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CLT FOR FLUCTUATIONS OF LINEAR STATISTICS IN THE SINE-BETA

PROCESS

THOMAS LEBLÉ

Abstract. We prove, for any β > 0, a central limit theorem for the fluctuations of linear statistics in

the Sineβ process, which is the infinite volume limit of the random microscopic behavior in the bulk
of one-dimensional log-gases at inverse temperature β. If ϕ is a compactly supported test function of

class C4, and C is a random point configuration distributed according to Sineβ , the integral of ϕ(·/`)
against the random fluctuation dC − dx, converges in law, as ` goes to infinity, to a centered normal
random variable whose standard deviation is proportional to the Sobolev H1/2 norm of ϕ on the real

line. The proof relies on the DLR equations for Sineβ established by Dereudre-Hardy-Mäıda and the

author, the Laplace transform trick introduced by Johansson, and a transportation method previously
used for β-ensembles at macroscopic scale.

1. Introduction

1.1. The Sine-beta process. The Sineβ process is obtained as the infinite volume, or thermodynamic,
limit of the microscopic behavior in the bulk of a one-dimensional log-gas.

Let β > 0 be a fixed value of the inverse temperature parameter. For N ≥ 1, the probability measure
on RN given by the density

(1.1) dPN,β(x1, . . . , xN ) :=
1

ZN,β
exp

−β
∑
i<j

− log |xi − xj |+
N∑
i=1

N
x2
i

2

 ,

with respect to the Lebesgue measure on RN , where ZN,β is a normalization constant, is the canonical
Gibbs measure of a one-dimensional log-gas at (inverse) temperature β. It corresponds physically to a
system of N particles interacting via a pairwise repulsive logarithmic potential, and confined by some
external field that we take here to be quadratic, for simplicity.

For β = 1, 2, 4, the density PN,β coincides with the joint law of the N eigenvalues of certain classical
models of random matrices: the Gaussian orthogonal, unitary, and symplectic ensemble, respectively,
with a correct choice of the variance, due to the presence of β in front of

∑
i x

2
i . We refer to [For10]

for a comprehensive survey of this connection. In fact, for every β > 0, there exists a model of random
matrices with independent entries, known as the “tridiagonal model”, discovered in [DE02], whose random
eigenvalues behave like the particles of a log-gas at inverse temperature β.

From a statistical physics point of view, one-dimensional log-gases are interesting toy models due to the
fact that interaction is singular and, most importantly, long-range: in contrast to many pair potentials
studied in the literature, the logarithmic interaction does not tend rapidly to zero with the distance
between the particles (in fact, not at all).

Under PN,β , it is known that the particles typically arrange themselves in an interval approximately
given by [−2, 2]. We consider this as being the macroscopic behavior of the system. To investigate its
microscopic behavior, we zoom in by a factor N .

We can see the random N -tuple CN := (Nx1, . . . , NxN ) as a random, finite, point configuration in
R. The existence of a limit, or even of limit points, in some interesting topology, to the law of CN is a
difficult question. It was shown in [VV09], and [KS09] (for a closely related model, whose limit turns
out to be the same) that when taking the thermodynamic/infinite volume limit, i.e. letting N →∞, the
random, finite point configuration CN converges in law to some random, infinite point configuration on
R, whose law is called the Sineβ process. In both cases, a description of Sineβ is given through a system
of coupled stochastic differential equations.

Finally, since the topology of convergence is local, Sineβ only captures the microscopic behavior “near
0”. One could ask instead for the limit of CN translated by cN , where c is some parameter. It turns out
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that for c in (−2, 2), the law of the limit is the same, up to a scaling on the average density of points. We
call this the bulk behavior. For c = ±2, one obtains the edge behavior, whose limit is named the Airyβ
process. For |c| > 2, the limit point process is almost surely empty.

1.2. Main result: CLT for fluctuations of linear statistics.

1.2.1. Definitions. If C is a point configuration on R, and ϕ a continuous, compactly supported test
function, we will often use the notation

∫
ϕ(x)dC(x) for∫
ϕ(x)dC(x) :=

∑
p∈C

ϕ(p).

Definition 1.1 (Fluctuations of linear statistics). Let ϕ be a function of class C0, compactly supported
on R, and let C be a point configuration on R. We define the fluctuation of the linear statistic associated
to ϕ as the quantity

(1.2) Fluct[ϕ](C) :=

∫
ϕ(x)(dC(x)− dx).

Definition 1.2 (Rescaled function). Let ϕ be a test function, and ` > 0. We define the associated
rescaled test function ϕ` as

(1.3) ϕ` : x 7→ ϕ
(x
`

)
.

Definition 1.3 (H1/2 norm on the real line). Whenever the following quantity is finite, we call it the
H1/2 norm of ϕ

(1.4) ‖ϕ‖
H

1
2

:=
1

2π

(∫∫
R×R

(
ϕ(x)− ϕ(y)

x− y

)2

dxdy

)1/2

.

We may observe, that e.g. when ϕ is of class C1 and compactly supported, then ‖ϕ‖
H

1
2

is finite.

Moreover, it is easy to check that the H1/2 norm is invariant under rescaling as in (1.3).

1.2.2. Statement of the result.

Theorem 1 (CLT for fluctuations of linear statistics under Sineβ). Let ϕ be a fixed test function of class
C4, compactly supported on R, and for ` > 0, let ϕ` be the rescaled function, as in Definition 1.2. Let C
be a random point configuration of law Sineβ.

The following convergence holds, in law, as `→∞,

Fluct[ϕ`](C) =⇒ Gaussian r.v. of mean 0 and variance
2

β
‖ϕ‖2

H
1
2
.

To the best of our knowledge, Theorem 1 is the first result concerning the fluctuations of smooth
statistics for the limit process Sineβ at arbitrary values of β.

1.2.3. Notation. Henceforth, we let ϕ be a fixed test function of class C4, compactly supported in R, and
for ` > 0 we let ϕ` be as in Definition 1.2. For lightness of notation, we drop the subscript ` and write ϕ
instead of ϕ`. Also, for simplicity, we assume that ϕ is supported in (−1, 1), so that ϕ = ϕ` is supported
in (−`, `).

We work with two parameters `, λ. We will always assume that `, λ satisfy

(1.5) 100 < ` <
λ

1000
,

and we will use the notation a � b as follows

a � b ⇐⇒ |a| ≤ C|b|,
where C is some multiplicative constant independent of `, λ, provided (1.5) is satisfied. We will sometimes
write O•(b) to denote a quantity that is � b. Most implicit constants will depend on the test function ϕ.

If A is a quantity depending on `, λ, we use the notation A = o`,λ(1) to denote the fact that

lim
`→∞

lim
λ→∞

A = 0.
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We let Λ be the interval (−λ, λ).
All the expectations, denoted by E, are expectations under Sineβ , and all the probabilities, denoted

by P, are probabilities for Sineβ .

1.3. Strategy of the proof and connection with other works.

1.3.1. Strategy of proof. The proof relies on three main ingredients:

(1) The DLR equations of [DHLM18].
(2) The Laplace transform trick of [Joh98].
(3) The transportation method inspired by [BLS18].

The DLR (for Dobrushin-Landford-Ruelle) equations provide a version of the Gibbs measure (1.1) for
“N = + ∞”, and thus give a representation Sineβ as an infinite-volume Gibbs measure, allowing for a
“statistical physics approach”. We state these equations precisely in Section 6.2, let us think of them as
describing Sineβ , in any interval, as a mixture of Gibbs measures resembling PN,β .

The CLT for fluctuations of linear statistics of log-gases has been proven by [Joh98] in the context
of Hermitian random matrices, stated as a limit in law as N → ∞ of fluctuations at macroscopic scale.
A key point of the proof is the following observation: forming the Laplace transform of the fluctuations
of ϕ amounts to computing the partition function of a log-gas with a perturbed external field, where
1
2x

2
i in (1.1) is replaced by 1

2x
2
i + sϕ(xi), where s is small, and related to the parameter of the Laplace

transform. More precisely, one is led to consider the ratio of the perturbed partition function and the
original partition function, and the argument boils down to proving fine estimates of this ratio.

One way to compare the partition functions is to use a change of variables, or transportation method,
as in e.g. [Shc14], [BFG15], [BLS18]. It effectively shifts the focus from the external field to the associated
equilibrium measure, in the sense of logarithmic potential theory. Then the question becomes to compute
the perturbed equilibrium measure, to push the original one onto the perturbed one by some change
of variables (or transportation map), and to use this transport to estimate the ratio of the partition
functions. This is closely related to the “loop equations” approach.

Our proof is in the same spirit, with several modifications:

• The papers cited above treat linear statistics at macroscopic scale, and consider the limit in law as

N →∞ of
∑N
i=1 ϕ(xi), when (x1, . . . , xN ) are distributed according to a Gibbs measure similar to PN,β ,

with a possibly more general choice of external field. The CLT is also known to hold at mesoscopic
scale, when ϕ is taken as ϕ(·/N δ), for δ ∈ (0, 1

2 ), see [BL18].
In contrast, the present work deals with the microscopic scale, and with the infinite process itself.

Rescaling functions as in (1.3) may be understood as considering “large microscopic scales”.
• Even for a compactly supported test function, the particles in the support feel the interaction of the

infinite, exterior configuration, which acts on them as a random external field. This new element of
the analysis is specific to working with the infinite process.

• When comparing the partition functions, there is usually a term (here Mains, see (3.14)) whose mag-
nitude is a priori of order 1, and must then be studied more carefully to show that it is in fact o(1).
This can be done by a technical bootstrap argument (in fact, this way, one can even obtain an all-order
expansion of the partition function as in [BG13]) and another approach uses a trick, relying on the
independent knowledge of the partition function up to order N , as in [BLS18].

Here, by recasting a priori bounds on fluctuations in terms of discrepancies, and by using good
discrepancy estimates for Sineβ , we are able to show directly that Mains is o(1).

1.3.2. Connections with other works. When β = 2, the point process acquires a particularly rich deter-
minantal structure, allowing for many explicit computations. In this case, the CLT for fluctuations of
smooth enough functions was known since [Spo87], see also [Sos00]. Let us observe that, for β = 2, the
CLT is known to hold as soon as the test function is in H1/2(R), to be compared with the requirement
that ϕ ∈ C4

c here. The optimal regularity condition needed in the general β case is an open question.
Several facts concerning the number of points under Sineβ have been proven. A CLT follows from

[KVV12], large deviations were proven in [HV15, HV17] and a maximal deviation result in [HP18]. The
transportation strategy does not accommodate well to non-smooth functions like indicator functions, and
we are unable to easily retrieve these results with the present techniques.

The rigidity of the process in the sense of Ghosh-Peres, i.e. the fact that the knowledge of the
configuration outside a given compact set almost surely prescribes the number of points in that set, was
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proven by [CN18], and also obtained in [DHLM18] in a very different way. The proof of [CN18] follows
the approach of [GP17] and relies on the fact that the variance of linear statistics is controlled by the
H1/2 norm of the test function, which had been established for random matrix models and can be passed
to the limit. We believe that our “statistical physics” approach could yield similar bounds, and hence the
rigidity result, but one needs to go over all the estimates beyond the “rescaled cases” ϕ = ϕ` = ϕ(·/`)
and state them in full generality, with controls depending more precisely on ϕ, we do not undertake this
here.

1.3.3. Plan of the paper.

• In Section 1.6, we discuss discrepancy estimates for the Sineβ process and state an a priori bound
on the fluctuations on linear statistics, in terms of the discrepancies. We will rely constantly on this
bound in order to control the error terms in the Laplace transform expansion.

• In Section 2, we define the perturbation measure, which formally corresponds to the change induced on
the average density of points when treating the test function ϕ as an additional external field applied
to each particle. This perturbation measure is slightly singular, and we work in fact with a regularized
version, the approximate perturbation measure .

• In Section 3, we define the perturbed measure, the transport map from the original measure (the
constant density) to the perturbed one, and we expand the energy along this transport.

• In Section 4, we compare the interaction energy before and after transport, and show that most terms
are negligible.

• In Section 6, we combine all previous elements to give the proof of the CLT.
• Many parts of the argument are rather elementary, but involve some lengthy computations. For

legibility, we have postponed most of the computations to Section 7.

1.4. Semi-norms. We will often use g(k) to denote the k-th derivative of g.

Definition 1.4 (Semi-norms and local semi-norms). Let g be a test function, compactly supported on
R. For k ≥ 0, if g is assumed to be of class Ck, we let

|g|k := sup
x
|g(k)(x)|,

and for x in R, letting Vx denote the neighborhood Vx := [x− 3, x+ 3], we write:

(1.6) |g|k,Vx := sup
y∈Vx

|g(k)(y)|.

The following bounds will be used repeatedly:

(1.7) |ϕ`|k =
1

`k
|ϕ|k, ‖ϕ(k)

` ‖Lp = ‖ϕ‖Lp`
1
p−k.

1.5. Discrepancy and discrepancy estimates. Throughout the paper, an important role is played
by the discrepancy estimates, for they provide an a priori bound on the size of fluctuations that we will
repeatedly use to control error terms. If C is a point configuration and I is an interval, we denote by CI
the restriction of C to I.

Definition 1.5 (Discrepancy). Let C be a point configuration on R, and let I be an interval. The
discrepancy of C in I is the difference between the number of points of C in I and its expected value,
namely the length of I. We write

DiscrI := |CI | − |I| =
∫

1I(dC(x)− dx).

If a, b are integers, with possibly a > b, we let

Discr[a,b] :=

∫ b

a

1I(dC(x)− dx).

It is known, see e.g. [LS17][Lemma 3.2] that, if I has length at least 1, we have

(1.8) E
[
(DiscrI)

2
]
� |I|, E [|DiscrI || �

√
|I|.
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Moreover, it was shown in [LS17][Remark 3.3] that, for Sineβ , it holds

lim inf
R→∞

1

2R
E
[(

Discr[−R,R]

)2]
= 0,

and careful inspection of the argument yields the stronger statement, proven in [EHL18]

(1.9) E
[(

Discr[−R,R]

)2]
= o(R).

Of course, since Sineβ is stationary, it implies that the variance of the number of points in any interval
of length R is o(R).

1.6. A priori bound on the fluctuations. We let D̃i be the quantity

D̃i := |Discr[0,i]|+ |Discr[i,i+1]|+ 1.

Proposition 1.6 (A priori bound on the fluctuations). Let g be a test function of class C1, compactly
supported on R.

(1.10)

∣∣∣∣∫ g(x)(dC − dx)

∣∣∣∣ � ∞∑
i=−∞

|g|1,ViD̃i[C].

Moreover, for λ fixed we may choose to replace D̃i by either D̃Left
i or D̃Right

i , with

D̃Left
i := |Discr[−λ,i]|+ |Discr[i,i+1]|+ 1, D̃Right

i := |Discr[i,λ]|+ |Discr[i,i+1]|+ 1.

The proof of Proposition 1.6 is elementary, we postpone it to Section 7.1.

Remark 1.7 (Bounds on D̃, D̃Left, D̃Right). In view of (1.8), for |i| ≥ 1, we have

(1.11) E
[(
D̃i

)2
]
� |i|, E

[
D̃i

]
�
√
|i|,

and in fact we have, in view of (1.9), as |i| → ∞

(1.12) E
[(
D̃i

)2
]

= o (|i|) , E
[
D̃i

]
= o

(√
|i|
)
.

We obtain similar estimates for D̃Left
i , resp. D̃Right

i when replacing |i| by |λ+ i|, resp. |λ− i|.

2. The perturbation measure

2.1. The Cauchy principal value.

Definition 2.1 (Cauchy principal value). Let g be a test function of class C1, compactly supported on
R. For x in R, we define

(2.1) PV

∫
g(t)

t− x
dt :=

∫ +∞

0

g(x+ u)− g(x− u)

u
du,

where PV stands for “principal value”.

Definition 2.2 (The quantity Hλ,ϕ). For x in R, we define Hλ,ϕ(x) as

(2.2) Hλ,ϕ(x) :=
1

π
PV

∫ √
λ2 − t2ϕ′(t)
t− x

dt.

Remark 2.3. Since ϕ is at least, C2 and compactly supported in (−`, `), we can see φΛ, defined by

(2.3) φΛ : t 7→
√
λ2 − t2ϕ′(t),

as a compactly supported function of class C1, so the “principal value” notation in (2.2) makes sense, in
view of Definition 2.1.
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2.2. The perturbation measure.

Definition 2.4 (The perturbation measure). For x in (−λ, λ), we define mλ,ϕ(x) as

(2.4) mλ,ϕ(x) :=
−1

π
√
λ2 − x2

Hλ,ϕ(x).

The density mλ,ϕ will be called the perturbation measure.

Definition 2.5 (The logarithmic potential of mλ,ϕ). For x in R, we let

(2.5) LPλ,ϕ(x) :=

∫
− log |x− y|mλ,ϕ(y)dy.

Lemma 2.6 (Properties of the perturbation measure). The density mλ,ϕ is integrable on Λ, of total mass
0. The logarithmic potential generated by mλ,ϕ is well-defined and satisfies the following equation for x
in Λ

(2.6) (LPλ,ϕ)
′
(x) = ϕ′(x).

These properties are well-known and we refer to the book [Tri57], see also Section 7.2.

2.3. Bounds on the perturbation measure.

Lemma 2.7 (Bounds on the perturbation measure mλ,ϕ). We have

mλ,ϕ �


1
` |x| ≤ 2`,
√
λ`

x2
√
λ−|x|

|x| ≥ 2`
,(2.7)

m
(1)
λ,ϕ �


1
`2 |x| ≤ 2`,

`
|x|
√
λ(λ−|x|)3/2

+
√
λ`

|x|3
√
λ−|x|

|x| ≥ 2`
,(2.8)

m
(2)
λ,ϕ �


1
`3 |x| ≤ 2`,

`
λ3/2(λ−|x|)5/2 + `

x2λ1/2(λ−|x|)3/2 +
√
λ`

x4
√
λ−|x|

|x| ≥ 2`
.(2.9)

Lemma 2.7 follows from elementary computations, see Section 7.3.

2.4. The approximate perturbation measure. The perturbation measure mλ,ϕ satisfies the exact
relation (2.6), but is singular near ±λ. We will work instead with an approximate perturbation measure
m̃λ,ϕ, constructed below, which is more regular, and in fact vanishes near the endpoints. Of course,
passing from mλ,ϕ to m̃λ,ϕ induces an error on the logarithmic potential, which we need to control.

Lemma 2.8 (The approximate perturbation measure). There exists a function m̃λ,ϕ of class C2, com-
pactly supported in (−λ, λ), satisfying:

(1) m̃λ,ϕ = mλ,ϕ on [−λ+ `, λ− `].
(2) The masses of m̃λ,ϕ and mλ,ϕ coincide near each endpoint, i.e.

(2.10)

∫ −λ+`

−λ
m̃λ,ϕ =

∫ −λ+`

−λ
mλ,ϕ,

∫ λ

λ−`
m̃λ,ϕ =

∫ λ

λ−`
mλ,ϕ

(3) For x in [−λ,−λ+ `] ∪ [λ− `, λ], and for any k = 0, 1, 2 we have the bound

(2.11) |m̃(k)
λ,ϕ(x)| � 1

`k
`

λ3/2`1/2
.

with implicit multiplicative constants depending on k and ϕ, but not on `, λ, x.
(4) m̃λ,ϕ is identically 0 on [−λ,−λ+ `/4] and on [λ− `/4, λ].

The construction of m̃λ,ϕ is given in Section 7.5.
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Lemma 2.9 (Additional properties of m̃λ,ϕ).

m̃λ,ϕ(x) �


1
` |x| ≤ 2`,
`
x2 2` ≤ |x| ≤ λ/2

`
λ3/2
√
λ−x λ/2 ≤ |x| ≤ λ− `,

`
λ3/2`1/2 λ− ` ≤ |x| ≤ λ

,(2.12)

m̃
(1)
λ,ϕ(x) �


1
`2 |x| ≤ 2`
`
|x|3 2` ≤ |x| ≤ λ/2,

`
λ3/2(λ−|x|)3/2 λ/2 ≤ |x| ≤ λ− `,

`
λ3/2`3/2 λ− ` ≤ |x| ≤ λ

,(2.13)

m̃
(2)
λ,ϕ(x) �


1
`3 |x| ≤ 2`
`
x4 2` ≤ |x| ≤ λ/2,

`
λ3/2(λ−|x|)5/2 λ/2 ≤ |x| ≤ λ− `,

`
λ3/2`5/2 λ− ` ≤ |x| ≤ λ

,(2.14)

‖m̃λ,ϕ‖L1 � 1.(2.15)

Proof. The first three inequalities are consequences of (2.7), (2.8), (2.9), for |x| ≤ 2` and 2` ≤ |x| ≤ λ−`,
because we do not change the measure there. They follow from (2.11) for λ− ` ≤ |x| ≤ λ.

To obtain (2.15), we split the integral into four parts:∫
|t|≤2`

|m̃λ,ϕ(t)|dt+

∫
2`≤|t|≤λ/2

|m̃λ,ϕ(t)|dt+

∫
λ/2≤|t|≤λ−`

|m̃λ,ϕ(t)|dt+

∫
λ−`≤|t|≤λ

|m̃λ,ϕ(t)|dt,

then (2.15) follows from (2.12) and an elementary computation. �

2.5. The error on the logarithmic potential.

Definition 2.10 (Error on the logarithmic potential). We introduce the quantity

(2.16) ErrorLPλ,ϕ(x) :=

∫
− log |x− y| (m̃λ,ϕ(y)−mλ,ϕ(y)) dy.

Proposition 2.11 (Error on the logarithmic potential). We have

ErrorLPλ,ϕ = ErrorLPLeft
λ,ϕ + ErrorLPRight

λ,ϕ ,

where ErrorLPLeft
λ,ϕ , ErrorLPRight

λ,ϕ satisfy:

(2.17) ErrorLPLeft
λ,ϕ (x) � `3/2 log(λ)

λ3/2
, ErrorLPRight

λ,ϕ (x) � `3/2 log(λ)

λ3/2
, for |x| ≤ 2λ.

and

(2.18)


(

ErrorLPLeft
λ,ϕ

)(1)

(x) � `5/2

λ3/2(−λ−x)2 |x− (−λ)| ≥ 2`,(
ErrorLPRight

λ,ϕ

)(1)

(x) � `5/2

λ3/2(λ−x)2 , |λ− x| ≥ 2`.

The proof of Proposition 2.11 is given in Section 7.6.

2.6. The variance term.

Lemma 2.12 (The variance term). We have the following identity

(2.19)

∫∫
− log |x− y|m̃λ,ϕ(x)m̃λ,ϕ(y)dxdy = 2‖ϕ‖2

H
1
2

+ ErrorVar,

with ErrorVar bounded as follows

(2.20) ErrorVar � `3 log(λ)

λ3
+
`2

λ2
.

In particular we obtain

(2.21) s2ErrorVar = s2o`,λ(1).
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The proof of Lemma 2.12 is given in Section 7.7.

3. Transporting to the perturbed measure

3.1. The perturbed measure. The Sineβ process has intensity 1. Adding a perturbative external
field will formally change the average density of points from a constant density to the perturbed density
(1 + mλ,ϕ(x))dx. Since we work with the approximate perturbation m̃λ,ϕ, it leads to the following
definition.

Definition 3.1 (The perturbed measure). Let smax be defined as

(3.1) smax :=
1

2
max (1, |m̃λ,ϕ|0, ‖m̃λ,ϕ‖L1)

−1
.

For any s such that |s| ≤ smax, we define the perturbed measure µs as

(3.2) µs(x) = 1 + sm̃λ,ϕ(x).

Of course, µs depends on λ, ϕ, ` but for simplicity we only keep track of the parameter s. In the following,
s is always assumed to satisfy |s| ≤ smax.

Lemma 3.2 (Properties of the perturbed measure). The density µs is of class C2, is bounded above and
below on [−λ, λ] by universal positive constants, and satisfies∫ λ

−λ
µs(x)dx =

∫ λ

−λ
1dx.

The density µs is equal to 1 on [−λ,−λ+ `/4] and on [λ− `/4, λ].

Proof. This follows directly from the construction of m̃λ,ϕ as in Lemma 2.8, and from the choice of smax

as in (3.1). �

3.2. Energy splitting. Let Λ be the interval Λ = (−λ, λ), and let C be a point configuration in Λ. Let
� be the diagonal in Λ× Λ.

Lemma 3.3 (Energy splitting around µs). The following identity holds:

(3.3)

∫∫
(Λ×Λ)\�

− log |x− y|(dC(x)− dx)(dC(y)− dy)

=

∫∫
(Λ×Λ)\�

− log |x− y|(dC(x)− dµs(x))(dC(y)− dµs(y))

+ 2s

∫
Λ

LPλ,ϕ(x)(dC − dx) + 2s

∫
Λ

ErrorLPλ,ϕ(x)(dC − dx)

− 2s2‖ϕ‖2
H

1
2
− s2ErrorVar,

where LPλ,ϕ is the logarithmic potential generated by mλ,ϕ, as in (2.5), the error term ErrorLPλ,ϕ is
defined in (2.16), and ErrorVar satisfies (2.20).

We postpone the proof of Lemma 3.3 to Section 7.8, it simply consists in putting together the various
definitions given above.

3.3. The transport map.

Definition 3.4 (Transport map). We let Fs be the cumulative distribution function of the density µs

Fs := x 7→
∫ x

−λ
µs(y)dy,

and we define the transport map Φs on [−λ, λ] as

(3.4) Φs(x) := F−1
s (x+ λ),

so that Φs satisfies, for x in [−λ, λ], the identity∫ Φs(x)

−λ
µs(y)dy =

∫ x

−λ
1dy.
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Lemma 3.5 (Properties of the transport map). The map Φs is a C1, increasing bijection from [−λ, λ] to
itself. The push-forward of the constant density 1 on [−λ, λ] by Φs is equal to µs, i.e. for any measurable
function f we have ∫ λ

−λ
f ◦ Φs(x)dx =

∫ λ

−λ
f(x)µs(x)dx.

Let Idλ be the identity map from [−λ, λ] to itself. The transport map Φs coincides with Idλ near the
endpoints, more precisely on [−λ,−λ+ `/4] and [λ− `/4, λ]. We define ψs as

(3.5) ψs := Φs − Idλ.

The map ψs satisfies

(3.6) ψs(x) = −s
∫ Φs(x)

−λ
m̃λ,ϕ(y)dy,

in particular, we have the rough control

(3.7) |ψs|0 ≤ 1, i.e. |Φs − Idλ|0 ≤ 1,

and we also obtain

ψ(1)
s (x) � s|m̃λ,ϕ|0,Vx ,(3.8)

ψ(2)
s (x) � s|m̃λ,ϕ|1,Vx ,(3.9)

ψ(3)
s (x) � s|m̃λ,ϕ|2,Vx .(3.10)

The proof of Lemma 3.5 is given in Section 7.9.

Lemma 3.6 (Finer bound on ψs). We have

(3.11) ψs(x) ≤ s
∫ x+1

−λ
|m̃λ,ϕ(y)|dy, ψs(x) ≤ s

∫ λ

x−1

|m̃λ,ϕ(y)|dy.

We obtain the following bounds, which improve on (3.7):

(3.12) ψs(x) � s×


1 |x| ≤ 10`
`
|x| 10` ≤ |x| ≤ λ/2,
`

λ3/2

√
λ− |x| |x| ≥ λ/2.

The proof of Lemma 3.6 is given in Section 7.10

Definition 3.7 (The slope of the transport). For x, y in Λ we define ∆s(x, y) as

(3.13) ∆s(x, y) :=
ψs(y)− ψs(x)

y − x
,

with the natural convention that ∆s(x, x) = ψ′s(x).

3.4. Energy expansion along a transport. We introduce the following notation.

Mains(η) :=

∫∫
Λ×Λ

− log |1 + ∆s(x, y)|(dη − dx)(dη − dy)(3.14)

REs := −
∫

logµs(x)µs(x)dx(3.15)

FluREs(η) := −
∫

logµs ◦ Φs(x)(dη − dx).(3.16)

The term Mains(η) will be the main term in the energy comparison below. The term REs is the relative
entropy of µs, which is independent on the point configuration, and FluREs(η) is the fluctuation of the
relative entropy functional, which depends on η.
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Lemma 3.8 (Energy expansion along a transport). Let η be a point configuration in Λ, let ηs be the
push-forward of the configuration η by the map Φs.

We have

(3.17)

∫∫
(Λ×Λ)\�

− log |x− y|(dηs(x)− µs(x)dx)(dηs(y)− µs(y)dy)

=

∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dx)(dη(y)− dy) + Mains(η) + REs + FluREs(η).

Proof of Lemma 3.8. Since, by construction, Φs transports η onto ηs and the constant density dx onto
µs(x)dx, we may write∫∫

(Λ×Λ)\�
− log |x− y|(dηs(x)− µs(x)dx)(dηs(y)− µs(y)dy)

=

∫∫
(Λ×Λ)\�

− log |Φs(x)− Φs(y)|(dη − dx)(dη − dy)

=

∫∫
(Λ×Λ)\�

− log |x− y|(dη − dx)(dη − dy)

+

∫∫
(Λ×Λ)\�

− log |1 + ∆s(x, y)|(dη − dx)(dη − dy),

where we have used the definition ψs = Φs − Idλ and the definition of ∆s as in (3.13).
Since ∆s is continuously extended by ψ′s on the diagonal, we may write∫∫

(Λ×Λ)\�
− log |1 + ∆s(x, y)|(dη − dx)(dη − dy)

=

∫∫
Λ×Λ

− log |1 + ∆s(x, y)|(dη − dx)(dη − dy) +

∫
log |1 + ψ′s(x)|dη.

The first term in the right-hand side corresponds to the definition (3.14) of Mains. We claim that

(3.18)

∫
log |1 + ψ′s(x)|(dη − dx) =

∫
log Φ′s(x)(dη − dx) = REs + FluREs(η).

To prove (3.18), let us observe that 1 + ψ′s(x) = Φ′s(x) and, by definition of a transport, we have

1 + ψ′s(x) = Φ′s(x) =
1

µs ◦ Φs(x)

We obtain ∫
log |1 + ψ′s(x)|dη =

∫
log Φ′s(x) = −

∫
logµs ◦ Φs(x)dη.

Finally, let us write

−
∫

logµs ◦ Φs(x)dη = −
∫

logµs ◦ Φs(x)dx−
∫

logµs ◦ Φs(x)(dη − dx).

The first term in the right-hand side can be seen, using the fact that Φs transports the Lebesgue density
onto µs, as

−
∫

logµs ◦ Φs(x)dx = −
∫

logµs(x)µs(x)dx,

so we obtain

(3.19)

∫
log |1 +ψ′s(x)|dη(x) =

∫
log Φ′s(x)dη(x) = −

∫
logµs(x)µs(x)dx−

∫
logµs ◦Φs(x)(dη− dx).

Using the notation introduced above in (3.14), (3.15), (3.16), this concludes the proof of (3.17). �
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4. Comparison of energies I: the interior-interior interaction

4.1. The main term in the comparison. We have

Proposition 4.1 (The main term is often small).

E[|Mains|] = so`,λ(1).

The proof of Proposition 4.1 is rather elementary, but involves cumbersome computations. We post-
pone it to Section 7.11.

4.2. The relative entropy term.

Lemma 4.2 (The term REs is small). We have

(4.1) REs = −
∫

logµs(x)µs(x)dx � s2

`
.

In particular, we obtain

(4.2) REs = s2o`,λ(1).

Proof. We write µs = 1 + sm̃λ,ϕ, expand the log and use the fact that m̃λ,ϕ has total mass 0. We obtain∫
logµs(x)µs(x)dx =

∫ (
sm̃λ,ϕ +O•

(
s2m̃2

λ,ϕ

))
(1 + sm̃λ,ϕ) � s2‖m̃2

λ,ϕ‖L1 .

Using (2.12), we see that ‖m̃2
λ,ϕ‖L1 � 1

` , which yields (4.1). �

4.3. The fluctuations of the relative entropy term.

Lemma 4.3 (The fluctuations FluREs(η)). We have

(4.3) FluREs(η) = −
∫

logµs ◦ Φs(x)(dη − dx) � s
λ∑

i=−λ

|m̃λ,ϕ|1,VxD̃i.

Proof of Lemma 4.3. We start by computing the derivative of x 7→ logµs ◦ Φs(x) as

(logµs ◦ Φs)
′
(x) =

[µ′s ◦ Φs(x)] Φ′s(x)

µs ◦ Φs(x)
.

Using the fact that Φs is bounded by 1, that Φ′s and 1
µs

are bounded, and that µ′s = m̃′λ,ϕ, we obtain

(logµs ◦ Φs)
′
(x) � s|m̃λ,ϕ|1,Vx .

Moreover, since Φs is the identity near the endpoints, and µs = 1 near the endpoints, the map x 7→
logµs ◦ Φs(x) is compactly supported. Applying Proposition 1.6, we obtain (4.3). �

Corollary 4.4 (The term FluREs(η) is often small). We have

(4.4) E [|FluREs(η)|] = so`,λ(1).

Proof. In view of (4.3), we use the discrepancy estimate (1.11) and the estimates (2.13) on the first
derivative of m̃λ,ϕ. We obtain

E

[
λ∑

i=−λ

|m̃λ,ϕ|1,VxD̃i

]
�

2∑̀
i=0

√
`

1

`2
+

λ/2∑
i=2`

√
i
`
√
λ

i3
√
λ

+

λ−∑̀
i=λ/2

√
λ

`

λ3/2(λ− i)3/2
+

λ∑
i=λ−`

√
λ

`

λ3/2`3/2
,

and thus

E

[
λ∑

i=−λ

|m̃λ,ϕ|1,VxD̃i

]
� 1√

`
+

`√
`λ

= o`,λ(1).

�

4.4. Conclusion. Combining Proposition 4.1, Lemma 4.2, Corollary 4.4, we obtain:

(4.5) E [|Mains|+ |FluREs|] + |REs| = so`,λ(1) + s2o`,λ(1),

which, in view of Lemma 3.8, says that the interior-interior interactions before and after transport are
often very close.
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5. Comparison of the energies II: the interior-exterior interaction

5.1. The difference field.

Definition 5.1 (The difference field). Let η be a point configuration in (−λ, λ), and let ηs be the
push-forward of η by Φs.

For x /∈ (−λ, λ), we let DFs(η)(x) be the electrostatic field created at x by the difference ηs − η, i.e.

(5.1) DFs(η)(x) :=

∫
− log |x− y| (dηs(y)− dη(y)) .

Lemma 5.2 (Decomposition of the difference field). We have

(5.2) DFs(η)(x) = sLPλ,ϕ(x) + sErrorLPλ,ϕ(x) + ErrorDFs(η)(x),

with LPλ,ϕ as in (2.5), ErrorLPλ,ϕ as in (2.16), and ErrorDFs(η) defined by

(5.3) ErrorDFs(η)(x) = −
∫

log

(
1− ψs(y)

x− y

)
(dη(y)− dy) .

Proof. We simply write ηs − η = (ηs − µs) + (µs − dy) + (dy − η). We have∫
− log |x− y|(dηs(y)− µs(y)dy) =

∫
− log |x− Φs(y)|(dη(y)− dy),

and we define ErrorDFs(η)(x) as the term such that

(5.4)

∫
− log |x− Φs(y)|(dη(y)− dy) =

∫
− log |x− y|(dη(y)− dy) + ErrorDFs(η)(x),

which coincides with the expression given in (5.3). By definition, we obtain

DFs(η)(x) =

∫
− log |x− y|(µs(y)dy − dy) + ErrorDFs(η)(x).

Since µs(y) = 1 + sm̃λ,ϕ(y), the first term in the right-hand side is the logarithmic potential generated
by sm̃λ,ϕ, which is given by the sum sLPλ,ϕ + sErrorLPλ,ϕ. �

Lemma 5.3. Assume x ≥ λ. We have

ErrorDFs(η)(x) �
λ∑

i=−λ

(
|ψs(i)|

(x− i)2
+
|ψ′s(i)|
(x− i)

)
D̃Right
i(5.5)

(ErrorDFs(η))
′
(x) �

λ∑
i=−λ

(
|ψs(i)|

(x− i)3
+
|ψ′s(i)|

(x− i)2

)
D̃Right
i .(5.6)

Proof. Let us introduce the auxiliary function

(5.7) H(x, y) := − log

(
1− ψs(y)

x− y

)
,

we re-write (5.3) as

ErrorDFs(η)(x) =

∫
H(x, y) (dη(y)− dy) .

In particular, for x ≥ λ, we may differentiate under the integral sign and get

(ErrorDFs(η))
′
(x) =

∫
∂xH(x, y) (dη(y)− dy) .

Since ψs vanishes near the endpoints, for any x the function H(x, ·) is compactly supported with respect
to the second variable. Moreover since ψs(y) = 0 for y ≥ λ− `/10, and x ≥ λ, we may write

x− y − ψs(y) ≈ x− y.
A direct computation shows that

∂yH(x, y) � |ψ
′
s(y)|
|x− y|

+
|ψs(y)|
|x− y|2

(5.8)

∂2
yxH(x, y) � |ψ

′
s(y)|

|x− y|2
+
|ψs(y)|
|x− y|3

,(5.9)
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as can be checked informally by treating ψs as a perturbation, writing

H(x, y) ≈ ψs(y)

x− y
,

and differentiating.

Using the a priori bound on fluctuations of Proposition 1.6 with discrepancy D̃Right
i , and (5.8), resp.

(5.9), we obtain (5.5), resp. (5.6). �

Corollary 5.4 (The contribution of ErrorDFs is often small). In particular,

(5.10) E
[∣∣∣∣∫

Λc
ErrorDFs(C)(x)(dC − dx)

∣∣∣∣] = so`,λ(1)

We give the proof of Corollary 5.4 in Section 7.12.

5.2. The logarithmic potential and its fluctuations. In this section, we consider the logarithmic
potential LPλ,ϕ generated by mλ,ϕ, as defined in (2.5).

We state some bounds on LPλ,ϕ and its first derivative.

Lemma 5.5 (Controls on LPλ,ϕ).

LPλ,ϕ(x) � ` log2(λ)

λ
, |x| ∈ [λ/2, 2λ](5.11)

LP′λ,ϕ(x) � `

λ3/2
√
x− λ

, λ ≤ |x| ≤ 4λ(5.12)

LP′λ,ϕ(x) � ` log(λ)

x2
, |x| ≥ 4λ.(5.13)

We give the proof of Lemma 5.5 in Section 7.13.

Lemma 5.6 (Fluctuations of the logarithmic potential). We have

(5.14)

∫
(LPλ,ϕ(x)− ϕ(x))(dC − dx) � FluLPA + FluLPB + FluLPC ,

with

FluLPA �
4λ∑

i=λ+2
√
λ

`

λ3/2
√
i− λ

D̃Right
i +

+∞∑
i=4λ

` log(λ)

i2
D̃Right
i +

λ+4
√
λ∑

i=λ+2
√
λ

` log2(λ)

λ3/2
D̃Right
i ,(5.15)

FluLPB �
` log2(λ)

λ3/2

λ−2
√
λ∑

|i|=λ−4
√
λ

D̃i,(5.16)

FluLPC �
` log2(λ)

λ

(√
λ+ |Discr[λ−4

√
λ,λ+4

√
λ]|+ |Discr[−λ−4

√
λ,−λ+4

√
λ]|
)
.(5.17)

Strictly speaking, (5.14) should be complemented with terms corresponding to the left endpoint −λ
and involving the discrepancy D̃Left, see below. They are bounded the same way, and for simplicity we
omit them

Proof. Let χ1 be a smooth non-negative function such that

(5.18) χ1 = 1 on [λ+ 4
√
λ,+∞) χ1 = 0 on (−∞, λ+ 2

√
λ],

with |χ1|0 ≤ 1 and |χ1|1 � 1√
λ

.

Let χ2 be a smooth non-negative function such that

(5.19) χ2 = 1 on [−∞,−λ− 4
√
λ) χ2 = 0 on [−λ− 2

√
λ,+∞),

with |χ2|0 ≤ 1 and |χ2|1 � 1√
λ

.

Finally, let χ3 be a smooth non-negative function such that

(5.20) χ3 = 1 on [−λ+ 4
√
λ, λ− 4

√
λ] χ3 = 0 outside [−λ+ 2

√
λ, λ− 2

√
λ],

with |χ3|0 ≤ 1 and |χ3|1 � 1√
λ

.
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We write trivially LPλ,ϕ(x) as the sum

LPλ,ϕ(x)χ1(x) + LPλ,ϕ(x)χ2(x) + LPλ,ϕ(x)χ3(x) + LPλ,ϕ(x)(1− χ1(x)− χ2(x)− χ3(x)),

and we integrate these terms against dC − dx.
The χ1, χ2 terms. We have

(LPλ,ϕχ1)
′
(x) = LP′λ,ϕ(x)χ1(x) + LPλ,ϕ(x)χ′1(x),

where χ′1 is supported on [λ + 2
√
λ, λ + 4

√
λ] and bounded by O•

(
1√
λ

)
. Applying Proposition 1.6, we

obtain ∫
(LPλ,ϕχ1) (dC − dx) �

+∞∑
i=λ+2

√
λ

|LPλ,ϕ|1,ViD̃
Right
i +

λ+4
√
λ∑

i=λ+2
√
λ

|LPλ,ϕ|0,ViD̃
Right
i

1√
λ
,

and using (5.11), (5.12), (5.13) we may write∫
(LPλ,ϕχ1) (dC − dx) �

4λ∑
i=λ+2

√
λ

`

λ3/2
√
i− λ

D̃Right
i +

+∞∑
i=4λ

` log(λ)

i2
D̃Right
i +

λ+4
√
λ∑

i=λ+2
√
λ

` log2(λ)

λ3/2
D̃Right
i .

Of course, LPλ,ϕχ2 satisfies the same inequality, with D̃Left
i instead of D̃Right

i , and this yields (5.15) (we
only keep track of the “right-hand” term, the estimates on “left-hand” term are the same).

The χ3 term. We have

((LPλ,ϕ − ϕ)χ3)
′
(x) = (LPλ,ϕ − ϕ)′(x)χ3(x) + (LPλ,ϕ(x)− ϕ)χ′3(x),

but we know by (2.6) that (LPλ,ϕ − ϕ)′ = 0 on the support of χ3, and moreover ϕ is supported outside
the support of χ′3, so we have in fact

((LPλ,ϕ − ϕ)χ3)
′
(x) = LPλ,ϕ(x)χ′3(x),

which is supported on [−λ + 2
√
λ,−λ + 4

√
λ] ∪ [λ − 4

√
λ, λ − 2

√
λ]. We use Proposition 1.6 and (5.11)

and the fact that |χ3|1 � 1√
λ

to get

∫
(LPλ,ϕ − ϕ)χ3(dC − dx) �

λ−2
√
λ∑

|i|=λ−4
√
λ

D̃i
` log2(λ)

λ

1√
λ
,

which yields (5.16).
The 1 − χ1 − χ2 − χ3 term. The function 1 − χ1 − χ2 − χ3 is supported near the endpoints, on

[λ− 4
√
λ, λ+ 4

√
λ] and on the symmetric interval. We use (5.11) to get∫

LPλ,ϕ(1− χ1 − χ2 − χ3)(dC − dx)

� ` log2(λ)

λ

(√
λ+ |Discr[λ−4

√
λ,λ+4

√
λ]|+ |Discr[−λ−4

√
λ,−λ+4

√
λ]|
)
,

where the last parenthesis is, up to a multiplicative constant, a bound on the the number of the points
in the intervals, and on the length of the intervals. This yields (5.17). �

Corollary 5.7 (The contribution of LPλ,ϕ − ϕ is often small). We have

(5.21) E
[∣∣∣∣∫ (LPλ,ϕ(x)− ϕ(x))(dC − dx)

∣∣∣∣] � ` log2(λ)√
λ

.

In particular,

(5.22) E
[∣∣∣∣∫ (LPλ,ϕ(x)− ϕ(x))(dC − dx)

∣∣∣∣] = o`,λ(1).
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Proof. For FluLPA, we use the estimate (1.12) in the form

E[D̃Right
i ] �

√
|i− λ|,

and we get

E[FluLPA] �
4λ∑

i=λ+2
√
λ

`

λ3/2

√
i− λ√
i− λ

+

+∞∑
i=4λ

` log(λ)

√
i

i2
+

λ+4
√
λ∑

i=λ+2
√
λ

` log2(λ)

λ3/2

√
i− λ,

which, after computation, gives

E[FluLPA] � ` log(λ)√
λ

.

For FluLPB , we use the estimate (1.12), in the form

E[D̃i] �
√
|i|,

and we get

E[FluLPB ] � ` log2(λ)

λ3/2
λ =

` log2(λ)√
λ

.

Finally, using the discrepancy estimate (1.8), we have

E[FluLPC ] � ` log2(λ)√
λ

.

The dominant error term is thus ` log2(λ)√
λ

, which proves the result. �

5.3. Fluctuations of the error on the logarithmic potential.

Lemma 5.8 (Fluctuations of ErrorLPλ,ϕ). We have

(5.23)

∫
ErrorLPLeft

λ,ϕ (dC − dx) � A + B + C,

with

A �

(
+∞∑

i=−λ+3`

+

−λ−3`∑
i=−∞

)
`3/2`

λ3/2(−λ− i)2
D̃Left
i

B �
−λ+4`∑
i=−λ−4`

` log(λ)

λ3/2
√
`
D̃Left
i

C �
(
`+ |Discr[−λ−4`,−λ+4`]|

) `√` log(λ)

λ3/2
,

and similarly for ErrorLPRight
λ,ϕ , replacing D̃Left

i by D̃Right
i .

Proof of Lemma 5.8. Let χ be a smooth non-negative function such that

(5.24) χ = 1 on [−λ− 3`,−λ+ 3`], χ = 0 outside [−λ− 4`,−λ+ 4`],

with |χ|0 ≤ 1 and |χ|1 � 1
` . We write trivially∫

ErrorLPLeft
λ,ϕ (dC − dx) =

∫
ErrorLPLeft

λ,ϕ (x)χ(x)(dC − dx) +

∫
ErrorLPLeft

λ,ϕ (x) (1− χ(x)) (dC − dx).

We have

(5.25)
(

ErrorLPLeft
λ,ϕ (1− χ)

)′
(x) =

(
ErrorLPLeft

λ,ϕ

)′
(x)(1− χ(x)) + ErrorLPLeft

λ,ϕ (x)(1− χ)′(x).

Let us observe that 1 − χ is supported outside [−λ − 3`, λ + 3`] and bounded by 1, while (1 − χ)′ is
supported on [−λ− 4`,−λ− 3`] ∪ [−λ+ 3`,−λ+ 4`] and is bounded by O•

(
1
`

)
.
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Using Proposition 1.6, we obtain

(5.26)

∫
ErrorLPLeft

λ,ϕ (x)(1− χ(x))(dC − dx) ≤

(
+∞∑

i=−λ+3`

+

−λ−3`∑
i=−∞

)
|ErrorLPLeft

λ,ϕ |1,V(i)D̃
Left
i ,

+

−λ+4`∑
i=−λ−4`

|ErrorLPLeft
λ,ϕ |0

1

`
D̃Left
i .

On the other hand, since χ is supported on [−λ− 4`,−λ+ 4`], we have a trivial bound

(5.27)

∫
ErrorLPLeft

λ,ϕ (x)χ(x)(dC − dx) �
(
`+ |Discr[−λ−4`,−λ+4`]|

)
|ErrorLPLeft

λ,ϕ |0,

where ` + |Discr[−λ−4`,−λ+4`]| is (up to a multiplicative constant) a bound on the number of the points
in the interval, and on the length of the interval.

We let A be the first line of (5.26), B be the second line of (5.26) and C be the right-hand side of
(5.27), and we use the bounds of Proposition 2.11 to obtain (5.23). �

Corollary 5.9 (The contribution of ErrorLPλ,ϕ is often small). We have

(5.28) E
[∫

ErrorLPλ,ϕ(dC − dx)

]
� `5/2 log(λ)

λ3/2
.

In particular,

(5.29) E
[∫

ErrorLPλ,ϕ(dC − dx)

]
= o`,λ(1).

Proof. It is of course enough to prove (5.28) for ErrorLPLeft
λ,ϕ . We use the discrepancy estimate (1.11) in

the form E[D̃Left
i ] �

√
|i+ λ|, and write

A � `3/2`

λ3/2

+∞∑
i=3`

√
i

i2
=

``

λ3/2
.

Using again E[D̃Left
i ] �

√
|i+ λ|, we have

B � ` ` log(λ)

λ3/2`1/2
`1/2 =

`` log(λ)

λ3/2
.

Finally, we use the discrepancy estimate (1.8) to get

C � ``3/2 log(λ)

λ3/2
,

and this is the dominant term. �

6. Proof of the central limit theorem

6.1. A good event.

Lemma 6.1 (Defining a good event). For any point configuration C, and Λ = (−λ, λ) fixed, let us
decompose C as C = ν ∪ γΛc , where

ν = C ∩ Λ, γΛc = C ∩ Λc.

We let νs be the push-forward of ν by Φs. We will consider C and Cs, where (in fact, since Φs is the
identity outside Λ, Cs itself is also the push-forward of C by Φs):

Cs := νs ∪ γΛc .

There exists an Eventλ,` satisfying

(6.1) P (C ∈ Eventλ,`) = 1− o`,λ(1), P (Cs ∈ Eventλ,`) = 1− o`,λ(1),
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such that, if C ∈ Eventλ,`

Mains(ν) = so`,λ(1),

FluREs(ν) = so`,λ(1),∫
Λc

ErrorDFs(ν)(x)(dγΛc − dx) = so`,λ(1),

s

∫
(LPλ,ϕ(x)− ϕ) (d [νs ∪ γΛc ]− dx) = so`,λ(1),

s

∫
ErrorLPλ,ϕ(x)(d [νs ∪ γΛc ]− dx) = so`,λ(1),

and moreover

(6.2) |C ∩ (−`, `)| � `2.

Proof. The control (6.2) is needed for technical reasons, in order to ensure that the number of poins in
(−`, `) is bounded. Since the mean number of points is 2`, the event (6.2) is of course very likely.

Using Proposition 4.1, Corollary 4.4, Corollary 5.4, Corollary 5.7 and Corollary 5.9, and applying
Markov’s inequality, we see that there exists an event E of probability 1− o`,λ(1) on which the three first
bounds hold, and moreover

s

∫
(LPλ,ϕ(x)− ϕ) (d [ν ∪ γΛc ]− dx) = so`,λ(1),

s

∫
ErrorLPλ,ϕ(x)(d [ν ∪ γΛc ]− dx) = so`,λ(1).

Moreover, we argue that

P ((νs ∪ γΛc) ∈ E) = 1− o`,λ(1).

Indeed we know, by construction, that the transport map Φs is close to the identity map, with Φs − Idλ
bounded by 1, see (3.7). So if Cs = νs ∪ γΛc is the push-forward of C = ν ∪ γΛc by Φs, we have for any
x, y ∈ R

|Discr[x,y]|[Cs] � |Discr[x−1,y+1]|(C) + 1.

Any estimate involving the discrepancies of C can thus be converted into the estimate on Cs. We then
take Eventλ,` to be the intersection

E ∩ {Cs ∈ E} ,
for which the last two bounds hold as stated. �

6.2. The DLR equations. The DLR formalism for Sineβ is a statistical physics representation of the
point process as an infinite volume Gibbs measure. Before stating the result of [DHLM18] in a convenient
fashion for the present paper, we need to introduce some notation.

Definition 6.2 (Infinite volume Gibbs kernel). Let λ > 0, and let Λ := (−λ, λ). Let γ be a point
configuration in R, and η be a point configuration in Λ. We aim at defining the energy of the point
configuration η ∪ γΛc formed by η in Λ and γ in Λc := R\Λ. In fact, we only want to compare these
energies for a fixed γ and a variable η, so we may work up to (possibly infinite) additive constants, which
formally disappear in the comparison.

The interaction energy of η with itself is denoted by HΛ(η).

(6.3) H̃Λ(η) :=
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dx)(dη(y)− dy).

The following quantity encodes the interaction energy of the configuration η in Λ with the configuration
γ outside Λ. In fact, we compute the interaction of η−γ in Λ with γ−dx outside Λ. The first modification
only plays the role of a (possibly infinite) additive constant (for fixed γ), and the second modification is
technical.

(6.4) M̃Λ(η, γ) := lim
p→∞

∫
x∈([−p,p]\Λ)

∫
y∈Λ

− log |x− y|(dη(y)− dγΛ(y))(dγ(x)− dx).
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We denote Bernoulli point processes by B. In particular, B|γΛ|,Λ is the law of the Bernoulli point
process with |γΛ| points in Λ, i.e. the law of a random point configuration made of |γΛ| points drawn
uniformly and independently in Λ.

We may now form the Boltzmann factor associated to the sum of these energies, given by

exp
(
−β
(
H̃Λ(η) + M̃Λ(γ, η)

))
,

and the associated partition function

(6.5) ZΛ,β(γ) :=

∫
exp

(
−β
(
H̃Λ(η) + M̃Λ(η, γ)

))
dB|γΛ|,Λ(η).

Finally, for γ fixed, we define GibbsΛ,β(η; γ) as a probability measure on random point configurations
η in Λ given by:

(6.6) dGibbsΛ,β(η; γ) :=
1

ZΛ,β(γ)
exp

(
−β
(
H̃Λ(η) + M̃Λ(η, γ)

))
dB|γΛ|,Λ(η).

The following is a re-writing of the main result in [DHLM18].

Proposition 6.3 (DLR equations for Sineβ). Let f be a bounded, measurable function on the space of
point configurations, and λ > 0, we have

(6.7) E[f ] =

∫
dSineβ(γ)

∫
f(η ∪ γΛc)dGibbsΛ,β(η; γ).

Proof. The only difference with [DHLM18] is that we chose here to include the background in the defini-

tion of the energy. The result of [DHLM18] is stated with HΛ andMΛ instead of H̃Λ and M̃Λ respectively,
where

HΛ(η) :=
1

2

∫∫
(Λ×Λ)\�

− log |x− y|dη(x)dη(y),

MΛ(γ, η) := lim
p→∞

∫
x∈([−p,p]\Λ)

∫
y∈Λ

− log |x− y|(dη(y)− dγΛ(y))dγ(x).

It is easy to check that the difference between these two formulations is an additive constant (for fixed
Λ, γ), which is absorbed by the partition function, plus the term

lim
p→∞

∫
y∈[−p,p]

∫
x∈Λ

− log |x− y|(dη(x)− dγ(x))dy,

which is almost surely zero. �

6.3. The Laplace transform of the fluctuations. We introduce the function Lϕ,`,λ
t 7→ Lϕ,`,λ(t) := E

[
exp

(
tFluct[ϕ](C)1Eventλ,`(C)

)]
,

which is the Laplace transform of the fluctuations of ϕ, up to the indicator function 1Eventλ,` , and, by
construction, Eventλ,` is very likely.

Using P(Eventλ,`) = 1− o`,λ(1) as stated in (6.1), we may of course re-write Lϕ,`,λ as

Lϕ,`,λ(t) = E
[
exp (tFluct[ϕ](C)) 1Eventλ,`(C)

]
+ o`,λ(1),

and we now focus on the first term in the right-hand side, that we denote by

(6.8) L̃ϕ,`,λ(t) := E
[
exp (tFluct[ϕ](C)) 1Eventλ,`(C)

]
.

The map C 7→ exp (tFluct[ϕ](C)) 1Eventλ,`(C) is bounded, because by construction, on Eventλ,`, the
number of points of C in the support of ϕ is bounded, see (6.2). Using DLR equations (6.7), we write

(6.9) L̃ϕ,`,λ(t) =

∫
dSineβ(γ)

1

ZΛ,β(γ)

×
∫

exp (tFluct[ϕ](η)) 1Eventλ,` (η ∪ γΛc) exp
(
−β
(
H̃Λ(η) + M̃Λ(η, γ)

))
dB|γΛ|,Λ(η),

where we have used the fact that, since ϕ is supported inside Λ, we may write

Fluct[ϕ](η ∪ γΛc) = Fluct[ϕ](η).
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Combining both exponential terms and using the definition (6.3) of H̃Λ, we obtain, in the exponent

−β

(
1

2

(∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dx)(dη(y)− dy)− 2t

β
Fluct[ϕ](η)

)
+ M̃Λ(η, γ)

)
,

and we let

(6.10) s :=
t

β
.

6.4. Laplace transform I. Energy splitting. In view of the “energy splitting” identity stated in
Lemma 3.3, we may write∫∫

(Λ×Λ)\�
− log |x− y|(dη(x)− dx)(dη(y)− dy)− 2sFluct[ϕ](η)

=

∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dµs(x))(dη(y)− dµs(y))

+ 2s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dη − dx) + 2s

∫
Λ

ErrorLPλ,ϕ(x)(dη − dx)

− 2s2‖ϕ‖2
H

1
2
− s2ErrorVar.

The term ErrorVar is bounded as in (2.20), hence we have

(6.11) exp (tFluct[ϕ](η)) exp
(
−β
(
H̃Λ(η) + M̃Λ(η, γ)

))
1Eventλ,`(η ∪ γΛc)

= exp

(
−β

(
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dµs(x))(dη(y)− dµs(y))

))

× exp

(
−β
(
s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dη − dx) + s

∫
Λ

ErrorLPλ,ϕ(x)(dη − dx) + M̃Λ(η, γ)

))
× exp

(
s2β‖ϕ‖2

H
1
2

)
× exp

(
so`,λ(1) + s2o`,λ(1)

)
1Eventλ,` (η ∪ γΛc) .

Inserting this expansion into (6.9), we obtain

(6.12) L̃ϕ,`,λ(t) = exp

(
s2

2

(
2β‖ϕ‖2

H
1
2

)
+ so`,λ(1) + s2o`,λ(1)

)∫
dSineβ(γ)

1

ZΛ,β(γ)

×
∫

exp

(
−β

(
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dη(x)− dµs(x))(dη(y)− dµs(y))

))

× exp

(
−β
(
s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dη − dx) + s

∫
Λ

ErrorLPλ,ϕ(x)(dη − dx) + M̃Λ(η, γ)

))
× 1Eventλ,` (η ∪ γΛc) dB|γΛ|,Λ(η).

6.5. Laplace transform II. Change of variables. We now perform a change of variables on η. For
N fixed, we may consider the map Φ̂s : ΛN → ΛN given by

Φ̂s(x1, . . . , xN ) := (Φs(x1), . . . ,Φs(xN )),

where Φs is the transport map from the constant density to µs. Since Φs is a bijection, so is Φ̂s. We
let ν = Φ̂−1

s (η), so that η = Φ̂s(ν) is the push-forward of ν by Φs, that we will now denote by νs. The
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innermost integral in (6.12) becomes

(6.13)

∫
exp

(
−β

(
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dνs(x)− dµs(x))(dνs(y)− dµs(y))

))

× exp

(
−β
(
s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dνs − dx) + s

∫
Λ

ErrorLPλ,ϕ(x)(dνs − dx) + M̃Λ(νs, γ)

))
× exp

(∫
log Φ′s(x)dν(x)

)
1Eventλ,` (νs ∪ γΛc) dB|γΛ|,Λ(ν),

where the term exp
(∫

log Φ′s(x)dν(x)
)

is the Jacobian of the transformation.
In view of (3.18), we have ∫

log Φ′s(x)dν(x) = REs + FluREs(ν),

we know from (4.2) that REs = s2o`,λ(1), and we know from Lemma 6.1 that

νs ∪ γΛc ∈ Eventλ,` =⇒ FluREs(ν) = so`,λ(1),

hence the Jacobian only contributes to an error term exp(so`,λ(1) + s2o`,λ(1)).

6.6. Laplace transform III. The interior-interior energy. Using Lemma 3.8, we have∫∫
(Λ×Λ)\�

− log |x− y|(dνs(x)− dµs(x))(dνs(y)− dµs(y))

=

∫∫
(Λ×Λ)\�

− log |x− y|(dν(x)− dx)(dν(y)− dy) + Mains(ν) + REs + FluREs(ν).

We know from (4.2) that REs = s2o`,λ(1), and we know from Lemma 6.1 that

νs ∪ γΛc ∈ Eventλ,` =⇒ FluREs(ν) = so`,λ(1), Mains(ν) = so`,λ(1).

We may thus write (6.13) as

(6.14)

∫
exp

(
−β

(
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dν(x)− dx)(dν(y)− dy)

))

× exp

(
−β
(
s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dνs − dx) + s

∫
Λ

ErrorLPλ,ϕ(x)(dνs − dx) + M̃Λ(νs, γ)

))
× exp

(
so`,λ(1) + s2o`,λ(1)

)
1Eventλ,` (νs ∪ γΛc) dB|γΛ|,Λ(ν).

6.7. Laplace transform IV. The interior-exterior energy. Let us recall that M̃Λ is defined in (6.4)
by

M̃Λ(η, γ) := lim
p→∞

∫
x∈([−p,p]\Λ)

∫
y∈Λ

− log |x− y|(dη(y)− dγΛ(y))(dγ(x)− dx).

A direct computation shows that

(6.15) M̃Λ(νs, γ) = M̃Λ(ν, γ) +

∫
Λc

DFs(ν)(x)(dγ − dx),

where DFs(ν) is the difference field generated by νs − ν as in (5.1). Using the decomposition

DFs(ν) = sLPλ,ϕ(x) + sErrorLPλ,ϕ(x) + ErrorDFs(ν)(x),

as in (5.2), we may write

(6.16) M̃Λ(νs, γ) = M̃Λ(ν, γ) + s

∫
Λc

LPλ,ϕ(x)(dγ − dx)

+ s

∫
Λc

ErrorLPλ,ϕ(x)(dγ − dx) +

∫
Λc

ErrorDFs(ν)(x)(dγ − dx),
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so in particular, the middle line in (6.14) reads as

(6.17) s

∫
Λ

(LPλ,ϕ(x)− ϕ) (dνs − dx) + s

∫
Λ

ErrorLPλ,ϕ(x)(dη − dx) + M̃Λ(νs, γ)

= M̃Λ(ν, γ) + s

∫
(LPλ,ϕ(x)− ϕ) (d [νs ∪ γΛc ]− dx) + s

∫
ErrorLPλ,ϕ(x)(d [νs ∪ γΛc ]− dx)

+

∫
Λc

ErrorDFs(ν)(x)(dγ − dx).

We know from Lemma 6.1 that

νs ∪ γΛc ∈ Eventλ,` =⇒



∫
Λc

ErrorDFs(ν)(x)(dγ − dx) = so`,λ(1)

s

∫
(LPλ,ϕ(x)− ϕ) (d [νs ∪ γΛc ]− dx) = so`,λ(1)

s

∫
ErrorLPλ,ϕ(x)(d [νs ∪ γΛc ]− dx) = so`,λ(1)

,

so we may re-write (6.14) as

(6.18)

∫
exp

(
−β

(
1

2

∫∫
(Λ×Λ)\�

− log |x− y|(dν(x)− dx)(dν(y)− dy)

))
× exp

(
−β
(
M̃Λ(ν, γ)

))
× exp

(
so`,λ(1) + s2o`,λ(1)

)
1Eventλ,` (νs ∪ γΛc) dB|γΛ|,Λ(ν).

6.8. Conclusion. Using (6.18) recognizing H̃Λ(ν) in the first exponent (as defined in (6.3), and coming

back to the expression (6.12) of L̃ϕ,`,λ(t), we get

(6.19) L̃ϕ,`,λ(t) = exp

(
s2

2

(
2β‖ϕ‖2

H
1
2

)
+ so`,λ(1) + s2o`,λ(1)

)∫
dSineβ(γ)

1

ZΛ,β(γ)

×
∫

exp
(
−β
(
H̃Λ(ν) + M̃Λ(ν, γ)

))
× 1Eventλ,` (νs ∪ γΛc) dB|γΛ|,Λ(ν).

By the DLR equations (6.7), we may write∫
dSineβ(γ)

1

ZΛ,β(γ)

×
∫

exp
(
−β
(
H̃Λ(ν) + M̃Λ(ν, γ)

))
× 1Eventλ,` (νs ∪ γΛc) dB|γΛ|,Λ(ν) = E

[
1νs∪γΛc∈Eventλ,`

]
= P [{νs ∪ γΛc ∈ Eventλ,`}] ,

and by Lemma 6.1 this quantity is 1− o`,λ(1). Doing a final replacement of s by t
β , we obtain

(6.20) L̃ϕ,`,λ(t) = exp

(
t2

2
× 2

β
‖ϕ‖2

H
1
2

+ to`,λ(1) + t2o`,λ(1)

)
(1− o`,λ(1)).

In particular, for t such that |t|β ≤ smax as in (3.1), we get, uniformly in t,

(6.21) lim
`→∞

lim
λ→∞

Lϕ,`,λ(t) = exp

(
t2

2
× 2

β
‖ϕ‖2

H
1
2

)
,

We have thus obtained that, sending λ → ∞ then ` → ∞, the Laplace transform of the random
variable

Fluct[ϕ](C)1Eventλ,`(C)
converges to

t 7→ exp

(
t2

2
× 2

β
‖ϕ‖2

H
1
2

)
,

which is the Laplace transform of a centered Gaussian variable with variance 2
β ‖ϕ‖

2

H
1
2

. The convergence

is uniform for values of the parameter in some open interval around 0. It is well-known that this conver-
gence implies convergence in law. Moreover, since we know by (6.1) that P(Eventλ,`) = 1 − o`,λ(1), the
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convergence in law of Fluct[ϕ](C)1Eventλ,`(C) implies the convergence in law of the fluctuations themselves.
This concludes the proof of the central limit theorem.

Remark 6.4 (Lack of moderate deviations bounds). Since |m̃λ,ϕ|0 � 1
` , taking s of order as large as

` still guarantees that µs will be a positive density. The transport map Φs may now move points at a
distance O•(`), but in fact this is harmless because a careful inspection reveals that our estimates are
insensitive to a displacement of the points of order `. Taking s large is tempting because it yields a
control on the Laplace transform of the fluctuations for large values of the parameter, which in turn
implies strong concentration bounds with exponential (in `) tails. However, our argument relies on the
discrepancy estimate (1.9), which is not quantitative and raises an obstacle for obtaining such moderate
deviations bounds on the fluctuations.

7. Auxiliary proofs

7.1. Proof of Proposition 1.6.

Proof of Proposition 1.6. We write:∫
g(x)(dC − dx) =

∞∑
k=−∞

∫ k+1

k

g(x)(dC − dx).

Since g is assumed to be compactly supported, all the sums are finite. On [k, k + 1] we may write, using
the mean value theorem, g(x) = g(k) +O• (|g|1,Vk), and we obtain∫ k+1

k

g(x)(dC − dx) = g(k)Discr[k,k+1] +O• (|g|1,Vk)
(
1 + |Discr[k,k+1]|

)
.

We have of course

(7.1) Discr[k,k+1] = Discr[0,k+1] −Discr[0,k],

so a summation by parts yields
∞∑

k=−∞

g(k)Discr[k,k+1] =

∞∑
k=−∞

(g(k − 1)− g(k)) Discr[0,k].

Using the mean value theorem again, we get∣∣∣∣∣
∞∑

k=−∞

(g(k − 1)− g(k)) Discr[0,k]

∣∣∣∣∣ ≤
∞∑

k=−∞

|g|1,Vk |Discr[0,k]|.

We have thus obtained∫
g(x)(dC − dx) �

∞∑
k=−∞

|g|1,Vk
(
|Discr[0,k]|+ |Discr[k,k+1]|+ 1

)
,

which yields the result.
Finally, if λ is fixed, we could choose to write, instead of (7.1)

Discr[k,k+1] = Discr[−λ,k+1] −Discr[−λ,k], Discr[k,k+1] = Discr[k+1,λ] −Discr[k,λ]

so we can replace D̃ by D̃Left or D̃Right as claimed. �

7.2. Proof of Lemma 2.6.

Proof of Lemma 2.6. It is easy to check that Hλ,ϕ is bounded, and x 7→ 1√
λ2−x2

is integrable, thus so is

mλ,ϕ. Moreover, for any x in (−λ, λ), the map

y 7→ log |x− y| 1√
λ2 − x2

is also integrable, hence the logarithmic potential is well-defined.
The fact that mλ,ϕ has total mass 0 follows from the well-known identity

PV

∫
1√

λ2 − x2

1

t− x
dx = 0 for t in (−λ, λ),
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which can be proven by elementary means, see e.g. [Tri57, Sec. 4.3, eq. (7)].
The fact that the logarithmic potential satisfies (2.6) is a also a well-known result, which can be

obtained by integrating the identity

(7.2) PV

∫
mλ,ϕ(t)

t− x
dt = ϕ′(x),

valid for any x in (−λ, λ). This is known as the airfoil equation and we refer again to [Tri57, Sec. 4.3, eq. (12)].
�

7.3. Proof of Lemma 2.7. We start by the following bounds concerning Hλ,ϕ.

Lemma 7.1 (Bounds on Hλ,ϕ and its derivatives). We have

Hλ,ϕ(x) �

{
λ
` |x| ≤ 2`,
λ`
x2 |x| ≥ 2`.

(7.3)

H
(1)
λ,ϕ(x) �

{
λ
`2 |x| ≤ 2`,
λ`
x3 |x| ≥ 2`.

(7.4)

H
(2)
λ,ϕ(x) �

{
λ
`3 |x| ≤ 2`,
λ`
x4 |x| ≥ 2`.

(7.5)

with implicit constants depending on ϕ.

Proof of Lemma 7.1. We start with the following claim.

Claim 7.2. Let g be a test function of class C1, supported on (−`, `). Then for any x such that |x| ≤ 2`
we have:

(7.6) PV

∫
g(t)

t− x
dt � `1/2‖g′‖L2 .

Proof of the claim. Let x be such that |x| ≤ 2`. Let us use the definition (2.1) of the Cauchy principal
value, and write

PV

∫
g(t)

t− x
dt =

∫ +∞

0

g(x+ u)− g(x− u)

u
du =

∫
u∈Ix

g(x+ u)− g(x− u)

u
du,

where Ix is the set of positive real numbers u such that g(x+u) or g(x−u) is not zero. This set depends
on x, but since g is supported on (−`, `), the set Ix is included in a union of intervals whose total length
is bounded by 4`. Using the elementary identity

g(x+ u)− g(x− u) =

∫ x+u

x−u
g′(v)dv,

and applying Fubini’s theorem, we get (x− u ≤ v ≤ x+ u is equivalent to u ≥ |x− v|):∫
u∈Ix

g(x+ u)− g(x− u)

u
du =

∫
u∈Ix

du

u

∫ x+u

x−u
g′(v)dv =

∫ `

−`
g′(v)dv

∫
u≥|x−v|,u∈Ix

1

u
du.

Since u 7→ 1
u is decreasing, and Ix has its length bounded by 4`, the innermost integral satisfies∫

u≥|x−v|,u∈Ix

1

u
du ≤

∫ |x−v|+4`

|x−v|

1

u
du = log

(
4`+ |x− v|
|x− v|

)
,

so we have ∫ `

−`
g′(v)dv

∫
u≥|x−v|,u∈Ix

1

u
du ≤

∫ `

−`
|g′(v)| log

(
4`+ |x− v|
|x− v|

)
dv.

Applying Cauchy-Schwarz’s inequality, we get

PV

∫
g(t)

t− x
dt ≤ ‖g′‖L2

(∫ `

−`

∣∣∣∣ln(4`+ |x− v|
|x− v|

)∣∣∣∣2 dv
)1/2

.
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A linear change of variables w = x−v
` shows that, for |x| ≤ 2`, we have(∫ `

−`

∣∣∣∣ln(4`+ |x− v|
|x− v|

)∣∣∣∣2 dv
)1/2

� `1/2,

which proves (7.6). �

We recall that, by definition,

(7.7) Hλ,ϕ(x) =
1

π
PV

∫
φΛ(t)

t− x
dt,

with φΛ defined as

φΛ : t 7→
√
λ2 − t2ϕ′(t),

and we compute the first derivatives of φΛ as

(7.8) φ
(1)
Λ (t) =

−t√
λ2 − t2

ϕ(1)(t) +
√
λ2 − t2ϕ(2)(t)

(7.9) φ
(2)
Λ (t) =

(
−1√
λ2 − t2

− t2

(λ2 − t2)3/2

)
ϕ(1)(t) +

(
−2t√
λ2 − t2

)
ϕ(2)(t) +

√
λ2 − t2ϕ(3)(t),

and (this is the only moment where we need the C4 regularity of ϕ):

(7.10) φ
(3)
Λ (t) =

(
− 3t

(λ2 − t2)3/2
− 3t3

(λ2 − t2)5/2

)
ϕ(1)(t)

+

(
−3√
λ2 − t2

− 3t2

(λ2 − t2)3/2

)
ϕ(2)(t)

+

(
−3t√
λ2 − t2

)
ϕ(3)(t) +

√
λ2 − t2ϕ(4)(t).

Let us observe that, for k ≥ 1, if g is a test function of class Ck+1, we have

(7.11)

(
PV

∫
g(t)

t− ·
dt

)(k)

(x) =

∫ +∞

0

g(k)(x+ u)− g(k)(x− u)

u
du = PV

∫
g(k)(t)

t− x
dt.

In view of (7.6), (7.7), (7.11), we get that, for |x| ≤ 2`

Hλ,ϕ(x) � `1/2‖φ(1)
Λ ‖L2 , (Hλ,ϕ)

(1)
(x) � `1/2‖φ(2)

Λ ‖L2 , (Hλ,ϕ)
(2)

(x) � `1/2‖φ(3)
Λ ‖L2 .

Since ϕ is supported in (−`, `) and ` satisfies 0 < ` < 1
10λ, it is easy to check, from (7.8), (7.9), that:

|φ(1)
Λ (t)| ≤ `

λ
|ϕ(1)(t)|+ λ|ϕ(2)(t)|,

|φ(2)
Λ (t)| ≤ 1

λ
|ϕ(1)(t)|+ `

λ
|ϕ(2)(t)|+ λ|ϕ(3)(t)|

|φ(3)
Λ (t)| ≤ `

λ3
|ϕ(1)(t)|+ 1

λ
|ϕ(2)(t)|+ `

λ
|ϕ(3)(t)|+ λ|ϕ(4)(t)|.

Using finally the homogeneity bounds (1.7), we see that the dominant term is the last one in each line,
and we obtain the controls for |x| ≤ 2` as in (7.3), (7.4), (7.5). We now turn to the case |x| ≥ 2`.

Bound on (Hλ,ϕ)
(1)

. Since ϕ is supported on (−`, `), so is φΛ, and for |x| ≥ 2` the integral defining
(2.2) (or its derivatives) can be understood in the standard sense as a Riemann integral. In particular,
we have

Hλ,ϕ(x) =
1

π

∫ √
λ2 − t2ϕ′(t)
t− x

dt =
1

π

∫ λ
(

1 +O•

(
`2

λ2

))
ϕ′(t)

x
(
1 +O•

(
`
x

)) dt

The first-order term vanishes because
∫
ϕ′(t) = 0. We are left with

Hλ,ϕ(x) � λ

x

(
`2

λ2
+
`

x

)
‖ϕ′‖L1 � λ`

x2
‖ϕ′‖L1 ,

which yields the control for |x| ≥ 2` as in (7.3).



CLT FOR FLUCTUATIONS OF LINEAR STATISTICS IN THE SINE-BETA PROCESS 25

Bound on the first derivative. To treat (Hλ,ϕ)
(1)

(x), we write it as

(Hλ,ϕ)
(1)

(x) =
1

π

∫
φ′Λ(t)

t− x
dt =

1

π

1

x

∫
φ

(1)
Λ (t)

(
1− t

x
+O•

(
`2

x2

))
dt.

The first-order term vanishes because
∫
φ

(1)
Λ (t) = 0. Using (7.8), we may thus write

(Hλ,ϕ)
(1)

(x) =
1

π

1

x

∫ (
−t√
λ2 − t2

ϕ(1)(t) +
√
λ2 − t2ϕ(2)(t)

)(
− t
x

+O•

(
`2

x2

))
dt.

First, we compute
(7.12)

1

x

∫
−t√
λ2 − t2

ϕ(1)(t)

(
t

x
+O•

(
`2

x2

))
dt =

1

x

∫
−t√
λ2 − t2

ϕ(1)(t)O•

(
`

x

)
dt � `2

λx2
‖ϕ‖L1 � `2

λx2
.

Next, we write
(7.13)

1

x

∫ √
λ2 − t2ϕ(2)(t)

(
− t
x

+O•

(
`2

x2

))
dt =

1

x

∫
λ

(
1 +O•

(
`2

λ2

))
ϕ(2)(t)

(
− t
x

+O•

(
`2

x2

))
dt.

The first order term vanishes because
∫
tϕ(2)(t) = 0. We are left with

λ

x

∫
ϕ(2)(t)

(
`3

λ2x
+
`2

x2

)
dt � λ`2

x3
‖ϕ(2)‖L1 � λ`

x3
.

Combining (7.12) and (7.13), the dominant term is λ`
x3 and we obtain the control on (Hλ,ϕ)

(1)
(x) for

|x| ≥ 2`, as in (7.4). �

Bound on (Hλ,ϕ)
(2)

. The proof is similar to the one for (Hλ,ϕ)
(1)

, except that we push the expansions

to the next order, and use the fact that
∫
φ

(2)
λ (t) = 0 and

∫
t2ϕ(3)(t) = 0.

We may now give the proof of Lemma 2.7.

Proof of Lemma 2.7. We compute

mλ,ϕ(x) =
−1

π

[
1√

λ2 − x2
Hλ,ϕ(x)

]
,

m
(1)
λ,ϕ(x) =

−1

π

[
−x

(λ2 − x2)3/2
Hλ,ϕ(x) +

1√
λ2 − x2

H
(1)
λ,ϕ(x)

]
,

and the second derivative is given by

m
(2)
λ,ϕ(x) =

−1

π

[(
−1

(λ2 − x2)3/2
− 3x2

(λ2 − x2)5/2

)
Hλ,ϕ(x)− 3x

(λ2 − x2)3/2
H

(1)
λ,ϕ(x) +

1√
λ2 − x2

H
(2)
λ,ϕ(x)

]
,

and we use (7.3), (7.4), (7.5) together with the simple observation that

1√
λ2 − x2

� 1√
λ
√
λ− |x|

,

which allows for a slight simplification in the formulas. We obtain

mλ,ϕ(x) � 1

λ

λ

`
, |x| ≤ 2`,

mλ,ϕ(x) � 1√
λ
√
λ− |x|

λ`

x2
, |x| ≥ 2`,

m
(1)
λ,ϕ(x) � `

λ3

λ

`
+

1

λ

λ

`2
, |x| ≤ 2`,

m
(1)
λ,ϕ(x) � |x|

λ3/2(λ− |x|)3/2

λ`

x2
+

1√
λ
√
λ− |x|

λ`

x3
, |x| ≥ 2`,

m
(2)
λ,ϕ(x) �

(
1

λ3
+
`2

λ5

)
λ

`
+

`

λ3

λ

`2
+

1

λ

λ

`3
, |x| ≤ 2`,



26 THOMAS LEBLÉ

and, for |x| ≥ 2`

m
(2)
λ,ϕ(x) �

(
1

λ3/2(λ− |x|)3/2
+

x2

λ5/2(λ− |x|)5/2

)
λ`

x2
+

|x|
λ3/2(λ− |x|)3/2

λ`

x3
+

1√
λ
√
λ− |x|

λ`

x4
.

We obtain (2.7), (2.8), (2.9). �

7.4. Two intermediate results.

Lemma 7.3 (A decomposition of φΛ). Let φΛ : t 7→
√
λ2 − t2ϕ′(t). We have

(7.14) φΛ(t) = λϕ′(t) + Er(t),

where Er is a C1 function, supported in [−`, `], satisfying

(7.15) |Er|0 �
`

λ
, |Er|1 �

1

λ
.

Proof of Lemma 7.3. To see that (7.14) holds with (7.15) we simply expand√
λ2 − t2ϕ′(t) = λϕ′(t) +O•

(
`2

λ

)
ϕ′(t),

and since |ϕ|1 � 1
` , we obtain the first bound in (7.15).

We may then compute

φ′Λ(t) =
−t√
λ2 − t2

ϕ′(t) +
√
λ2 − t2ϕ′′(t) = O•

(
`

λ

)
ϕ′(t) + λϕ′′(t) +O•

(
`2

λ

)
ϕ′′(t),

which yields the second bound in (7.15). �

Lemma 7.4 (The integral of Hλ,ϕ on large intervals.). Let a be in [10`, λ/2]. We have∫ a

−a
Hλ,ϕ(y)dy � `λ

a
,(7.16) ∫ a

−a
y2|Hλ,ϕ(y)|dy � `λa.(7.17)

Proof of Lemma 7.4. Preliminary. We use the definition (2.1) of the Cauchy principal value, and write

Hλ,ϕ(y) =
1

π
PV

∫
ϕ′(t)

√
λ2 − t2

y − t
dt =

∫ +∞

0

φΛ(y + u)− φΛ(y − u)

u
du,

where φΛ : t 7→
√
λ2 − t2ϕ′(t). We use Lemma 7.3 and decompose φΛ as φΛ = λϕ′(t) + Er(t). We may

thus write

(7.18) Hλ,ϕ(y) =
λ

π

∫ +∞

u=0

ϕ′(y + u)− ϕ′(y − u)

u
du+

∫ +∞

u=0

Er(y + u)− Er(y − u)

u
du.

The second term in the right-hand side of (7.18) can be bounded using (7.6). We obtain∫ +∞

u=0

Er(y + u)− Er(y − u)

u
du = PV

∫
Er(t)

y − t
dt � `1/2‖Er′‖L2 ,

and in view of the second inequality in (7.15), we get

(7.19) PV

∫
Er(t)

y − t
dt � `

λ
.

Proof of (7.16). We use (7.18) and write

(7.20)

∫ a

−a
Hλ,ϕ(y)dy =

λ

π

∫ a

−a

∫ +∞

u=0

ϕ′(y + u)− ϕ′(y − u)

u
du+

1

π

∫ a

−a

(
PV

∫
Er(t)

y − t
dt

)
dy.

We may bound the second term in the right-hand side of (7.20), using (7.19), as

(7.21)

∫ a

−a

(
PV

∫
Er(t)

y − t
dt

)
dy � a`

λ
.
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We now turn to the first term in the right-hand side of (7.20). It can be expressed, using Fubini’s
theorem, as

λ

∫ a

−a

∫ +∞

u=0

ϕ′(y + u)− ϕ′(y − u)

u
du

= λ

∫ +∞

0

ϕ(u+ a)− ϕ(u− a)− ϕ(a− u) + ϕ(−a− u)

u
du

= λ

(
PV

∫
ϕ(t)

a− t
dt−PV

∫
ϕ(t)

−a− t
dt

)
.

Since ϕ is supported on (−`, `), and since a ≥ 10`, these are standard Riemann integrals, and we have

PV

∫
ϕ(t)

a− t
dt � 1

a
‖ϕ‖L1 � `

a
,

and similarly for the other term. We get

(7.22) λ

∫ a

−a

∫ +∞

u=0

ϕ′(y + u)− ϕ′(y − u)

u
du � `λ

a
.

Combining (7.22) with (7.21) (which is at most of the same order) yields (7.16).
Proof of (7.17). We simply use the bounds of (7.3). �

7.5. Proof of Lemma 2.8.

Proof of Lemma 2.8. First, we define m̃λ,ϕ as mλ,ϕ on [−λ+ `, λ− `].
On [−λ+ `/2,−λ+ `]. Let Sa, Sb, Sc be three smooth, non-negative functions defined on [−1, 0] such

that

∀k ≥ 0, S(k)
a (−1) = 0, Sa(0) = 1, ∀k ≥ 1, S(k)

a (0) = 0

∀k ≥ 0, S
(k)
b (−1) = 0, Sb(0) = 1, S

(1)
b (0) = 1, ∀k ≥ 2, S

(k)
b (0) = 0

∀k ≥ 0, S(k)
c (−1) = 0, Sc(0) = 1, S(1)

c (0) = 0, S(2)
c (0) = 1, ∀k ≥ 2, S

(k)
b (0) = 0.

We let

P = −λ+ `, size =
`

2
and we define

D0 = mλ,ϕ (P) , D1 = m
(1)
λ,ϕ(P), D2 = m

(2)
λ,ϕ(P).

We have, in view of (2.7), (2.8), (2.9):

D0 �
`

λ3/2`1/2
, D1 �

`

λ3/2`3/2
, D2 �

`

λ3/2`5/2
.

Finally, wet let R be the function

R(x) := D0Sa

(
(x− P)

1

size

)
Sb

(
(x− P)

D1

D0

)
Sc

(
(x− P)

√
D2

D0

)
.

The function R is defined on [P− size,P] = [−λ+ `/2,−λ+ `], and on this interval we let m̃λ,ϕ(x) = R(x).
By construction, the derivatives of order 0, 1, 2 of R and mλ,ϕ coincide at P, so the piece-wise definition

is C2 at P. Moreover, it can be checked that for k = 0, 1, 2, we have:

(7.23) R(k)(x) � `

`kλ3/2`1/2
.

This is easy to see for R(0), since D0 � `
λ3/2`1/2 . For the first and second derivatives, we use the fact that

1
size ,

D1

D0
and

√
D2

D0
have the same order 1

` .

On [−λ+ `/4,−λ+ `/2]. Let Sd be a smooth, non-negative function defined on [−1, 0] such that

∀k ≥ 0, S
(k)
d (−1) = S

(k)
d (0) = 0,

∫
Sd(x)dx = 1.
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We overwrite the definition above and let now

P := −λ+ `/2, size :=
`

4
,

and we introduce

D−1 :=

∫ −λ+`

−λ
mλ,ϕ(x)dx−

∫ −λ+`

−λ+`/2

R(x)dx.

Finally, we let T be the function

T(x) =
D−1

size
Sd

(
(x− P)

1

size

)
.

The function T is defined on [−λ + `/4,−λ + `/2], and on this interval we let m̃λ,ϕ(x) = T(x). By
construction, all the derivatives of T and R are equal (to 0) at the point P, so we still get a C2 function.

Finally, we let m̃λ,ϕ(x) = 0 on [−λ,−λ+ `/4], and this connects with the previous definition in a C2

way because all the derivatives of T vanish at −λ+`/4. We define m̃λ,ϕ similarly near the other endpoint.
Checking the statements. By construction, m̃λ,ϕ and mλ,ϕ coincide on a large interior part, and

m̃λ,ϕ vanishes near the endpoints, so the first and fourth statements of the lemma are satisfied. Also by
construction, we have ∫

T(x)dx+

∫
R(x) =

∫ −λ+`

−λ
mλ,ϕ(x)dx,

so the total masses of mλ,ϕ and m̃λ,ϕ are equal near the endpoints, and (2.10) holds.
We have already checked (2.11) for the first part of the construction, see (7.23). On [−λ+`/4,−λ+λ/2]

we have

(7.24) |T(k)(x)| � 1

sizek+1
D−1,

and we observe that D−1 is of order size× D0, with D0 � `
λ3/2`1/2 , which yields the result. �

7.6. Proof of Proposition 2.11.

Proof of Proposition 2.11. We recall that, by definition, we have

ErrorLPλ,ϕ(x) :=

∫
− log |x− y|(m̃λ,ϕ(y)−mλ,ϕ(y))dy.

We may split ErrorLPλ,ϕ as the sum ErrorLPλ,ϕ(x) = ErrorLPLeft
λ,ϕ (x)+ErrorLPRight

λ,ϕ (x), where ErrorLPLeft
λ,ϕ

(resp. ErrorLPRight
λ,ϕ ) is the contribution coming from the left (resp. right) endpoint, i.e.

ErrorLPLeft
λ,ϕ (x) :=

∫ −λ+`

−λ
log |x− y|(mλ,ϕ(y)− m̃λ,ϕ(y))dy,(7.25)

ErrorLPRight
λ,ϕ (x) :=

∫ λ

λ−`
log |x− y|(mλ,ϕ(y)− m̃λ,ϕ(y))dy.(7.26)

The sup norm, for x close to the endpoints. Let us start with a rough bound:

(7.27) ErrorLPLeft
λ,ϕ (x) �

∫ −λ+`

−λ
|log |x− y|| |m̃λ,ϕ(y)|dy +

∫ −λ+`

−λ
| log |x− y|||mλ,ϕ(y)|dy.

Of course, if x is far from the endpoints, this is sub-optimal because we do not use the fact that m̃λ,ϕ−mλ,ϕ
has mass zero, in fact we will use this inequality only for x at distance O•(`) of an endpoint. Using (2.12),
we see that

(7.28)

∫ −λ+`

−λ
|log |x− y|| |m̃λ,ϕ(y)|dy � `

√
` log λ

λ3/2
.

It remains to bound the second integral in (7.27). We use (2.7) to write∫ −λ+`

−λ
| log |x− y||mλ,ϕ(y)dy �

∫ −λ+`

−λ

`
√
λ| log |x− y||
λ2
√
λ− |y|

dy � `

λ3/2

∫ −λ+`

−λ

| log |x− y||√
λ− |y|

dy.
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We use Hölder’s inequality and write∫ −λ+`

−λ

| log |x− y||√
λ− |y|

dy ≤

(∫ −λ+`

−λ
| log |x− y||3

)1/3(∫ −λ+`

−λ

1

(λ− |y|)3/4

)2/3

dy.

An elementary computation shows that for x in (−2λ, 2λ),
(∫ −λ+`

−λ | log |x− y||3
)1/3

� `1/3 log λ, and

that, on the other hand,
(∫ −λ+`

−λ
1

(λ−|y|)3/4

)2/3

� `1/6, hence we obtain

(7.29)

∫ −λ+`

−λ
| log |x− y||mλ,ϕ(y)dy � `

√
` log λ

λ3/2
.

Combining (7.27), (7.28) and (7.29), we obtain (2.17).
The derivative, for x far from the endpoints. We now turn to proving (2.18). Let x such that

|x− λ| ≥ 2`. We have, by definition,

ErrorLPRight
λ,ϕ (x) =

∫ λ

λ−`
− log |x− y|(m̃λ,ϕ(y)−mλ,ϕ(y))dy.

We may differentiate under the integral sign and write(
ErrorLPRight

λ,ϕ

)′
(x) =

∫ λ

λ−`

−1

x− y
(m̃λ,ϕ(y)−mλ,ϕ(y))dy.

A Taylor’s expansion yields

(7.30)

∫ λ

λ−`

−1

x− y
(m̃λ,ϕ(y)−mλ,ϕ(y))dy =

1

x− λ

∫ λ

λ−`
(m̃λ,ϕ −mλ,ϕ)(y)dy

+O•

(
`

(λ− x)2

)∫ λ

λ−`
(|m̃λ,ϕ(y)|+ |mλ,ϕ(y)|)dy.

The first term in the right-hand side of (7.30) vanishes because, by construction as in (2.10), m̃λ,ϕ and
mλ,ϕ have the same mass on [λ− `, λ]. We can estimate the integral in the second term directly, and we
obtain ∫ λ

λ−`

−1

x− y
(m̃λ,ϕ(y)−mλ,ϕ(y))dy � `3/2`

λ3/2(λ− |x|)2
.

The same argument holds near the other endpoint, which proves (2.18). �

7.7. Proof of Lemma 2.12.

Proof of Lemma 2.12. Let us introduce Vλ,ϕ as

(7.31) Vλ,ϕ :=
−1

π2

∫
ϕ(x)√
λ2 − x2

∫ √
λ2 − t2ϕ′(t)
t− x

dtdx,

which is equal to ∫∫
− log |x− y|mλ,ϕ(x)mλ,ϕ(y)dxdy.

The error due to m̃λ,ϕ. The first step in the proof is to show that

(7.32)

∫∫
− log |x− y|m̃λ,ϕ(x)m̃λ,ϕ(y)dxdy = Vλ,ϕ +O•

(
`2` log(λ)

λ3

)
.

We decompose the left-hand side of (2.19) as

(7.33)

∫∫
− log |x− y|m̃λ,ϕ(x)m̃λ,ϕ(y)dxdy =

∫∫
− log |x− y|mλ,ϕ(x)mλ,ϕ(y)dxdy

+

∫∫
− log |x− y|(m̃λ,ϕ −mλ,ϕ)(x)(m̃λ,ϕ −mλ,ϕ)(y)

+ 2

∫∫
− log |x− y|mλ,ϕ(y)(m̃λ,ϕ −mλ,ϕ)(x).
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Using the fact that mλ,ϕ satisfies (2.6) and has total mass 0 we may write
(7.34)∫∫

− log |x− y|mλ,ϕ(x)mλ,ϕ(y)dxdy =

∫
ϕ(x)mλ,ϕ(x)dx =

−1

π2

∫
ϕ(x)√
λ2 − x2

∫ √
λ2 − t2ϕ′(t)
t− x

dtdx.

which is equal to Vλ,ϕ as defined in (7.31).
Using again (2.6), and the fact that, by construction, m̃λ,ϕ −mλ,ϕ has total mass 0 we write that∫∫

− log |x− y|mλ,ϕ(y)(m̃λ,ϕ(x)−mλ,ϕ(x))dydx =

∫
ϕ(x)(m̃λ,ϕ(x)−mλ,ϕ(x))dx,

but by construction ϕ vanishes on the support of m̃λ,ϕ −mλ,ϕ, hence this is equal to 0.
Finally, we write∫∫
− log |x− y|(m̃λ,ϕ(x)−mλ,ϕ(x))(m̃λ,ϕ(y)−mλ,ϕ(y))dxdy

=

∫
ErrorLPλ,ϕ(x)(m̃λ,ϕ(x)−mλ,ϕ(x))dx,

where ErrorLPλ,ϕ = ErrorLPLeft
λ,ϕ + ErrorLPRight

λ,ϕ as in Proposition 2.11. We can use (2.17) and the fact

that m̃λ,ϕ(x)−mλ,ϕ(x) is supported near the endpoints of (−λ, λ) to write

ErrorVar � `
√
` log(λ)

λ3/2

∫ −λ+`

−λ
(|m̃λ,ϕ(x)|+ |mλ,ϕ(x)|)dx � `

√
` log(λ)

λ3/2

`
√
`

λ3/2
,

which yields (7.32).
The error due to λ finite. Now, we compare Vλ,ϕ with the norm ‖ϕ‖

H
1
2

, we claim that:

(7.35) Vλ,ϕ = 2‖ϕ‖2
H

1
2

+O•

(
`2

λ2

)
.

Indeed, we may write, since ϕ is supported in (−`, `)∫
ϕ(x)√
λ2 − x2

PV

∫ √
λ2 − t2ϕ′(t)
t− x

dtdx =

∫
ϕ(x)

1

λ

(
1 +O•

(
`2

λ2

))
Hλ,ϕ(x)dx,

and we can use (7.3) to write this as

1

λ

∫
ϕ(x)Hλ,ϕ(x)dx+O•

(
`2

λ2

)
.

Now, we have, by definition,

Hλ,ϕ(x) =
1

π
PV

∫
φΛ(t)

x− t
dt,

and φΛ admits the decomposition as in (7.14), (7.15). It implies that

1

λ

∫
ϕ(x)Hλ,ϕ(x)dx =

1

πλ

∫
ϕ(x)PV

λϕ′(t)

x− t
dtdx+O•

(
`2

λ2

)
.

We may thus write Vλ,ϕ as

Vλ,ϕ =
−1

π2

∫
ϕ(x)PV

∫
ϕ′(t)

x− t
dtdx+O•

(
`2

λ2

)
,

and the result follows from the identity

−1

π2

∫
ϕ(x)PV

∫
ϕ′(t)

x− t
dtdx = 2‖ϕ‖2

H
1
2
,

with ‖ϕ‖
H

1
2

as in (1.4), which can be checked by elementary means. �
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7.8. Proof of Lemma 3.3.

Proof of Lemma 3.3. For simplicity, we will use the notation × as follows

A×B =

∫∫
(Λ×Λ)\�

− log |x− y|A(x)B(y).

We have

(dC − µs)× (dC − µs) = (dC − 1− sm̃λ,ϕ)× (dC − 1− sm̃λ,ϕ)

= (dC − 1)× (dC − 1) + s2 · m̃λ,ϕ × m̃λ,ϕ − 2s · m̃λ,ϕ × (dC − 1).

By Lemma 2.12, we have
m̃λ,ϕ × m̃λ,ϕ = 2‖ϕ‖2

H
1
2

+ ErrorVar.

Next, we write
m̃λ,ϕ × (dC − 1) = mλ,ϕ × (dC − 1) + (m̃λ,ϕ −mλ,ϕ)× (dC − 1).

We recall that LPλ,ϕ is the logarithmic potential generated by mλ,ϕ and that ErrorLPλ,ϕ is the logarithmic
potential generated by the difference m̃λ,ϕ −mλ,ϕ. So

mλ,ϕ × (dC − 1) =

∫∫
(Λ×Λ)\�

− log |x− y|mλ,ϕ(y)(dC(x)− dx) =

∫
Λ

LPλ,ϕ(x)(dC − dx),

and similarly

(m̃λ,ϕ −mλ,ϕ)× (dC − 1) =

∫∫
(Λ×Λ)\�

− log |x− y|(m̃λ,ϕ −mλ,ϕ)(y)(dC(x)− dx)

=

∫
Λ

ErrorLPλ,ϕ(x)(dC − dx).

�

7.9. Proof of Lemma 3.5.

Proof of Lemma 3.5. Since m̃λ,ϕ is continuous and bounded as in Lemma 2.8, and smax is chosen as in
(3.1), we see that 1+sm̃λ,ϕ is a continuous, positive function on Λ. Consequently, Fs is C1 and increasing,
thus it is a C1 bijection, and so is Φs. The fact that Φs transports the constant density onto µs results
from the definition, in fact Φs is the “monotone rearrangement” of the constant density onto µs.

By construction, m̃λ,ϕ has total mass 0 and vanishes near the endpoints, therefore Fs(x) = x+ λ near
the endpoints, which implies that Φs coincides with the identity map near the endpoints.

We now turn to proving estimates on ψs. We may write, by definition, that for any x in [−λ, λ] we
have ∫ Φs(x)

−λ
(1 + sm̃λ,ϕ(y)) dy = x+ λ,

and we thus obtain, as claimed in (3.6),

(7.36) ψs(x) = Φs(x)− x = −s
∫ Φs(x)

−λ
m̃λ,ϕ(y)dy.

Bound on ψs. We easily deduce |ψs|0 ≤ s‖m̃λ,ϕ‖L1 , and since |s| ≤ smax as in (3.1), we have

(7.37) |ψs|0 ≤ 1.

Finer bounds on ψs are the goal of another lemma.

Bound on ψ
(1)
s . Let us differentiate (7.36) with respect to x:

Φ′s(x)− 1 = −sm̃λ,ϕ ◦ Φs(x) · Φ′s(x),

and we obtain

(7.38) Φ′s(x) =
1

1 + sm̃λ,ϕ ◦ Φs(x)
.

The denominator is bounded below by a positive constant, and a Taylor’s expansion yields

|Φ′s(x)− 1| � s|m̃λ,ϕ ◦ Φs(x)|,
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hence, since by definition ψ′s = Φ′s − 1, we get

ψ′s(x) � s|m̃λ,ϕ ◦ Φs(x)|.

By definition |Φs(x)− x| = |ψs(x)|, and (7.37) holds, we may thus write

|m̃λ,ϕ ◦ Φs(x)| ≤ sup
y∈[x−1,x+1]

|m̃λ,ϕ(x)| ≤ |m̃λ,ϕ|0,Vx ,

with the notation of (1.6). This yields (3.8). In particular, |ψs|1 � s|m̃λ,ϕ|0 and is thus bounded, and so
is Φ′s.

Bound on ψ
(2)
s . We differentiate (7.38) again and write

(7.39) Φ(2)
s (x) =

−sm̃′λ,ϕ ◦ Φs(x)Φ′s(x)

(1 + sm̃λ,ϕ ◦ Φs(x))2
.

We have previously established that for |s| ≤ smax, we have Φ′s � 1, and the quantity (1 + sm̃λ,ϕ ◦Φs(x))
is bounded above and below by a positive constant. We obtain

(7.40) ψ(2)
s (x) = Φ(2)

s (x) � sm̃′λ,ϕ ◦ Φs(x) � s|m̃λ,ϕ|1,Vx ,

which yields (3.9).

Bound on ψ
(3)
s . Finally, differentiating (7.39) again, we get

(7.41) Φ(3)
s (x) =

−sm̃(2)
λ,ϕ ◦ Φs(x) (Φ′s(x))

2 − sm̃′λ,ϕ ◦ Φs(x)Φ
(2)
s (x)

(1 + sm̃λ,ϕ ◦ Φs(x))2
+

2s2
(
m̃′λ,ϕ ◦ Φs(x)

)2

(Φ′s(x))
2

(1 + sm̃λ,ϕ ◦ Φs(x))3
.

Using the fact that Φ′s is bounded, that Φ
(2)
s (x) is of order s|m̃λ,ϕ|1,Vx (see (7.40)) and that the quantity

1 + sm̃λ,ϕ ◦ Φs(x) is bounded below by a positive constant, we obtain

ψ(3)
s (x) = Φ(3)

s (x) � s|m̃λ,ϕ|2,Vx + s2|m̃λ,ϕ|21,Vx ,

and one can check from (2.13), (2.14) that the dominant term in the right-hand side is the first one,
which yields (3.10). �

7.10. Proof of Lemma 3.6.

Proof of Lemma 3.6. The first inequality in (3.11) follows from (3.6) combined with (3.7), and the second
one is obtained similarly, using the fact that m̃λ,ϕ has total mass 0. We now turn to proving the inequalities
of (3.12).

The case |x| ≤ 10`. Since ‖m̃λ,ϕ‖L1 � 1, as observed in (2.15), we have |ψs|0 � s, which in particular
yields the bound for |x| ≤ 10` as stated in (3.12).

The case |x| ≥ λ/2. For |x| ≥ λ/2, we may combine (3.11) with the estimates on m̃λ,ϕ as in (2.12),
and we obtain

|ψs(x)| � s `

λ3/2

√
λ+ 1− |x|,

as stated in (3.12).
The case 10` ≤ |x| ≤ λ/2. Finally, let us assume that x is in [10`, λ/2] (the case x ∈ [−λ/2,−10`]

being, of course, similar). We may write∫ Φs(x)

−λ
m̃λ,ϕ(t)dt =

∫ −Φs(x)

−λ
m̃λ,ϕ(t)dt+

∫ Φs(x)

−Φs(x)

m̃λ,ϕ(t)dt.

Using (2.12), we see can write

(7.42)

∫ −Φs(x)

−λ
m̃λ,ϕ(t)dt � `3/2

λ3/2
+
`

λ
+

`

Φs(x)
,

and the dominant term is the last one. Next we write, for |t| in [10`, λ/2],

m̃λ,ϕ(t) =
1

λ
Hλ,ϕ(t) +O•

(
t2

λ3

)
|Hλ,ϕ(t)|,
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and we use Lemma 7.4. First, we apply (7.16) with a = −Φs(x) and b = Φs(x), we obtain

(7.43)
1

λ

∫ Φs(x)

−Φs(x)

Hλ,ϕ(t)dt � `

Φs(x)
.

Secondly, we use (7.17) to get

1

λ3

∫ Φs(x)

−Φs(x)

t2|Hλ,ϕ(t)|dt � `Φs(x)

λ2
.

The term in (7.43) is the dominant one. Combining it with a similar one in (7.42), and since we know
that |Φs(x)− x| ≤ 1, it yields, as desired

|ψ(x)| � s `
|x|
.

�

7.11. Proof of Proposition 4.1. We extend the notation of (1.6) as follows: if g is a function of two
variables, we let

|g|V (x,y) := sup
a∈Vx,b∈Vy

|g(x, y)|.

We introduce the auxiliary function

(7.44) F(x, y) := − log (1 + ∆s(x, y)) ,

so that, in view of definition (3.14), we have

Mains(η) =

∫∫
Λ×Λ

F(x, y)(dη(x)− dx)(dη(y)− dy).

Lemma 7.5 (Energy comparison - the main term). We have

(7.45) Mains(η) � Main◦s(η) + MainAs (η) + MainBs (η) + MainCs (η) + MainDs (η),

where the terms in the right-hand side are defined as

Main◦s(η) =

λ∑
i=−λ

λ∑
j=−λ

D̃iD̃j |∂2
xyF |V (i,j),

MainAs (η) =

λ∑
i=−λ

λ−`/10∑
|j|=λ−`

D̃iD̃j

|∂xF|V (i,j)

`
,

MainBs (η) =

λ−`/10∑
|i|=λ−`

λ−`/10∑
|j|=λ−`

D̃iD̃j

|F|V (i,j)

`2
,

MainCs (η) =
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ∑
j=−λ

sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j)D̃j ,

MainDs (η) =
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ−`/10∑
|j|=λ−`

sup|x|∈[λ−`/8,λ] |F|V (x,j)

`
D̃j .

Proof. Let χ be a cut-off function equal to 1 on [−λ+ `/4, λ− `/4], vanishing outside [−λ+ `/8, λ− `/8],
bounded by 1 and whose derivative is bounded by O•

(
1
`

)
. We may write:

(7.46) Mains(η) =

∫∫
Λ×Λ

χ(x)F(x, y)χ(y)(dη − dx)(dη − dy)

+ 2

∫∫
Λ×Λ

(1− χ(x))F(x, y)χ(y)(dη − dx)(dη − dy)

+

∫∫
Λ×Λ

(1− χ(x))F(x, y) (1− χ(y)) (dη − dx)(dη − dy).
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The last term in the right-hand side vanishes, because ψs vanishes on the support of 1 − χ, and so
∆s(x, y) = 0, and thus F(x, y) = 0, when both x and y belong to the support of 1 − χ. We now study
the two first terms in the right-hand side of (7.46) separately.

Claim 7.6 (The “χ,χ” term). We claim that:

(7.47)

∫∫
Λ×Λ

χ(x)F(x, y)χ(y)(dη − dx)(dη − dy)

�
λ∑

i=−λ

λ∑
j=−λ

D̃iD̃j |∂2
xyF|V (i,j) +

λ∑
i=−λ

λ−`/10∑
|j|=λ−`

D̃iD̃j

|∂xF|V (i,j)

`
+

λ−`/10∑
|i|=λ−`

λ−`/10∑
|j|=λ−`

D̃iD̃j

|F|V (i,j)

`2
.

Proof of Claim 7.6. For a fixed configuration η, and x in (−λ, λ), let us define

(7.48) Gη(x) :=

∫
χ(y)F(x, y)(dη(y)− dy).

We have

(7.49)

∫∫
Λ×Λ

χ(x)F(x, y)χ(y)(dη − dx)(dη − dy) =

∫
Gη(x)χ(x)(dη − dx).

By construction, the map x 7→ Gη(x)χ(x) is compactly supported. Using the a priori bounds of Propo-
sition 1.6, we obtain ∫∫

Λ×Λ

χ(x)F(x, y)χ(y)(dη − dx)(dη − dy) �
λ∑

i=−λ

|Gηχ|1,Vi D̃i.

We have of course, differentiating a product,

|Gηχ|1,Vi � |Gη|1,Vi |χ|0,Vi + |Gη|0,Vi |χ|1,Vi

and we use the fact that χ is bounded by 1, and that χ′(x) is bounded by `−1 and supported on
{|x| ∈ [λ− `/4, λ− `/8]}. We obtain

(7.50)

∫
Λ

Gη(x)χ(x)(dη − dx) �
λ∑

i=−λ

|Gη|1,ViD̃i +

λ−`/2∑
|i|=λ−`

|Gη|0,Vi
`

D̃i.

Let us now study Gη itself. We have

Gη(x) =

∫
χ(y)F(x, y)(dη(y)− dy), G′η(x) =

∫
χ(y)∂xF(x, y)(dη(y)− dy).

We have of course, differentiating with respect to y for x fixed

|χF(x, ·)|1,Vj � |∂yF|V (x,j)|χ|0,Vj + |F|V (x,j)|χ|1,Vj ,

and similarly

|χ∂xF(x, ·)|1,Vj � |∂2
yxF|V (x,j)|χ|0,Vj + |∂xF|V (x,j)|χ|1,Vj .

We use the a priori bounds of Proposition 1.6 again, and use again the fact that χ is bounded by 1, that
χ′(y) is zero outside {|y| ∈ [λ− `/4, λ− `/8]} and bounded by `−1. We obtain

Gη(x) �
λ∑

j=−λ

|∂yF|V (x,j)D̃j +

λ−`/10∑
|j|=λ−`

|F|V (x,j)

`
D̃j ,(7.51)

G′η(x) �
λ∑

j=−λ

|∂2
xyF|V (x,j)D̃j +

λ−`/10∑
|j|=λ−`

|∂xF|V (x,j)

`
D̃j .(7.52)

Combining (7.49), (7.50) and (7.51), (7.52), we obtain the expression (7.47). �
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Claim 7.7 (The “χ,(1− χ)” term). We claim that:

(7.53)

∫∫
Λ×Λ

(1− χ(x))F(x, y)χ(y)(dη − dx)(dη − dy)

�
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ∑
j=−λ

sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j)D̃j

+
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ−`/10∑
|j|=λ−`

sup|x|∈[λ−`/8,λ] |F|V (x,j)

`
D̃j .

Proof of Claim 7.7. With the notation Gη of (7.48), we write

(7.54)

∫∫
Λ×Λ

(1− χ(x))F(x, y)χ(y)(dη − dx)(dη − dy) =

∫
Λ

(1− χ(x))Gη(x)(dη − dx).

By construction, 1− χ(x) is supported on {|x| ∈ [λ− `/8, λ]}, so we have, using a rough bound on Gη
and the mass of dη − dx in {|x| ∈ [λ− `/8, λ]},

(7.55)

∫
Λ

(1− χ(x))Gη(x)(dη − dx) �
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) sup
|x|∈[λ−`/8,λ]

|Gη(x)| .

Using (7.51) in (7.55), we obtain∫
Λ

(1− χ(x))Gη(x)(dη − dx) �
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ∑
j=−λ

sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j)D̃j

+
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ−`/10∑
|j|=λ−`

sup|x|∈[λ−`/8,λ] |F|V (x,j)

`
D̃j ,

which yields (7.53). �

The estimate (7.45) is simply the combination of (7.46) and the two claims above. �

Proof of Proposition 4.1. We recall that

F(x, y) = − log

(
1 +

ψs(y)− ψs(x)

y − x

)
.

Claim 7.8 (The magnitude of F and its derivatives). We have

F(x, y) � |ψs(x)|+ |ψs(y)|
|x− y|

(7.56)

F(x, y) � sup
t∈[x,y]

|ψ(1)
s (t)|(7.57)

∂xF(x, y) � |ψ
′
s(x)|
|y − x|

+
|ψs(x)|+ |ψs(y)|

(y − x)2
(7.58)

∂xF(x, y) � sup
t∈[x,y]

|ψ(2)
s (t)|.(7.59)

∂2
xyF(x, y) � |ψ

′
s(x)|

(x− y)2
+
|ψ′s(y)|

(x− y)2
+
|ψs(x)|
|x− y|3

+
|ψs(y)|
|x− y|3

,(7.60)

∂2
xyF(x, y) � sup

t∈[x,y]

|ψ(3)
s (t)|+ sup

t∈[x,y]

|ψ(2)
s (t)|2.(7.61)

Proof of Claim 7.8. The bounds (7.56), (7.57) are straightforward.
We then perform the following simple computation

∂xF =
∂x∆s

1 + ∆s
,(7.62)

∂2
xyF =

−
(
∂2
xy∆s

)
(1 + ∆s) + (∂x∆s) (∂y∆s)

(1 + ∆s)2
.(7.63)
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Moreover, we have

(7.64) ∂x∆s(x, y) =
−ψ′s(x)

y − x
+
ψs(y)− ψs(x)

(y − x)2
, ∂y∆s(x, y) =

ψ′s(y)

y − x
− ψs(y)− ψs(x)

(y − x)2
.

∂2
xy∆s(x, y) =

ψ′s(x) + ψ′s(y)

(y − x)2
− 2

ψs(y)− ψs(x)

(y − x)3
.

From (7.62) and the fact that 1+∆s is bounded below by a positive constant (because |∆s|0 is bounded
by |ψ′s|0, itself bounded by s|m̃λ,ϕ|0, and smax is chosen as in (3.1)) we see that

(7.65) ∂xF � ∂x∆s,

and using (7.64) we obtain (7.58).
Using again the fact that 1 + ∆s is bounded below by a positive constant, we get

(7.66) ∂2
xyF � −

(
∂2
xy∆s

)
(1 + ∆s) + (∂x∆s) (∂y∆s) ,

and after some algebra, we obtain

(7.67) ∂2
xyF(x, y) � ψ′s(x)

(x− y)2
+

ψ′s(y)

(x− y)2
− ψ′s(x)ψ′s(y)

(x− y)2
+

∆2
s(x, y)

(x− y)2
− 2∆s(x, y)

(x− y)2
.

Since ψ′s is bounded, and so is ∆s(x, y) = ψs(x)−ψs(y)
x−y , we may certainly write

∂2
xyF(x, y) � |ψ

′
s(x)|

(x− y)2
+
|ψ′s(y)|

(x− y)2
+
|ψs(x)|
|x− y|3

+
|ψs(y)|
|x− y|3

,

which is (7.60).
It remains to prove (7.59), (7.61). Using the identity

∆s(x, y) =
1

y − x

∫ y

x

ψ′s(s)ds,

an elementary computation yields

(7.68) ∂x∆s(x, y) � sup
t∈[x,y]

∣∣∣ψ(2)
s (t)

∣∣∣ , ∂x∆s(x, y) � sup
t∈[x,y]

∣∣∣ψ(2)
s (t)

∣∣∣ , ∂2
xy∆s(x, y)| � sup

t∈[x,y]

∣∣∣ψ(3)
s (t)

∣∣∣ ,
We may then derive (7.59) from (7.65) and (7.68) and (7.61) from (7.66) and (7.68). �

General strategy, and convention for the proof. We estimate the expectations of the all terms in
Proposition 4.1. They involve (double) sums with coefficients of the type

D̃iD̃jA(i, j),

where A(i, j) is a non-random quantity related to F or one of its derivatives. We will use the estimates of
Claim 7.8 to control the terms A(i, j). Typically, the estimates (7.56), (7.58), (7.60) will be used when i
and j are far away, and the estimates (7.57), (7.59), (7.61) will be used for i and j close to each other.

The expectation of D̃iD̃j can be controlled using the discrepancy estimates (1.11) and (1.12). Using
Cauchy-Schwarz’s inequality we see that (it is easy to check that the fact that, strictly speaking, the
inequality is not true for i = 0 or j = 0 is irrelevant):

(7.69) E
[
D̃iD̃j

]
�
√
|i|
√
|j|,

and we will replace all occurrences of D̃i, resp. D̃j by
√
|i|, resp.

√
|j|. For most estimates, this is

enough, and we obtain terms that are o`,λ(1). A couple of terms are seen this way to be only bounded,
but perhaps not vanishing, as λ→∞, `→∞, which we denote by O(1). For these terms, we use (1.12)
instead of (1.11), and write that

(7.70) E
[
D̃iD̃j

]
� o|i|→∞

(√
|i|
)
o|j|→∞

(√
|j|
)
,

which allows us to improve the bound to o`,λ(1).
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The term Main◦s. We recall that

Main◦s(η) =

λ∑
i=−λ

λ∑
j=−λ

D̃iD̃j |∂2
xyF |V (i,j).

Using symmetries, it is enough to study

λ∑
i=0

∑
i≤|j|≤λ

D̃iD̃j |∂2
xyF |V (i,j).

(1) Let us start with the region 0 < x < 2` and x < y < 4`. We want to prove that

E

 2∑̀
i=0

4∑̀
j=i

D̃iD̃j |∂2
xyF |V (i,j)

 = so`,λ(1).

In this case, since i, j are close, we use (7.61) to control |∂2
xyF |V (i,j). By (3.9), (3.10), we know

that ψ
(2)
s is controlled by sm̃

(1)
λ,ϕ, and that ψ

(3)
s is controlled by sm̃

(2)
λ,ϕ, and we refer to the bounds

(2.13), (2.14) to see that

sup
|t|≤4`

|ψ(2)
s (t)|2 � s2

`4
sup
|t|≤4`

|ψ(3)
s (t)| � s

`3
,

the dominant term is obviously the second one, so we may simply study

2∑̀
i=0

4∑̀
j=i

D̃iD̃j
s

`3
.

Taking the expectation and using (7.69), we are left with

2∑̀
i=0

4∑̀
j=i

√
i
√
j
s

`3
� s`2 × `× s

`3
= sO(1).

This is an example where the bound (7.69) is not sufficient, and we replace it by (7.70). By
well-known results on divergent series, we have

2∑̀
i=0

4∑̀
j=i

oi

(√
i
)
oj

(√
j
)

= ol→∞(`3),

and thus we have, as desired,

E

 2∑̀
i=0

4∑̀
j=i

D̃iD̃j
s

`3

 = so`,λ(1).

? ? ?

(2) For 2` < x < λ
2 , x < y < 4

3x. We study the expectation of

λ/2∑
i=2`

4
3 i∑
j=i

D̃iD̃j |∂2
xyF |V (i,j).

We use (7.61) to control |∂2
xyF |V (i,j). We control again ψ

(2)
s by sm̃

(1)
λ,ϕ (and read (2.13)), and ψ

(3)
s

by sm̃
(2)
λ,ϕ (and read (2.14)), we get

sup
t∈[x,y]

∣∣∣ψ(2)
s (t)

∣∣∣2 � s2 `
2

x6
, sup
t∈[x,y]

∣∣∣ψ(3)
s (t)

∣∣∣ � s `
x4
.

Since x > `, the dominant term is the second one.
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Finally, we take the expectation, use the discrepancy estimates and replace D̃iD̃j by
√
i
√
j.

Comparing the sum with an integral, we are left to study

s

∫ λ/2

2`

∫ 4
3x

x

√
x
√
y
`

x4
dxdy.

Replacing
√
y by

√
x (since x < y < 4

3x), it yields

s

∫ λ/2

2`

∫ 4
3x

x

√
x
√
x
`

x4
dydx = s

∫ λ/2

2`

`

x2
= sO(1).

We are again in a case where (7.69) is not enough and must be replaced by the discrepancy
estimates (7.70), which improves the bound from sO(1) to so`,λ(1).

? ? ?

(3) For 2` < x < λ
2 , 4

3x < y. We study the expectation of

λ/2∑
i=2`

λ∑
j= 4

3 i

D̃iD̃j |∂2
xyF |V (i,j).

Since i and j are far from each other, we use (7.60) to control |∂2
xyF |V (i,j). Taking the expecta-

tions, using (7.69) and comparing the sum with an integral, we are left to study∫ λ/2

2`

√
x

∫ λ

4
3x

√
y

(
|ψ′s(x)|

(x− y)2
+
|ψ′s(y)|

(x− y)2
+
|ψs(x)|

(x− y)3
+
|ψs(y)|

(x− y)3

)
dy.

Since 4
3x < y we can replace x− y by y, and we split the integrand in four parts.

(a) Using (3.8) to control ψ′s by sm̃λ,ϕ, and (2.12) to control m̃λ,ϕ, we get∫ λ/2

2`

√
x|ψ′s(x)|

∫ λ

4
3x

√
y

y2
dy � s

∫ λ/2

2`

|m̃λ,ϕ(x)|dx = sO(1).

Using again (7.70) instead of (7.69), we may replace
√
x,
√
y by ox(

√
x), oy(

√
y), and we

obtain in fact so`,λ(1).
(b) Using (3.8) to control ψ′s by sm̃λ,ϕ, and (2.12) to control m̃λ,ϕ, and splitting the domain of

integration in two parts, we see that∫ λ/2

2`

√
xdx

∫ λ

4
3x

√
y|ψ′s(y)|
y2

dy � s
∫ λ/2

2`

√
xdx

[∫ λ/2

4
3x

√
y`

y2y2
dy +

∫ λ

λ/2

`
√
y

λ3/2y2
√
λ− y

dy

]
The first contribution is

s

∫ λ/2

2`

√
x

∫ λ/2

4
3x

√
y`

y2y2
dydx = s

∫ λ/2

2`

√
x

∫ λ/2

4
3x

`

y7/2
dydx � s

∫ λ/2

2`

√
x

`

x5/2
dx = sO(1),

and for the second one, since y ∈ [λ/2, λ] we may replace y by λ and compute

s

∫ λ/2

2`

√
x

∫ λ

λ/2

`

λ3
√
λ− y

dydx = sO(1).

Again, this can be improved to so`,λ(1).
(c) Using (3.12) to control ψs(x), we have∫ λ/2

2`

√
x|ψs(x)|

∫ λ

4
3x

√
y

y3
dy � s

∫ λ/2

2`

√
x
`

|x|
1

x3/2
dx = sO(1).

Which can be improved to o`,λ(1).
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(d) Using (3.12) to control ψs(y) and splitting the domain of integration (on y) in two parts, we
have∫ λ/2

2`

√
xdx

∫ λ

4
3x

√
y|ψs(y)|
y3

dy �
∫ λ/2

2`

√
xdx

[∫ λ/2

4
3x

`

y7/2
dy +

∫ λ

λ/2

`

λ3/2

√
λ− y
λ7/2

dy

]

� s
∫ λ/2

2`

√
x

[
`

x5/2
+

`

λ5/2

]
dx = sO(1).

Similarly, this can be improved to so`,λ(1).

? ? ?

(4) For λ
2 < x < λ− ` and y − x < 1

2 (λ− x). We study the expectation of

λ−∑̀
i=λ/2

∑
0<j−i< 1

2 (λ−i)

D̃iD̃j |∂2
xyF |V (i,j).

Since i, j are close we use (7.61) to control |∂2
xyF |V (i,j). We see (the now usual way) that

sup
t∈[x,y]

∣∣∣ψ(2)
s (t)

∣∣∣2 � s2 `2

λ3(λ− x)3
, sup

t∈[x,y]

∣∣∣ψ(3)
s (t)

∣∣∣ � s `

λ3/2(λ− x)5/2
,

and the dominant term is the second one.
We take the expectation, we use the discrepancy estimates, we compare the sum to an integral,

we replace
√
x,
√
y by

√
λ, and we are left to compute

s

∫ λ−`

λ/2

λdx

∫
0<y−x< 1

2 (λ−x)

`

λ3/2(λ− x)5/2
dy � s

∫ λ−`

λ/2

`√
λ

1

(λ− x)3/2
� s `√

λ
√
`

= so`,λ(1).

? ? ?

(5) For λ
2 < x < λ − ` and y − x > 1

2 (λ − x). We use (7.60) to control |∂2
xyF |V (i,j). We take the

expectation, and compare the sum to a series, we are left to study∫ λ

λ/2

dx
√
x

∫
y−x>λ−x

2

√
y

(
|ψ′s(x)|

(x− y)2
+
|ψ′s(y)|

(x− y)2
+
|ψs(x)|

(x− y)3
+
|ψs(y)|

(x− y)3

)
dy.

We replace
√
x,
√
y by

√
λ and split the integrand in four parts.

(a) Using (3.8) to control ψ′s(x) by sm̃λ,ϕ(x), and (2.12), we have

|ψ′s(x)| � s `

λ3/2
√
λ− x

,

and thus consider∫ λ−`

λ/2

dx
√
λ

∫
y−x>λ−x

2

√
λ
|ψ′s(x)|

(y − x)2
� s

∫ λ

λ/2

dxλ
`

λ3/2
√
λ− x

∫
y−x>λ−x

2

1

(y − x)2
dy

� s
∫ λ−`

λ/2

dxλ
`

λ3/2
√
λ− x

1

λ− x
� s `√

λ
√
`

= so`,λ(1).

(b) Using (3.8) to control ψ′s(y) by sm̃λ,ϕ(y), and (2.12), we have

|ψ′s(y)| � s `

λ3/2
√
λ− y

,

and thus consider∫ λ−`

λ/2

dx
√
λ

∫
y−x>λ−x

2

√
λ
|ψ′s(y)|

(y − x)2
dy � s

∫ λ−`

λ/2

dxλ

∫
y−x>λ−x

2

`

λ3/2
√
λ− y(y − x)2

dy.
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Since y − x > λ−x
2 , we may replace 1

(y−x)2 by 1
(λ−x)2 , and we now study

s

∫ λ−`

λ/2

dx
λ

(λ− x)2

∫ λ

x+λ−x
2

`

λ3/2
√
λ− y

dy � s
∫ λ−`

λ/2

dx
λ

(λ− x)2

`

λ3/2

√
λ− xdx

� s `√
λ
√
`

= so`,λ(1).

(c) Using (3.12) to control ψs(x) by s `
√
λ−x
λ3/2 , we write∫ λ−`

λ/2

dx
√
λ

∫
y−x>λ−x

2

√
λ
|ψs(x)|

(y − x)3
dy � s

∫ λ−`

λ/2

dxλ
`
√
λ− x
λ3/2

∫
|y−x|>λ−x

2

1

(y − x)3
dy

� s
∫ λ−`

λ/2

λ
`
√
λ− x
λ3/2

1

(λ− x)2
dx � s `√

`
√
λ

= so`,λ(1).

(d) Using (3.12) to control ψs(y) by s `
√
λ−y
λ3/2 , we write∫ λ−`

λ/2

dx
√
λ

∫
y−x>λ−x

2

√
λ
|ψs(y)|

(y − x)3
dy � s

∫ λ

λ/2

dx
λ

(λ− x)3

∫ λ−`

x+λ−x
2

`

λ3/2

√
λ− ydy

� s
∫ λ−`

λ/2

dx
λ

(λ− x)3

`

λ3/2
(λ− x)3/2 � s `√

λ
√
`

= so`,λ(1).

? ? ?

(6) For λ− ` < x < y < λ. We use (7.61), the computation is similar to the case λ
2 < x < λ− ` and

y − x < 1
2 (λ− x) above, we obtain again an error as s `√

`
√
λ

which is so`,λ(1).

? ? ?

(7) For x, y in (−4`, 4`) the proof is as in the very first case.

? ? ?

(8) For 0 < x < 2`, and 4` < |y| < λ, we use (7.61), we write 1
|x−y| �

1
|y| and we are left with∫ 2`

0

√
xdx

∫ λ

4`

√
y

(
|ψ′s(x)|
y2

+
|ψ′s(y)|
y2

+
|ψs(x)|
y3

+
|ψs(y)|
y3

)
dy.

We have ψs(x) � s, ψ′s(x) � s
` and the corresponding terms give∫ 2`

0

√
`

∫ λ

4`

√
y

(
1

`y2
+

1

y3

)
dy = sO(1).

For the two other terms, we obtain∫ 2`

0

√
xdx

∫ λ

4`

√
y
|ψ′s(y)|
y2

dy � s`3/2
∫ λ

4`

|m̃λ,ϕ(y)|
y3/2

dy,

and using the bounds (2.12) we see that this is sO(1).
All these terms are in fact improved to so`,λ(1) as above.

? ? ?

(9) For 2` < x < λ
2 and x < −y, the computation is similar to the case 2` < x < λ

2 and 4
3x < y,

since we can write 1
|x−y| ≤

1
|y| .

? ? ?

(10) Finally, for λ
2 < x < λ and −λ < y < −λ2 , we use (7.61) and we are left to bound, after replacing√

x,
√
y by

√
λ, and |y − x| by λ, the quantity∫ λ

λ/2

√
λdx

∫ λ

λ/2

√
λ

(
|ψ′s(y)|
λ2

+
|ψs(y)|
λ3

)
dy,
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where we use the symmetry in x, y to forget about the ψ′s(x), ψs(x) terms. We have

λ2

∫ λ

λ/2

|ψ′s(y)|
λ2

dy �
∫ λ

λ/2

|m̃λ,ϕ(y)|dy = sO(1),

and, using (3.12),

λ2

∫ λ

λ/2

|ψs(y)|
λ3

dy � 1

λ

s`

λ3/2

∫ λ

λ/2

√
λ− ydy � s`

λ
= so`,λ(1).

This concludes the study of Main◦s.

? ? ? ? ?

The term MainAs . We recall that

MainAs (η) =

λ∑
i=−λ

λ−`/10∑
|j|=λ−`

D̃iD̃j

|∂xF|V (i,j)

`
.

Using symmetries, it is enough to study

λ∑
i=−λ

λ∑
j=λ−`

D̃iD̃j

|∂xF|V (i,j)

`
.

When taking the expectation, we use the discrepancy estimates and replace D̃iD̃j by
√
i
√
j, keeping in

mind that any O(1) can be improved to o`,λ(1) by using (7.70) instead of (7.69).
We split the first sum into i ≤ λ− 3` and i ≥ λ− 3`.

(1) For the first sum, we use (7.58), and study

λ−3`∑
i=−λ

λ∑
j=λ−`

√
i
√
j

`

(
|ψ′s(i)
|j − i|

+
|ψs(i)|+ |ψs(j)|

(j − i)2

)
.

Replacing
√
j by

√
λ, |ψs(j)| by `

√
`

λ3/2 (in view of (3.12)) and j − i by λ− i, we are left with

(7.71)

λ−3`∑
i=−λ

`
√
λ

`

√
i

(
|ψ′s(i)|
λ− i

+
|ψs(i)|

(λ− i)2
+

√
``

λ3/2(λ− i)2

)
.

We decompose the sum further
(a) For −λ ≤ i ≤ 2`, we use the fact that ψ′s(i) � sm̃λ,ϕ(i) and |m̃λ,ϕ|L1 � 1, that ψs(i) � s, we

replace λ− i by λ and we bound
√
|i| by

√
λ. We obtain

s

2∑̀
i=−λ

`
√
λ

`

√
λ

(
|m̃λ,ϕ(i)|

λ
+

1

λ2
+

√
``

λ3/2λ2

)
= sO(1).

(b) For 2` ≤ i ≤ λ/2, we use the fact that ψ′s(i) � sm̃λ,ϕ(i) � s `i2 , that ψs(i) � s `i , we replace
λ− i by λ. We obtain

s

λ/2∑
i=2`

`
√
λ

`

√
i

(
`

i2λ
+

`

iλ2
+

√
``

λ3/2λ2

)
= so`,λ(1).

(c) For λ/2 ≤ i ≤ λ−3`, we use the fact that ψ′s(i) � sm̃λ,ϕ(i) � s `
λ3/2
√
λ−i , that ψs(i) � s `

√
λ−i

λ3/2 ,

we replace
√
i by

√
λ. We obtain

s

λ−3`∑
i=λ/2

`
√
λ

`

√
λ

(
`

λ3/2(λ− i)3/2
+

`
√
λ− i

λ3/2(λ− i)2
+

√
``

λ3/2(λ− i)2

)
= so`,λ(1).

(2) For the second sum, we use (7.59), observe that near λ we have, in view of (3.9) and (2.13),

sup
t∈[λ−4`,λ]

|ψ(2)
s (t)| � s `

λ3/2`3/2
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and study

s

λ∑
i=λ−3`

λ∑
j=λ−`

√
i
√
j

`

`

λ3/2`3/2
.

We replace
√
i
√
j by λ and get so`,λ(1) by direct computation.

This concludes the study of MainAs .

? ? ? ? ?

The term MainBs . We recall that

MainBs (η) =

λ−`/10∑
|i|=λ−`

λ−`/10∑
|j|=λ−`

D̃iD̃j

|F|V (i,j)

`2

Using symmetries, it enough to study

λ−`/10∑
i=λ−`

λ−`/10∑
j=λ−`

D̃iD̃j

|F|V (i,j)

`2
+

−λ+`/10∑
i=−λ

λ−`/10∑
j=λ−`

D̃iD̃j

|F|V (i,j)

`2
.

When taking the expectation, we use the discrepancy estimates and replace D̃iD̃j by
√
i
√
j. Here we

replace further
√
i
√
j by λ.

(1) For the first sum, we use (7.57) and observe that, near λ, we have (in view of (3.8) and (2.12))

sup
t∈λ−2`,λ

|ψ(1)
s (t)| � s `

λ3/2
√
`
,

hence we obtain

s

λ−`/10∑
i=λ−`

λ−`/10∑
j=λ−`

λ
|F|V (i,j)

`2
� `2λ `

`2λ3/2
√
`

= so`,λ(1).

(2) For the second sum, we use (7.56), and observe that, in view of (3.12), we have, for i near −λ
and j near λ,

|ψs(i)|+ |ψs(j)|
(j − i)

� s `
√
`

λ3/2λ

and we thus obtain

s

−λ+`/10∑
i=−λ

λ−`/10∑
j=λ−`

λ
`
√
`

λ3/2`2λ
= so`,λ(1).

This concludes the study of MainBs .

? ? ? ? ?

The term MainCs . We recall that

MainCs (η) =
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ∑
j=−λ

sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j)D̃j

Taking the expectation, we use the discrepancy estimates and get

E
[(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) D̃j

]
� `
√
j,

so we study
λ∑

j=−λ

`
√
j sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j).

We split the sum into j ≤ λ− 3` and j ≥ λ− 3`.
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(1) For j ≤ λ− 3`, we use (7.58) (switching the roles of x and y) and write, for x in [λ− `/8, λ]

|∂yF|V (x,j) �
|ψ′s(j)|
|j − x|

+
|ψs(x)|
(j − x)2

+
|ψs(j)|

(j − x)2
.

We replace j − x by λ− j and (in view of (3.12)) |ψs(x)| by s `
√
`

λ3/2 , and we obtain

sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j) �
|ψ′s(j)|
λ− j

+
s`
√
`

λ3/2(λ− j)2
+
|ψs(j)|

(λ− j)2
,

we are thus left to study

λ−3`∑
j=−λ

`
√
j

(
|ψ′s(j)|
λ− j

+
s`
√
`

λ3/2(λ− j)2
+
|ψs(j)|

(λ− j)2

)
.

This is actually much smaller than (7.71), which was already treated.
(2) For j ≥ λ− 3`, we use (7.59) and write, for x in [λ− `/8, λ]

|∂yF|V (x,j) � sup
t∈[λ−4`,λ]

|ψ(2)
s (t)| � s `

λ3/2`3/2
,

and a direct computation gives

s

λ∑
j=λ−3`

`
√
j sup
|x|∈[λ−`/8,λ]

|∂yF|V (x,j) � s`2
√
λ

`

λ3/2`3/2
= so`,λ(1).

This concludes the study of MainCs .

? ? ? ? ?

The term MainDs . We recall that

MainDs (η) =
(
`+

∣∣Discr|x|∈[λ−`/8,λ]

∣∣) λ−`/10∑
|j|=λ−`

sup|x|∈[λ−`/8,λ] |F|V (x,j)

`
D̃j .

For the same reasons as above, we are led to study

λ−`/10∑
|j|=λ−`

sup|x|∈[λ−`/8,λ] |F|V (x,j)

`
`
√
λ,

and we split the sum in two parts: j near −λ and j near λ. For the first part, we use (7.56), and for
the second part we use (7.57) to control |F|V (x,j). After some computation, we obtain so`,λ(1). This

concludes the study of MainDs , and the proof of the proposition. �

7.12. Proof of Corollary 5.4.

Proof of Corollary 5.4. We can split Λc into {x ≥ λ} and {x ≤ −λ}, both parts yield an equivalent
contribution, so we only consider the first one. We need an adaptation of the a priori bound (1.10) to a
slightly different context.

Claim 7.9 (A priori bound - “hard edge” and decay assumption). Let g be a C1 function such that

(7.72) lim sup
x→∞

|xg(x)| < +∞, lim sup
x→∞

x2|g′(x)| < +∞,

then, Sineβ-a.s. both sides of the following inequality are finite, and the inequality holds∫ +∞

λ

g(x)(dC − dx) �
+∞∑
j=λ

|g|1,Vj D̃
Right
j + g(λ)|Discr[λ,λ+1]|.

Proof of Claim 7.9. We follow the same lines as for the proof of Proposition 1.6. We split the domain of
integration into unit intervals and use the mean value theorem, in order to get, for M > λ fixed∫ M

λ

g(x)(dC − dx) =

M−1∑
k=λ

∫ k+1

k

g(x)(dC − dx) �
M−1∑
k=λ

g(k)Discr[k,k+1] +O• (|g|1,Vk)
(
1 + |Discr[k,k+1]|

)
.
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We write, for any k, Discr[k,k+1] = Discr[λ,k+1] −Discr[λ,k], and perform a summation by parts to get

M−1∑
k=λ

g(k)Discr[k,k+1] =

M−1∑
k=λ+1

(g(k − 1)− g(k)) Discr[λ,k] + g(M − 1)Discr[λ,M ] + g(λ)Discr[λ,λ+1].

In view of (7.72), the boundary term g(M − 1)Discr[λ,M ] tends almost surely to 0 as M → ∞, because
1
MDiscr[λ,M ] tends almost surely to 0. On the other hand, the series

+∞∑
k=λ

|g|1,Vk
(
1 + |Discr[k,k+1]|

)
is almost surely convergent, because we have, in view of (1.11) and (7.72)

lim sup
k→∞

E
[(
k2|g|1,Vk

(
1 + |Discr[k,k+1]|

))2]
< +∞.

Sending M →∞ yields the result. �

We can easily check that ErrorDFs satisfies the decay assumption (7.72). Using Claim 7.9, we get∫ +∞

λ

ErrorDFs(C)(x)(dC − dx) � s
+∞∑
j=λ

|ErrorDFs|1,Vj D̃
Right
j + |ErrorDFs(λ)|Discr[λ,λ+1].

The boundary term. We claim that

(7.73) E
[∣∣ErrorDFs(λ)Discr[λ,λ+1]

∣∣] � s` log(λ)

λ3/2
= so`,λ(1).

Indeed, using (5.5) and the discrepancy estimates (1.11) for D̃Right
i , we obtain

E
[
|ErrorDFs(λ)|Discr[λ,λ+1]

]
�

λ−∑̀
i=−λ

(
|ψs(i)|

(x− i)2
+
|ψ′s(i)|
(x− i)

)
E
[
D̃Right
i Discr[λ,λ+1]

]

�
λ−∑̀
i=−λ

(
|ψs(i)|

(x− i)2
+
|ψ′s(i)|
(x− i)

)√
λ− i.

We use (3.8) and (2.12) to control the contribution of the ψ′s(i) terms, and (3.12) to control the contri-
bution of the ψs(i) terms. For example, we have

λ−∑̀
i=λ/2

|ψ′s(i)|
(x− i)

√
λ− i � s

λ−∑̀
i=λ/2

`

λ3/2

√
λ− i

(λ− i)2

√
λ− i � s` log(λ)

λ3/2
.

The main contribution. We now claim that

(7.74) E

+∞∑
j=λ

|ErrorDFs|1,Vj D̃
Right
j

 = so`,λ(1).

To prove (7.74), we use (5.6) and write

+∞∑
j=λ

|ErrorDFs|1,Vj D̃
Right
j �

+∞∑
j=λ

λ−∑̀
i=−λ

(
|ψs(i)|
(j − i)3

+
|ψ′s(i)|
(j − i)2

)
D̃Right
i D̃Right

j .

Taking the expectation and using Cauchy-Schwarz’s inequality, we get

(7.75) E

+∞∑
j=λ

|ErrorDFs|1,Vj D̃
Right
j


�

+∞∑
j=λ

λ−∑̀
i=−λ

(
|ψs(i)|
(j − i)3

+
|ψ′s(i)|
(j − i)2

)
E
[(
D̃Right
i

)2
]1/2

E
[(
D̃Right
j

)2
]1/2
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Using the discrepancy estimate (1.11) we obtain

E

+∞∑
j=λ

|ErrorDFs|1,Vj D̃
Right
j

 � +∞∑
j=λ

λ−∑̀
i=−λ

(
|ψs(i)|
(j − i)3

+
|ψ′s(i)|
(j − i)2

)√
|λ− i|

√
|λ− j|.

Let us keep in mind that, as in the proof of Proposition 4.1, we may use the sharper discrepancy estimates
(1.12) instead of (1.11), and take advantage of the fact that

E
[(
D̃Right
j

)2
]

= o|j−λ|→∞ (j − λ) .

The terms i far from λ: We first treat the case −λ ≤ i ≤ λ/2.
(1) For any j ≥ λ, using the estimates (3.12) on ψs, we may write

λ/2∑
i=−λ

|ψs(i)|
(j − i)3

√
λ− i � s

√
λ

j3

λ/2∑
i=−λ

|ψs(i)| � s
√
λ` log(λ)

j3
.

We thus get:

(7.76)

+∞∑
j=λ

λ/2∑
i=−λ

|ψs(i)|
(j − i)3

√
λ− i

√
j − λ � s

+∞∑
j=λ

√
λ` log(λ)

j5/2
� s` log(λ)

λ
= so`,λ(1).

(2) For any j ≥ λ, using (3.8) and (2.12), we write

λ/2∑
i=−λ

|ψ′s(i)|
(j − i)2

√
λ− i �

√
λ

j2

λ/2∑
i=−λ

|ψ′s(i)| � s
√
λ

j2
.

We thus get:

+∞∑
j=λ

λ/2∑
i=−λ

|ψ′s(i)|
(j − i)2

√
λ− i

√
j − λ � s

+∞∑
j=λ

√
λ
√
j − λ
j2

.

A rough bound would only yield a O(1) contribution here. Instead, we split the sum into

λ+log(λ)∑
j=λ

√
λ
√
j − λ
j2

� 1

λ3/2

log(λ)∑
j=0

√
k = o`,λ(1),

and the remainder where j − λ ≥ log(λ), in which we use (1.12) instead of (1.11), which
allows us to replace

√
j − λ by oλ(

√
j − λ), and

+∞∑
j=λ+log(λ)

√
λ× oλ

(√
j − λ

)
j2

= o`,λ(1).

Hence

(7.77)

+∞∑
j=λ

λ/2∑
i=−λ

|ψ′s(i)|
(j − i)2

√
λ− i× o

(√
j − λ

)
= so`,λ(1).

Combining (7.76) and (7.77), we see that the contribution in (7.75) coming from the terms “i
far from λ” i.e. here −λ ≤ i ≤ λ/2, is so`,λ(1).

The terms i close to λ: We now consider λ/2 ≤ i ≤ λ− `
(1) For any j ≥ λ, using the estimates (3.12) on ψs, we may write

λ−∑̀
i=λ/2

|ψs(i)|
(j − i)3

√
λ− i � s

λ−∑̀
i=λ/2

`

λ3/2

λ− i
(j − λ+ λ− i)3

.

We distinguish the cases λ− i ≤ j − λ and λ− i ≥ j − λ.
(a) We have (the sum being non-empty only if j − λ ≥ `):∑

i∈[λ/2,λ−`]|λ−i≤j−λ

`

λ3/2

λ− i
(j − λ+ λ− i)3

� `

λ3/2

1

(j − λ)2

∑
i∈[λ/2,λ−`]|λ−i≤j−λ

1 � `

λ1/2

1

(j − λ)2
,
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(b) On the other hand (the sum being non-empty only if j − λ ≤ λ/2):∑
i∈[λ/2,λ−`]|λ−i>j−λ

`

λ3/2

λ− i
(j − λ+ λ− i)3

� `

λ3/2

∑
i∈[λ/2,λ−`]|λ−i>j−λ

1

(λ− i)2
� `

λ3/2

1

j − λ
,

We may thus write

+∞∑
j=λ

λ−∑̀
i=λ/2

|ψs(i)|
(j − i)3

√
λ− i

√
j − λ � s

+∞∑
j=λ+`

`

λ1/2

1

(j − λ)3/2
+ s

3λ/2∑
j=λ

`

λ3/2

1√
j − λ

� s `

λ1/2`1/2
+ s

`

λ
.

We obtain

(7.78)

+∞∑
j=λ

λ−∑̀
i=λ/2

|ψs(i)|
(j − i)3

√
λ− i

√
j − λ = so`,λ(1).

(2) Concerning the terms ψ′s(i), we use (3.7) and (2.12) and write, for any j ≥ λ,

λ−∑̀
i=λ/2

|ψ′s(i)|
(j − i)2

√
λ− i � s

λ−∑̀
i=λ/2

`

λ3/2
√
λ− i(j − i)2

√
λ− i � s `

λ1/2

1

(j − λ+ `)2
.

We thus have
+∞∑
λ

λ−∑̀
i=λ/2

|ψ′s(i)|
(j − i)2

√
λ− i

√
j − λ � s

+∞∑
λ

`

λ1/2

√
j − λ

(j − λ+ `)2
� s `

λ1/2`1/2

and we obtain

(7.79)

+∞∑
j=λ

λ−∑̀
i=λ/2

|ψ′s(i)|
(j − i)2

√
λ− i

√
j − λ = so`,λ(1).

Combining (7.78) and (7.79), we see that the contribution in (7.75) coming from the terms “i
close to λ”, i.e. here λ/2 ≤ i ≤ λ− `, is o`,λ(1).

This concludes the proof of (7.74), which, combined with (7.73), yields (5.10). �

7.13. Proof of Lemma 5.5.

Proof of Lemma 5.5. For 3λ/4 ≤ |x| ≤ 4λ. For simplicity we consider LPλ,ϕ(λ), the proof extends
readily to LPλ,ϕ(x) for 3λ/4 ≤ |x| ≤ 4λ. We have, by definition

LPλ,ϕ(λ) =

∫
− log(λ− y)mλ,ϕ(y)dy.

The |y| ≤ 1
2λ part. We want to show:

(7.80)

∫ λ/2

−λ/2
log(λ− y)mλ,ϕ(y)dy � ` log2(λ)

λ
.

We recall that, by definition,

mλ,ϕ(y) =
−1

π

1√
λ2 − y2

Hλ,ϕ(y) =
−1

π

1√
λ2 − y2

PV

∫
ϕ′(t)

√
λ2 − t2

y − t
dt.

For |y| ≤ 1
2λ, we write

log |λ− y| 1√
λ2 − y2

=

(
log(λ) +O•

(
|y|
λ

))(
1

λ
+O•

(
|y|2

λ3

))
=

log(λ)

λ
+O•

(
|y|
λ2

+
|y|2 log(λ)

λ3

)
=

log(λ)

λ
+O•

(
log(λ)|y|

λ2

)
.

and thus

(7.81) log |λ− y| 1√
λ2 − y2

Hλ,ϕ(y) =
log(λ)

λ
Hλ,ϕ(y) +O•

(
log(λ)|y|

λ2

)
|Hλ,ϕ(y)|.
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Using (7.16), we get

(7.82)

∫ λ/2

−λ/2

log(λ)

λ
Hλ,ϕ(y) � ` log(λ)

λ
.

Using the bounds (2.7), we can check that∫ λ/2

−λ/2
|y||Hλ,ϕ(y)|dy � `λ log(λ),

and thus

(7.83)

∫ λ/2

−λ/2

log(λ)

λ2
|y||Hλ,ϕ(y)|dy � ` log2(λ)

λ
.

We obtain (7.80).
The |y| ≥ λ/2 part. We want to show:

(7.84)

∫
|y|≥λ/2

log |λ− y|mλ,ϕ(y)dy � ` log(λ)

λ
.

We use (2.7) and an elementary computation. The mass of mλ,ϕ outside [−λ/2, λ/2] is indeed O•
(
`
λ

)
.

Combining (7.80) and (7.84), we obtain (5.11).
For λ ≤ |x| ≤ 4λ. We can e.g. assume that λ ≤ x ≤ 4λ. write LP′λ,ϕ(x) as

LP′λ,ϕ(x) =

∫
1

x− t
mλ,ϕ(t)dt,

and we use (2.7). We have ∫ λ2

−λ

1

x− t
|mλ,ϕ(t)| ≤ 1

λ
,

and we focus on the remaining part t ∈ [λ/2, λ]. We write∫
λ2

λ
1

x− t
|mλ,ϕ(t)|dt �

∫ λ

λ2

1

x− λ+ λ− t
`

λ3/2
√
λ− t

dt =
`

λ3/2

∫ λ/2

0

1

(x− λ+ v)
√
v
dv.

An elementary computation shows that∫ λ/2

0

1

(x− λ+ v)
√
v
� 1√

x− λ
,

which yields (5.12).
For |x| ≥ 4λ. We write LP′λ,ϕ(x) as

LP′λ,ϕ(x) =

∫
1

x− t
mλ,ϕ(t)dt,

and, since mλ,ϕ has total mass 0, a first-order expansion yields

LP′λ,ϕ(x) � 1

x2

∫
|t||mλ,ϕ(t)|.

We can use (2.7) to compute
∫
|t||mλ,ϕ(t)|dt � ` log(λ), which yields (5.13). �
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