When we compare between the three architectures of neural networks using 

different columns, we record that those of MNN are better than those of MLP and RBF.  From Table 8, 

we notice that the MNN gives the best results in terms of tracking, this due to the memory elements that 

gives the network a great ability to converge. 
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5 Conclusions and perspectives  

This paper presents a new strategy of supervisory control based on three model/controller pairs to 

regulate the ambient temperature around the desired setpoint in a building zone. The control scheme is 

based on switching and tuning between three predesigned pairs of model/controller, we have achieved 

the goal of reducing the energy consumed and maintaining a certain level of thermal comfort for the 

occupants. This approach takes in consideration the different disturbances and constraints. In this work, 

we have simulated and illustrated three types of neural networks (MLP, RBF and MNN) used to define 

the different identifiers and controllers of highly complex nonlinear thermal system.  

The simulation results have shown the validity and efficacy of these architectures. After the 

comparative study based on their performance indices, we have concluded despite the complexity and 

the long simulation time of MNN neural networks it gives better results compared to the other two 

networks (MLP and RBF) that is why it is interesting to choose this type of networks to control this kind 

of system. 

The future work will focus on the use of building management data base to tune this controller, 

integration of different criteria, theoretical study of stability and robustness of this approach and other 

methods based on adaptive synchronization of multi-agent systems with resilience to communication 

link faults. 
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