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Local microscopic behavior for 2D Coulomb gases

Thomas Leblé∗

October 10, 2016

Abstract

The study of two-dimensional Coulomb gases lies at the interface of statistical physics
and non-Hermitian random matrix theory. In this paper we give a large deviation principle
(LDP) for the empirical fields obtained, under the canonical Gibbs measure, by zooming
around a point in the bulk of the equilibrium measure, up to the finest averaging scale
N−1/2+ε. The rate function is given by the sum of the “renormalized energy” of Serfaty et
al. weighted by the inverse temperature, and of the specific relative entropy. We deduce a
local law which quantifies the convergence of the empirical measures of the particles to the
equilibrium measure, up to the finest scale.

1 Introduction

1.1 General setting

We consider a system of N classical charged point particles in the Euclidean space R2 with
pairwise logarithmic interaction, in a confining potential V , and associate to any N -tuple ~XN =
(x1, . . . , xN ) the energy

(1.1) hN ( ~XN ) :=
∑

1≤i 6=j≤N
− log |xi − xj |+N

N∑
i=1

V (xi), xi ∈ R2.

We only impose mild conditions on the potential V (see Assumption 1).
For any value of the inverse temperature parameter β > 0 we consider the associated N -point

Gibbs measure, which is absolutely continuous with respect to the Lebesgue measure on (R2)N

with a density given by

(1.2) dPβN ( ~XN ) :=
1

ZN,β
e−

1
2
βhN ( ~XN )d ~XN ,

where we denote a N -tuple of points by ~XN = (x1, . . . , xN ) and d ~XN := dx1 . . . dxN . The
constant ZN,β is a normalizing constant, also called the partition function, so that the total

mass of PβN is 1. The factor 1
2 in front of the physical inverse temperature parameter β is chosen

in order to match the usual convention in random matrix theory. Let us also emphasize the fact
that the external potential scales like N , which corresponds to a mean-field/small temperature
regime.
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Motivations. The model described by (1.1) and (1.2) is known in statistical physics as a two-
dimensional Coulomb gas, two-dimensional log-gas or two-dimensional one-component plasma,
we refer e.g. to [AJ81], [JLM93], [SM76] for a physical treatment of its main properties.

When β = 2 and V is quadratic, the probability measure (1.2) coincides with the joint
law of eigenvalues of a non-Hermitian matrix model known as the complex Ginibre ensemble,
which is obtained by sampling a N × N matrix whose coefficients are (properly normalized)
i.i.d. complex Gaussians, see [Gin65]. For β = 2, more general potentials can be considered,
which are associated to “random normal matrices” (see e.g. [AHM15]). Systems of particles with
a logarithmic interaction as in (1.1), called log-gases, have also (and mostly) been studied on
the real line, motivated by their link with Hermitian random matrix theory. We refer to [For10]
for a survey of the connection between log-gases and random matrix theory, and in particular
to [For10, Chap.15] for the two-dimensional (non-Hermitian) case.

The Ginibre case (and the case β = 2 in general) has the special property that the point

process associated to PβN becomes determinantal, which allows for an exact computation of many
interesting quantities, e.g. the n-point correlation functions. The existence of a matrix model
also allows for local laws at the microscopic scale as in [BYY14a,BYY14b]. In the present paper
we rather work with general β > 0 and potential V , thus dealing with what could be called two-
dimensional β-ensembles by analogy with the one-dimensional β-ensembles which generalize the
laws of eigenvalues of random Hermitian matrices (see e.g. [DE02]). The microscopic behavior
of one-dimensional β-ensembles has been recently investigated in [BEY12, BEY14] and we aim
at a similar understanding in the two-dimensional case.

First-order results: the macroscopic behavior. Let us first recall some results about the
macroscopic behavior of the particle system as N →∞.

If the potential V has some regularity and grows fast enough at infinity (see Assump-
tion 1) there is an associated equilibrium measure µeq, such that the sequence {µN}N (where

µN := 1
N

∑N
i=1 δxi denotes the empirical measure of the points) converges almost surely to µeq.

Moreover the law of {µN}N satisfies a Large Deviation Principle (LDP) at speed β
2N

2 on the
space P(R2) of probability measures, with good rate function given by

(1.3) I(µ) :=

¨
− log |x− y|dµ(x)dµ(y) +

ˆ
V (x)dµ(x),

(see [PH98], and [BAZ98] for a closely related result). This characterizes the first-order or
macroscopic behavior of the interacting particle system. Typically, as N becomes large, the
N points x1, . . . , xN arrange themselves according to the probability density dµeq, which has

compact support Σ. Events that deviate from this prediction occur only with PβN -probability of
order exp(−N2) . We refer to [Ser15, Chap.2] and the references therein for a detailed exposition.

Microscopic behavior with macroscopic average. In this section we summarize the main
result of [LS15], which describes the behavior as N → ∞ of a microscopic quantity obtained
through a macroscopic average.

Let X be the set of locally finite point configurations in R2, endowed with the topology of
vague convergence, and let us denote by P(X ) the set of Borel probability measures on X i.e.
the set of random point processes on R2 (we refer to Section 2.2 for more details).

In [LS15] (following the line of work [SS12], [SS15b], [SS15a], [RS15], [PS15]) S. Serfaty and
the author have investigated the microscopic behavior of the system by making a statement on
the point processes arising when zooming in by a factor N1/2 (which is the typical inter-particle
distance) and averaging over translations in a way that we now briefly present.
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For any N -tuple ~XN , let x′i = N1/2xi, ν
′
N :=

∑N
i=1 δx′i , let Σ′ := N1/2Σ denote the support

of µeq after rescaling, and let iN be the map iN : (R2)N → P(X ) defined by

(1.4) iN ( ~XN ) :=
1

|Σ′|

ˆ
Σ′
δθz′ ·ν′N dz

′,

where θz′ · denotes the action of translation by z′ ∈ Σ′, and where δ is the Dirac mass. The
map iN transforms a N -tuple of points into the data of all the blown-up point configurations
obtained by zooming in by a factor N1/2 around any z ∈ Σ. Such quantities are called empirical
fields. Empirical fields (in our case, those could also be called “Gibbs random fields”), appear
in mathematical statistical physics as natural objects to encode the microscopic behavior of the
systems, see e.g. [FO88,Oll88,Geo93].

We let PN,β be the push-forward of PβN by iN . The main result of [LS15] gives a large
deviation principle for {PN,β}N at speed N , on the space of stationary random point processes.
The rate function on this subset of P(X ) is given by

(1.5) Fβ(P ) :=
β

2
EP [W] + ent[P |Π1],

where W is an energy functional which will be defined later, EP denotes the expectation under
P , and ent[P |Π1] is the specific relative entropy of P with respect to the Poisson point process
of intensity 1 in R2 (see Section 2.5). In (1.5) the energy term is weighted by the inverse
temperature β, it could easily be re-written following the usual convention of weighting the
entropy term by T = 1

β . A similar free energy functional is derived in a fairly general setting
in [GZ93, Theorem 3.1], if one knows a priori how to identify the limit energy term, which turns
out to be the central difficulty.

This LDP characterizes the microscopic behavior only in an averaged way, because of the
average over translations in the definition of iN . In fact (this is still a consequence of [LS15,
Theorem 1]) this description can be enhanced by replacing the average over translations in Σ′

by an average over translations in arbitrary small macroscopic regions (seen in blown-up scale),
for example the square C(z′0, εN

1/2), where ε > 0 is fixed and z′0 = N1/2z0 for some z0 in the
interior of Σ (the bulk). Let us emphasize that the average still takes place at the macroscopic
scale N1/2. This is done in [LS15] by considering “tagged” empirical fields which are elements
of P(Σ× X ) keeping track of the point around which the configuration has been zoomed, thus
allowing for a macroscopic localization.

Finally, let us emphasize that proving a LDP implies that the law of observable concentrates
around minimizers of the rate function. If uniqueness of the minimizer is unknown (which is, so
far, the case in our setting), the LDP does not characterize the limit in law of the observable.

Microscopic behavior with mesoscopic averages. The goal of this paper is to push further
the analysis of [LS15] at finer scales and to consider mesoscopic versions of the map iN . In other
terms we look at the empirical fields obtained by averaging over translations in C(z′0, N

δ) for
0 < δ < 1/2, and we obtain a LDP at speed N2δ with essentially the same rate function as
above. It is crucial to average over a relatively large set and although one might hope to go
down to even finer scales (e.g. O(logkN) for k large enough) we do not expect a similar result
to hold for a strictly speaking microscopic average at scale O(1) (in blown-up coordinates).

The first-order results show that the empirical measure µN := 1
N

∑N
i=1 δxi converges to the

equilibrium measure µeq almost surely. As a consequence of our analysis we get a “local law”
(borrowing the terminology of [BYY14a] and [TV15, Theorem 20]) which implies that µN and
µeq are close at small scales with very high probability.
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The paper [BBNY15], which appeared simultaneously, also proves a local law for two-
dimensional Coulomb gases. It does not study the large deviations of the empirical fields but
obtain better (in fact, optimal) bounds on the errors (it can be understood as a “moderate devi-
ations” result at all scales, whereas our local law only deals with the large deviations scale). The
proof of [BBNY15] relies on a multiscale/bootstrap analysis, with very different methods. First,
they establish a local law with error bounds comparable to ours: in that step, the “screening”
method of the present paper is replaced by a fine understanding of the properties of potential-
theoretic equilibrium measures with perturbed external fields. Then, the technology of loop
equations is used to obtain optimal bounds on the error. In a forthcoming paper [LS], we re-
cover such moderate deviations (as well as a central limit theorem for fluctuations), by different
means.

1.2 Preliminary notation and definitions

1.2.1 Notation

For R > 0 we denote by CR the square [−R/2, R/2]2 and by C(z,R) the translate of CR by
z ∈ R2. We denote by D(p, r) the disk of center p and radius r > 0. If N is fixed and ~XN ∈ (R2)N

we denote by νN :=
∑N

i=1 δxi and ν ′N :=
∑N

i=1 δx′i (where x′i = N1/2xi).
Let 0 < δ < 1/2. We say that an event A occurs with δ-overwhelming probability if

lim sup
N→∞

N−2δ logPβN (Ac) = −∞,

where Ac is the complement of A. In particular, for any event B, if A occurs with δ-overhelming
probability we have

lim sup
N→∞

N−2δ logPβN (B) = lim sup
N→∞

N−2δ logPβN (B ∩ A),

and the same goes for the lim inf. In other terms, when evaluating probabilities of (logarith-
mic) order N2δ we may restrict ourselves to the intersection with any event of δ-overhelming
probability.

If {aN}N , {bN}N are two sequences of non-negative real numbers, we will write aN � bN if if

there exists C > 0 such that aN ≤ CbN (PβN -a.s. if the numbers are random), and we will write
aN �δ bN if there exists C > 0 such that aN ≤ CbN with δ-overhelming probability.

We will write aN � N δ if there exists τ > 0 such that aN ≤ N δ−τ (PβN -a.s. if the numbers
are random) and aN �δ′ N

δ if there exists τ > 0 such that aN ≤ N δ−τ with δ′-overwhelming
probability.

1.2.2 Equilibrium measure and splitting of the energy

Under mild hypotheses on V (see Assumption 1) it is known (see e.g. [ST97, Chap.1]) that there
exists a probability measure µeq with compact support Σ which is the unique minimizer of I (as
in (1.3)) over P(R2) (the set of probability measures). Defining ζ as

(1.6) ζ(x) :=

ˆ
R2

− log |x−y|dµeq(x)+
V

2
−
(¨

R2

− log |x− y|dµeq(x)dµeq(y)− 1

2

ˆ
R2

V dµeq

)
,

we have ζ ≥ 0 quasi-everywhere (q.e.) in R2 and ζ = 0 q.e. on Σ, and in fact this characterizes
µeq uniquely, see [Fro35]. If N ≥ 1 is fixed we let µ′eq(x) := µeq(xN−1/2).
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If C is a finite point configuration we define the second-order energy functional wN (C) as

(1.7) wN (C) :=

¨
4c
− log |x− y|(dC − dµ′eq)(x)(dC − dµ′eq)(y),

where 4c denotes the complement of the diagonal 4. It computes the electrostatic interaction
of the electric system made of the point charges in C and a negatively charged background of
density µ′eq, without the infinite self-interactions of the point charges.

Let ζ̃(C) :=
´
ζdC. It was proven in [SS15b] (see also [Ser15, Chap.3]) that the following

exact splitting formula holds:

Lemma 1.1. For any N ≥ 1 and any ~XN ∈ (R2)N we have, with I as in (1.3)

(1.8) hN ( ~XN ) = N2I(µeq)− N logN

2
+ wN (ν ′N ) + 2Nζ̃(νN ).

We may thus re-write the Gibbs measure PβN as

(1.9) dPβN ( ~XN ) =
1

KN,β
e−

1
2
β(wN (ν′N )+2Nζ̃(νN ))d ~XN ,

where KN,β is a new normalizing constant. The exponent (wN (ν ′N )+2Nζ̃(νN )) is expected to be
typically of order N , and it was proven in [LS15, Cor. 1.5] that logKN,β = −N min F̄β + o(N),
where F̄β is closely related to the free energy functional Fβ mentioned in (1.5).

1.2.3 Energy and entropy

Renormalized energy. In [LS15], following [SS12, SS15b, RS15, PS15], an energy functional
is defined at the level of random stationary point processes (see also [Ser15, Chap.3-6]), which
is the Γ-limit of 1

NwN as N → ∞. We will define it precisely in Section 2.4 and we denote it
by Wm (where m ≥ 0 is a parameter - the notation differs slightly from that of [LS15] where it

corresponds to W̃m). It can be thought of as the infinite-volume limit of (1.7) and as a way of
computing the interaction energy of an infinite configuration of point charges C together with a
negatively charged background of constant density m.

Specific relative entropy. For any m ≥ 0 we let Πm be the law of a Poisson point process
of intensity m in R2. Let P be a stationary random point process on R2. The relative specific
entropy ent[P |Πm] of P with respect to Πm is defined by

(1.10) ent[P |Πm] := lim
R→∞

R−2Ent
(
P|CR |Π

m
|CR

)
,

where P|CR denotes the random point process induced in CR, and Ent(·|·) denotes the usual
relative entropy (or Kullbak-Leibler divergence) of two probability measures defined on the
same probability space. A sub-additivity argument ensures that the limit in (1.10) exists, see
e.g. [GZ93]. We take the appropriate sign convention for the entropy so that it is non-negative:
if µ, ν are two probability measures defined on the same space we let Ent (µ|ν) :=

´
log dµ

dν dµ if
µ is absolutely continuous with respect to ν and +∞ otherwise. For more details we refer to
Section 2.5.
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1.2.4 Good control on the energy

In this paragraph we define the notion of “good control at scale δ”, which expresses the fact
that our particle system has good properties in any square of sidelength N δ (after blow-up).
The assumption that good control at scale δ holds will be a key point in order to prove the
LDP at slightly smaller scales. Moreover we will see that the “good control” assumption can
be bootstrapped, i.e. good control at scale δ implies good control at scale δ1 for δ1 < δ large
enough.

Let us first introduce the local electric field Eloc and its truncation Eloc
η , we will come back

to these definitions in more detail in Section 2.3. If ~XN is a N -tuple of points in R2, for any

0 < η < 1 we denote by ν ′N,η the measure ν ′N,η :=
∑N

i=1 δ
(η)
x′i

, where δ
(η)
x′i

denotes the uniform

probability measure on the circle of center x′i and radius η. We let Eloc be the associated “local
electric field”

(1.11) Eloc(x) := (−∇ log) ∗ (ν ′N − µ′eq)

and Eloc
η its truncation at scale η, defined by

(1.12) Eloc
η (x) := (−∇ log) ∗ (ν ′N,η − µ′eq).

Finally, we denote by Σ̊ the interior of Σ.

Definition 1.2. For any 0 < δ ≤ 1
2 we say that a good control at scale δ holds if for any z0 ∈ Σ̊

and any 0 < δ1 < δ we have with δ1-overwhelming probability:
1. The number of (blown-up) points N z0

δ in the square C(z′0, N
δ) is of order N2δ

(1.13) N z0
δ �δ1 N

2δ.

2. For any 0 < η < 1 we have

(1.14)

ˆ
C
z0
δ

|Eloc
η |2 +N z0

δ log η �δ1 N2δ,

which expresses the fact that the energy in the square C(z′0, N
δ) (after blow-up) is of order

N2δ.

Let us emphasize that (1.13), (1.14) control quantities at scale δ by looking at probabilities
at scale δ1 < δ. This is mostly a technical choice, which allows to simplify some arguments
below.

1.3 Rate function

Let us define the local rate function as

(1.15) Fmβ (P ) :=
β

2
Wm(P ) + ent[P |Πm].

It is a good rate function because both terms are good rate functions (see e.g. [LS15, Lemma
4.1]).

For any m > 0 we let Ps,m(X ) be the set of random stationary point processes of intensity
m. Let us define a scaling map σm : Ps(X )→ Ps(X ) such that σm(P ) is the push-forward of P
by C 7→ m−1/2C. It is easy to see that σm induces a bijection from Ps,m(X ) to Ps,1(X ) for any
m > 0.

It is proven (see [LS15, Def. 2.4, Lemma 4.2]) that
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Lemma 1.3. The map σm induces a bijection between the minimizers of Fmβ over Ps,m(X ) and

the minimizers of F1
β over Ps,1(X ).

Let us observe that Lemma 1.3 crucially uses the scaling properties of the logarithmic kernel.
Replacing the logarithmic interaction by, e.g. a Riesz potential |x − y|s (as studied in [LS15])
gives rise to a more intricate situation where the effect of the equilibrium measure may be felt
at microscopic scale, not only through a scaling factor.

We may now state our main results.

1.4 Statement of the results

If z0 ∈ Σ̊ and 0 < δ < 1/2 are fixed, let us define the map iz0N,δ : X → P(X ) as

(1.16) iz0N,δ(C) := N−2δ

ˆ
C(z′0,N

δ)
δθ′z ·(C∩C(z′0,N

δ))dz
′.

Such quantities are called empirical fields. We denote by Pz0
N,β,δ the law of the push-forward of

PβN by the map iz0N,δ - in other words: the empirical field observed around z0 by averaging at the

mesoscopic scale N δ. Finally we denote by meq the density of µeq (see Assumption 1).

Theorem 1. For any 0 < δ < 1/2, for any z0 in Σ̊, the sequence {Pz0
N,β,δ}N obeys a large

deviation principle at speed N2δ with good rate function
(
Fmeq(z0)
β −minFmeq(z0)

β

)
.

Moreover a good control at scale δ holds in the sense of Definition 1.2.

Theorem 1 tells us in particular that the behavior around z0 ∈ Σ̊ depends on V only through
the value meq(z0), and in view of Lemma 1.3 it has only the effect of scaling the configurations.
Conditionally to the uniqueness of minimizers of Fβ, it would yield another example of the uni-
versality phenomenon: the small scale behavior of the particle system is essentially independent
of the choice of V (however, since uniqueness of minimizers has not yet been proven, we can
only rigorously speak of universality of the large deviations functional).

The first consequence of Theorem 1 is a bound on the discrepancy i.e. the difference between
the number of points of ν ′N in a given square and the mass given by µ′eq.

Corollary 1.4. Let z0 ∈ Σ̊, let 0 < δ < 1/2 and δ1 ∈ (δ/2, δ). We have

(1.17)

∣∣∣∣∣
ˆ
C(z′0,N

δ
1 )
dν ′N − dµ′eq

∣∣∣∣∣�δ1 N
4
3
δ.

For δ1 < δ close to δ, the bound N
4
3
δ on the difference is much smaller than the typical value

of each term, of order N2δ1 . It allows us to prove a local law in the following sense:

Corollary 1.5. Let z0 ∈ Σ̊ and 0 < δ ≤ 1/2 be fixed. Let f be a C1 function (which may depend
on N) such that f is supported in C(z′0, N

δ). Then for any δ/2 < δ1 < δ we have

(1.18) N−2δ

∣∣∣∣∣
ˆ
C(z′0,N

δ)
f(dν ′n − dµ′eq)

∣∣∣∣∣ �δ1 ‖∇f‖∞N δ1 + ‖f‖∞N−2δ/3.

In particular if f(z) = f̃(N−δ(z − z′0)) for some compactly supported C1 function f̃ then
‖∇f‖∞ � N−δ and ‖f‖∞ � 1, thus we get

N−2δ

∣∣∣∣∣
ˆ
C(z′0,N

δ)
f(dν ′n − dµ′eq)

∣∣∣∣∣�δ1 1.
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Comments and open questions. In the statement of the results we restrict ourselves to
the following setting: we first pick a point z0 in the interior of Σ (called the bulk) and then
look at the point process in C(z′, N δ) with N−1/2z′ = z0. A careful inspection of the proof
shows that we might have taken z′ depending on N more finely, e.g. by considering a sequence
z′ with N−1/2z′ → z0 ∈ Σ̊, while keeping the same conclusions. It does not seem possible to
take z′ → z0 ∈ ∂Σ (the “edge case”) in general because the density meq may vanish near the
boundary - however, this does not happen in the standard example of the quadratic potential,
in which the density is constant up to the boundary of the support. Our analysis might be done
in the edge case at a scale δ ≥ δc depending on the speed at which meq(z) vanishes, but we do
not pursue this goal here.

The minimizers of the rate function are unknown in general, however it is proven in [LS15,
Corollary 1.4] that the Ginibre point process minimizes F1

β over Ps,1(X ) for β = 2. We do not
know whether uniqueness of the minimizers holds for β = 2, nor for any value of β. Uniqueness
of the minimizers for some β > 0 would imply that the empirical fields have a limit in law as
N → ∞, which would heuristically correspond to some “β-Ginibre” random point process. In
that case, our results shows that the hypothetical convergence

Empirical field averaged at scale N δ → β-Ginibre

holds at arbitrarily fine scales δ > 0, which would hint at the convergence in law of the non-
averaged point process ν ′N to the conjectural β-Ginibre point process.

Another open question is the behavior of the minimizers as β → ∞ (the low-temperature
limit). The crystallization conjecture (see e.g. [BL15] for a review) predicts that the minimum
of W1 on Ps,1(X ) is (uniquely) attained by the random stationary point process associated to
the triangular lattice. In the high-temperature limit β → 0, it is proven in [Leb15, Theorem 2]
that minimizers of F1

β converge (in a strong sense) to Π1.
The result of [LS15] and most of the methods used in this paper are valid in a broader

setting than the two-dimensional, logarithmic case, in particular we could think of treating the
1d log-gas (i.e. the β-ensembles). It turns out that an adaptation of the present method in
the one-dimensional case allows one to improve the result of [LS15] to finer, mesoscopic scales,
however, we have been unable so far to go down to the finest scale N−1+ε and we hope to return
on this question in a subsequent work.

1.5 Plan of the paper and sketch of the proof

In Section 2 we introduce some notation and we give the definitions of the main objects used
throughout the paper, as well as their key properties. In Section 3 we gather preliminary
results about the energy wN and we prove the main technical tool, called the “screening lemma”.
Section 4 is devoted to the proof of a LDP upper bound and Section 4 to the lower bound. We
combine these two steps to prove Theorem 1 in Section 6, together with Corollary 1.4 and 1.5.
Section 7 is devoted to intermediate results which we postpone there.

Let us now sketch how the proof of Theorem 1 goes. The basic idea is a bootstrap argument,
we find that there exists t < 1 such that

(1.19) Good control at scale δ −→
{

Large deviations at scale δ1

Good control at scale δ1
for all tδ ≤ δ1 < δ.

Once good control at scale δ = 1/2 is established, Theorem 1 follows. A similar bootstrap
argument was used in [RNS15] for studying the minimizers of wN (which corresponds to the
β = +∞, or zero temperature case).
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The main obstruction to obtaining LDP for empirical fields in our context is the non-locality
of the energy (1.7): due to the long-range nature of the interactions, it is hard to localize the
energy in a given square in such a way that it only depends of the point configuration in this
square. Another way of seeing it is that Eloc(x) depends a priori on the whole configuration
~XN and not only on the points close to x.

To prove (1.19) we rely on the following steps: let z0 ∈ Σ̊ be fixed. For the sake of simplicity
let us assume that wN ( ~XN ) = 1

2π

´
R2 |Eloc|2, where Eloc is the local electric field defined in

Section 1.2.4 (see also Section 2.3).
1. For any ~XN , we split the energy wN ( ~XN ) as

ˆ
R2

|Eloc|2 =

ˆ
C(z′0,N

δ1 )
|Eloc|2 +

ˆ
C(z′0,N

δ1 )c
|Eloc|2,

and we split ~XN as ~X in + ~Xout where ~X in is the point configuration in C(z′0, N
δ1) and

~Xout is the point configuration in C(z′0, N
δ1)c.

2. We define F in( ~X in) (resp. F out( ~Xout)) as the minimal energy of an electric field associated
to ~X in (resp. ~Xout), see (4.13) (resp. (4.10)). We thus have

wN ( ~XN ) ≥ F in( ~X in) + F out( ~Xout).

The two terms in the right-hand side become independent (they depend from two distinct
sets of variables).

3. Inserting the previous inequality into the expression of the Gibbs measure (1.9) we obtain,
for any event A “concerning” ~X in

(1.20) PβN (A) ≤ 1

KN,β

(ˆ
A
e−

1
2
βF in( ~Xin)d ~X in

)(ˆ
e−

1
2
β(F out( ~Xout)+2Nζ̃( ~Xout))d ~Xout

)
.

This can be used to prove a first LDP upper bound (taking A = {iz0N,δ1( ~X in) ∈ B(P, ε)})
or a first “good control” estimate (taking A = {F in( ~X in)� N2δ1}).

4. Then we need to prove that (1.20) is sharp (at scale δ1). Given ~Xout and ~X in, it amounts
to be able to reconstruct (a family of) point configurations ~XN ≈ ~Xout + ~X in such that
wN ( ~XN ) ≤ F in( ~X in) + F out( ~Xout) + o(N2δ1). This is where the screening procedure is
used: we modify ~Xout and the associated electric field a little bit (this procedure follows
the line of work [SS15b, SS15a, RS15, PS15] and is called screening for reasons that will
appear later) so that we may glue together ~X in and the new ~Xout and create an electric
field compatible with the new (slightly modified) point configuration ~XN . It is then a
general fact that wN ( ~XN ) (the energy of the local electric field associated to ~XN ) is the
smallest energy in a wide class of compatible electric fields. Let us emphasize that in this
step, the good control on the energy is the key ingredient which allows to bootstrap the
argument. Indeed, the screening procedure requires to find good boundaries where the
energy is controlled, and the existence of such boundaries is ensured by the good control
at a larger scale.
In particular, proving a partial converse to (1.20) allows us to estimate the “local partition
function”

1

KN,β

(ˆ
e−

1
2
β(F out( ~Xout)+2Nζ̃( ~Xout))d ~Xout

)
,

and also to show a LDP lower bound. Combined with the estimates of the previous step,
it proves (1.19).
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2 Notation, assumptions and main definitions

2.1 Assumption on the potential

Assumption 1. The potential V is such that
1. V is lower semi-continuous (l.s.c.) and bounded below.
2. The set {x ∈ R2 | V (x) <∞} has positive logarithmic capacity.

3. We have lim|x|→∞
V (x)

2 − log |x| = +∞.
These first three conditions ensure that the equilibrium measure µeq is well-defined and has
compact support Σ. Furthermore we ask that the measure µeq has a density meq which is κ-
Hölder in Σ, for some 0 < κ ≤ 1

(2.1) |meq(x)−meq(y)| ≤ |x− y|κ.

If V is C2, it is known that µeq is absolutely continous with respect to the Lebesgue measure
on R2 and its density coincides with ∆V in Σ. Thus in particular (2.1) is satisfied as soon as
V is C2,κ. Let us observe that the third assumption (that V is “strongly confining”) could be
slightly relaxed into

lim inf
|x|→∞

V (x)

2
− log |x| > −∞,

i.e. V is only “weakly confining”, in which case the support Σ might not be compact (see [Har12]
for a proof of the first-order LDP in this case). We believe that Theorem 1 should extend to the
non-compact case as well, since it is really a local result, but we do not pursue this goal here.

2.2 Point configurations and point processes

Point configurations. If B is a Borel set of R2 we denote by X (B) the set of locally finite
point configurations in B or equivalently the set of non-negative, purely atomic Radon measures
on B giving an integer mass to singletons. We will often write C for

∑
p∈C δp. We endow the

set X := X (R2) (and the sets X (B) for B Borel) with the topology induced by the topology of
weak convergence of Radon measure (also known as vague convergence or convergence against
compactly supported continuous functions), these topologies are metrizable (e.g. take the 1-
Wasserstein distance for B compact, and a convergent serie of such distances over an increasing
sequence of compact domains if B is not - in fact we will only encounter the cases B = R2 or
B = some square) and we fix a compatible distance dX .

Volume of configurations. Let B be a Borel set of R2. For any N ≥ 1, let ∼N be the
equivalence relation on BN defined as (x1, . . . , xN ) ∼N (y1, . . . , yN ) if and only if there exists a
permutation σ ∈ SN (the symmetric group on N elements) such that xi = yσ(i) for i = 1, . . . , N .

We denote by BN/SN the quotient set and by πN the canonical projection BN → BN/SN .
The set of finite point configurations in B can be identified to {∅} ∪

⋃+∞
N=1B

N/SN .

If A ⊂ BN/SN we define Â ⊂ BN as Â :=
⋃
C∈A C. It is easy to see that Â is the largest

subset of BN such that the (direct) image of Â by πN is A.
We will call “the volume of A” and write (with a slight abuse of notation) Leb⊗N (A) the

quantity Leb⊗N (Â) (where Leb is the normalized Lebesgue measure on R2).
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Random point process. A random point process is a probability measure on X . We denote
by Ps(X ) the set of stationary random point processes i.e. those which are invariant under
(push-forward by) the natural action of R2 on X by translations. We endow Ps(X ) with the
topology of weak convergence of probability measures, and we fix a compatible distance dP(X ),
e.g. the 1-Wasserstein distance. Throughout the text we will denote by B(P, ε) the closed ball
of center P and radius ε for dP(X ).

2.3 Electric systems and electric fields

Finite electric system. We will call an “electric system” a couple (C, µ) where C is a point
configuration and µ is a non-negative measurable bounded function in R2. One should think of
C as a set of point charges (carrying a +1 charge) and µ as the density of (negative) charges in
the background. We say that the system is finite if C is finite and µ is compactly supported. We
say that the system is neutral if it is finite and

´
R2 dC =

´
R2 µ(x)dx.

Electric fields. Let 1 < p < 2 be fixed. We define the set of electric fields Elec as the set of
vector fields in Lploc(R

2,R2) such that

(2.2) − divE = 2π (C − µ) in R2

for some electric system (C, µ). When (2.2) holds we say that E is compatible with (C, µ) in R2

and we denote it by E ∈ Elec(C, µ). If K is a compact subset of R2 with piecewise C1 boundary
we let Elec(C, µ,K) be the set of electric fields which are compatible with (C, µ) in K i.e. such
that

−divE = 2π (C − µ) in K.

We denote by Elec0 the set of decaying electric fields, such that E(z) = O(|z|−2) as |z| → ∞.
We let Elec0(C, µ,K) be the set of electric fields which are compatible with C, µ in K and decay.
As an example of decaying electric fields, one could consider the local electric field (defined in
(1.11)) associated to a neutral (hence finite) electric system.

Local electric fields. If (C, µ) is a finite electric system there is a natural compatible electric
field, namely the local electric field defined as

Eloc := −∇ log ∗(C − µ).

We also define the “local electric potential”

H loc := − log ∗(C − µ).

The scalar field H loc corresponds physically to the electrostatic potential generated by the point
charges of C together with a background of “density” µ. The vector field Eloc can be thought of
as the associated electrostatic field. It is easy to see that Eloc fails to be in L2

loc because it blow
ups like |x|−1 near each point of C, however Eloc is in Lploc(R

2,R2) for any 1 < p < 2.

Truncation procedure. The renormalization procedure of [RS15,PS15] uses a truncation of
the singularities which we now recall. We define the truncated Coulomb kernel as follows: for
0 < η < 1 and x ∈ R2, let fη(x) = (− log |x|+ log η)+. If (C, µ) is an electric system and
E ∈ Elec(C, µ) we let

(2.3) Eη(X) := E(X)−
∑
p∈C
∇fη(X − p).
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If E is the local field associated to some finite electric system (C, µ), then Eη is given by

Eη = − log ∗(
∑
p∈C

δ(η)
p − dµ),

where δ
(η)
p is the uniform measure on the circle of center p and radius η.

2.4 Renormalized energy

For finite point configurations. It follows from the definition, and the fact that − log is
(up to an additive constant) the Coulomb kernel in dimension 2, that −∆H loc = 2π(C − µ),
where H loc denotes the local electric potential associated to a finite electric system (C, µ). We
may thus observe that wN (C) (defined in (1.7)) can be written

wN (C) ≈ − 1

2π

ˆ
H loc∆H loc

(up to diagonal terms). Using Eloc = ∇H loc and integrating by parts we obtain heuristically
wN (C) =

´
R2 |Eloc|2. However, this computation does not make sense because Eloc fails to be in

L2 around each point charge (and indeed the diagonal is excluded in the definition of wN ). The
correct way of giving a sense to “wN (C) ≈

´
R2 |Eloc|2” is to use a renormalization procedure,

using the truncation at scale η defined above. The following is proven in [SS15b].

Lemma 2.1. For any N ≥ 1 and any ~XN ∈ (R2)N , we have

(2.4) wN (ν ′N ) =
1

2π
lim
η→0

ˆ
R2

(
|Eloc

η |2 +N log η
)
.

Moreover wN is bounded below on (R2)N by O(N).

For infinite electric fields. Let (C, µ) be an electric system and E ∈ Elec(C, µ). We let
Wη(E) be

Wη(E) :=
1

2π
lim sup
R→∞

R−2

ˆ
CR

(
|Eη|2 + µ log η

)
.

The renormalized energy of E is then defined as W(E) := lim supη→0Wη(E).

For (random) infinite point configurations. If (C, µ) is an electric system with µ constant
equal to some m > 0 we define

(2.5) Wm(C) = inf
E∈Elec(C,µ)

W(E).

Similarly if P is a random point process we let Wm(P ) = EP [Wm] for any m > 0.
The following lower semi-continuity result was proven in [LS15, Lemma 4.1].

Lemma 2.2. For any m > 0 the map P 7→Wm(P ) is lower semi-continuous on Ps(X ). More-
over its sub-level sets are compact. In particular, Wm is bounded below.

2.5 Specific relative entropy

For any P ∈ Ps(X ), the specific relative entropy ent[P |Πm] is defined as in (1.10) (see e.g. [GZ93,
(2.12)]).

Lemma 2.3. For any m ≥ 0 the map P 7→ ent[P |Πm] is well-defined on Ps(X ), it is affine
lower semi-continous and its sub-level sets are compact.

Proof. We refer to [RAS09, Chap. 6] for a proof of these statements.
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Large deviations for the reference measure. If we throw ≈ mR2 points uniformly and
independently in some large square CR, we expect the associated empirical field to look like a
Poisson point process. The following proposition states that the large deviations are governed
by the specific relative entropy defined in (1.10). It can be understood as the “process-level” (or
“type III”, in the language of large deviations) extension of the classical Sanov large deviation
principle for empirical measure. It consists mainly of an adaptation of [GZ93, Theorem 3.1]
(with F = 0) to our context, while taking care of the additional terms induced by changing the
density of points.

Proposition 2.4. Let P be in Ps,m(X ) for some m > 0. Let {NR}R>0 be such that

NR = mR2(1 + o(1)).

Let us denote by iR the “empirical field” map with average in CR i.e. (similarly to (1.4), (1.16))

iR(C) :=
1

R2

ˆ
CR

δθz ·(C∩CR)dz.

We have

(2.6) lim
ε→0

lim
R→∞

1

R2
log

ˆ
(CR)NR

1iR(x1,...,xNR )∈B(P,ε)dx1 . . . dxNR

= − (ent[P |Πm]−m+m logm) .

We postpone the proof to Section 7.1. Henceforth we let, for any z ∈ Σ

(2.7) cz := meq(z)−meq(z) logmeq(z).

3 Preliminary considerations on the energy

3.1 Monotonicity estimates

Almost monotonicity in η of the local energy. The next lemma expresses the fact that
the limit η → 0 in (2.4) is almost monotonous.

Lemma 3.1. Let (C, µ) be a neutral electric system with N points and Eloc be the associated
local electric field. We have, for any 0 < η < η1 < 1,

(3.1)

(ˆ
R2

|Eloc
η |2 +N log η

)
−
(ˆ

R2

|Eloc
η1 |

2 +N log η1

)
� −N‖µ‖∞η1.

Proof. This is [PS15, Lemma 2.3].

Let us note that, integrating by parts, we may re-write
´
R2 |Eloc

η |2 as
´
R2 −H loc

η ∆H loc
η and

(3.1) is really a monotonicity estimate for
(´

R2 −H loc
η ∆H loc

η +N log η
)

as η varies.
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A localized monotonicity estimate.

Lemma 3.2. Let (C, µ) be an electric system and Eloc be the associated local electric field. Let
R2 > 10 and let N in be the number of points of C in CR2. We let also Nbou be the number of
points of C in CR2\CR2−5. We have for any 0 < η1 < η0 < 1,

(3.2)

(ˆ
CR2

|Eloc
η1 |

2 +N in log η1

)
−

(ˆ
CR2

|Eloc
η0 |

2 +N in log η0

)
� −N in||µ||∞η0

+Nbou log η1 + (log η1 − 1)

ˆ
CR2
\CR2−5

(
|Eloc

η0 |
2 + |Eloc

η1 |
2
)
.

Proof. It follows from the proof of [PS15, Lemma 2.4], see e.g. [PS15, Equation 2.29] and the
one immediatly after.

Almost monotonicity with no points near the boundary.

Lemma 3.3. Let (C, µ) be an electric system in R2 and Eloc be the associated local electric field.
Let 0 < R2 and let 0 < η1 < 1 be such that the smeared out charges at scale η1 do not intersect
∂CR2 i.e.

⋃
p∈C B(p, η1) ∩ ∂CR2 = ∅. Let us denote by N in the number of points in CR2. Then

we have for any η ≤ η1

(3.3)

(ˆ
CR2

|Eloc
η |2 +N in log η

)
−

(ˆ
CR2

|Eloc
η1 |

2 +N in log η1

)
� −N inη1||µ||∞

Proof. We postpone the proof to Section 7.2.

3.2 Discrepancy estimates

Lemma 3.4. Let N ≥ 1, and let C be a finite point configuration in R2. Let E be a gradient
electric field in Elec(C, µ′eq). For any R > 0, let DR be the discrepancy DR :=

´
CR

(dC − dµ′eq) in
CR.

For any η ∈ (0, 1) we have

(3.4) D2
R min

(
1,
DR
R2

)
�
ˆ
C2R

|Eη|2.

Proof. This follows from [RS15, Lemma 3.8].

As a corollary, we see that if a good control holds at scale δ, then the discrepancies are
controlled at smaller scales.

Lemma 3.5. Let 0 < δ ≤ 1
2 and let us assume that a good control holds at scale δ. Then for

any R ∈ (1
2N

δ1 , 2N δ1) with δ
2 < δ1 < δ we have

(3.5) |DR| �δ1 N
4
3
δ.

Proof. Let us apply Lemma 3.4 with η = 1/2, taking E to be the local electric field Eloc. It
yields

D2
R min

(
1,
DR
R2

)
�
ˆ
C2R

|Eloc
1/2|

2.
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Using the good control on the energy at scale δ (in the sense of Definition 1.2) we have

ˆ
C2R

|Eloc
1/2|

2 +N2R log(1/2) � N2δ, ,

where N2R (the number of points in C2R) is itself �δ1 N2δ. We thus obtain that

D2
R min

(
1,
DR
R2

)
�δ1 N2δ.

Then, elementary considerations imply that if δ2 < δ1 < δ, we have D3
R �δ1 N2(δ1+δ) which yields

(3.5).

Application: number of points in a square.

Lemma 3.6. Let 0 < δ ≤ 1
2 and let us assume that a good control holds at scale δ. Then we

have, for any R ∈ (1
2N

δ1 , 2N δ1) with 2
3δ < δ1 < δ, and for any z0 ∈ Σ̊, letting N z0

R :=
´
C(z′0,R) dC

(3.6)
∣∣N z0

R −meq(z0)R2
∣∣�δ1 N

2δ1 .

Proof. We have by definition

ˆ
C(z′0,R)

dµ′eq =

ˆ
C(0,R)

meq(z0 + tN−1/d)dt.

Using the Hölder assumption (2.1) we get∣∣∣∣∣
ˆ
C(z′0,R)

dµ′eq −R2meq(z0)

∣∣∣∣∣ � N2δ1+κ(δ1− 1
2

).

Since κ > 0 and δ1 < 1/2 we get∣∣∣∣∣
ˆ
C(z′0,R)

dµ′eq −R2meq(z0)

∣∣∣∣∣� N2δ1 ,

while Lemma 3.5 yields ∣∣∣∣∣N z0
R −

ˆ
C(z′0,R)

dµ′eq

∣∣∣∣∣�δ1 N
4
3
δ.

Combining these two inegalities we see that if δ1 >
2
3δ then (3.6) holds.

3.3 Minimality of local energy against decaying fields

Lemma 3.7. Let K ⊂ R2 be a compact set with piecewise C1 boundary. Let (C, µ) be a neutral
electric system in K. Let Eloc be the local electric field associated to (C, µ) and let E ∈ Elec0(C, µ).
For any 0 < η < 1 we have

(3.7)

ˆ
R2

|Eloc
η |2 ≤

ˆ
R2

|Eη|2.

The proof is very similar to that of [LS15, Lemma 3.12] and we postpone it to Section 7.
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3.4 The screening lemma

The following result is strongly inspired from the“screening lemmas”of [SS15b, Prop. 6.4], [PS15,
Prop 6.1] and [LS15, Prop 5.2]. Our setting is slightly simpler because we have ruled out the
possibility of having point charges close to the boundary ∂CR2 . A difference is that here we
screen the electric field “from the inside” (a similar procedure is used in [RNS15]) whereas the
aforementioned screening results were constructing a field E such that E ≡ 0 outside a certain
hypercube. Another difference is that in the present lemma we really need to deal with a variable
background µ.

Let us briefly explain the purpose of Lemma 3.8. Let µ be a fixed background, defined on a
large square CR2 . We start with a point configuration and an electric field associated to it (and
to the negative background given by µ), that we can think of as living in CR2\CR1 , and we want
to fill CR1 with some other point configuration and associated electric field. To connect both
electric fields, we need to check that their normal components coincide along the boundary of
CR1 (otherwise divergence is created). A way to ensure that is to have them both equal to 0
on ∂CR1 . We thus need to change the initial point configuration a little bit so that we can find
an associated electric field whose normal component vanishes on ∂CR1 . The next lemma shows
that under some assumptions, and especially if the energy control (3.9) holds, we may slightly
perturb the point configuration and pass from a given electric field E to a new one Etran which
is “screened” in that (3.12) holds, and whose energy is close to that of E (as expressed in (3.13)).
In Section 4 we will ensure that, by construction, the assumptions of Lemma 3.8 are satisfied.

Lemma 3.8. There exists C > 0 universal such that the following holds.
Let z ∈ R2 and for any N let (C, µ) be an electric system in R2, let 0 < δ3 < δ2 < δ1 < 1/2

and let R1, R2 positive be such that, letting η1 := N−10, we have
1. R2 ∈ [N δ1 +N δ2 , N δ1 + 2N δ2 ] and R1 ∈ [R2 − 3N δ3 , R2 − 2N δ3 ].
2. The smeared out charges at scale η1 do not intersect ∂C(z,R2), i.e.

N⋃
p∈C

D(p, η1) ∩ ∂C(z,R2) = ∅.

3. Ngen is an integer, where Ngen :=
´
C(z,R1) dµ.

4. Letting Nmid :=
´
C(z,R2)\C(z,R1) dC, it holds Nmid � N2δ1.

Let us assume that µ satisfies 0 < m ≤ µ ≤ m on CR2\CR1 and that furthermore there exists
Cµ > 0 such that

(3.8) ∀(x, y) ∈ (CR2\CR1)2, |µ(x)− µ(y)| ≤ Cµ|x− y|κ,

where κ is as in (2.1). Let E be in Elec(C, µ,R2\CR1) and let M :=
´
∂CR2

|Eη|2.

If the following inequality is satisfied

(3.9) M ≤ C min(m2, 1)N3δ3 ,

then there exists a measurable family Atran
N of point configurations such that for any Ctran ∈ Atran

N

1. The configuration Ctran is supported in CR2\CR1.
2. The configuration Ctran has N tran points where (with ~n the unit normal vector)

(3.10) N tran :=

ˆ
∂CR2

Eη1 · ~n−
ˆ
CR2
\CR1

dµ.
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3. The points of Ctran are well-separated from each other and from the boundaries

(3.11) min
p1 6=p2∈Ctran

|p1 − p2| � m−1/2, min
p∈Ctran

dist(p, ∂CR2 ∪ ∂CR1) � m−1/2.

4. There exists an electric field Etran ∈ Elec(Ctran, µ, CR2\CR1) such that
(a) We have

(3.12) Etran
η1 · ~n =

{
Eη1 · ~n on ∂CR2

0 on ∂CR1

.

(b) The energy of Etran is bounded by

(3.13)

ˆ
CR2
\CR1

|Etran
η1 |

2 � N δ3M +N δ1+3δ3CµN
κδ3 +N δ1+δ3 logN.

Moreover the volume of Atran
N is bounded below as follows

(3.14) log Leb⊗N
tran

(Atran
N ) � −(mN δ1+δ3 +N δ1 +M) logm.

Proof. We set l = N δ3 .
Step 1. Subdividing the domain. We claim that we may split CR2\CR1 into a finite family of
rectangles {Hi}i∈I with sidelengths in [l/2, 2l] such that letting m̄i := 1

|Hi|
´
Hi
dµ and

(3.15) mi := m̄i +
1

|Hi|
1

2π

ˆ
∂CR2

∩∂Hi
Eη · ~n,

we have for any i ∈ I

(3.16) |mi − m̄i| <
1

2
m, mi|Hi| ∈ N.

The fact that we may split CR2\CR1 into a finite family of rectangles {Hi}i∈I with sidelengths
in [l/2, 2l] is elementary. Using Cauchy-Schwarz’s inequality we see that∣∣∣∣∣ 1

|Hi|

ˆ
∂CR2

∩∂Hi
Eη · ~n

∣∣∣∣∣ � 1

l3/2

(ˆ
∂CR2

|Eη|2
)1/2

= M1/2l−3/2

hence assuming (3.9) (with C large enough) we have |mi − m̄i| < 1
2m for any tiling of CR2\CR1

by rectangles of sidelengths ∈ [l/2, 2l]. It remains to show that we may obtain a tiling such that
mi|Hi| ∈ N. We have by definition

mi|Hi| =
ˆ
Hi

dµ+
1

2π

ˆ
∂CR2

∩∂Hi
Eη · ~n.

Increasing the sidelengths of Hi by t (with t ≤ l/10) increases
´
Hi
dµ by a quantity � mlt

whereas it changes
´
∂CR2

∩∂Hi Eη · ~n by a quantity �
√
tM . We thus see that if (3.9) holds, up

to modifying the boundaries of Hi a little bit (e.g. changing the sidelengths by a quantity less
than l/10) we can ensure that each mi|Hi| ∈ N.

We may then subdivide further each rectangle Hi into a finite family of rectangles {Rα}α∈Ii
which all have an area m−1

i and sidelengths bounded above and below by universal constants
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times m
−1/2
i (for a proof of this fact, see [PS15, Lemma 6.3.]). Let us emphasize that since µ is

bounded above we have m−1
i � 1.

Step 2. Defining the transition field and configuration. For i ∈ I we let E(1,i) := ∇h(1,i) where
h(1,i) is the mean-zero solution to

−∆h(1,i) = 2π(mi − µ) in Hi,

such that ∇h(1,i) ·~n = −Eη1 ·~n on each side of Hi which is contained in ∂CR2 and ∇h(1,i) ·~n = 0
on the other sides.

We also let, for any α ∈ Ii, h(2,α) be the mean-zero solution to

−∆h(2,α) = 2π (δpα −mi) in Rα,∇h(2,α) · ~n = 0 on ∂Rα,

where pα is the center of Rα. We define E(2,i) as E(2,i) :=
∑

α∈Ii ∇h
(2,α). Finally we define the

transition field Etran as Etran :=
∑

i∈I E
(1,i) + E(2,i), and the transition configuration Ctran as

Ctran :=
∑

i∈I
∑

α∈Ii δpα . It is easy to see that

(3.17) − div (Etran) = 2π
(
Ctran − µ

)
in CR2\CR1 , Etran

η1 · ~n =

{
Eη1 · ~n on ∂CR2

0 on ∂CR1

.

In particular (3.10) and (3.12) hold.
Step 3. Controlling the energy. For any i ∈ I the energy of E(1,i) can be bounded using Lemma
7.1 as follows ˆ

Hi

|E(1,i)|2 � l
ˆ
∂Hi∩∂CR2

|Eη|2 + l4||µ− m̄i||2L∞(Hi)
,

and using the Hölder assumption (3.8) on µ we have ||µ− m̄i||2L∞(Hi)
� Cµlκ hence

ˆ
Hi

|E(1,i)|2 � l
ˆ
∂Hi∩∂CR2

|Eη|2 + Cµl
4+κ.

For any α ∈ Ii we also have, again by standard estimates
ˆ
Rα

|∇h(2,α)
η1 |2 � − log η1 � logN by choice of η1.

The number of rectangles Rα for α ∈ Ii, i ∈ I is bounded by the volume of CR2\CR1 hence is
� N δ1+δ3 . We deduce that

ˆ
CR2
\CR1

|Etran
η1 |

2 � l
ˆ
∂CR2

|Eη|2 + #ICµl
4+κ +N δ1+δ3 logN,

where #I denotes the cardinality of I. We may observe that #I � N δ1+δ3 l−2 and get (using
that l = N δ3)

ˆ
CR2
\CR1

|Etran
η1 |

2 � N δ3M +N δ1+3δ3CµN
κδ3 +N δ1+δ3 logN.

which yields (3.13).
Step 4. Constructing a family. As was observed in [PS15, Remark 6.7], [LS15, Proposition
5.2], we may actually construct a whole family of configurations Ctran and associated electric
fields Etran such that (3.17) and (3.13) hold. Indeed, since µ ≤ m the sidelengths of Rα are
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� m−1/2 hence we may move each of the points pα (for α ∈ Ii, i ∈ I) arbitrarily within a disk
of radius 1

10m
−1/2 and proceed as above (so that (3.11) is conserved). This creates a volume of

configurations of order m−N
tran

. To get (3.14) it suffices to observe that

N tran � mN δ1+δ3 +N δ1 +M,

which follows from (3.10) by applying the Cauchy-Schwarz inequality and using the fact that
R2

2 −R2
1 � N δ1+δ3 .

4 A large deviation upper bound

Given a point z0 and a scale δ1 we localize the energy wN ( ~XN ) by splitting it between the
“interior part” (which, roughly speaking, corresponds to the L2-norm of Eloc on C(z′0, N

δ1)) and
the “exterior part”, then we replace both quantities by smaller ones which are independent (this
corresponds to separating variables). Roughly speaking, it allows us to localize the problem
on C(z′0, N

δ1) by deriving a “local energy” (which corresponds to the interior part) and a “local
partition function” (the exponential sum of contributions of the exterior part). This lower bound
on the energy will be complemented by a matching upper bound in Section 5.

4.1 Definition of good interior and exterior boundaries and energies

The decomposition between interior and exterior part will be done at the boundary of some
“good” square, not much larger than C(z′0, N

δ1). We give the definition of good exterior and
interior boundaries, with an abuse of notation which is discussed in the next subsection.

Definition 4.1 (Exterior boundary). Let 1/2 > δ > δ1 > δ2 > 0 and η0 > 0 be fixed, let N ≥ 1
and let η1 := N−10. Let z0 ∈ Σ̊, let R2 > 0 and let ~Xout be a point configuration in C(z′0, R2)c.
Exterior fields. We say that E is in Elecout( ~Xout) if E is in Elec0(C, µ′eq,R2) for some point

configuration C with N points such that C = ~Xout on C(z,R2)c.
Good exterior boundary. Let E ∈ Elecout( ~Xout). We say that ∂C(z′0, R2) is a good exterior
boundary for E if the following conditions are satisfied:

1. We have

(4.1) R2 ∈ [N δ1 +N δ2 , N δ1 + 2N δ2 ].

2. The smeared out charges at scale η1 do not intersect ∂C(z′0, R2)

(4.2)
⋃
p∈C

D(p, η1) ∩ ∂C(z′0, R2) = ∅.

3. The energy near ∂C(z′0, R2) is controlled as follows

ˆ
C(z′0,R2)\C(z′0,R2−5)

|Eη0 |2 � N2δ−δ2 | log η0|,(4.3)

ˆ
C(z′0,R2)\C(z′0,R2−5)

|Eη1 |2 � N2δ−δ2 logN,(4.4)

ˆ
∂C(z′0,R2)

|Eη1 |2 � N2δ−δ2(logN)2.(4.5)
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4. We have, letting Nbou :=
´
C(z′0,R2)\C(z′0,R2−5) dC

(4.6) Nbou � N2δ1 .

5. We have, letting N in :=
´
C(z′0,R2) dC

(4.7) N in � N2δ1 .

6. We have, letting

(4.8) N z0
δ1

:=

ˆ
C(z′0,N

δ1 )
dC

that the following holds

(4.9) N in −N z0
δ1
� N2δ1 and |N z0

δ1
−meq(z0)N2δ1 | � N2δ1 .

This very last inequality does not depend on R2, but it is convenient to include it in the
definition of the exterior boundary.

Best exterior energy. Let Nout denote the number of points of ~Xout in C(z′0, R2)c. We
define F out( ~Xout) as

(4.10) F out( ~Xout) :=
1

2π
min
E

lim
η→0

(ˆ
C(z′0,R2)c

|Eη|2 +Nout log η

)

where the min is taken over the set of electric fields E satisfying E ∈ Elecout( ~Xout) and such that
∂C(z′0, R2) is a good exterior boundary for E (if there is no such field we set F out( ~Xout) = +∞).
The minimum is achieved because on the one hand E 7→ |Eη|2 is coercive for the weak Lploc

topology, and on the other hand the L2 norm is coercive and lower semi-continuous for the weak
L2 topology.

Definition 4.2 (Interior boundary). Let 1/2 > δ1 > δ2 > δ3 > 0 and η0 > 0 be fixed. Let N ≥ 1
and let z0 ∈ Σ̊, let R1 > 0, let R2 > 0 such that (4.1) holds and let ~X in be a point configuration
in C(z′0, R2).

Interior fields. Let E ∈ Elec(R2). We say that E is in Elecin( ~X in) if E is in Elec0(C, µ′eq,R2)

for some C ∈ X (R2) such that C = ~X in on C(z′0, R2).
Good interior boundary. We say that ∂C(z′0, R1) is a good interior boundary for ~X in if

1. We have

(4.11) R1 ∈ [R2 − 3N δ3 , R2 − 2N δ3 ].

2. Ngen is an integer, where Ngen :=
´
C(z′0,R1) dµ

′
eq.

3. Letting Nmid :=
´
C(z′0,R2)\C(z′0,R1) dC, it holds

(4.12) Nmid � N2δ1 .

Best interior energy. Let N in denote the number of points of ~X in in C(z′0, R2). For any
0 < η0 < 1 we define F in

η0 as

(4.13) F in
η0( ~X in) :=

1

2π
min
E

(ˆ
C(z′0,R2)

|Eloc
η0 |

2 +N in log η0

)
,

where the minimum is taken over the set of electric fields E such that E ∈ Elecin( ~X in) (if
Elecin( ~X in) is empty we set F in( ~X in) = +∞).
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4.2 Finding good boundaries

The conditions (4.3), (4.4), (4.5), (4.6), (4.7), (4.9), (4.12) are asymptotic as N → ∞, in
particular they do not make sense for a finite N (nonetheless, (4.1), (4.2) and (4.11) do). Strictly
speaking one thus has to consider sequences R2 = R2(N) and R1 = R1(N).

Lemma 4.3. Let 1/2 ≥ δ > δ1 > δ2 > δ3 > 0 and η0 > 0 be fixed, with δ1 > 2δ/3. Let
z0 ∈ Σ̊ and η0 > 0 be fixed. Assume that good control at scale δ holds and let δ1 ∈ (δ/2, δ).
With δ1-overhelming probability, there exists R1, R2 such that, letting ~X in = ~X

′
N ∩C(z′0, R2) and

~Xout = ~X
′
N ∩ C(z′0, R2)c, we have

1. ∂C(z′0, R2) is a good exterior boundary for ~Xout, Eloc.
2. ∂C(z′0, R1) is a good interior boundary for ~X in.

Proof of Lemma 4.3. First we look for a good exterior boundary ∂C(z′0, R2). The good control
at scale δ implies that

ˆ
C(z′0,N

δ)
|Eloc

η1 |
2 �δ1 N2δ(1 + | log η1|) � N2δ logN,(4.14)

ˆ
C(z′0,N

δ)
|Eloc

η0 |
2 �δ1 N2δ(1 + | log η0|) � N2δ| log η0|.(4.15)

In view of (4.14), (4.15), by the pigeonhole principle, we may find (with δ1-overhelming proba-
bility) an interval [R− 10, R+ 10] included in [N δ1 +N δ2 , N δ1 + 2N δ2 ] such that

(4.16)

ˆ
C(z′0,R+10)\C(z′0,R−10)

(
|Eloc

η1 |
2 + |Eloc

η0 |
2
)
� N2δ−δ2(logN + | log η0|).

We may find N2 disjoint strips of width 2N−2(logN)−1 in [R−8, R+8]. In view of (4.16), there
are at least N2/2 such strips on which the integral of |Eloc

η1 |
2 + |Eloc

η0 |
2 is � N2δ−δ2−2(logN +

| log η0|). On the other hand there are at most N point charges, thus since η1 = N−10 by
Dirichlet’s drawer principle we may moreover assume that no smeared out charge (at scale η1)
intersects the strips (more precisely, there is at least one such strip, and in fact many more).
Finally a mean value argument on one of these strips shows that we may find R2 such that (4.5)
and (4.2) holds. By (4.16) we also have (4.3) and (4.4).

Next, we look for a good interior boundary ∂C(z′0, R1). Since z0 is in the interior of Σ,
the density m′eq is bounded above and below by positive constants on C(z′0, N

δ) (for N large
enough) and thus the derivative of R 7→

´
C(z′0,R) dm

′
eq is bounded above and below by (positive)

constants times N δ1 on C(z′0, 2N
δ1). Hence we may find R1 ∈ [R2 − 3N δ3 , R2 − 2N δ3 ] such

that
´
C(z′0,R1) dµ

′
eq is an integer, hence the first two points of the definition of a good interior

boundary are satisfied.
We have (4.7) with δ1-overhelming probability according to the good control at scale δ. Since

δ1 > 2δ/3, the discrepancy estimates of Lemma 3.6 imply that, up to an error�δ1 N
2δ1 we have

Nbou = meq(z0)(R2
2 − (R2 − 10)2) �δ1 N δ1 � N2δ1

N tran = meq(z0)(R2
2 −R2

1) �δ1 N δ1+δ2 � N2δ1 ,

which proves (4.6) and (4.12). We obtain (4.9) with similar arguments.
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4.3 A first LDP upper bound

Let us recall that F in
η0 , F

out are defined in (4.13), (4.10).

Proposition 4.4. Let 1/2 ≥ δ > δ1 > δ2 > δ3 > 0 be fixed with δ1 > 2δ/3 and 2δ− δ2 < δ1. Let
z0 ∈ Σ̊ and 0 < η0 < 1 be fixed. Assume that a good control holds at scale δ.

For any P ∈ Ps(X ) and any ε > 0 we have

(4.17) logPz0
N,β,δ1

(B(P, ε)) ≤ − logKN,β

+ log max
R1,R2,Nout

(
N

Nout

)(ˆ
i
z0
N,δ1

( ~Xin)∈B(P,ε)
e−

1
2
βF in

η0
( ~Xin)d ~X in

)(ˆ
e−

1
2
β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout

)
+N2δ1O(η0).

Let us first give some clarifications about (4.17). The max on R1, R2, N
out is restricted to the

set of {R1, R2} such that (4.1) and (4.11) hold, with Nout between 1 and N . Once Nout is fixed,
we let d ~X in = dx1 . . . dxN in and d ~Xout = dx1 . . . dxNout , with Nout + N in = N . The binomial
coefficient originates from the fact that the particles are initially labeled, but for commodity we
prefer to think e.g. that the N in first ones are in the “interior part” and that the Nout last ones
are in the “exterior part”. This induces a simple combinatorial factor.

Proof. Using the definition of Pz0
N,β,δ1

and of the Gibbs measure PβN we have

(4.18) Pz0
N,β,δ1

(B(P, ε)) =
1

KN,β

ˆ
(i
z0
N,δ1

)−1(B(P,ε))
e−

1
2
β(wN (ν′N )+Nζ̃(νN ))d ~XN .

Step 1. Finding good boundaries. We apply Lemma 4.3. With δ1-overhelming probability
we obtain R1, R2 such that (4.1) and (4.11) hold, and such that, letting ~X in = ~X

′
N ∩ C(z′0, R2)

and ~Xout = ~X
′
N ∩ C(z′0, R2)c, we have

1. ∂C(z′0, R2) is a good exterior boundary for ~Xout, Eloc.
2. ∂C(z′0, R1) is a good interior boundary for ~X in.

In order to prove (4.17) we may restrict ourselves, in the right-hand side of (4.18), to any event
of δ1-overhelming probability, and we will henceforth assume that good boundaries exist. Step

2. Splitting the energy wN . For any ~XN , let R1, R2 be as above. We have, using (2.4)

(4.19) wN (ν ′N ) = lim
η→0

(ˆ
C(z′0,R2)

|Eloc
η |2 +N in log η

)
+ lim
η→0

(ˆ
C(z′0,R2)c

|Eloc
η |2 +Nout log η

)
.

Since (4.2) holds we may apply Lemma 3.3 to ( ~X
′
N , µ

′
eq) and R2, η1 as above. Since η1 = N−10,

it yields

lim
η→0

(ˆ
C(z′0,R2)

|Eloc
η |2 +N in log η

)
≥

(ˆ
C(z′0,R2)

|Eloc
η1 |

2 +N in log η1

)
+ o(1), as N →∞.

We may then apply Lemma 3.2 to (ν ′N , µ
′
eq) and R2, with η0, η1 as above. The number N in

of points in C(z′0, R2) is controlled by (4.7), the number Nbou of points near the boundary is
controlled by (4.6) and the energy near the boundary is controlled by (4.3) and (4.4). We obtain(ˆ

C(z′0,R2)
|Eloc

η1 |
2 +N in log η1

)
−

(ˆ
C(z′0,R2)

|Eloc
η0 |

2 +N in log η0

)
� −N2δ1η0 −Nbou logN −N2δ−δ2(logN)2,
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which may be simplified (assuming that 2δ − δ2 < δ1, which will be later ensured by the choice
(5.4)) as

(4.20)

(ˆ
C(z′0,R2)

|Eloc
η1 |

2 +N in log η1

)
−

(ˆ
C(z′0,R2)

|Eloc
η0 |

2 +N in log η0

)
� −N2δ1η0.

Using Definition 4.2 we thus get

(4.21)
1

2π
lim
η→0

(ˆ
C(z′0,R2)

|Eloc
η |2 +N in log η

)
− F in

η0( ~X in) � −η0N
2δ1 .

On the other hand, we may write, using Definition 4.1

(4.22)
1

2π
lim
η→0

(ˆ
C(z′0,R2)c

|Eloc
η |2 +Nout log η

)
≥ F out( ~Xout).

Combining (4.19), (4.21), (4.22) and inserting them into (4.18) yields (4.17). More precisely,
we may split the domain of integration in (4.18) according to the value of R1, R2 and Nout, and
then (up to a binomial coefficient as in (4.17)) we may assume that ~X in consists of the N in first
particles and ~Xout of the Nout last ones, and the constraint (iz0N,δ1)−1(B(P, ε)) on the domain of

integration only concerns the points of ~X in. Inserting the splitting of the energy and the lower
bounds on each term as described above leads then to (4.17).

4.4 Good control upper bound

Lemma 4.5. Let 1/2 ≥ δ > δ1 > δ2 > δ3 > 0 be fixed with δ1 > 2δ/3. Let z0 ∈ Σ̊ and 0 < η0 < 1
be fixed. Assume that a good control holds at scale δ.

Let us denote by EM the event

(4.23) EM :=

{ˆ
C(z′0,N

δ1 )
|Eloc

η0 |
2 +N z0

δ1
log η0 ≥ 2πN2δ1M

}
.

We have

(4.24) logPβN (EM ) ≤ − logKN,β −
β

2
M

+ log max
R1,R2,Nout

(
N

Nout

)(ˆ
e−β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout

)
+N2δ1O(η0).

Proof. We follow the same steps as in the proof of Proposition 4.4, replacing the event B(P, ε)
by EM .

Let us write(ˆ
C(z′0,R2)

|Eloc
η0 |

2 +N in log η0

)
≥

(ˆ
C(z′0,R1)

|Eloc
η0 |

2 +N z0
δ1

log η0

)
+ (N in −N z0

δ1
) log ηη0

Using (4.20) and the definition of EM we get, conditionally to EM(ˆ
C(z′0,R2)

|Eloc
η1 |

2 +N in log η1

)
≥ N2δ1M + (N in −N z0

δ1
) log η0 +O(N2δ1).
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Since we have |N in −N z0
δ1
|δ1 � N2δ1 we deduce that (conditionally to EM ), using Lemma 3.3

(4.25) lim
η→0

(ˆ
C(z′0,R2)

|Eloc
η |2 +N in log η

)
≥ N2δ1M +O(N2δ1).

Using (4.25) instead of (4.21) and arguing as in the proof of Proposition 4.4 gives (4.24).

4.5 Large deviation upper bound for the interior part

In (4.17) we have separated the Gibbs measure into its interior and exterior parts. In the next
lemma, we give a large deviation upper bound for the interior part, namely

ˆ
i
z0
N,δ1

( ~Xin)∈B(P,ε)
e−

1
2
βF in

η0
( ~Xin)d ~X in.

Up to technical details, this is a classical application of Varadhan’s lemma (see e.g. [DZ10,
Theorem 4.3.1]): the large deviations for the reference point process (without the exponential
term) are known from Proposition 2.4, and on the other hand the lower semi-continuity of
the energy near a random stationary point process P implies that F in

η0( ~X in) ≥ Wmeq(z0)(P ) on

{iz0N,δ1( ~X in) ∈ B(P, ε)}, hence we obtain

Lemma 4.6. Let 1/2 ≥ δ > δ1 > δ2 > δ3 > 0 be fixed with δ1 > 2δ/3, and let us assume that
good control at scale δ holds. We have, for any R1, R2 satisfying (4.1), (4.11), and any N in

(4.26) lim sup
η0→0,ε→0,N→∞

N−2δ1 log

ˆ
i
z0
N,δ1

( ~Xin)∈B(P,ε)
e−

1
2
βF in

η0
( ~Xin)d ~X in ≤ −Fmeq(z0)

β (P )+cz0 ,

where cz0 is the constant (depending only on meq(z0)) defined in (2.7) and which appears in
Proposition 2.4.

Let us emphasize that lim supη0→0,ε→0,N→∞ is a shorthand for taking the limit

lim sup
η0→0

lim sup
ε→0

lim sup
N→∞

,

and these limits do not commute in general.

Proof. Step 1. Lower semi-continuity of the energy. We claim that

(4.27) lim inf
η0→0,ε→0,N→∞

N−2δ1 inf
{
F in
η0( ~X in), ~X in ∈ X (C(z′0, R2)), iz0N,δ1( ~X in) ∈ B(P, ε)

}
≥Wmeq(z0)(P ).

To prove (4.27), let E = E(N) be a minimizing sequence in (4.27), let C = C(N) be the
associated point configuration in C(z′0, N

δ1) and let us define

P elec
N := N−2δ1

ˆ
C(z′0,N

δ1 )
δθ′z ·Edz

′, PN := N−2δ1

ˆ
C(z′0,N

δ1 )
δθ′z ·Cdz

′.

We have, for any m ≥ 1,

EP elec
N

[
1

|Cm|

ˆ
Cm

|Eη0 |2
]
≤ N−2δ1

ˆ
C(z′0,R2)

|Eη0 |2,
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which proves that the push-forward of P elec
N by E 7→ Eη0 is tight in L2(Cm,R2) for the weak

topology, whereas the sequence {P elec
N } itself is tight in Lp(Cm,R2) (indeed when η is fixed,

the L2-norm of Eη controls the Lp-norm of E, this follows easily from Hölder’s inequality,
see [RS15, Lemma 3.9]). On the other hand, the sequence of random point processes {PN} is
also tight because the expectation of the number of points in any square is bounded and, up to
subsequence extraction, it converges to some Q ∈ B(P, ε). Denoting by Qelec a limit point of
{P elec

N } it is not hard to see that Qelec is compatible with Q, and by lower semi-continuity of the
L2-norm with respect to weak convergence we have

1

|Cm|

ˆ
Cm

|Eη0 |2dQelec ≤ lim inf
N→∞

N−2δ1

ˆ
C(z′0,R2

|Eη0 |2.

Up to applying a standard diagonal extraction procedure we may assume that it holds for any
m ≥ 1, hence

EQelec [|Eη0 |2] ≤ lim inf
N→∞

N−2δ1

ˆ
C(z′0,R2)

|Eη0 |2.

Letting ε→ 0 and arguing as above concerning the tightness of Qelec and Q (in Lploc and in X )
and for the lower semi-continuity of the norm with respect to weak convergence we obtain

EP elec [|Eη0 |2] ≤ lim inf
N→∞

N−2δ1

ˆ
C(z′0,N

δ1 )
|Eη0 |2

where P elec is some random electric field compatible with P . Letting η0 → 0, using (4.9) and
the definition of Wmeq(z0)(P ) we thus obtain

Wmeq(z0)(P ) ≤ lim
η0→0,ε→0

lim inf
N→∞

N−2δ1

(ˆ
C(z′0,N

δ1 )
|Eη0 |2 +N z0

δ1
log η0

)
.

Step 2. Large deviations without interactions. We claim that, on the other hand

(4.28) lim sup
ε→0,N→∞

N−2δ1 log

ˆ
i
z0
N,δ1

( ~Xin)∈B(P,ε)
1C(z′0,R2)( ~X

in)d ~X in ≤ −ent[P |Πmeq(z0)]+cz0 ,

where cz0 is as in (2.7).
The configuration ~X in has N in points. Among them, N in − N z0

δ1
are not affected by the

constraint iz0N,δ(
~X in) ∈ B(P, ε) because they belong to C(z′0, N

δ1)c, and are free to move in

C(z′0, R2)\C(z′0, N
δ1), but we know from (4.9) that N in − N z0

δ1
� N2δ1 , thus the volume con-

tribution of these points is negligible because N−2δ1 log |C(z′0, R2)\C(z′0, N
δ1)|N

in−N z0δ1 = o(1).
On the other hand we know, using (4.9), that N z0

δ1
∼N→∞ meq(z0)N2δ1 and then (4.28) follows

from Proposition 2.4.
Step 3. Conclusion. Combining (4.27) and (4.28) yields (4.26).

4.6 A second LDP upper bound

Combining Proposition 4.4 and Lemma 4.6 and letting η0 → 0 we obtain

Proposition 4.7.

(4.29) lim
ε→0

lim sup
N→∞

N−2δ1 logPz0
N,β,δ1

(B(P, ε)) ≤ −Fmeq(z0)
β (P )+cz0

+ lim sup
N→∞

N−2δ1 logKβ
N,z,δ1
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where cz0 is as in (2.7) and we let Kβ
N,z,δ1

be such that

(4.30) logKβ
N,z,δ1

:= − logKN,β + log

ˆ
R1,R2

∑
Nout

(
N

Nout

)ˆ
e−

1
2
β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout.

5 Large deviation lower bound

In this section, we derive a converse estimate to (4.29), by showing that splitting the energy as
in Proposition 4.4 is essentially sharp as far as probabilities of order exp(−N2δ1) are concerned.

5.1 Generating microstates

In the next lemma, we recall a tool which was introduced in [LS15]. Given a stationary point
process P and a large square CR, Lemma 5.1 can be thought of as a way of generating a family
of point configurations in CR whose empirical field is close to P , whose interaction energy is
close to the renormalized energy of P , and such that the volume of the family is optimal in view
of the specific relative entropy of P .

Lemma 5.1. Let z0 ∈ Σ̊ and 0 < δ2 < δ1 < 1/2 be fixed. Let P ∈ Ps,meq(z0)(X ) such that

Wmeq(z0)(P ) and ent[P |Πmeq(z0)] are finite.

For any N ≥ 1, let R1 > 0 be such that R1 ∈ (N δ1 , N δ1 + 2N δ2) and Ngen :=
´
C(z′0,R1) dm

′
eq

is an integer. Moreover let us assume that Ngen ∼N→∞ meq(z0)N2δ1.
Then there exists a family Aint

N of point configurations in C(z′0, R1) such that the following
properties hold for any Cint ∈ Aint

N :
1. The configuration Cint has Ngen points in C(z′0, R1).
2. The continuous average of Cint on C(z′0, N

δ1) is close to P , i.e.

(5.1) iz0N,δ1(Cint) ∈ B(P, o(1)) as N →∞.

3. There exists an electric field Eint ∈ Elec
(
Cint, µ′eq, C(z′0, R1)

)
such that

(a) Eint · ~n = 0 on ∂C(z′0, R1), where ~n is the unit normal vector.
(b) The energy of Eint is controlled by Wmeq(z0)(P ): as N →∞ we have

(5.2)
1

2π
N−2δ1 lim

η→0

(ˆ
C(z′0,R1)

|Eint
η |2 +Ngen log η

)
≤Wmeq(z0)(P ) + o(1)

uniformly on Aint
N .

4. The (logarithmic) volume of the family is close to the relative specific entropy of P (plus
constant terms depending on meq(z0))

(5.3) N−2δ1 log Leb⊗N
gen

(Aint
N )≥ −ent[P |Πmeq(z0)] + cz0 + o(1), as N →∞.

Proof. This follows from the analysis of [LS15, Section 6]. Let us sketch the main steps here.
We fix R > 0 and we tile C(z′0, R1) by squares of sidelength ≈ R. We let {Ci}i∈I be this

collection of squares and xi be the center of Ci. We sample a point configuration C in C(z′0, R1)
according to the law BNgen of a Bernoulli point process with Ngen points (which is nothing but
throwing Ngen independent points uniformly in C(z′0, R1)), and we decompose C as C =

∑
i∈I Ci

where Ci := C∩Ci is the point configuration in Ci. We form two points processes, the continuous
average M1 := iz0N,δ1(C) and the discrete average M2 := 1

#I

∑
i∈I δCi . Classical large deviations
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arguments (similar to Section 2.5) show that both M1 and M2 belong to B(P, ε) with probability
≈ exp

(
−N2δ1(ent[P |Πµeq(z0)]− cz0)

)
.

Then we apply to each point configuration Ci the“screening-then-regularization”procedure of
[LS15, Section 5]. The screening procedure is similar in spirit to the one described in Lemma 3.8,
except that here we change Ci to Cscr

i by modifying the configuration only in a thin layer near
∂Ci and we construct an electric field Escr

i compatible with Cscr
i and which is screened outside

Ci (whereas in Lemma 3.8 we rather “screen the configurations from the inside”). By gluing the
fields Escr

i together we define Escr which is compatible with Cscr :=
∑

i∈I Cscr
i . The next task is

to “regularize” the point configurations, which means to separate the pairs of points which are
too close from each other. This changes Cscr into Cmod (which is very much like Cscr) and Escr

into an electric field Emod which is still screened outside C(z′0, R1).
The energy of Escr can be seen to satisfy, for any 0 < η < 1ˆ

C(z′0,R1)
|Escr

η |2 +Ngen log η =
∑
i∈I

ˆ
Ci

|(Escr
i )η|2 +Ngen log η,

and a certain continuity property of the energy shows that the right-hand side is smaller than
N2δ1(Wmeq(z0)(P ) + o(1)) often enough. Passing from Escr to Emod does not affect this esti-
mate, on the contrary the regularization procedure allows to bound the difference between the
truncated energy

´
C(z′0,R1) |E

mod
η |2 +Ngen log η and its limit as η → 0.

5.2 Choice of the deltas

In order to apply Lemma 3.8 (the “screening lemma”) at scale δ, we need to find good boundaries
as in Section 4.1, which requires to set δ3, δ2, δ1 with δ3 < δ2 < δ1 < δ, and satisfying some
inequalities dispersed among the various statements. Then the bootstrap argument allows one
to pass from the scale δ to the scale δ1 < δ. We thus need to set up a way of finding δ3, δ2, δ1 such
that the required inequalities are satisfied at each step, and such that the multiscale analysis
can be pushed up to No(1). This is the goal of the next lemma.

Lemma 5.2. Let γ :=
√

1+κ/2
1+κ/3 , with κ as in (2.1). Since 0 < κ ≤ 1 we have 1 < γ ≤ 3

√
2

4 ≈ 1.06.

Let also α := γ−1
1− γ

3
, we have α ∈ (0, 1).

For any 0 < δ ≤ 1/2 and any δ1, δ2, δ3 such that

(5.4) δ > δ1 > max

(
3

4
δ, δ

1− α
1− α2

, δ(1 + κ/2)− κ/2
)
, δ3 =

1

3
δγ, δ2 = α2δ3 + (1− α2)δ1,

we have 0 < δ3 < δ2 < δ1 < δ and the following inequalities are satisfied

δ1 >
2

3
δ

3δ3 > δ

δ1 + 3δ3 + κ(δ3 − 1/2) < 2δ1

2δ < δ2 + 3δ3

2δ − δ2 < 2δ1.

Moreover, if we consider the lower bound on δ1 as a function f(δ), i.e.

f(δ) := max

(
3

4
δ, δ

1− α
1− α2

, δ(1 + κ/2)− κ/2
)

we have f◦k(δ)→ 0 as k →∞, where f◦k denotes the k-th iteration of f .

27



Proof. It is clear that δ3 > 0. From the fact that δ1 ≥ δ(1 + κ/2) − κ/2 and the expression of
δ3 we get δ1 + 3δ3 + κ(δ3 − 1/2) < 2δ1. Since κ > 0 we have 3δ3 > δ. Since κ ≤ 1 we also

have δ3 ≤ 1
3

√
9
8δ <

3
4δ hence δ3 < δ1. On the other hand from the definition of δ1 it is clear

that 2
3δ < δ1 < δ because κ > 0 and δ ≤ 1/2. Since δ1 > δ 1−α

1−α2 and since α < α2, the inegality
2δ < δ2+3δ3 follows from checking that δ(2−(1+α/3)γ) ≤ (1−α)δ. The inequality 2δ < δ2+3δ3

implies the last one, 2δ − δ2 < 2δ1, because it can be easily checked that 3δ3 = δγ < 6
4δ < 2δ1.

Finally, we may observe that f(δ) ≤ max(3
4δ,

1−α
1−α2 δ, δ − κ/4) hence f◦k(δ) is decreasing and

tends to 0 as k →∞.

5.3 A LDP lower bound

We use Lemma 5.1 and the screening result of Lemma 3.8 to prove a first LDP lower bound.

Proposition 5.3. Let 0 < δ ≤ 1/2 and z0 ∈ Σ̊ be fixed. Assume that a good control holds at
scale δ and let us fix δ1, δ2, δ3 as in (5.4). Let us recall that cz0 is the constant defined in (2.7)
which appears in (5.3).

For any P ∈ Ps,meq(z0)(X ) we have

(5.5) logPz0
N,β,δ1

(B(P, ε)) ≥ −N2δ1Fmeq(z0)
β (P ) +N2δ1cz0 − logKN,β

+ max
R1,R2,Nout

log

(
N

Nout

)(ˆ
e−β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout

)
+ o(N2δ1).

The maximum maxR1,R2,Nout is taken among {R1, R2} satisfying (4.1) and (4.11) and with
Nout between 1 and N .

Proof. By definition of Pz0
N,β,δ1

and PβN we may forget about the partition function and prove

(5.6) log

ˆ
(i
z0
N,δ1

)−1(B(P,ε))
e−β(wN (ν′N )+Nζ̃(νN ))d ~XN ≥ −N2δ1Fmeq(z0)

β (P ) +N2δ1cz0

+ max
R1,R2,Nout

log

(
N

Nout

)(ˆ
e−β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout

)
+ o(N2δ1).

Let R1, R2, N
out be fixed. Let ~Xout be a finite point configuration in C(z′0, R2)c such that

F out( ~Xout) is finite. Let E ∈ Elecout( ~Xout) be a minimizer in the definition of F out. We claim
that there exists a set Atot of N -tuples ~XN such that ~XN = ~Xout on C(z′0, R2)c, that the energy
is controlled uniformly on Atot as follows

wN (ν ′N ) ≤ −(Wmeq(z0)(P ) + F out( ~Xout)) + o(N2δ1),

and that the volume of Atot is almost optimal

log Leb⊗N (Atot) ≥ −N2δ1ent[P |Πmeq(z0)] +N2δ1cz0 + log

(
N

Nout

)
+ o(N2δ1).

Step 1. Screening E. We may apply Lemma 3.8 to the point configuration ~Xout and the electric
field E, with µ = µ′eq. Let us check that the assumptions of Lemma 3.8 are satisfied:

1. The first condition on R1, R2 is satisfied by assumption (see (4.1) and (4.11)).
2. Since F out( ~Xout) is finite, (4.2) holds i.e. the smeared out charges at scale η1 do not

intersect ∂C(z′0, R2).
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3. The third and fourth condition on Ngen, Nmid follow from the fact that R1 is a good
interior boundary.

From Assumption 1 we know that µ′eq � 1, and since we are blowing-up the configuration around

z0 ∈ Σ̊ the density m′eq is bounded below on C(z′0, N
δ) by some m > 0 depending on z0. We

deduce from (2.1) that |µ′eq(x) − µ′eq(y)| � N−κ/2|x − y|κ, hence we may chose Cµ = N−κ/2 in
(3.8).

By definition of a good exterior boundary (see (4.5)) we have
´
∂C(z′0,R2) |Eη1 |

2 � N2δ−δ2 log2N ,

thus (3.9) is satisfied (for N large enough) as long as 2δ < δ2 + 3δ3 (which is ensured by the
choice (5.4)).

We obtain a family Atran
N of point configurations such that the conclusions of Lemma 3.8 hold.

Step 2. Generating microstates. Now we apply Lemma 5.1 with R1 as above and obtain a
family Aint

N of point configurations with Ngen points in C(z′0, R1) together with screened electric
fields Eint such that (5.1), (5.2), (5.3) are satisfied.

Step 3. Gluing pieces together and bounding the energy. For any Ctran ∈ Atran
N and Cint ∈ Aint

N

we form the configuration
Ctot := Ctran + Cint + ~Xout.

It is easy to check that Ctot always has N points. Indeed we know that
• By Lemma 5.1, Cint always has

´
C(z′0,R1) dµ

′
eq points.

• By construction, Ctran has N tran =
´
∂C(z′0,R2)Eη1 · ~n−

´
C(z′0,R2)\C(z′0,R1) dµ

′
eq points.

• By integrating the compatibility relation of E and ~Xout, we get

Nout = N −
ˆ
∂C(z′0,R2)

Eη1 · ~n+

ˆ
C(z′0,R2)

dµ′eq.

If Etran and Eint are the electric fields associated to Ctran and Cint we also define

Etot := Etran + Eint + E1C(z′0,R2)c

By construction the normal derivatives of Etran and Eint coincide on ∂C(z′0, R1) (they both
vanish), and the normal derivatives of Etran

η and Eη coincide on ∂C(z′0, R2) for any η ≤ η1 (they
coincide for η1 by construction, but since there are no points at distance ≤ η1 of ∂C(z′0, R2)
the value of the fields Eη and Etran

η on ∂C(z′0, R2) do not depend on η for η ≤ η1). Thus Etot

satisfies
1. −divEtot = 2π(Ctot − µ′eq) in R2

2. Etot coincides with E on C(z′0, R2)c. In particular Etot belongs to Elec0, as E does.
3. The energy of Etot is bounded as follows

(5.7) lim
η→0

(ˆ
R2

|Etot
η |2 +N log η

)
≤ F out( ~Xout)+N2δ1Wmeq(z0)(P )+o(N2δ1) as N →∞.

To show (5.7), let us split the energy of Etot as

(5.8)

ˆ
R2

|Etot
η |2 +N log η =

(ˆ
C(z′0,R2)c

|Eη|2 +Nout log η

)

+

(ˆ
C(z′0,R2)\C(z′0,R1)

|Etran
η |2 +N tran log η

)
+

(ˆ
C(z′0,R1)

|Eint
η |2 +Ngen log η

)
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By definition of F out( ~Xout) and by the choice of E we have

(5.9)
1

2π
lim
η→0

(ˆ
C(z′0,R2)c

|Eη|2 +Nout log η

)
= F out( ~Xout).

In view of (5.2) we have

(5.10)
1

2π
lim
η→0

(ˆ
C(z′0,R1)

|Eint
η |2 +Ngen log η

)
≤ N2δ1Wmeq(z0)(P ) + o(N2δ1).

Finally, the conclusions of Lemma 3.8 combined with the control (4.5) and the fact that Cµ =
N−κ/2 ensure that

lim
η→0

(ˆ
C(z′0,R2)\C(z′0,R1)

|Etran
η |2 +N tran log η

)
� N δ3N2δ−δ2(logN)2 +N δ1+3δ3Nκ(δ3−1/2)

+N δ1+δ3 logN.

The choice of δ1, δ2, δ3 as in (5.4) yields

(5.11) lim
η→0

(ˆ
C(z′0,R2)\C(z′0,R1)

|Etran
η |2 +N tran log η

)
� N2δ1 .

Inserting (5.9), (5.10) and (5.11) into (5.8) yields (5.7).
Now, using the minimality of local energy as stated in Lemma 3.7 and the formula (2.4) we

conclude that

(5.12) wN (Ctot) ≤ 1

2π
lim
η→0

(ˆ
R2

|Etot
η |2 +N log η

)
≤ F out( ~Xout) +N2δ1Wmeq(z0)(P )

+ o(N2δ1) as N →∞.

Step 4. Volume considerations. For any ~Xout we let Atot( ~Xout) be the set of point config-
urations Ctot obtained as above. Now, let A be a measurable set of finite point configurations
~Xout with Nout points in C(z′0, R2)c such that F out( ~Xout) is finite for all ~Xout ∈ A. We let Atot

be
Atot :=

⋃
~Xout∈A

Atot( ~Xout),

Using the volume estimate (3.14) we obtain, with the choice (5.4)

log Leb⊗N (Atot) ≥ log Leb⊗N
out

(A) + log Leb⊗N
gen

(Aint
N ) + o(N2δ1) + log

(
N

NoutN tranNgen

)
,

where the last term denotes a multinomial coefficient. This coefficient comes from the fact
that the elements of a point configuration are not labeled. In particular in any Ctot ∈ Atot

we cannot determine which points belong to the interior, exterior or “transition” part. When
enumerating the total point configurations we can thus multiply the volume of the resulting
“ordered” configurations by

(
N

NoutNtranNgen

)
. Using (5.3) and a straightforward combinatorial

inequality
(
a
b c d

)
≥
(
a
b

)
yields

(5.13) log Leb⊗N (Atot) ≥ log Leb⊗N
out

(A)−N2δ1Ent[P |Πmeq(z0)] +N2δ1cz0

+ o(N2δ1) + log

(
N

Nout

)
.
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This proves the claim made before Step 1.

Step 5. Conclusion. Combining (5.12) and (5.13), we obtain that

log

ˆ
(i
z0
N,δ1

)−1(B(P,ε))
e−

1
2
β(wN (ν′N )+Nζ̃(νN ))d ~XN

≥ log

(
N

Nout

)(ˆ
e−

1
2
β(F out( ~Xout)+Nζ̃( ~Xout))d ~Xout

)
−N2δ1

(
Ent[P |Πmeq(z0)] +

1

2
βWmeq(z0)(P )

)
+N2δ1cz0 + o(N2δ1),

for any choice of R1, R2 and Nout as in the definitions 4.1 and 4.2. It yields (5.6).

6 Conclusion

6.1 Proof of Theorem 1

6.1.1 Good control at macroscopic scale

The next lemma is used to initiate the multiscale analysis by proving that good control of the
energy holds at the largest scale δ = 1

2 . A slightly stronger version, with deviations at speed N

and not N1−o(1), can be deduced from the analysis [SS15b] (see e.g. Theorem 5.2).

Lemma 6.1. Good control holds at scale δ = 1
2 .

Proof. Let z0 ∈ Σ̊. Using (1.9) we see that

logPβN (wN ( ~XN ) ≥ NM) ≤ − logKN,β + log

ˆ
e−

β
2

(NM+Nζ̃( ~XN ))d ~XN .

Since wN is bounded below by O(N) (see Lemma 2.1) we have − logKN,β+log
(´

e−
β
2
Nζ̃( ~XN )

)
=

O(N) (which may depend on β), hence we get

logPβN
(
wN ( ~XN ) ≥M

)
≤ N

(
−β

2
M +O(1)

)
.

We deduce that for M0 large enough, lim supN→∞
1
N logPβN (wN ( ~XN ) ≥ M0) < 0, which in

particular implies that lim supN→∞
1

N2δ logPβN (wN ( ~XN ) ≥ M0) for any δ < 1
2 , thus we have

wN ( ~XN ) � N with δ-overhelming probability. Using (2.4) and Lemma 3.1 we get for any
η ∈ (0, 1) that

lim
η→0

ˆ
R2

|Eloc
η |2 +N log η �δ N,

which yields (1.14), and we deduce (1.13) from the discrepancy estimates of Lemma 3.4.

6.1.2 Exponential tightness

Lemma 6.2. For any 0 < δ ≤ 1/2, if good control holds at scale δ then Pz0
N,β,δ1

is exponentially

tight (at speed N2δ1) for any z0 ∈ Σ̊ and 2
3δ < δ1 < δ.
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Proof. Let z0 ∈ Σ̊ and 2
3δ < δ1 < δ be fixed. The good control at scale δ, combined with Lemma

3.6, implies that there exists C > 0 such that the number of points in C(z′0, N
δ1) is bounded

above by CN2δ1 with δ1-overhelming probability. It implies that Pz0
N,β,δ1

is concentrated on the
compact subset {

P ∈ P(X ),EP [N (0, R)] ≤ CR2 ∀R > 0
}
,

with δ1-overhelming probability, which ensures exponential tightness at speed N2δ1 .

6.1.3 Proof of the theorem

Proof of Theorem 1.
Step 1. Good control =⇒ LDP.

In this first step we claim that if a good control holds at scale δ, then the LDP of Theorem
1 holds for δ1 as in (5.4).

Indeed, comparing the right-hand side of (5.5) with the definition (4.30) of Kβ
N,z,δ1

we see

that limN→∞N
−2δ1 logKβ

N,z,δ1
exists and that the following weak large deviation principle holds

(with cz0 as in (2.7))

(6.1) lim
ε→0

lim
N→∞

N−2δ1 logPz0
N,β,δ1

(B(P, ε)) = −Fmeq(z0)
β (P )+cz0 − lim

N→∞
N−2δ1 logKβ

N,z,δ1
,

for any P ∈ Ps,meq(z0)(X ), hence since Wmeq(z0)(P ) = +∞ as soon as P is not of intensity
meq(z0), we may write (6.1) for any P ∈ Ps(X ). By exponential tightness we obtain a full large
deviation inequality: for any measurable A ⊂ Ps(X ) it holds

(6.2) − inf
P∈Å
Fmeq(z0)
β (P )+cz0 − lim

N→∞
N−2δ1 logKβ

N,z,δ1

≤ lim inf
N→∞

N−2δ1 logPz0
N,β,δ1

(A) ≤ lim sup
N→∞

N−2δ1 logPz0
N,β,δ1

(A)

≤ − inf
P∈Ā
Fmeq(z0)
β (P )+cz0 − lim

N→∞
N−2δ1 logKβ

N,z,δ1
.

In particular, taking A = Ps(X ) we obtain

(6.3) lim
N→∞

N−2δ1 logKβ
N,z,δ1

= − inf Fmeq(z0)
β (P )+cz0 ,

and inserting (6.3) into (6.2) yields the LDP for {Pz0
N,β,δ1

}N as stated in Theorem 1.
Step 2. Good control =⇒ good control.
We now claim that if a good control holds at scale δ, then it holds at scale δ1 with δ1 as in

(5.4). Combining the “good control upper bound” of Lemma 4.5 and the lower bound estimates
which yield (6.3) we deduce that

(6.4) logPz0
N,β,δ1

(EM ) � −MN2δ1 +O(N2δ1),

where EM is as in (4.23). In particular it implies that
´
C(z′0,N

δ1 ) |E
loc
η0 |

2 +N z0
δ1

log η0 �δ′ N2δ1 for

any δ′ < δ1 and any η0 ∈ (0, 1). We also have N z0
δ1
�δ1 N2δ1 (since it was proven in Lemma 4.3

that (4.9) holds with δ1-overhelming probability) hence in particular N z0
δ1
�δ′ N2δ1 for δ′ < δ1.

Step 3. Conclusion.
Combining both steps with the initialization of Lemma 6.1 and the conclusions of Lemma

5.2 yields the proof of Theorem 1.
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6.2 Proof of Corollary 1.4

Proof. We simply combine the fact that a good control holds at any scale 0 < δ ≤ 1/2 (which
follows from Theorem 1) with Lemma 3.5.

6.3 Proof of Corollary 1.5

Proof. We may split C(z′0, N
δ) into a family {Ci}i∈I of squares of sidelength ≈ N δ1 , with

#I ≈ N2(δ−δ1). For any i ∈ I we have, letting zi be the center of Ci and Di the discrepancy in
Ci ˆ

Ci

f(dν ′N − dµ′eq) = Dif(zi) +

ˆ
Ci

(f(z)− f(zi))(dν
′
N − dµ′eq).

Since good control holds at scale δ we have |Di| �δ1 N4δ/3 (from the discrepancy estimates of
Lemma 3.5) and

´
C(z′0,N

δ) dν
′
N �δ1 N2δ. On the other hand

´
C(z′0,N

δ) dµ
′
eq � N2δ (because µ′eq

is bounded above). Moreover the mean value theorem yields |f(z) − f(zi)| ≤ N δ1 ||∇f ||∞. We
thus have ∣∣∣∣∣∑

i∈I

ˆ
Ci

f(dν ′N − dµ′eq)

∣∣∣∣∣ � N2(δ−δ1)N4δ/3||f ||∞ +N2δN δ1 ||∇f ||∞,

hence we see that

N−2δ

∣∣∣∣∣
ˆ
C(z′0,N

δ)
f(dν ′n − dµ′eq)

∣∣∣∣∣ �δ1 ||∇f ||∞N δ1 + ||f ||∞N−2δ/3,

which concludes the proof since δ1 < δ.

7 Additional proofs

7.1 Proof of Proposition 2.4

Proof. First, let us treat the case m = 1. It follows from [GZ93, Theorem 3.1] (with F = 0)
that, if Π1

R denotes the law of a Poisson point process of intensity 1 in CR, we have for any P
stationary

(7.1) lim
ε→0

lim
R→∞

1

R2
log Π1

R (iR(C) ∈ B(P, ε)) = −ent[P |Π1].

It is not hard to extend (7.1) to the case where the points are distributed according to a Bernoulli
point process with R2 points in CR, i.e. the number of points is set to R2 (here and in the rest of
the proof, for simplicity we do note take integer values). Describing the Bernoulli point process
in an explicit fashion yields

(7.2) lim
ε→0

lim
R→∞

1

R2

R2!

(R2)R2

ˆ
(CR)R2

1iR(x1,...,xR2 )∈B(P,ε)dx1 . . . dxR2 = −ent[P |Π1],

which we re-write (using Stirling’s formula) as

(7.3)

ˆ
(CR)R2

1iR(x1,...,xR2 )∈B(P,ε)dx1 . . . dxR2 = −R2
(
ent[P |Π1]− 1 + o(1)

)
,

where the o(1) goes to zero as R → ∞, ε → 0 (in this order). It proves Proposition 2.4 in
the case m = 1 (the fact that the number of points is not exactly R2 but R2(1 + o(1)) is not
important).
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In order to treat the general m > 0 case, let us change variables by setting yi = m−1/2xi.
We have

(7.4)

ˆ
(CR)R2

1iR(x1,...,xR2 )∈B(P,ε)dx1 . . . dxR2

= mR2

ˆ
(C
m−1/2R

)R2
1iR(m1/2y1,...,m1/2yR2 )∈B(P,ε)dy1 . . . dyR2 .

One can check that having iR(m1/2y1, . . . ,m
1/2yR2) close to P is equivalent to having iR(y1, . . . , yR2)

close to σ−1
m (P ) (which has density m, with σm defined in Section (1.3)). On the other hand,

let us set S = m−1/2R. Combining (7.3) and (7.4) and sending S (or R) to +∞ and then ε to
0 we obtainˆ

(CS)mS2
1iR(y1,...,yR2 )∈B(σ−1

m (P ),ε)dy1 . . . dyR2 = −mS2
(
ent[P |Π1]− 1 + logm+ o(1)

)
.

Writing Q = σ−1
m (P ), it is not difficult to check that

ment[P |Π1] = ent[Q|Πm],

e.g. by a simple scaling argument (see also [LS15, Lemma 4.2] together with a change of reference
measure in the classical relative entropy). We thus obtain

ˆ
(CS)mS2

1iR(y1,...,yR2 )∈B(Q,ε)dy1 . . . dyR2 = −S2 (ent[Q|Πm]−m+m logm+ o(1)) ,

which proves the proposition.

7.2 Proof of Lemma 3.3

Proof. We may decompose Eloc as Ein + Eout where Ein is the local electric field generated by
the electric system inside CR2 and Eout is the local electric field generated by the electric system
outside CR2 . We have

ˆ
CR2

|Eloc
η |2 =

ˆ
CR2

|Ein
η |2 +

ˆ
CR2

|Eout
η |2 + 2

ˆ
CR2

Ein
η · Eout

η .

Since the charges outside CR2 are at distance at least η1 from ∂CR2 we may replace Eout
η by

Eout in the previous identity (in fact we have Eout
η = Eout on CR for η ≤ η1). Integrating by

parts we obtain
ˆ
CR2

|Eloc
η |2 =

ˆ
CR2

−H in
η ∆H in

η +

ˆ
∂CR2

H in
η Eη · ~n+

ˆ
∂CR2

H in
η E

out · ~n

(up to additive terms which do not depend on η ≤ η1), where H in is the local electric potential
generated by the electric system inside CR2 . By assumption we have H in

η = H in
η1 and Ein

η = Ein
η1

on ∂CR2 . Finally we see that
ˆ
CR2

|Eloc
η |2 − |Eloc

η1 |
2 = −

ˆ
R2

(
H in
η ∆H in

η −H in
η1∆H in

η1

)
for any η ≤ η1, and (3.3) is obtained as Lemma 3.1 (cf. the remark after the statement of
Lemma 3.1).
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7.3 Proof of Lemma 3.7

Proof. The neutrality of the system implies that the local electric potential H loc decays like
|x|−1 as |x| → ∞ in R2 and Eloc decreases like |x|−2. This can be seen by using Taylor’s formula
and the fact that the electric system is compactly supported

(7.5) H loc(x) = −
ˆ

log |x− y|(dC − dµ)(y)

= − log |x|
ˆ

(dC − dµ)(y) +O

(
1

|x|

)(ˆ
dC(y) + dµ(y)

)
= O

(
|x|−1

)
,

and a similar argument goes for Eloc.
If the right-hand side of (3.7) is infinite then there is nothing to prove. If it is finite, given

M > 1 and letting χM be a smooth nonnegative function equal to 1 in CM and 0 at distance
≥ 1 from CM , we may write

(7.6)

ˆ
R2

χM |Eη|2 =

ˆ
R2

χM |Eη − Eloc
η |2 +

ˆ
R2

χM |Eloc
η |2 + 2

ˆ
R2

χM (Eη − Eloc
η ) · Eloc

η

≥
ˆ
R2

χM |Eloc
η |2 + 2

ˆ
R2

χM (Eη − Eloc
η ) · (∇H loc

η )

=

ˆ
R2

χM |Eloc
η |2 + 2

ˆ
R2

H loc
η (Eη − Eloc

η ) · ∇χM ,

where we have integrated by parts and we have used the fact that E,Eloc are compatible with
the same configuration (hence div (Eη − Eloc

η ) = 0). Letting M → ∞, the last term tends to 0

by finiteness of the right-hand side of (3.7),the decay properties of H loc and Eloc and the decay
assumption on E.

7.4 Auxiliary estimate for screening

Lemma 7.1. Let l > 0 and let H be a rectangle of R2 with sidelengths in (l/2, 3l/2). Let
g ∈ L2(∂H) and let m be a function on H of average m0 := 1

|H|
´
H m such that

(7.7) − 2πm0|H| =
ˆ
∂H

g.

Then there exists a solution h to −∆h = 2πm in H with ∇h · ~n = 0 on ∂H satisfying

(7.8)

ˆ
H
|∇h|2 � l

ˆ
∂H
|g|2 + l4||m−m0||2L∞(H).

Proof. A solution exists thanks to the compatibility condition (7.7). We may split h as h1 + h2

where h1 solves
−∆h1 = 2πm0 in H, ∇h1 · ~n = g on ∂H,

and h2 is the mean zero solution to

−∆h2 = 2π(m−m0) in H, ∇h2 · ~n = 0 on ∂H.

In view of [RS15, Lemma 5.8] we may find h1 satisfying

(7.9)

ˆ
H
|∇h1|2 � l

ˆ
∂H
|g|2.
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We also claim that

(7.10)

ˆ
H
|∇h2|2 � l4||m−m0||2L∞(H).

Indeed it is easy to check that (7.10) holds when l = 1, and the general case follows by a scaling
argument.

Combining (7.9) and (7.10) concludes the proof.
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[BEY14] P. Bourgade, L. Erdős, and H.-T. Yau. Universality of general β-ensembles. Duke
Math. J., 163(6):1127–1190, 2014.

[BL15] X. Blanc and M. Lewin. The crystallization conjecture: A review.
http://arxiv.org/abs/1504.01153, 2015.

[BYY14a] P. Bourgade, H.-T. Yau, and J. Yin. Local circular law for random matrices. Probab.
Theory Related Fields, 159(3-4):545–595, 2014.

[BYY14b] P. Bourgade, H.-T. Yau, and J. Yin. The local circular law II: the edge case. Probab.
Theory Related Fields, 159(3-4):619–660, 2014.

[DE02] I. Dumitriu and A. Edelman. Matrix models for beta ensembles. J. Math. Phys,
43:5830–5847, 2002.

[DZ10] A. Dembo and O. Zeitouni. Large deviations techniques and applications, volume 38
of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, 2010. Cor-
rected reprint of the second (1998) edition.

[FO88] H. Follmer and S. Orey. Large deviations for the empirical field of a gibbs measure.
The Annals of Probability, pages 961–977, 1988.

[For10] P. J. Forrester. Log-gases and random matrices, volume 34 of London Mathematical
Society Monographs Series. Princeton University Press, Princeton, NJ, 2010.

[Fro35] O. Frostman. Potentiel d’équilibre et capacité des ensembles avec quelques appli-
cations à la théorie des fonctions. Meddelanden Mat. Sem. Univ. Lund 3, 115 s,
1935.

36



[Geo93] H.-O. Georgii. Large deviations and maximum entropy principle for interacting ran-
dom fields on zd. The Annals of Probability, pages 1845–1875, 1993.

[Gin65] J. Ginibre. Statistical ensembles of complex, quaternion, and real matrices. J.
Mathematical Phys, 6:440–449, 1965.

[GZ93] H.-O. Georgii and H. Zessin. Large deviations and the maximum entropy principle
for marked point random fields. Probab. Theory Related Fields, 96(2):177–204, 1993.

[Har12] A. Hardy. A note on large deviations for 2D Coulomb gas with weakly confining
potential. Electron. Commun. Probab., 17:no. 19, 12, 2012.

[JLM93] B. Jancovici, J. Lebowitz, and G. Manificat. Large charge fluctuations in classical
Coulomb systems. J. Statist. Phys, 72(3-4):773–7, 1993.
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