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CLT FOR FLUCTUATIONS OF LINEAR STATISTICS IN THE SINE-BETA
PROCESS

THOMAS LEBLE

ABSTRACT. We prove, for any 8 > 0, a central limit theorem for the fluctuations of linear statistics in
the Sineg process, which is the infinite volume limit of the random microscopic behavior in the bulk
of one-dimensional log-gases at inverse temperature 3. If ¥ is a compactly supported test function of
class C*, and C is a random point configuration distributed according to Sineg, the integral of B(-/¢)
against the random fluctuation dC — dz, converges in law, as £ goes to infinity, to a centered normal
random variable whose standard deviation is proportional to the Sobolev H/2 norm of ® on the real
line. The proof relies on the DLR equations for Sineg established by Dereudre-Hardy-Maida and the
author, the Laplace transform trick introduced by Johansson, and a transportation method previously
used for S-ensembles at macroscopic scale.

1. INTRODUCTION

1.1. The Sine-beta process. The Sineg process is obtained as the infinite volume, or thermodynamic,
limit of the microscopic behavior in the bulk of a one-dimensional log-gas.

Let 8 > 0 be a fixed value of the inverse temperature parameter. For N > 1, the probability measure
on RV given by the density

N 2
(1.1) dPyg(21,...,2N) := Z]\lwexp - Z—log\xi—xj\—&-ZN% ,
’ 1<J i=1
with respect to the Lebesgue measure on RY, where Z ~.,p is a normalization constant, is the canonical
Gibbs measure of a one-dimensional log-gas at (inverse) temperature 8. It corresponds physically to a
system of N particles interacting via a pairwise repulsive logarithmic potential, and confined by some
external field that we take here to be quadratic, for simplicity.

For f =1,2,4, the density Py g coincides with the joint law of the IV eigenvalues of certain classical
models of random matrices: the Gaussian orthogonal, unitary, and symplectic ensemble, respectively,
with a correct choice of the variance, due to the presence of 3 in front of >, z7. We refer to [Forl0]
for a comprehensive survey of this connection. In fact, for every § > 0, there exists a model of random
matrices with independent entries, known as the “tridiagonal model”, discovered in [DE02], whose random
eigenvalues behave like the particles of a log-gas at inverse temperature .

From a statistical physics point of view, one-dimensional log-gases are interesting toy models due to the
fact that interaction is singular and, most importantly, long-range: in contrast to many pair potentials
studied in the literature, the logarithmic interaction does not tend rapidly to zero with the distance
between the particles (in fact, not at all).

Under Py g, it is known that the particles typically arrange themselves in an interval approximately
given by [—2,2]. We consider this as being the macroscopic behavior of the system. To investigate its
microscopic behavior, we zoom in by a factor N.

We can see the random N-tuple Cy := (Nz1,..., Nxy) as a random, finite, point configuration in
R. The existence of a limit, or even of limit points, in some interesting topology, to the law of Cy is a
difficult question. It was shown in [VV09], and [KS09] (for a closely related model, whose limit turns
out to be the same) that when taking the thermodynamic/infinite volume limit, i.e. letting N — oo, the
random, finite point configuration Cy converges in law to some random, infinite point configuration on
R, whose law is called the Sineg process. In both cases, a description of Sineg is given through a system
of coupled stochastic differential equations.

Finally, since the topology of convergence is local, Sineg only captures the microscopic behavior “near
0”. One could ask instead for the limit of C translated by ¢N, where ¢ is some parameter. It turns out
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that for ¢ in (—2,2), the law of the limit is the same, up to a scaling on the average density of points. We
call this the bulk behavior. For ¢ = 42, one obtains the edge behavior, whose limit is named the Airyg
process. For |c| > 2, the limit point process is almost surely empty.

1.2. Main result: CLT for fluctuations of linear statistics.

1.2.1. Definitions. If C is a point configuration on R, and ¢ a continuous, compactly supported test
function, we will often use the notation [ ¢(z)dC(z) for

/ p@)dC(@) =3 o(p).

peC

Definition 1.1 (Fluctuations of linear statistics). Let ¢ be a function of class C°, compactly supported
on R, and let C be a point configuration on R. We define the fluctuation of the linear statistic associated
to ¢ as the quantity

(1.2) Flucty] (C) := / o(2)(dC(x) — dx).

Definition 1.2 (Rescaled function). Let ¥ be a test function, and ¢ > 0. We define the associated
rescaled test function ¢, as

(1.3) e :xH@(%) .

Definition 1.3 (H'/? norm on the real line). Whenever the following quantity is finite, we call it the
H'/2 norm of

We may observe, that e.g. when ¥ is of class C' and compactly supported, then H@HHl is finite.

Moreover, it is easy to check that the H'/? norm is invariant under rescaling as in (1.3).
1.2.2. Statement of the result.

Theorem 1 (CLT for fluctuations of linear statistics under Sineg). Let @ be a fized test function of class
C*, compactly supported on R, and for £ > 0, let @, be the rescaled function, as in Definition 1.2. Let C
be a random point configuration of law Sineg.

The following convergence holds, in law, as £ — oo,

2
Fluct[p/](C) = Gaussian r.v. of mean 0 and variance BH@HZ%

To the best of our knowledge, Theorem 1 is the first result concerning the fluctuations of smooth
statistics for the limit process Sineg at arbitrary values of 3.

1.2.3. Notation. Henceforth, we let 3 be a fixed test function of class C*, compactly supported in R, and
for £ > 0 we let ¢, be as in Definition 1.2. For lightness of notation, we drop the subscript ¢ and write ¢
instead of . Also, for simplicity, we assume that @ is supported in (—1,1), so that ¢ = ¢y is supported
in (—¢,¢).

We work with two parameters ¢, \. We will always assume that ¢, \ satisfy

A
1. 1 —
(1.5) OO<£<1000,

and we will use the notation a < b as follows
a=b < |a| < bl

where C is some multiplicative constant independent of £, \, provided (1.5) is satisfied. We will sometimes
write O () to denote a quantity that is < b. Most implicit constants will depend on the test function 3.
If A is a quantity depending on ¢, A, we use the notation A = 0;1(1) to denote the fact that
lim lim A=0.

l—00 A—00
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We let A be the interval (—A, \).
All the expectations, denoted by E, are expectations under Sineg, and all the probabilities, denoted
by P, are probabilities for Sineg.

1.3. Strategy of the proof and connection with other works.

1.3.1. Strategy of proof. The proof relies on three main ingredients:

(1) The DLR equations of [DHLM13].
(2) The Laplace transform trick of [Joh98].
(3) The transportation method inspired by [BLS18].

The DLR (for Dobrushin-Landford-Ruelle) equations provide a version of the Gibbs measure (1.1) for
“N = 4 oo”, and thus give a representation Sineg as an infinite-volume Gibbs measure, allowing for a
“statistical physics approach”. We state these equations precisely in Section 6.2, let us think of them as
describing Sineg, in any interval, as a mixture of Gibbs measures resembling Py 3.

The CLT for fluctuations of linear statistics of log-gases has been proven by [Joh98] in the context
of Hermitian random matrices, stated as a limit in law as NV — oo of fluctuations at macroscopic scale.
A key point of the proof is the following observation: forming the Laplace transform of the fluctuations
of ¢ amounts to computing the partition function of a log-gas with a perturbed external field, where
%xf in (1.1) is replaced by %:cf + sp(x;), where s is small, and related to the parameter of the Laplace
transform. More precisely, one is led to consider the ratio of the perturbed partition function and the
original partition function, and the argument boils down to proving fine estimates of this ratio.

One way to compare the partition functions is to use a change of variables, or transportation method,
asin e.g. [Shcl4], [BEG15], [BLS18]. It effectively shifts the focus from the external field to the associated
equilibrium measure, in the sense of logarithmic potential theory. Then the question becomes to compute
the perturbed equilibrium measure, to push the original one onto the perturbed one by some change
of variables (or transportation map), and to use this transport to estimate the ratio of the partition
functions. This is closely related to the “loop equations” approach.

Our proof is in the same spirit, with several modifications:

e The papers cited above treat linear statistics at macroscopic scale, and consider the limit in law as
N — oo of Zi\; o(x;), when (z1,...,xy) are distributed according to a Gibbs measure similar to Py g,
with a possibly more general choice of external field. The CLT is also known to hold at mesoscopic
scale, when ¢ is taken as 3(-/N°), for § € (0, 1), see [BL18].

In contrast, the present work deals with the microscopic scale, and with the infinite process itself.

Rescaling functions as in (1.3) may be understood as considering “large microscopic scales”.

e Even for a compactly supported test function, the particles in the support feel the interaction of the
infinite, exterior configuration, which acts on them as a random external field. This new element of
the analysis is specific to working with the infinite process.

e When comparing the partition functions, there is usually a term (here Mains, see (3.14)) whose mag-
nitude is a priori of order 1, and must then be studied more carefully to show that it is in fact o(1).
This can be done by a technical bootstrap argument (in fact, this way, one can even obtain an all-order
expansion of the partition function as in [BG13]) and another approach uses a trick, relying on the
independent knowledge of the partition function up to order N, as in [BLS18].

Here, by recasting a priori bounds on fluctuations in terms of discrepancies, and by using good

discrepancy estimates for Sineg, we are able to show directly that Mainy is o(1).

1.3.2. Connections with other works. When 3 = 2, the point process acquires a particularly rich deter-
minantal structure, allowing for many explicit computations. In this case, the CLT for fluctuations of
smooth enough functions was known since [Spo87], see also [Sos00]. Let us observe that, for 8 = 2, the
CLT is known to hold as soon as the test function is in H'/ 2(R), to be compared with the requirement
that @ € C2 here. The optimal regularity condition needed in the general 3 case is an open question.

Several facts concerning the number of points under Sineg have been proven. A CLT follows from
[KVV12], large deviations were proven in [HV15, HV17] and a maximal deviation result in [HP18]. The
transportation strategy does not accommodate well to non-smooth functions like indicator functions, and
we are unable to easily retrieve these results with the present techniques.

The rigidity of the process in the sense of Ghosh-Peres, i.e. the fact that the knowledge of the
configuration outside a given compact set almost surely prescribes the number of points in that set, was
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proven by [CN18], and also obtained in [DHLM18] in a very different way. The proof of [CN18] follows
the approach of [GP17] and relies on the fact that the variance of linear statistics is controlled by the
H'/2 norm of the test function, which had been established for random matrix models and can be passed
to the limit. We believe that our “statistical physics” approach could yield similar bounds, and hence the
rigidity result, but one needs to go over all the estimates beyond the “rescaled cases” ¢ = ¢, = @(-/¥)
and state them in full generality, with controls depending more precisely on ¢, we do not undertake this
here.

1.3.3. Plan of the paper.

e In Section 1.6, we discuss discrepancy estimates for the Sineg process and state an a priori bound
on the fluctuations on linear statistics, in terms of the discrepancies. We will rely constantly on this
bound in order to control the error terms in the Laplace transform expansion.

e In Section 2, we define the perturbation measure, which formally corresponds to the change induced on
the average density of points when treating the test function ¢ as an additional external field applied
to each particle. This perturbation measure is slightly singular, and we work in fact with a regularized
version, the approximate perturbation measure .

e In Section 3, we define the perturbed measure, the transport map from the original measure (the
constant density) to the perturbed one, and we expand the energy along this transport.

e In Section 4, we compare the interaction energy before and after transport, and show that most terms
are negligible.

e In Section 6, we combine all previous elements to give the proof of the CLT.

e Many parts of the argument are rather elementary, but involve some lengthy computations. For
legibility, we have postponed most of the computations to Section 7.

1.4. Semi-norms. We will often use ¢ to denote the k-th derivative of g.

Definition 1.4 (Semi-norms and local semi-norms). Let g be a test function, compactly supported on
R. For k > 0, if g is assumed to be of class C¥, we let

gl := sup [¢*) ()],
and for z in R, letting V,. denote the neighborhood V,, := [x — 3,z + 3|, we write:

(1.6) lglk,v, = sup [g™(y)].
yEVL

The following bounds will be used repeatedly:

1 _ k _ l*k
(L.7) el = @l el e = l@llzet7 ™

1.5. Discrepancy and discrepancy estimates. Throughout the paper, an important role is played
by the discrepancy estimates, for they provide an a priori bound on the size of fluctuations that we will
repeatedly use to control error terms. If C is a point configuration and I is an interval, we denote by C;
the restriction of C to I.

Definition 1.5 (Discrepancy). Let C be a point configuration on R, and let I be an interval. The
discrepancy of C in I is the difference between the number of points of C in I and its expected value,
namely the length of I. We write

Discry := |Cr| — |I]| = /11(dC(x) —dzx).

If a,b are integers, with possibly a > b, we let
b
Discri, ) ::/ 17(dC(z) — dz).
It is known, see e.g. [LS17][Lemma 3.2] that, if I has length at least 1, we have

(1.8) E [(Discrf)ﬂ < |I|, E[Discr;|| < /1.
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Moreover, it was shown in [LS17][Remark 3.3] that, for Sineg, it holds

| . 2
lim inf EE {(DISCI[_RVR]) ] =0,

— 00

and careful inspection of the argument yields the stronger statement, proven in [EHLI18]

(1.9) E [(Discr[_mﬂ = o(R).

Of course, since Sineg is stationary, it implies that the variance of the number of points in any interval
of length R is o(R).

1.6. A priori bound on the fluctuations. We let El be the quantity
151', = ‘DiSCI‘[O,i]‘ —+ |DiSCI‘[i7i+1]| —+ 1

Proposition 1.6 (A priori bound on the fluctuations). Let g be a test function of class C*, compactly
supported on R.

1. Di[C]

(1.10) ’/ )(dC — dux)

1=—00
Moreover, for \ fized we may choose to replace EZ by either ﬁZLEft or ﬁ?ight, with
D = Discr(_y | + [Discr; iy + 1, D" := [Discr x| + [Diser, g + 1.
The proof of Proposition 1.6 is elementary, we postpone it to Section 7.1.

Remark 1.7 (Bounds on D, DUeft DRight) " In view of (1.8), for |i| > 1, we have
N2 -
(1.11) E [(Di) } <lil, E[D] 2 VA,

and in fact we have, in view of (1.9), as |i| = oo

(1.12) E{(f),)? =o(li]), E[Ez} :0( |¢|).

We obtain similar estimates for D, resp. DN when replacing |i| by |A + i, resp. |X — .

2. THE PERTURBATION MEASURE

2.1. The Cauchy principal value.

Definition 2.1 (Cauchy principal value). Let g be a test function of class C!, compactly supported on
R. For z in R, we define

t +oo _ _
(2.1) PV/L)dt = / gzt —gle—u),
t—x 0 u
where PV stands for “principal value”.
Definition 2.2 (The quantity 95 ). For z in R, we define ) ,(x) as

A /)\2 t2
(2.2) ap(z) : —PV/ P ®) g
t—x
Remark 2.3. Since ¢ is at least, C? and compactly supported in (—/¢,¢), we can see ¢,, defined by
(2.3) da = VA2 =120/ (t),

as a compactly supported function of class O, so the “principal value” notation in (2.2) makes sense, in
view of Definition 2.1.
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2.2. The perturbation measure.

Definition 2.4 (The perturbation measure). For z in (—\, \), we define my () as
( ) - /—1
m x): k3]
A, N2 72 A,

The density my , will be called the perturbation measure.

(2.4) ().

Definition 2.5 (The logarithmic potential of my ). For z in R, we let

(2.5) LPyo(z) == /—log |z — y|my o (y)dy.

Lemma 2.6 (Properties of the perturbation measure). The density my , is integrable on A, of total mass
0. The logarithmic potential generated by my , is well-defined and satisfies the following equation for x
in A

(2.6) (LPa) () = ¢/ ().

These properties are well-known and we refer to the book [Tri57], see also Section 7.2.

2.3. Bounds on the perturbation measure.

Lemma 2.7 (Bounds on the perturbation measure my ). We have

2.7) 7 x| < 20,
2.7 my e = ﬂ 3
xz\/m |1'| 2 20
1
= |lz| < 2¢,
(28) mg\lgp = ¢ VAL > 20
|z|VA(A—]|z])3/2 + |x\3\/)\—|x\ |£U| > 20
i <2
2) [ x| < 2¢,
Y e AL o] > 20

4 4
N0 T BN o Al

Lemma 2.7 follows from elementary computations, see Section 7.3.

2.4. The approximate perturbation measure. The perturbation measure my , satisfies the exact
relation (2.6), but is singular near £X. We will work instead with an approxzimate perturbation measure
m) ., constructed below, which is more regular, and in fact vanishes near the endpoints. Of course,
passing from my ,, to m ., induces an error on the logarithmic potential, which we need to control.

Lemma 2.8 (The approximate perturbation measure). There exists a function my , of class C%, com-
pactly supported in (—\, \), satisfying:

(1) ﬁil)\’cp =my, on [-A+4,A—1].
(2) The masses of my , and my , coincide near each endpoint, i.e.

— A+ —A\+£ A A
(2.10) / LLIBW :/ My, / LLIBW :/ LW
- - A—¢ A—4

(8) For x in [—A\, =X+ U [X— £, )], and for any k = 0,1,2 we have the bound

7@l 1 ¢

with implicit multiplicative constants depending on k and @, but not on £, \, x.
(4) My, is identically 0 on [—X, =X+ £/4] and on [X — £/4, \].

The construction of my ,, is given in Section 7.5.
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Lemma 2.9 (Additional properties of my ).

3 |z < 2¢,
(2.12) T (@) < £ 20 < |z] < N/2
. n‘l)\7 Tr) )
’ wra— M2< |z <A-4
s A=< e[ <A
T |z| < 2¢
4
— 20 < |z| < A/2
~(1 z3 = = )
(2.13) af) (@) <P, N
)\3/2()\—|w\)3/2 / = |$‘ = )
Xemre A=l fz[ <A
@ || < 2¢
0
- £ 2 < |z| < A/2
2.14 m? (z) =< { S =s
(2.14) ho (@) W A2< |zl <A,
N A=< Jaf <A
(2.15) [mxpllzr < 1.

Proof. The first three inequalities are consequences of (2.7), (2.8), (2.9), for |z| < 2¢ and 2¢ < |z| < A —¢,
because we do not change the measure there. They follow from (2.11) for A — ¢ < |z| < A
To obtain (2.15), we split the integral into four parts:

/ [ (1) + / o (8)]dt + / o (8)]dE + / i (1),
|t]<2¢ 20<|t|<A/2 A/2<[t|<A—L A—L<[EI<A

then (2.15) follows from (2.12) and an elementary computation. O
2.5. The error on the logarithmic potential.

Definition 2.10 (Error on the logarithmic potential). We introduce the quantity
(2.16) ErrorLPy ,(z) = / log [z — | (Fixp(y) — map(y)) dy.

Proposition 2.11 (Error on the logarithmic potential). We have

_ Left Right
ErrorLPy , = ErrorLPy’ " + ErrorLP " ™,

where ErrorLPLett ErrorLPiﬁght satisfy:

A0
£3/210g(\) - £3/210g(\)

Left Right
(2.17) ErrorL Py (z) < —en ErrorLP 2" (z) =< —en for x| < 2.
and

Left @ 05/2
(2 18) (EI‘I'OI'LPA7¢) (.T) j m ‘x — (7)\)| 2 21€,
) ; (€3]
(EI‘I‘OI‘LPI/\{:%M) (1’) j 4)\3/26(5;2_1)2’ ‘)\ - CU| Z 20.

The proof of Proposition 2.11 is given in Section 7.6.
2.6. The variance term.

Lemma 2.12 (The variance term). We have the following identity

(2.19) // —log |z — ylmy o (z)my ,(y)dedy = 2||¢||;% + ErrorVar,
with ErrorVar bounded as follows

3 log(\ 02

(2.20) ErrorVar < 2\7%() -
In particular we obtain

(2.21) s*ErrorVar = 520y (1).
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The proof of Lemma 2.12 is given in Section 7.7.

3. TRANSPORTING TO THE PERTURBED MEASURE

3.1. The perturbed measure. The Sineg process has intensity 1. Adding a perturbative external
field will formally change the average density of points from a constant density to the perturbed density
(1 + my ,(x))dz. Since we work with the approximate perturbation my ., it leads to the following
definition.

Definition 3.1 (The perturbed measure). Let spax be defined as
1 ~ ~ _
(31) Smax = 5 max (1a |m)\,<p|0a ||m)\,90||L1) ! .

For any s such that |s| < spax, we define the perturbed measure ug as
(3:2) o(@) = 1+ s (@),

Of course, us depends on A, @, £ but for simplicity we only keep track of the parameter s. In the following,
s is always assumed to satisfy |s| < spax-

Lemma 3.2 (Properties of the perturbed measure). The density s is of class C?, is bounded above and
below on [—\, A] by universal positive constants, and satisfies

A A
/ ws(x)de = / ldx.
-2 —A

The density ps is equal to 1 on [=X, =X + £/4] and on [A — {/4, )]

Proof. This follows directly from the construction of my ., as in Lemma 2.8, and from the choice of Syax
as in (3.1). O

3.2. Energy splitting. Let A be the interval A = (=, \), and let C be a point configuration in A. Let
¢ be the diagonal in A x A.

Lemma 3.3 (Energy splitting around us). The following identity holds:

83 [[ sl —al(dCn) —do)(ac(y) ~ o)
=[] —logle - yl(de(@) - dun(e))(dC(y) - di (1)
(AXA)\o

+ 25/ LPy o (2)(dC — dx) + 23/ ErrorLPy o (x)(dC — dx)
A A
P 2
—2s ||<p||H% — s“ErrorVar,

where LPy ., is the logarithmic potential generated by my ,, as in (2.5), the error term ErrorLP, , is
defined in (2.16), and ErrorVar satisfies (2.20).

We postpone the proof of Lemma 3.3 to Section 7.8, it simply consists in putting together the various
definitions given above.

3.3. The transport map.
Definition 3.4 (Transport map). We let F, be the cumulative distribution function of the density ps

F ::xH/)\Ms(y)dyv

and we define the transport map ®; on [—\, \] as
(3.4) y(x) == F Hx + \),

S

so that @4 satisfies, for x in [—A, A], the identity

P, (x) z
/ ps(y)dy = / ldy.
—A -
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Lemma 3.5 (Properties of the transport map). The map ®, is a C*, increasing bijection from [—\, \] to
itself. The push-forward of the constant density 1 on [—\, A] by @ is equal to s, i.e. for any measurable
function f we have

/_1 fo®s(x)dr = /_1 F(@)ps () da.

Let Idy be the identity map from [—\, A] to itself. The transport map ®s coincides with 1dy near the
endpoints, more precisely on [—X, =X+ £/4] and [\ — £/4,\]. We define ¢ as

(3.5) s = &g — Idy.
The map s satisfies
P, (x) _
(36) vl ==s [ o,

i particular, we have the rough control
(3.7) [¥slo <1, dce [0 —Tdy|o <1,

and we also obtain

(3.8) P (x) < slmx oy,
(3.9) D& (@) 2 slm gl
(3.10) P (@) 2 slmaglo,v, -

The proof of Lemma 3.5 is given in Section 7.9.

Lemma 3.6 (Finer bound on ;). We have

z+1 A
(311) vle) <5 [ apldy o) <s [ )l
—\ z—1
We obtain the following bounds, which improve on (3.7):
1 2| < 10¢
(3.12) V(@) X 5% 4 1 100 < |z| < \/2,

VA= lz] 2l > N/2
The proof of Lemma 3.6 is given in Section 7.10

Definition 3.7 (The slope of the transport). For x,y in A we define Ay(z,y) as

(3.13) A(r,y) = W

with the natural convention that As(z,z) = ¥, (x).

3.4. Energy expansion along a transport. We introduce the following notation.

(3.14) Main,(n) := //A L log |1+ Ag(z,y)|(dn — dz)(dn — dy)
(3.15) RE; := —/log,us(x),us(x)dx
(3.16) FluRE(n) := — /log s © Dy (x)(dn — dx).

The term Maing(n) will be the main term in the energy comparison below. The term RE; is the relative
entropy of ps, which is independent on the point configuration, and FIuRE(n) is the fluctuation of the
relative entropy functional, which depends on 7.



10 THOMAS LEBLE

Lemma 3.8 (Energy expansion along a transport). Let n be a point configuration in A, let ns be the
push-forward of the configuration n by the map .
We have

(3.17) / /( ool I @) — ) ) — )

- / / “log|e — yl(dn(z) — dz)(dn(y) — dy) + Main,(5) + RE, + FIuRE, (1).
(AXA)\o

Proof of Lemma 3.8. Since, by construction, ®4 transports 1 onto 7, and the constant density da onto
s (x)dx, we may write

/ / “log |7 — yl(dns () — s (2)dx) (dna(y) — s (y)dy)
(AXA)\o
— [[[ ~logitu(e) - @.()l(dn ~ d)(an - dy)
(AXA)\o
:// —log | — |(dn — da)(dy — dy)
(AXA)\o

+// —log |1+ Az, )|(dy — dz)(dy — dy),
(AXA)\o

where we have used the definition ¢, = ®; — Id, and the definition of Ay as in (3.13).
Since A; is continuously extended by ¢, on the diagonal, we may write

// “log 1+ Au(z,)|(dy — dz)(dn — dy)
(AXA)\o

— [ 1o+ Awldn — de)dn — dy) + [log|1+ (el
AXA

The first term in the right-hand side corresponds to the definition (3.14) of Main,. We claim that

(3.18) / log |1+ 4" ()| (dn — dz) = / log & (2)(d — dz) = RE, + FIuRE, (7).
To prove (3.18), let us observe that 1+ ¢.(x) = ®%(x) and, by definition of a transport, we have
1
14 ) (2) = 2) = ————
) = @) = s

We obtain
Jrogit+ vitaidn = [ 1o @) = - [og . o 2w
Finally, let us write
f/logus o @y(x)dn = */logus o @y(x)dr — /log s © @s()(dn — dz).

The first term in the right-hand side can be seen, using the fact that @, transports the Lebesgue density
onto pig, as

_/IOgﬂ's 0 ®y(z)dr = _/IOg ps () ps (z)de,
so we obtain
(3.19) / log [1+ 4, (2)\d(z) = / log & (z)dij () = / log e (&)a (@) daz — / log 10 © @, () (di] — d).

Using the notation introduced above in (3.14), (3.15), (3.16), this concludes the proof of (3.17). O
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4. COMPARISON OF ENERGIES I: THE INTERIOR-INTERIOR INTERACTION
4.1. The main term in the comparison. We have
Proposition 4.1 (The main term is often small).
E[|Maing|] = sog x(1).

The proof of Proposition 4.1 is rather elementary, but involves cumbersome computations. We post-
pone it to Section 7.11.

4.2. The relative entropy term.

Lemma 4.2 (The term RE; is small). We have

2
(4.1) RE, = — /logus(x)us(z)da: ~< 57
In particular, we obtain
(4.2) RES = 820g))\(1).

Proof. We write ps = 1+ smy ,,, expand the log and use the fact that my , has total mass 0. We obtain

/logﬂs(x)us(x)dx = / (smy,e + O, (325131@)) (1+smy,) =< s2|\€1§’@|\L1.
Using (2.12), we see that HtﬁinLl = 1, which yields (4.1). O
4.3. The fluctuations of the relative entropy term.

Lemma 4.3 (The fluctuations FIuRE4(n)). We have
A

(4.3) FluRE(n) = —/log,us o ®y(x)(dn —dx) <s Z |IT‘1>\,¢|17V15¢.
i=—A

Proof of Lemma /4.3. We start by computing the derivative of x +— log s o ®5(x) as

0 ()] P4 (x)
1 < ¢s / _ [/J’S 0 Ls s .
(log s 0 @) () 20 D (1)
Using the fact that ®; is bounded by 1, that ® and ui are bounded, and that p; =m) , we obtain

(log p1s © @) () < s[@x v, -

Moreover, since @, is the identity near the endpoints, and us = 1 near the endpoints, the map x —
log 15 0 @ (z) is compactly supported. Applying Proposition 1.6, we obtain (4.3). |

Corollary 4.4 (The term FIuRE;(n) is often small). We have
(4.4) E [|[FIuRE;(n)|] = soeA(1).

Proof. In view of (4.3), we use the discrepancy estimate (1.11) and the estimates (2.13) on the first
derivative of my . We obtain

2/2 K\f A
Zlmwle%Z\f Z\[ s Zﬁer; ﬁ,\?)/ze?’/z’

i=—A =24 3 4
and thus

Z |m>\<p|1VD‘| \/~ \/»/\ 057)\(1).
==\

4.4. Conclusion. Combining Proposition 4.1, Lemma 4.2, Corollary 4.4, we obtain:
(4.5) E [|Maing| + |[FIuRE|] + |RE4| = sor (1) + s20p 1 (1),

which, in view of Lemma 3.8, says that the interior-interior interactions before and after transport are
often very close.
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5. COMPARISON OF THE ENERGIES II: THE INTERIOR-EXTERIOR INTERACTION

5.1. The difference field.

Definition 5.1 (The difference field). Let n be a point configuration in (—A,\), and let ns; be the
push-forward of n by ®,.
For x ¢ (—\, A), we let DF4(n)(z) be the electrostatic field created at by the difference 1, — 7, i.e.

CBY DF. (@) i= [ ~logo | (dn. () ~ dn(w)).
Lemma 5.2 (Decomposition of the difference field). We have

(5.2) DF,(n)(z) = sLPy ,(z) + sErrorLPy ,(z) + ErrorDF(n)(x),
with LPy , as in (2.5), ErrorLPy o, as in (2.16), and ErrorDF4(n) defined by

(5.3) ErrorDF,(n)(x) = —/log (1 - M) (dn(y) — dy) .

Proof. We simply write ns —n = (ns — ps) + (us — dy) + (dy — n). We have
[ =108 le ~ yltdn. ) = i) = [ ~1ogle ~ @, (dnty) ~ dy)
and we define ErrorDF,(n)(z) as the term such that
(6.4) [ ~logle— @.()ldns) ~ dy) = [ ~loglx ~ yl(dn(y) ~ dy) + ErrorDF (1) o),
which coincides with the expression given in (5.3). By definition, we obtain
OF, (1)) = [ ~108 & — 411 (y)dy — dy) + ExroxDF. () (o).

Since ps(y) = 14 smy ,(y), the first term in the right-hand side is the logarithmic potential generated
by smy ., which is given by the sum sLP) ., + sErrorLPy . O

Lemma 5.3. Assume x > \. We have

A ) )
|15 (2)] V5 ()] ~Right
(5.5) ErrorDF,(n)(z) < o+ L) DRie
: i§%<w—w =)
A . L -
(5.6) (ErrorDF,(n))’ (z) =< Z ( |9 (1)] n LAQ] )D?ght'

-7 T

Proof. Let us introduce the auxiliary function

(5.7) H(z,y) := —log (1 -

we re-write (5.3) as

ws(y)> 7

r—y

EhTorDFSOﬂ(x)::][Fﬂlwy)(dﬂ(y)-dy)~

In particular, for z > A\, we may differentiate under the integral sign and get

@mmamﬂmz/@wMMM@—@»

Since 1 vanishes near the endpoints, for any « the function H(z, -) is compactly supported with respect
to the second variable. Moreover since 9s(y) = 0 for y > A — £/10, and = > A, we may write

z—y—vs(y) mr—y.
A direct computation shows that

BECAC) O]

(5.8) OMay) = =

Tl =yl e —y¥
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as can be checked informally by treating s as a perturbation, writing

H(z,y) ~ Yul),
r—y
and differentiating. o
Using the a priori bound on fluctuations of Proposition 1.6 with discrepancy D?‘ght, and (5.8), resp.

(5.9), we obtain (5.5), resp. (5.6). O
Corollary 5.4 (The contribution of ErrorDF; is often small). In particular,

(5.10) E [ } = sopx(1)

/ ErrorDF,(C)(x)(dC — dx)

We give the proof of Corollary 5.4 in Section 7.12.

5.2. The logarithmic potential and its fluctuations. In this section, we consider the logarithmic
potential LPy ., generated by my ,, as defined in (2.5).
We state some bounds on LP) , and its first derivative.

Lemma 5.5 (Controls on LP) ).

1 2
(5.11) LPy o (z) < M7 2| € [A/2,2A]
L
!/
llog(A
(5.13) LP, ,(z) < xQ( ) el > 4

We give the proof of Lemma 5.5 in Section 7.13.

Lemma 5.6 (Fluctuations of the logarithmic potential). We have

(5.14) /(LPAW(@") — ¢(x))(dC — dz) X FluLP 4 + FluLP5 + FluLP¢,
with
515 FIuLP A < . ¢ Right o elOg()‘)ﬁRight M élogz(/\)f)mght
(515)  FllPa= 37 Soi DI 3 RS DI e Y SRS D,
i=A+2vX =42 i=A+2vVA
—2vX
Clog?(\) P -
(5.16) FluLPBjW Z D;,
li|=A—4v/X

Llog?(\) . .
(5.17) FluLPs =< — (\A—i— |D1scr[/\_4ﬁ)>\+4ﬁ]| + ‘DISCI‘[_)\_4\/X7_/\+4\/X]|> )

Strictly speaking, (5.14) should be complemented with terms corresponding to the left endpoint —\

and involving the discrepancy ELeft, see below. They are bounded the same way, and for simplicity we
omit them

Proof. Let x1 be a smooth non-negative function such that

(5.18) x1=1on [A+4VX 400) x1 =0on (—oo, A+ 2V},

Wlth ‘X1|0 S 1 and ‘Xl‘l j %
Let x2 be a smooth non-negative function such that
(5.19) X2 =1on[—00,—-A —4VA) x2=0o0n [-\— 2V, +00),

with |x2lo < 1 and |x2]1 < %
Finally, let x3 be a smooth non-negative function such that

(5.20) x3=1on [-A+4VX A —4VA] x3 = 0 outside [—\ + 2V A, A — 2V,
with ‘X3|0 S 1 and ‘X3‘1 j \%
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We write trivially LPy ,(z) as the sum

LPx o (2)x1(2) + LPx o (2)x2(x) + LPx o (z)x3(2) + LPy o (2) (1 — x1(2) — x2(2) — x3()),

and we integrate these terms against dC — dzx.
The x1, x2 terms. We have

(LPxox1)' (2) = LP) ,(2)x1(2) + LPa(2)X) (2),

where y/ is supported on [A 4+ 2v/A, A + 4v/A] and bounded by O, <i> Applying Proposition 1.6, we

VA
obtain
= . A+4vV/A o
J@Paox@—de = 3 WPk u DI 3 LRl DI
i=A+2VA i=A+2v/X

and using (5.11), (5.12), (5.13) we may write
4\ A4vVA /o 2()\)

¢ ~Right = Clog(N) ~Right g ~Right
/(LPA,@XQ (dC—dz) = > WDi + 2 Dit+ > —er Di -
i=A+2vVA i=4A i=A+2vV\

Of course, LPy X2 satisfies the same inequality, with D" instead of D}'&™ and this yields (5.15) (we
only keep track of the “right-hand” term, the estimates on “left-hand” term are the same).
The 3 term. We have

((LPxg = 9)x3) (2) = (LPx, — ) (2)x3(2) + (LPx o (x) — @)x5(@),

but we know by (2.6) that (LPy, — ¢)" = 0 on the support of x3, and moreover ¢ is supported outside
the support of x4, so we have in fact

((LPxy = 9)x3)" (z) = LPxp(2)x5(2),

which is supported on [=A + 2v/A, =\ + 4V A U [A — 4V A, A — 2¢/)]. We use Proposition 1.6 and (5.11)
and the fact that |y3|; < —= to get

N
A—2vVX 9
/(LPA,W —@)xs(dC —dz) = > D/Og)\o‘)ﬁ,
[i|=A—4v/X

which yields (5.16).
The 1 — x1 — x2 — x3 term. The function 1 — x; — x2 — X3 is supported near the endpoints, on
A — 4VX\, A + 4] and on the symmetric interval. We use (5.11) to get

/LP)\W(l — X1 — X2 — Xg)(dc - dl‘)

log?(\) ~ !
= A (ﬁ-&- \D1scr[/\—4ﬁ,/\+4ﬁ]| + |D1scr[_,\_4ﬁ7—/\+4ﬁ]‘) ,

where the last parenthesis is, up to a multiplicative constant, a bound on the the number of the points
in the intervals, and on the length of the intervals. This yields (5.17). O

Corollary 5.7 (The contribution of LP) , — ¢ is often small). We have

flog®(\)

(5.21) || [wPsto) - wloniac - ao)| < S

In particular,

(5.22) E H [@Pssto) = et - )

} = oga(1).
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Proof. For FluLP 4, we use the estimate (1.12) in the form
E[D;"#"] < Vi = A,
and we get
42 - = A4V g2 (
£ vi-2 \f .
E[FllPs) < > N + Z Clog(N)—5 + Z WQ Ny
i=A+2vV/A i=4A i=A+2vVA

which, after computation, gives
Llog(N)
VA

E[FluLP 4] <

For FluLP g, we use the estimate (1.12), in the form

E[D:] = Vi,
and we get
Clog?(N\) . Llog®(\)
E[FluLPg] < 572 A= U
Finally, using the discrepancy estimate (1.8), we have
log® (A
E[FluLpo] < 108 Y
VA
The dominant error term is thus %, which proves the result. O

5.3. Fluctuations of the error on the logarithmic potential.

Lemma 5.8 (Fluctuations of ErrorLPy ). We have
(5.23) / ErrorLP}°(dC — dz) < A+ B +C,

with

—A=3¢
D S S P
i=—A\+34 i=—00 A Z)

—A+4¢
B< Y fiog(k) Pleft
izf/\74£>\ \/z

(V/Tlog())

C = (¢ + |Discri—x_a¢,—r+4q]|) A3/2

Pnght

and similarly for ErrorL Ao 5?@“.

, replacing 5%6“ by
Proof of Lemma 5.8. Let x be a smooth non-negative function such that
(5.24) x=1on[-A—3(,—A+3{, x=0outside [-\—4¢, —\ + 4/],
with |x]o < 1 and |x|1 = %. We write trivially

/ Errorl PLf(dC — dir) = / Errorl PYf () () (dC — dir) + / Errorl PL™ () (1 — x(2)) (dC — d).
We have
(5.25) (ErrorLPLeft( X))/( )= (ErrorLPLeft) (2)(1 = x(x)) +Err0rLPLeft( (1 —x) ().

Let us observe that 1 — y is supported outside [-A — 3¢, A + 3¢] and bounded by 1, while (1 — x)’ is
supported on [\ — 4¢, =X — 3(] U [-A + 3, =\ + 4{] and is bounded by O, (7).
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Using Proposition 1.6, we obtain

—A—=3¢

+oo
(5.26) / ErrorLP} (z)(1 — x(2))(dC — dz) < < oo+ > ) |ErrorLP 51 v (i) DI,

i=—A\+3¢ i=—00

—\+4L 1
+ Z |Err0rLPI>ji£t lo 7 D%Eft .
i=—A—40

On the other hand, since x is supported on [—\ — 4¢, —\ + 4], we have a trivial bound

(5.27) /ErrorLPI)fg(x)X(x)(dC — dx) < (€ + |Discri_x_a¢,—xt4|) |Err0rLPI;i£t|o,
where ¢ + |DiSCI‘[,)\,457,)\+4£]‘ is (up to a multiplicative constant) a bound on the number of the points
in the interval, and on the length of the interval.

We let A be the first line of (5.26), B be the second line of (5.26) and C be the right-hand side of
(5.27), and we use the bounds of Proposition 2.11 to obtain (5.23). O

Corollary 5.9 (The contribution of ErrorLP) , is often small). We have

052 1og (A
(5.28) E [/ ErrorLPy ,(dC — dm)] = T()
In particular,
(5.29) E [/ ErrorLPy ,(dC — dsc)] = opA(1).

Left

N - We use the discrepancy estimate (1.11) in

Proof. Tt is of course enough to prove (5.28) for ErrorLP
the form E[DLe] < /i + A], and write

3/2 +o0o :
A= g)\B/f \zé = >\€€2'
=3¢
Using again E[Df] < \/[i + [, we have

Llog(N) 2 2llog(X)

B = g/\3/251/2 T \3/2
Finally, we use the discrepancy estimate (1.8) to get
- 003/% log(\)
- )\3/2 )
and this is the dominant term. |

6. PROOF OF THE CENTRAL LIMIT THEOREM
6.1. A good event.

Lemma 6.1 (Defining a good event). For any point configuration C, and A = (=\,X\) fized, let us
decompose C as C = v U ypc, where

v=CNA, ~yxre=CnNA“.

We let vs be the push-forward of v by ®s. We will consider C and Cs, where (in fact, since @y is the
identity outside A, Cs itself is also the push-forward of C by @ ):

Cs := Vg Uvpe.
There ezists an Eventy ¢ satisfying

(6.1) P(C € Eventy ) =1 —0s1(1), P(Cs € Eventyy) =1 — 0px(1),
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such that, if C € Eventy ¢
Maing(v) = sog A (1),
FIuRE;(v) = sog A (1),

/u ErrorDF,(v)(2)(dyae — dx) = s0p2(1),
s [ Prs(@) ~ ) @l U] — o) = s00a(),

s/ErrorLPAW(:c)(d [Vs Uvae] — dx) = sog (1),

and moreover
(6.2) ICN(=¢,0)] = .

Proof. The control (6.2) is needed for technical reasons, in order to ensure that the number of poins in
(—¢,2) is bounded. Since the mean number of points is 2¢, the event (6.2) is of course very likely.

Using Proposition 4.1, Corollary 4.4, Corollary 5.4, Corollary 5.7 and Corollary 5.9, and applying
Markov’s inequality, we see that there exists an event E of probability 1 — o, x(1) on which the three first
bounds hold, and moreover

s / (LPao(@) — @) (d[v Uyac] — d) = s0p(1),

S/ErrorLPAA,(p(;v)(d [V U~ype] — dz) = sopA(1).

Moreover, we argue that
P((vs Unyae) € E) =1 —oga(1).

Indeed we know, by construction, that the transport map @ is close to the identity map, with &, — Id,
bounded by 1, see (3.7). So if C5 = vs Uype is the push-forward of C = v U ype by @y, we have for any
z,y €R

|Discri, 1|[Cs] = |Discrig—1,y41)[(C) + 1.

Any estimate involving the discrepancies of C can thus be converted into the estimate on Cs. We then
take Eventy ¢ to be the intersection

En{Cs € E},
for which the last two bounds hold as stated. O

6.2. The DLR equations. The DLR formalism for Sineg is a statistical physics representation of the
point process as an infinite volume Gibbs measure. Before stating the result of [DHLM18] in a convenient
fashion for the present paper, we need to introduce some notation.

Definition 6.2 (Infinite volume Gibbs kernel). Let A > 0, and let A := (=, \). Let v be a point
configuration in R, and n be a point configuration in A. We aim at defining the energy of the point
configuration n U yae formed by n in A and v in A® := R\A. In fact, we only want to compare these
energies for a fixed v and a variable 7, so we may work up to (possibly infinite) additive constants, which
formally disappear in the comparison.

The interaction energy of 7 with itself is denoted by Ha (7).

(63) st =5 [ ol yllante) — de)ants) — o).

The following quantity encodes the interaction energy of the configuration 7 in A with the configuration
~ outside A. In fact, we compute the interaction of n—-~ in A with v—dx outside A. The first modification
only plays the role of a (possibly infinite) additive constant (for fixed v), and the second modification is
technical.

(6.4) Ma(n,7) := lim

/ “log |z — yl(dn(y) — dva(y))(dr(z) — do).
P00 Jre([-p,p)\A) JyeA
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We denote Bernoulli point processes by B. In particular, B|,,| z is the law of the Bernoulli point
process with |ya| points in A, i.e. the law of a random point configuration made of |y5| points drawn
uniformly and independently in A.

We may now form the Boltzmann factor associated to the sum of these energies, given by

exp (=5 (Fa(n) + Ma(r.m) ) -

and the associated partition function

(6.5) Zno) = [ exp (=5 (Al + Ma(0.)) ) dBpy an).
Finally, for -y fixed, we define Gibbsy g(n;7y) as a probability measure on random point configurations

7 in A given by:
1

6.6 dGibbs 1Y) = ——
(6.6) A,8(157) Zno0)

exp (=8 (Aa(m) + Ma(n,7)) ) dBpyy 4 ().

The following is a re-writing of the main result in [DHLM18].

Proposition 6.3 (DLR equations for Sineg). Let f be a bounded, measurable function on the space of
point configurations, and A > 0, we have

(6.7) E[f] = / dSines(7) / F(nUa)dGibbsy 5 (7).

Proof. The only difference with [DHLM18] is that we chose here to include the background in the defini-

tion of the energy. The result of [DHLM18] is stated with Hy and M instead of Hx and M A respectively,
where

1
Hatn)i=5 ([ ~logle ~ yldu(a)dn(y),
(AXA)\o

Ma(y,m) = lim / ~log |7 — yl(dn(y) — dva())dv(x).
P20 Jze([—p,p]\A) JyeA

It is easy to check that the difference between these two formulations is an additive constant (for fixed
A,~), which is absorbed by the partition function, plus the term

lim / / log |z — y|(dn(x) — dy(z))dy,
y€[—p,p] JTEA

p—00
which is almost surely zero. O

6.3. The Laplace transform of the fluctuations. We introduce the function L ;s x

t—= Lyoa(t):=E [exp (tFluct[ap](C)lEventA’e(C))} ,

which is the Laplace transform of the fluctuations of ¢, up to the indicator function 1gyent, ,, and, by
construction, Eventy ; is very likely.
Using P(Eventy ¢) = 1 — 07,2 (1) as stated in (6.1), we may of course re-write L,/ as

Looa(t)=E [exp (tFluct[p](C)) 1EventA‘K(C)] + op.2(1),

and we now focus on the first term in the right-hand side, that we denote by

(6.8) Lo (t) == E [exp (tFluct[¢](C)) Levents . (C)] -

The map C — exp (tFluct[¢](C)) levent, ,(C) is bounded, because by construction, on Eventy s, the
number of points of C in the support of ¢ is bounded, see (6.2). Using DLR equations (6.7), we write

(6.9) Lypa(t) = /dSineg(’Y) ZAzla(V)

[ exp (tF et g]) Levnsy (10 7ae)exp (=5 (Fa ) + Ma(1.2)) ) By ),

where we have used the fact that, since ¢ is supported inside A, we may write

Fluct[p](n U yac) = Fluct[p](n).
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Combining both exponential terms and using the definition (6.3) of H A, We obtain, in the exponent

-8 (; ( [ el sldnte) — detants) —d) - Q;Fluct[so](n)) + Mvm,v)) ,

and we let

(6.10) §:=—.

6.4. Laplace transform I. Energy splitting. In view of the “energy splitting” identity stated in
Lemma 3.3, we may write

/ / —log |z — yl(dn(x) — dz)(dn(y) — dy) — 2sFlet[g] (1)
(AXA)\o
=[] —logle —yitdnta)  du. () dn(y) - dus(w)
(AxA)\o

+ 2s /A (LPx,o(x) — @) (dn — dx) + 2s /A ErrorLPy ., (z)(dn — dzx)

- 282”@”2% — s?ErrorVar.

The term ErrorVar is bounded as in (2.20), hence we have

(6.11)  exp (tFluct[p](n) exp (=B (Fa () + Ma(n,7)) ) Levenss,( (71U a)

b (—5 (; S omle = vlne) — i) )~ dus(y))>>

X exp (ﬂ <5/A (LPy (%) — @) (dn — dz) + s /A ErrorLPy ,(x)(dn — dz) + Ma (1, 7)))

X exp (,925“@“2%) x exp (s0g,0(1) + 52001 (1)) Levents , (7 U yac) -

Inserting this expansion into (6.9), we obtain

(6.12) Lpon(t) = (82 (25||¢|| )+so@,A(1)+s2of,A(1)>/dsmeﬁ(ﬁy)zl

2,8(7)

( ( // —log |z — y|(dn(z) — dus(x))(dn(y)—dus(y))>>
(AXA)\o

X exp ( ( / (LPx. () — @) (dn — dx) + 5 /A ErrorLPy o (z)(dn — dzx) + Ma (1, 7)))

X ]-Event>\,e (77 U 'YAC) dB|'7A|7A (77)

6.5. Laplace transform II. Change of variables. We now perform a change of variables on 1. For
N fixed, we may consider the map @, : AN — AV given by

Dy(x1,...,zN) = (Ps(x1),...,Ds(zN)),

where @, is the transport map from the constant density to ps. Since ®, is a bijection, so is d,. We
let v = ®;1(n), so that n = ®,(v) is the push-forward of v by ®,, that we will now denote by vs. The
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innermost integral in (6.12) becomes

(6.13) exp< ( //A ool (@) - dus<m>><dus<y>—dus<y>>>>

X exp < ( /A (LPy.o(z) — @) (dvs — da) + s /A ErrorLPy ,(z)(dvs — dx) + J\/TA(VS,W)»

X exp (/ log @;(x)du(x)) Leventy o (Vs Uac) chALA(V),

where the term exp ([ log ®,(z)dv(z)) is the Jacobian of the transformation.
In view of (3.18), we have

/log ' (z)dv(z) = REs + FIuRE,(v),

we know from (4.2) that REs = s%0,,,(1), and we know from Lemma 6.1 that
Vs Uype € Eventy ¢ = FIuRE,(v) = so (1),

hence the Jacobian only contributes to an error term exp(sog (1) + 520, (1)).

6.6. Laplace transform III. The interior-interior energy. Using Lemma 3.8, we have

/ / —log |z — yl(dvs(x) — dpta())(dva(y) — dra(y))
(AXA)\o

= // —log |z — y|(dv(x) — dz)(dv(y) — dy) + Mains(v) + RE, 4+ FIuRE,(v).
AXA)\o

We know from (4.2) that RE; = s?0,,1(1), and we know from Lemma 6.1 that
vs Uae € Eventyy = FIuRE,(v) = sop.2(1), Mains(v) = sog A (1).

We may thus write (6.13) as

(6.14) / exp< ( //AxA)\O—logu—yudu() d)(d (y)—dw))

X exp <5 (S/A (LP »(z) — ¢) (dvs — dzx) + S/AErrorLPAw(x)(dl/s —dx) + .//\/lvA(l/s,'y))>
X exp (50&)\(1) + s2o@,>\(1)) Leventy o (Vs Uac) dB"‘/A|7A(V)'

6.7. Laplace transform IV. The interior-exterior energy. Let us recall that /\A/l/A is defined in (6.4)
by

Ma(,7) i= lim /
P70 Jze([-p,p\A) JyeA

A direct computation shows that

(6.15) Ma(vey) = Ma(v,7) + / DF. (1) (a)(dy — dz),

—log |z — y[(dn(y) — dya(y))(dy(z) — dz).

where DF4(v) is the difference field generated by vs — v as in (5.1). Using the decomposition
DFs(v) = sLPy ,(x) + sErrorLPy o (z) + ErrorDF,(v)(x),

as in (5.2), we may write

c

(6.16) Ma(vs,y) = Ma(v,7y) + s/ LP . (z)(dy — d)

c

+ s /AC ErrorLPy o (x)(dy — dz) + / ErrorDF,(v)(z)(dy — dx),
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so in particular, the middle line in (6.14) reads as

(6.17) s /A (LPxo(x) — @) (dvs — dx) + s/AErrorLPXW(J:)(dn —dz) + MVA(VS,’y)

= Mpr(v,y) +s / (LPx () — @) (d[vs Uyae] — dx) + s/ErrorLPA,q,(a:)(d [vs Uvyac] — dx)

+ /C ErrorDF(v)(x)(dy — dx).

We know from Lemma 6.1 that

/ ErrorDF, (v)(z)(dvy — dz) = so (1)
Vs Uyae € Eventyy — s/ (LPxo(x) = @) (dvs Uyae] —dz) = sopa(1)
s/ErrorLPA o(@)(d[vs Uyac] —dz) = sopa(1)

so we may re-write (6.14)

s | exp< ( / /m)\o log e = yl(dv(z) — de)(du(y) —dy>>> < exp (= (Mav.))
x exp (soga(1) + s oz,,\(l)) Levents ¢ (Vs Uyae) dBjy, A ().

6.8. Conclusion. Using (6.18) recognizing Hy (v) in the first exponent (as defined in (6.3), and coming
back to the expression (6.12) of L ¢ (%), we get

(6.19) Lpor(t) = exp (52 <2B||<p|| )+som(1)+52%(1))/dsmeﬂ(y)w

X /eXp (—ﬁ (ﬁA(V) + MA(V, 7))) X ]-Event,\,g (Vs Uvace) dB\«,ALA(V)-

By the DLR equations (6.7), we may write
. 1
/ dSineg(y )
Zx8(7)

/eXP ( B ( )+ MA( ))) X Levents ¢ (Vs Uvace) dB\"/A\»A(V) =E “”SUMCEEWMN@]
=P [{vs Uyae € Eventy ¢}],

and by Lemma 6.1 this quantity is 1 — og,x(1). Doing a final replacement of s by %, we obtain

~ 22
(6.20) Lo (t) = exp (2 X BH@HZ% +toe(1) + t20m(1)) (1 —oga(1)).
In particular, for ¢ such that %‘ < Smax as in (3.1), we get, uniformly in ¢,
(6.21) lim lim £,0x(f) 2
) im lim =exp|— X = 1,
500 As00 A eXPp 2 ﬂ L4 H?2

We have thus obtained that, sending A — oo then ¢ — oo, the Laplace transform of the random
variable

Fluct[](C)1event, , (C)

22
t — exp §XB||SD||H% )

which is the Laplace transform of a centered Gaussian variable with variance %H@HZ 1. The convergence
2

converges to

is uniform for values of the parameter in some open interval around 0. It is well-known that this conver-
gence implies convergence in law. Moreover, since we know by (6.1) that P(Eventy () =1 — og (1), the
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convergence in law of Fluct[y](C)1Event, ,(C) implies the convergence in law of the fluctuations themselves.
This concludes the proof of the central limit theorem.

Remark 6.4 (Lack of moderate deviations bounds). Since [my oo =< #, taking s of order as large as
¢ still guarantees that ps will be a positive density. The transport map ®; may now move points at a
distance O4(¢), but in fact this is harmless because a careful inspection reveals that our estimates are
insensitive to a displacement of the points of order /. Taking s large is tempting because it yields a
control on the Laplace transform of the fluctuations for large values of the parameter, which in turn
implies strong concentration bounds with exponential (in ¢) tails. However, our argument relies on the
discrepancy estimate (1.9), which is not quantitative and raises an obstacle for obtaining such moderate
deviations bounds on the fluctuations.

7. AUXILIARY PROOFS
7.1. Proof of Proposition 1.6.
Proof of Proposition 1.6. We write:

> k+1
/ g(z)(dC — dx) = k;w /k g(x)(dC — dz).

Since g is assumed to be compactly supported, all the sums are finite. On [k, k + 1] we may write, using
the mean value theorem, g(z) = g(k) + O, (g/1,v;,), and we obtain

k+1
| ata)tde — da) = g(k)Discrg e + On (glve) (14 [Disere g
k

We have of course
(71) DiSCr[k,k+1] = Discr[07k+1] - DiSCI‘[O,k],

so a summation by parts yields

oo (oo}

Z g(k)Discrip py1) = Z (9(k — 1) — g(k)) Discrig 1)

k=—o0 k=—o00

Using the mean value theorem again, we get

Z (g9(k —1) — g(k)) Discrg 5| < Z |91,v;, [Discrio g |-
k=—o0 k=—o0
We have thus obtained
/g(x)(dC —dx) =2 Y gl (Diserou] + [Diserp ey + 1),
k=—oc0

which yields the result.
Finally, if A is fixed, we could choose to write, instead of (7.1)

DiSCI‘[kJH_l] = DiSCr[_/\JH_l] — DiSCI‘[_)\,k], DiSCI‘[kJH_l] = DiSCI‘[k_H,)\] — DiSCI‘[kM\]
so we can replace D by DMeft or DRight a9 claimed. O

7.2. Proof of Lemma 2.6.

Proof of Lemma 2.6. It is easy to check that §, , is bounded, and x ﬁ is integrable, thus so is

my . Moreover, for any « in (—A, A), the map

1
y — log |z — y| Novar
is also integrable, hence the logarithmic potential is well-defined.
The fact that my , has total mass 0 follows from the well-known identity
1 1 .
PV/ \/ﬁmdx =0 fOI' tin (_)\,)\),
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which can be proven by elementary means, see e.g. [Tri57, Sec. 4.3, eq. (7)].
The fact that the logarithmic potential satisfies (2.6) is a also a well-known result, which can be
obtained by integrating the identity

(7.2) PV/%‘PS)dt:@’(xL

valid for any « in (—A, \). This is known as the airfoil equation and we refer again to [Tri57, Sec. 4.3, eq. (12)].
(Il

7.3. Proof of Lemma 2.7. We start by the following bounds concerning .

Lemma 7.1 (Bounds on $ A, and its derivatives). We have

2 < 20
. <) |x| > 4t
(7.3 1,0(0) = {e o
A
) 7 |zl <20
7.4
(74) Ipl@) 2 {if 2] > 20,
A
(2) 75 |.%'| < 24,
7.5

with implicit constants depending on .
Proof of Lemma 7.1. We start with the following claim.

Claim 7.2. Let g be a test function of class C*, supported on (—£, ). Then for any x such that |x| < 20
we have:

(76) PV / O < 02|

Proof of the claim. Let x be such that |x| < 2¢. Let us use the definition (2.1) of the Cauchy principal
value, and write

u

t) o [TCglatu)—glz—u) g tu) —glz—u)
. dt—/ - du-/ue! du,

x

where I, is the set of positive real numbers u such that g(x 4+ u) or g(x —u) is not zero. This set depends
on xz, but since g is supported on (=¥, £), the set I, is included in a union of intervals whose total length
is bounded by 4¢. Using the elementary identity

T+u

gx+u)—glx—u)= / g (v)dv,

—Uu

and applying Fubini’s theorem, we get (z — u < v < x + u is equivalent to u > |z — v|):

_ ¢
/ glztu) = g(x =u) / du/ v)dv —/ g’(v)dv/ ldu.
u€l, u —L u>|z—v|uel, ¥

Since u — % is decreasing, and I, has its length bounded by 4/, the innermost integral satisfies

1 |z—v|+40 1 40 _
/ Zdu < / Zdu = log (—|—|xv> ,
u>|x—v|,u€l, U |z—v| U “T - U|
l 14
1 4/ —
/ g’(v)dv/ —du < / lg' (v)|log <+|zv|> dv.
—L u>lz—v|ucl, W —L |£L’ - ’U|

Applying Cauchy-Schwarz’s inequality, we get
5 1/2
N G IR R
|z — v

pv [ A<y (/

so we have
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—v

A linear change of variables w = *7* shows that, for |z| < 2/, we have

’ B 5 1/2
/ In (M—’—lmv> dv < 51/2,
— |z — v

which proves (7.6). O

We recall that, by definition,

(7.7) D PV / 2\0
with ¢, defined as

da t VA2 =120 (1),

and we compute the first derivatives of ¢ as

(7.8) (1) = s e D) + V22— 26()
2 -1 t2 —2t
and (this is the only moment where we need the C* regularity of ):

3
110) 620 = (- gz ~ s ) #0

-3 3t2
_ )
" < N2 (A - t2)3/2> o)

—3t
- (f = t2> PP (1) + VA2 — 2@ (1).

Let us observe that, for k > 1, if g is a test function of class CkT1, we have

(7.11) (PV/t_ dt) :c)/o+oo g<k)(x+“)u9(k)(x“)duPv/gt(k_)(fc)d

In view of (7.6), (7.7), (7.11), we get that, for |z| < 2¢

3
@) 20000z, (000) Y (@) 210002, (900) P (@) 2 )00 12
Since ¢ is supported in (—¢,¢) and ¢ satisfies 0 < £ < 15, it is easy to check, from (7.8), (7.9), that:

14
68 ()] < Sle® O] + M@ (1),
620 < D]+ Lle@ )]+ M (1)

4 1 4
901 < O]+ 1@+ $1e@ O + M@ )

Using finally the homogeneity bounds (1.7), we see that the dominant term is the last one in each line,
and we obtain the controls for |z| < 2¢ as in (7.3), (7.4), (7.5). We now turn to the case |z| > 2.

Bound on (55,\#,)(1). Since ¢ is supported on (—£,£), so is ¢, and for |z| > 2¢ the integral defining
(2.2) (or its derivatives) can be understood in the standard sense as a Riemann integral. In particular,
we have

=L [ E - [

i z(1+0.(3))
The first-order term vanishes because [ ¢'(t) = 0. We are left with
A 2 0 A
B2 0(@) < (v ) Il = 210l

which yields the control for |z| > 2¢ as in (7.3).
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Bound on the first derivative. To treat (55)\ w)(l) (), we write it as

0000 = 2 [Da = 22 [0 (1-L w0, (5))ar

The first-order term vanishes because [ gb A (t) = 0. Using (7.8), we may thus write

(920) (z) = %%/ (\/)jj<p“)(t)+ A2 —t2¢(2)(t)) (—+O (f)) dt.

First, we compute
(7.12)
14

l/_it @ (1) f+0 ﬁ dt_l/_it D)0, | - dt<£|| | 4&
x \/Wsp x *\ a2 oz m@ *\z = a2 1PN = g2

Next, we write
(7.13)

/ A2 — 120 (¢ )( ~+0, <€2>>dt i/A(l—l—O.<ﬁ)>@(2)(t)<—i+0.<$>)dt.

The first order term vanishes because [ tp)(t) = 0. We are left with

AL B A2 A
2[00 (5 + 52 ) @t = 25 1 us = %

Combining (7.12) and (7.13), the dominant term is 2f and we obtain the control on (53,\,4,)(1) (x) for
|x| > 2¢, as in (7.4). O

Bound on (£, sa)(Z) The proof is similar to the one for (ﬁA,w)(l), except that we push the expansions

to the next order, and use the fact that f¢(2) =0and [2p®)(t) = 0.
We may now give the proof of Lemma 2.7.

Proof of Lemma 2.7. We compute

~1 1
o) = 2 | (o).
Wy L — 1 6)
my <p( ) = T [(}\2 _ xg)g/z'ﬁ)\w(gj) + o2 '6,\,4/;(5”) )

and the second derivative is given by

) -1 -1 3z 3z (1) 1 )
mie(®) = — {(()\2 2232 T (N2 42)5/2 Dae(@) = 2 x2)3/2'6>\,w<x) Vv @)

and we use (7.3), (7.4), (7.5) together with the simple observation that

1 1
_< )
VAZ =22 T VAN =

which allows for a slight simplification in the formulas. We obtain

1A
m)\,go(z) = X?a |$| < 267
1 pY4
m)\,go(z) = mﬁa lz| > 20,
1 £ X 1A
mg\zp( ) = Agz—i_xﬁ? |z| < 2¢,
|z )\E 1 Py

m{) () < | > 20,

— )\3/2( |1‘| 3/2 .132 f /\ 7| ‘1‘37

. 1 2\A A 1A
m/\w()<()\3+>\5)€+>\3£2+)\€37 |lz| < 2¢,
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and, for |x| > 2¢

@ (2) < 1 n z? & N || )\E 1 M
e N2\ — [2])372 T NS2(\ — |z])5/2 N32(\— [z|)3/2 2B \f\/w e
We obtain (2.7), (2.8), (2.9). O

7.4. Two intermediate results.
Lemma 7.3 (A decomposition of ¢p). Let ¢p : t — VA2 — 2¢/(t). We have

(7.14) oa(t) = (1) + Ex(d),
where Er is a C' function, supported in [—£, ()], satisfying

1
(7.15) |Er|o < % |Er|; < ~.
Proof of Lemma 7.3. To see that (7.14) holds with (7.15) we simply expand
£2
R0 =)+ 0. (5 ) 0,

and since |p|; < %, we obtain the first bound in (7.15).
We may then compute

/ —1 / " ¢ ’ 62 "
)= ——— (¢ A2 — 120" (t) = O, | — t) 4+ A t),
(1) = s () + VR = () = O (5 ) ) 420+ 0w (5 ) 10
which yields the second bound in (7.15). O
Lemma 7.4 (The integral of £ ,, on large intervals.). Let a be in [10¢, \/2]. We have
“ )
(7.16) e W)y =,
(717) | 9wy = o
Proof of Lemma 7.4. Preliminary. We use the definition (2.1) of the Cauchy principal value, and write
Va2 -2 oo _ _
P —PV/ PV -8 :/ Paly +u) . oaly =)
0

where ¢p : t — VA2 —t2¢/(t). We use Lemma 7.3 and decompose ¢ as dp = Ao’ (t) + Er(¢). We may
thus write

+oo s A +00 E _E B

(7.18) Froly) = i/ o'y +u) — ¢y —u) du+/ Hy+u) —Erly—u)
T Ju=0 (% u=0 u

The second term in the right-hand side of (7.18) can be bounded using (7.6). We obtain

T E — Er(y - Ex(t
/ rly +u) ~ Erly “)du:PV/L( zdt < OB e,
u=0 u Y-

and in view of the second inequality in (7.15), we get

(7.19) PV / §

Proof of (7 16). We use (7.18) and write

(7.20) " o (y)dy = // Ply+u) = “”(y_“)du+71r/ (PV/E”dt>d

We may bound the second term in the right-hand side of (7.20), using (7.19), as

(7.21) /a <PV/ Sr_(?dt> dy < “%
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We now turn to the first term in the right-hand side of (7.20). It can be expressed, using Fubini’s
theorem, as

/\/ﬂ/ y+uu<ﬁ(y*U)du

A/+°° pluta) = plu—a) = plo—w) +p(-a—w)

0 A (PV / ;p(_t)tdt—PV / _‘Z(t_)tdt).

Since ¢ is supported on (—¢,¢), and since a > 10/, these are standard Riemann integrals, and we have

4
PV/ dt-<—|\ ||L1-<7

and similarly for the other term. We get

(7.22) )\/_a/ Plytu) —dly—w,

u a

Combining (7.22) with (7.21) (which is at most of the same order) yields (7.16).
Proof of (7.17). We simply use the bounds of (7.3). O

7.5. Proof of Lemma 2.8.

Proof of Lemma 2.8. First, we define my ., as my , on [-A+ £, A —/].
On [—A+£/2,—\+{]. Let S,, Sp, S be three smooth, non-negative functions defined on [—1, 0] such
that

vk > 0,80 (-1) =
vk > 0,50 (-1)
vk > 0,80 (—1) =

n
IS
—~

o
~

I

—_

<

x~

%

—_

2y

z
—~

o

~
Il

0
0, S(0)=1, S
0, S.00=1, SPO)=0, SD0)=1, Vk>25%(0)=o0.
We let
P=-\+1¢, size= g

and we define

Do =m, (P), Di=mi (P), Dy=ml,(P).
We have, in view of (2.7), (2.8), (2.9):

D0 = S O % s O s
Finally, wet let R be the function

R(x) i= DoSa ((x - P)silze> S, ((x - P)Bé) S. ((m _p) gz) .

The function R is defined on [P —size, P] = [-A+¢/2, —A+ /], and on this interval we let my ,(z) = R(x).
By construction, the derivatives of order 0, 1,2 of R and my ,, coincide at P, so the piece-wise definition
is C? at P. Moreover, it can be checked that for k = 0, 1,2, we have:

l
k

For the first and second derivatives, we use the fact that

This is easy to see for R() since Dy = W.

L D1 and /B2 have the same order 1
size’ Do Do £

On [—A+¢/4, =X+ £/2]. Let Sy be a smooth, non-negative function defined on [—1, 0] such that

k> 0,5% (1) = $¥(0) = 0, /Sd(x)dx _
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We overwrite the definition above and let now

P:=—-\+1¢/2, size:= g,

A+t A+t
D_,4 ::/ mA,g,(ac)dx—/ R(z)dz.

and we introduce

-2 —A+2/2
Finally, we let T be the function
D_,; 1
T(x) = — -P)— .
() size Sa <(x )size)

The function T is defined on [—A + £/4,—X + £/2], and on this interval we let my ,(z) = T(z). By
construction, all the derivatives of T and R are equal (to 0) at the point P, so we still get a C? function.
Finally, we let m) ,(z) = 0 on [—\, =\ + £/4], and this connects with the previous definition in a C?
way because all the derivatives of T vanish at —A\+£/4. We define my ,, similarly near the other endpoint.
Checking the statements. By construction, my , and my , coincide on a large interior part, and
m, , vanishes near the endpoints, so the first and fourth statements of the lemma are satisfied. Also by

construction, we have
—A+£
/ T(2)de + / R(z) = / ma o (2)de,
DY

so the total masses of my , and my ., are equal near the endpoints, and (2.10) holds.
We have already checked (2.11) for the first part of the construction, see (7.23). On [-A+£/4, —A+)/2]
we have

(7.24) IT® ()] <

D— 1,
sizek !

and we observe that D_; is of order size x Dg, with Dy < W7 which yields the result. O

7.6. Proof of Proposition 2.11.

Proof of Proposition 2.11. We recall that, by definition, we have
ErrorLPy o (z) := /— log |z — y[(mx,(y) — mx,(y))dy.

We may split ErrorLPj , as the sum ErrorLPy ,(z) = ErrorLF’{(f’:,t (SC)‘FEI‘I‘OI‘LP?EM(I), where EHorLPI;f;f)t

(resp. ErrorLP?iiht) is the contribution coming from the left (resp. right) endpoint, i.e.

A+t
(7.29 Brrorl P (@) 1= [ Tog o —yi(ma 0 (4) — o)
Right A
(7.26) ErrorLPy"8" (z) = /)\ Zlog |z — y|(mxe(y) — My, (y))dy.
The sup norm, for x close to the endpoints. Let us start with a rough bound:
Lo — L —A+L
(7.27) Brrorl P () = [ ogle = yll B gy + [ Jlogle = yillma o (n)lds

Of course, if z is far from the endpoints, this is sub-optimal because we do not use the fact that my ,—my
has mass zero, in fact we will use this inequality only for z at distance O, (¢) of an endpoint. Using (2.12),
we see that

A . 0/ log \
(7.25) [ ogle =l s plwlay < 578>

It remains to bound the second integral in (7.27). We use (2.7) to write

S, —A+e )
/A log |z — Y4 log |z —
| ogle—slims o)y < [ logle —ull 4, < / [oglz —ull ;,

A Y NA=Ty T TN A=y
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We use Holder’s inequality and write

_ _ 1/3 _ 2/3
/ >\+€|10g|1’_y”dy< / >\+€|10g|$_y”3 / At 1 dy
~A VA =yl RS o (=g

—A+£

1/3
An elementary computation shows that for x in (—2AX,2\), ( |log |z — yHS) =< (*/31og A, and

—2+4 1 2/3 1/6 .
that, on the other hand, ( Y W) =< £'/° hence we obtain
AT 0/ log \
(7.29) [ ogle = yllm oty = “57E

Combining (7.27), (7.28) and (7.29), we obtain (2.17).
The derivative, for x far from the endpoints. We now turn to proving (2.18). Let z such that
|z — A| > 2¢. We have, by definition,

A

Errorl P& () — A |~ logle = 4](Fs o (1) — o ().

We may differentiate under the integral sign and write
. / A—
(ErrorLPiﬁht) (z) = / ——(m) ,(y) — My ,(y))dy.
A—e X —Y
A Taylor’s expansion yields

P A
(130 [ @)~y = 5 [ o= )y

¢ Ao
Lo, (M> A (8o 0)]+ I (0) )

The first term in the right-hand side of (7.30) vanishes because, by construction as in (2.10), my ., and
my , have the same mass on [A — ¢, \]. We can estimate the integral in the second term directly, and we
obtain

A J 6324
- e —
/,\74 T — y(mk’w(y) e ())dy =3 N3/2(X\ — |z])?

The same argument holds near the other endpoint, which proves (2.18). O
7.7. Proof of Lemma 2.12.

Proof of Lemma 2.12. Let us introduce Vy , as

(t )dtdac,

(7.31) Vi, / v AQ - t%

. /m

which is equal to

/ / 108 |7 — I p (@) o () dzdy.

The error due to m, .. The first step in the proof is to show that
201log(\)

(7.32) // —log |z — ylmy ,(z)my ,(y)dedy = Vi, + Os (>\3> .
We decompose the left-hand side of (2.19) as
(133) [[ “loglo — ylin (@) o)dody = [ [ ~1ogle — ylmso(z)m () dndy
+ [ =108l = 4l = ma ) @), — ) 0)

+2 / / ~log|a — ylmy o (y) (Fir e — mrp)().
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Using the fact that my ., satisfies (2.6) and has total mass 0 we may write
(7.34)

// log [ — ylm, (@)mx 4 (y >dwdy—/ (z)m,p (@ dw—*/m/

which is equal to V), as defined in (7.31).
Using again (2.6), and the fact that, by construction, my , — my . has total mass 0 we write that

2 _ 42
VA W()dtdx.

/ / “logle — ylmg () (Fn (@) — mrp(@))dydz = / (@) (fir () — mr o (),

but by construction ¢ vanishes on the support of my , —my ., hence this is equal to 0.
Finally, we write

/ / 108 [ — (i () — My (2)) (Fin (1) — 1 o (9))dly
= /ErrorLP,\W(m)(ﬁu,w(x) —my ,(2))dz,

where ErrorLP, , = ErrorLPLeft + ErrorLPRIght as in Proposition 2.11. We can use (2.17) and the fact
that my ,(z) — my () is supported near the endpoints of (—A, \) to write

0/ Tlog()) 0V llog(N) v/

AL
ErrorVar < —an /_)\ (Jmx,p(@)] + [mrp(z)])de =< ESCERREETEL

which yields (7.32).
The error due to A finite. Now, we compare V) , with the norm ||¢||H%, we claim that:

62
(7.35) Vi = 2H<,0H2 L +0. (v)

Indeed, we may write, since ¢ is supported in (—¢, ¢)

/\/%PV/ v)\zt__t:p/(t)dtdx—/cp( )% <1+O (€2>>ﬁw( )dx

and we can use (7.3) to write this as

% /gp(x)saw(x)dx +o. (i) .

Fr(a 7PV/¢A

and ¢, admits the decomposition as in (7.14), (7.15). It implies that

)\ap ) 2
/\/ )9 (x)dr = /\/ PV dtdz + O, </\2)

We may thus write Vy , as
62
Ve = / PV/ dtd + O, ()\2)

and the result follows from the identity

Now, we have, by definition,

PV/ dtd — 272 ,

with ||¢||H 5 asin (1.4), which can be checked by elementary means. O
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7.8. Proof of Lemma 3.3.

Proof of Lemma 3.3. For simplicity, we will use the notation x as follows

AxB:// —log |z — y|A(z)B(y).
(AXA)\o
We have

(dC — pg) x (dC — ps) = (dC — 1 — smy ) X (dC — 1 — smy ;)
=(dC —1) x (dC — 1) + 8% - My, X My, — 25 -My, X (dC — 1).
By Lemma 2.12, we have
My XMy, = 2||¢H2% + ErrorVar.
Next, we write
171,\#, x (dC—1) = my , X (dc—-1)+ (ﬁl)\#, — m,\#,) x (dC —1).
We recall that LP) ,, is the logarithmic potential generated by m, , and that ErrorLP) . is the logarithmic
potential generated by the difference my , —my . So

My x (dC — 1) = //(A Oy (0)(dC() — ) = /A LP . (2)(dC — da),

and similarly
(Fne = mae) (@ =1) = [ “logle = yl(Fr.e — ma ) () (dC(a) ~ do)
(AXA)\o

= / ErrorLPy o (z)(dC — dzx).
A
O
7.9. Proof of Lemma 3.5.

Proof of Lemma 3.5. Since 171)\#, is continuous and bounded as in Lemma 2.8, and s,y is chosen as in
(3.1), we see that 1+sm, ,, is a continuous, positive function on A. Consequently, Fj is C'! and increasing,
thus it is a C' bijection, and so is ®,. The fact that ®, transports the constant density onto u, results
from the definition, in fact @, is the “monotone rearrangement” of the constant density onto .
By construction, my , has total mass 0 and vanishes near the endpoints, therefore Fi(x) = x + A near
the endpoints, which implies that ®, coincides with the identity map near the endpoints.
We now turn to proving estimates on ¢s. We may write, by definition, that for any = in [—X, A\] we
have
D (x)
/ (I+smy,(y)dy =a+ A,
-2
and we thus obtain, as claimed in (3.6),
@5 (z)

(7.36) Ys(x) = Ps(x) —z = —s/ my o (y)dy.

-2
Bound on 1,. We easily deduce [¢s|o < s||my |11, and since [s| < smax as in (3.1), we have
(7'37) ‘ws|0 <1

Finer bounds on s are the goal of another lemma.
Bound on ). Let us differentiate (7.36) with respect to a:

P () — 1 = —smy , 0 By(x) - P (),
and we obtain

(7.38) &' (2) !

1 smy 0 Py(xz)
The denominator is bounded below by a positive constant, and a Taylor’s expansion yields

[P (2) = 1] 2 slma g 0 Rs(x),
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hence, since by definition ¢, = &, — 1, we get
() = slmy 0 @y ().
By definition |®4(x) — x| = |1)s(x)], and (7.37) holds, we may thus write

mypo®s(z)| < sup  Jmy ()] < [myglovs,
yElz—1,z+1]

with the notation of (1.6). This yields (3.8). In particular, |¢)s|1 < s|my |0 and is thus bounded, and so
is ®”.
Bound on zpﬁf). We differentiate (7.38) again and write
—smfy o Dy (x)P(z
(7.39) P (z) = —2 (2)%s{z)
(14 smy 0 Dy (2))?

We have previously established that for |s| < smax, we have ®, < 1, and the quantity (14 smy , 0 ®4(x))
is bounded above and below by a positive constant. We obtain

(7.40) VP (@) = P (x) < s} 0 Pu(w) < slir Ly,

which yields (3.9).
Bound on ¢§3). Finally, differentiating (7.39) again, we get

) 0 0, (0) (@) — 57 00210 e) 29 (W, 00) (B1(0))

(14D 8P@) = (15 sitnp 0 8. (0) P (1+ 55 0 2. (2))

Using the fact that ®/ is bounded, that @gz)(ac) is of order s|my ,|1,v, (see (7.40)) and that the quantity
14 smy , o @ () is bounded below by a positive constant, we obtain

v (2) = 0 () < slmy,

2.v, + 870 l5 v,

and one can check from (2.13), (2.14) that the dominant term in the right-hand side is the first one,
which yields (3.10). O

7.10. Proof of Lemma 3.6.

Proof of Lemma 3.6. The first inequality in (3.11) follows from (3.6) combined with (3.7), and the second
one is obtained similarly, using the fact that my ., has total mass 0. We now turn to proving the inequalities
of (3.12).

The case |z| < 10¢. Since ||my ,||z1 =< 1, as observed in (2.15), we have |1)s]o < s, which in particular
yields the bound for |x| < 10¢ as stated in (3.12).

The case |z| > A\/2. For |z| > /2, we may combine (3.11) with the estimates on my ., as in (2.12),

and we obtain
Y4
[9o(a)] < 5537 VAT 1 Jal,

as stated in (3.12).
The case 10¢ < |z| < A/2. Finally, let us assume that = is in [10¢, A/2] (the case x € [—A/2, —10/]
being, of course, similar). We may write

@5 () —@,(2) @, (z)
/ tTl,\,w(t)dt:/ ﬁu,@(t)dwr/ my ,(t)dt.

A _q)s(x)

Using (2.12), we see can write

—®s(x) . 53/2 ¢
42 =< —
(7.42) [ e s+

and the dominant term is the last one. Next we write, for |¢| in [104, A/2],

- 1 t2
oo ) = 392.0(0)+ 0u (55 ) 19,000
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and we use Lemma 7.4. First, we apply (7.16) with a = —®,(x) and b = ®,4(x), we obtain
1 [2s(@) Y/

(7.43) A/¢)5W@ﬁ5®$ﬁ

— 5(1

Secondly, we use (7.17) to get

1 [e@ (® ()
— t t)|dt < .
S BORGCCUER

The term in (7.43) is the dominant one. Combining it with a similar one in (7.42), and since we know
that |®s(z) — x| < 1, it yields, as desired

()] < s o

x|
O

7.11. Proof of Proposition 4.1. We extend the notation of (1.6) as follows: if g is a function of two
variables, we let

9V (2 == sup g(z,y)].
a€Vy,beVy,

We introduce the auxiliary function
(744) F(xay) = —log (1+As(xay)) )

so that, in view of definition (3.14), we have
Main. (1) = [ Fa)(dnta) — do)tanty) — d).
X

Lemma 7.5 (Energy comparison - the main term). We have
(7.45) Main(n) < Main2(5) + MainZ (1) + MainZ (1) + Main$ () + Main? (),
where the terms in the right-hand side are defined as
A
Maing () = Z Z D;D;j|92,F v i.j);

i=—Aj=—A\
A A—/10

I\/Iain Z Z L F|V(1’J)

i=—A |j|=A—t
A—£/10 A—£/10

Main?(n)= S Y DD, ‘F|V h)

[i|=A—L]j|=A—¢

A

Mainsc(n) = (€—|— |Discr‘z|€[>\_g/87>\]|) Z sup |6yF|V(x,j)5j,
i lele—e/8,]

A SUp|zien—e/s.A] PV () =
Main(n) = (¢ + [Diseriajep—r/s.x]) ¢ —Di

ljl=2—¢

Proof. Let x be a cut-off function equal to 1 on [—A\+£/4, A — £/4], vanishing outside [-\+ £/8, A — £/8],
bounded by 1 and whose derivative is bounded by O, (%) We may write:

(7.46) Maing( //AXA Yx(y)(dn — dz)(dn — dy)
+2 //A (= x(@) (., y)x(w)(dn — de)(dn — dy)
+ //AxA (1= x(2)) F(z,y) (1 = x(y)) (dn — d)(dn — dy).



34 THOMAS LEBLE

The last term in the right-hand side vanishes, because s vanishes on the support of 1 — x, and so
Ag(z,y) = 0, and thus F(z,y) = 0, when both = and y belong to the support of 1 — x. We now study
the two first terms in the right-hand side of (7.46) separately.

Claim 7.6 (The “x,x” term). We claim that:

(7.47) //AA )X () (dn — da)(dn — dy)

A A—£/10 A—£/10 A—£/10

~ az ~ ~
= Z Z DD |azyF|V(z,])+ Z Z i | |V(Z’J) Z Z ) | ‘V(%J).

i=—Aj=—\ i=— |j|=A—t li|=A—¢ |j|=A—¢

Proof of Claim 7.6. For a fixed configuration n, and x in (—A, \), let us define

(7.48) Gy(z) = / X@)F (&, 5)(dn(y) — dy).
We have
(7.49) / /A (@) g)x (o) o) — dy) = / Gy () () (dy — d).

By construction, the map x — G, (2)x(z) is compactly supported. Using the a priori bounds of Propo-
sition 1.6, we obtain

//A | X@F(@,y)x(w)(dn — da)(dn — dy) < Z GoXlyy, D

i=—A

We have of course, differentiating a product,

|G77X|17vi =

and we use the fact that x is bounded by 1, and that x/(z) is bounded by ¢~! and supported on
{lz| € [\ —£/4, X — £/8]}. We obtain

A—/2 Gylows
(7.50) /G 2)(dy — dz) < Z Gyl Dt Y Provp
i=—A li|=A—¢

Let us now study G, itself. We have

6y(a) = [ XIF(e0)(anty) ~ du). - Gyfe) = [ X(0)uF(ow)(anty) ~ dy).
We have of course, differentiating with respect to y for x fixed

IXF(z,)1,v; 2 10yF|v(e

1,Vj»
and similarly
IxO.F(z, ')\1,\@ = |a§xF|V(z,j)|X|0,Vj + |azF|V(z,j)|X|LVj'

We use the a priori bounds of Proposition 1.6 again, and use again the fact that x is bounded by 1, that
X' (y) is zero outside {|y| € [\ — £/4,\ — £/8]} and bounded by £~1. We obtain

A—£/10 IFly N
(7.51) Z 0yFlvepnDi+ Y (“)
J==X l7l=A—¢
A—£/10
(7.52) Z |aa:yF|V(:r,])D n Z |0 F‘V(ﬂBJ)D
J==X l7l=A—¢

Combining (7.49), (7.50) and (7.51), (7.52), we obtain the expression (7.47). O
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Claim 7.7 (The “x,(1 — x)” term). We claim that:

(7.53) //mlf )) F(a y)x(v) (dn — dax) (dn — dy)

A

= (£ + |Discr|zjeia— sup o, F w-f)
(¢ + [Discrjejeiy e/s,A1|)j;A el e D

. Ao SuPjzep—e/s, |Flv ) =
+ (g + |DISCI“x|e[)\—Z/8,)\] |) Z l Di
lil=A—¢

Proof of Claim 7.7. With the notation G,, of (7.48), we write
(7.54) / /A (1= (@) Fla (o) (dn — da)dn — dy) = /A (1= X(2)) Gy () (dn — dz).

By construction, 1 — x(z) is supported on {|z| € [\ — /8, A]}, so we have, using a rough bound on G,
and the mass of dyp — dx in {|z| € [\ — £/8, A]},

(7.55) / (1= x()) Gy(z)(dn — dz) = (¢ + |Discrgjepn—esn])  sup |Gy(@)]
A |x|e[A—£/8,)]
Using (7.51) in (7.55), we obtain

A

/(1—X($))G (z)(dn — dz) = (£ + |Discrigiep—g/sn]) . sup |0yFlv (2.5 D;
A S0 ale—t/8.]

. Ao SUP| g epn—e/8,A] [FIV (2. ~
+ (04 Diserep-rsnl) D J D;,
l51=A—t
which yields (7.53). O
The estimate (7.45) is simply the combination of (7.46) and the two claims above. O

Proof of Proposition J.1. We recall that
Yy—2x
Claim 7.8 (The magnitude of F and its derivatives). We have

[¥s (@) + [¢s ()]

(7.56) Fz,y) = P—
(7.57) Flz,y) < sup [p0(1)]
te(z,y]
W) s ()] + [s (y)]

. F
(7 58) 8z ($,y) = |y—(E| + (y_x)Q
(7.59) 0:F(z,y) = sup [ (t)].

t€lz,y]

. 5 Fla, i@l @l @] )
(7.60) F @) 2 G e T e T e s
(7.61) 02,F(z,y) = sup [vP )+ sup [P (1)

telz,y] te[z,y]

Proof of Claim 7.8. The bounds (7.56), (7.57) are straightforward.
We then perform the following simple computation

FA
(7.62) 0uF = 7 A

— (02,A0) (14 A + (0:A,) (9,A,)
(7.63) 92 F= L .

1+ A2
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Moreover, we have

5J;As(a?,y) _ —wé(x) + "/’s(y) - ws(l') 5yAs(a?,y) _ z;(yx) _ ’l/Js(y> — ¢S(.T)

(7.64)

Ye(@) + s (y)  ,¥s(y) — ¥s(2)
z 2 3
(y—x) (y— )
From (7.62) and the fact that 1+Ag is bounded below by a positive constant (because |A]g is bounded
by |¢.]o, itself bounded by s|my oo, and smax is chosen as in (3.1)) we see that

(7.65) OuF = 0,4,

and using (7.64) we obtain (7.58).
Using again the fact that 1 + Ag is bounded below by a positive constant, we get

(7.66) O2,F < — (02,A,) (14 A,) + (9,0,) (9,A,).

2
OpyAs(,y) =

and after some algebra, we obtain
) ) @) | Adey)  2Adey)
(x-y)? (@-y? (z-y? (@-y? (z-y)?
s (@) —=2s (y)
T—y

(7.67) 07, F(a,y) =

Since v, is bounded, and so is Ag(z,y) = , we may certainly write

s L @ ) @) W)
OeF @) X s Y a2 Tle—yP T o=y

which is (7.60).
It remains to prove (7.59), (7.61). Using the identity

1 Y
Auley) = —— [ v (s)ds

an elementary computation yields

(7.68)  9,A,(z,y) < sup ’1/422)(0

t€(z,y

We may then derive (7.59) from (7.65) and (7.68) and (7.61) from (7.66) and (7.68). O

2,80 y)| = sup [0,

t€lz,y]

L By = sup [P ()

te(z,y]

General strategy, and convention for the proof. We estimate the expectations of the all terms in
Proposition 4.1. They involve (double) sums with coefficients of the type

EiﬁjA(i, .7)7
where A(i,7) is a non-random quantity related to F or one of its derivatives. We will use the estimates of
Claim 7.8 to control the terms A(4,j). Typically, the estimates (7.56), (7.58), (7.60) will be used when 4
and j are far away, and the estimates (7.57), (7.59), (7.61) will be used for ¢ and j close to each other.
The expectation of 51f)J can be controlled using the discrepancy estimates (1.11) and (1.12). Using
Cauchy-Schwarz’s inequality we see that (it is easy to check that the fact that, strictly speaking, the
inequality is not true for ¢ = 0 or j = 0 is irrelevant):

(7.69) E [ﬁiﬁj} = VIVl

and we will replace all occurrences of f),», resp. l~)j by \/m, resp. \/m . For most estimates, this is
enough, and we obtain terms that are og x(1). A couple of terms are seen this way to be only bounded,
but perhaps not vanishing, as A — 00, — oo, which we denote by O(1). For these terms, we use (1.12)
instead of (1.11), and write that

(7.70) E [ﬁiﬁj} = 0jij 00 (m) 0)j| 00 (\/W) :

which allows us to improve the bound to og x(1).
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The term Mainj. We recall that

A A

Maing (n) = Z Z DiD;|92,Fv i.5)-
i=—Xj=—
Using symmetries, it is enough to study
)\ ~ o~
> > DiDj|d2,Flv .-
i=0 i<[j|<X

(1)

Let us start with the region 0 < x < 2¢ and x < y < 4¢. We want to prove that

20 4e
E Y DiDj|02,Flv.j | = soea(1).
i=0 j=i
In this case, since 4, j are close, we use (7.61) to control |92, F|y(; j). By (3.9), (3.10), we know

that ¢§2) is controlled by sfﬁ(;za, and that 7,/19) is controlled by stﬁg?zo, and we refer to the bounds
(2.13), (2.14) to see that

[

s s
sup [0 (1) < 75,

sup [0 (1) = ;
|t|<4e

|t|<4¢

2|

the dominant term is obviously the second one, so we may simply study
20 ar
DD,
2.2 Dibig.
i=0 j=i
Taking the expectation and using (7.69), we are left with

20 44

ZZ\H\/}% =< sl x { % E%ZSO(D'

i=0 j=i

This is an example where the bound (7.69) is not sufficient, and we replace it by (7.70). By
well-known results on divergent series, we have

20 4L

>3 0i (Vi) o3 (V3) = o€,

and thus we have, as desired,

20 40

E ZZﬁlﬁj% = 50@))\(1).

i=0 j=i
* * K
For 20 < x < %, r<y< %x. We study the expectation of

A2 %i

>N " DiD;102, Flvij)-

i=20 j=i
We use (7.61) to control |02, F |y, ;). We control again ngz) by Sﬁvl(;?p (and read (2.13)), and w£3)
by 8&1&%20 (and read (2.14)), we get

YO0 <y

@l < 28
sup ‘1/15 (t)’ < s8"—, sup i

te(z,y] te(z,y]

Since x > ¢, the dominant term is the second one.
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Finally, we take the expectation, use the discrepancy estimates and replace Blf)y by Vi/7.
Comparing the sum with an integral, we are left to study

A/2 % [
/ \/E\/@?dxdy.
20

Replacing /y by /x (since z <y < %m), it yields
A/2 % / A/2 Y
s/ Ve —dydr = s/ — =s0(1).
20 x z 20 T

We are again in a case where (7.69) is not enough and must be replaced by the discrepancy
estimates (7.70), which improves the bound from sO(1) to sog(1).

* Kk x

(3) For 2l <z < 2, 3x < y. We study the expectation of

A2 A
Y > DiDjloz, Flviy)-
1=2/ :%

Since i and j are far from each other, we use (7.60) to control |82, F|y(; ;). Taking the expecta-
tions, using (7.69) and comparing the sum with an integral, we are left to study

32 W@ ] L @] L )]
/2@ ve ), f(( y>2+<zy>2+<xy>3+<xy>3>dy'

3T
Since %x < y we can replace x — y by y, and we split the integrand in four parts.
(a) Using (3.8) to control ¢, by smy ,, and (2.12) to control my ., we get

22 X /G Mz
VR (@)] / iy / e (o)lds = 0(1).

20

Using again (7.70) instead of (7.69), we may replace \/z,,/y by 0.(v/x),0,(\/¥), and we
obtain in fact sop x(1).

(b) Using (3.8) to control ¢, by smy ., and (2.12) to control my ., and splitting the domain of
integration in two parts, we see that

|w )| Mz M2t g B/
Vzdz f Y dy < s Vxdz dy +/
ig 20 1. YY? a2 A32y2/A

A/2

20

The first contribution is

,\/2 A2 f A2 A/2 A/2 ,
/ sdydr = s/ / 7/2 dydzr < s \/Edel' = s0(1),
2¢ iz 2¢ z

20

3T

and for the second one, since y € [A\/2, A\] we may replace y by A and compute

22 A ;
s VT ————dydz = sO(1).
/QE a2 MV —y @

Again, this can be improved to sog »(1).
(¢) Using (3.12) to control t4(z), we have

A/2 2/2
vl [ By < [ it Loae= o0,

4
iz 2¢

Which can be improved to oz, (1).
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(d) Using (3.12) to control 14(y) and splitting the domain of integration (on y) in two parts, we
have

A/2 A \/?|1/)e(y)| A2 A/2 ¢ A ¢ /7>\—y
/2 Vadz T dy 5/2 Vrdx / y7/2dy—|—/>\/2 R dy

4 4
4 T 14 3T

A/2 g g

Similarly, this can be improved to sog x(1).

* Kk x

(4) For % <z <A—landy—xz < (A — ). We study the expectation of

A—t
Z Z DiD;|02,Flv :.5)-

i=A/20<j—i<3(A—i)
Since i, j are close we use (7.61) to control |92, F|y(; j). We see (the now usual way) that

2 14
- G < g
W 3001 s

2
sup [02(1)] = s
t€fz,y]

and the dominant term is the second one.

We take the expectation, we use the discrepancy estimates, we compare the sum to an integral,
we replace \/z, /y by V), and we are left to compute

A—L A—t

12 l 1 12
s )\d:c/ —————dy <s — <s = sog x(1).
//\/2 0<y—a<(r—a) N¥/2(A —2)5/2 a2 VAN =2)¥2 7V
* %k
(5) For 3 <z <A—/(and y—a > $(A—z). We use (7.60) to control 102, F|v(ij)- We take the

expectation, and compare the sum to a series, we are left to study

: @) Wl @], W)
/m v )V <<x—y>2 Tl T -y T <x—y>3> W

We replace v/, \/y by VA and split the integrand in four parts.
(a) Using (3.8) to control ¢, (x) by smy (), and (2.12), we have

{
NN —x

[¥i()] =

and thus consider

/Hdazﬁ @l s/A dmL/ ;dy
A2 y—w>>‘7 (y_'r)Q o A2 )\3/2\/)\—56 y—w>>‘;z (y—l‘)2

x
2

<s/>\_édx/\ ¢ 1 =s ! = sop.A(1)
Y 2Nz A—x T VAW LA
(b) Using (3.8) to control ¥ (y) by smy ,(y), and (2.12), we have

14
!/
g (y)] = Sma

and thus consider

A—L A—4
A / / ¢
dzvV A A—Fdy < dxA
[\ VA VX y=xs A x yasrzz N2/

dy
/2 y—az>252 (yix)z /2 _y(y_‘r)Q
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Since y — x > )‘%‘T, we may replace ﬁ by ﬁ, and we now study

- - du= - =~ =
Sow T L AR, ST

(¢) Using (3.12) to control ¢, (z) by szi;\;\/f, we write

//\/2 da:\f/

A/fa:
f |/¢s( )| yjs/ da\ / dy
) A/2 >\3/2 ly— w‘> —x)
A—t
WA—z 1 ¢
=s A dr <s = sop(1
- //\/2 X O R A LAV IVAN ea(l)
(d) Using (3.12) to control ¥s(y) by 32‘@7/?7 we write
A A—t
A
dxf/ \/> |'¢é( )| dy < s dxi/ udy
/>\/2 z>2 (y — ) 2/2 ()\—x) P )\3/2\/7
A—t A , "
jS/A/Q d”mmﬂ—x) jsf\[ s0¢,(1).

* k Kk

(6) For A\ — ¢ <z <y < A We use (7.61), the computation 1s similar to the case 3 <z < A — (£ and
y —z < (A — z) above, we obtain again an error as sﬂf which is so A (1).

* k Kk

(7) For z,y in (—44,4¢) the proof is as in the very first case.

* % x

(8) For 0 < x < 24, and 44 < |y| < A, we use (7.61), we write ﬁ =< 1 and we are left with

[yl

" aia [ i (W, 1L L Y

y? y? y? y

S

We have ¢,(z) =< s, ¥ (x) = 7 and the corresponding terms give

Y4 — 4+ — | dy = sO(1).
/0 44\@(153/2 y3> Y @

For the two other terms, we obtain

)\ ~
Y Vade / LWl < o / 7|mgjgy)|dy,
aw Y

0

and using the bounds (2.12) we see that this is sO(1).
All these terms are in fact improved to sog (1) as above.

* K x

(9) For 2¢ < x < % and r < —y, the computation is similar to the case 2¢ < x < % and %x <y,

since we can write

(10) Finally, for 5

1 1
lz—yl = Jy|”
* % %

<z<Xdand -\ <y < —2, we use (7.61) and we are left to bound, after replacing

Vv, \/y by ﬁ, and |y — z| by A, the quantlty

A A A
A/Q\f/\dm/)\m\f( 2 =+ e >dy,
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where we use the symmetry in x,y to forget about the ¥.(x), ¥s(z) terms. We have

A ’ A
[y < [ oty = 00),
A A/2

/2
and, using (3.12),

A A
2 [vs (y)l 1 st / st
dy = — VA—ydy X — = 1).
A /A/2 Y ERNE S, A= ydy = 1 = soea(l)

This concludes the study of Mainj.

* kK K K
The term I\/Ialn . We recall that
. 2 0 Flvay)
Maln Z Z DZDji’J
i=—X |j]=A—¢

Using symmetries, it is enough to study

~~|8F| %,
ZZ V(J)

i=—Aj=A—~

When taking the expectation, we use the discrepancy estimates and replace ﬁzﬁj by Vi\/j, keeping in
mind that any O(1) can be improved to o x(1) by using (7.70) instead of (7.69).
We split the first sum into i < A — 3¢ and i > \ — 3/.

(1) For the first sum, we use (7.58), and study

A—3¢ A .
1) | Je(D)] + [ )
>y 7 ( e )

i=— X j=A—t |71l

Replacing /7 by VA, [¢s(5)| by f;g (in view of (3.12)) and j — i by X\ — 4, we are left with

= ev/x NG Vit
(7.71) _;A f(w a0 1' (';/’_(2)'2 + )\3/2()\—i)2>'

We decompose the sum further
(a) For —X <1 < 2/, we use the fact that ¢ (i) < smy (i) and [my ,|z1 < 1, that ¢,(i) =< s, we
replace A — i by A and we bound \/m by vA. We obtain

20 ~ .
VAN ma()] 1 {7
S Z 7 \/X( )L\P +F+>\3/2/\2 280(1).
i=—A

(b) For 2¢ < i < A/2, we use the fact that 1 (i) < smy (i) < s, that ¢,(i) < s£, we replace
A — i by A\. We obtain

A/2
A ¢ Vi
lZ:% f( SV )\3/2)\2> = sog (1)

(c) For A/2 <i < A—3¢, we use the fact that ¢ (i) < smy (i) < s

we replace Vi by v A. We obtain

E AR ‘ WA N
’ Z va ()\3/2(/\ —7)3/2 + A3/2(\ — )2 - N3/2( A _i)2> = sop A (1).

-, that ¢,(i) < s AL

/\3/2\/)\

i=x/2
(2) For the second sum, we use (7.59), observe that near A we have, in view of (3.9) and (2.13),
14

@) < g——r
te[ilgi)e,A] Wl = SN3/23/2
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and study
A A -
\f
DD )\3/2 B2
i=A—30 j=A—¢
We replace v/iy/j by A and get s0g,1(1) by direct computation.

This concludes the study of MainZ.
* ok kKK

The term Maln . We recall that

A—£/10 A—£/10

Main Z Z l~) l~) |F|V )

lil=A—£]jl=A—¢
Using symmetries, it enough to study
A—£/10 A—£/10 —A+£/10 A—£/10
Z Z DD 7])+ Z Z NN |F\V(w).
i=A—f j=A—L i=—A  j=A—

When taking the expectation, we use the discrepancy estimates and replace ]iﬁj by Viy/j. Here we
replace further v/iy/7 by .

(1) For the first sum, we use (7.57) and observe that, near A, we have (in view of (3.8) and (2.12))

i
(1)
su t) <Xs ,
tEA—EE,AW)s Wl = N3/24/¢

hence we obtain
A—£/10 A—£/10

|F|V(m) ¢
s Z Z A1) < g2 )\62)\3/2\[ soga(1).

i=A—C j=A—4

(2) For the second sum, we use (7.56), and observe that, in view of (3.12), we have, for ¢ near —\
and j near A,

[$s (D1 + 195G _ NG
(j —1) ~ TA3/2)

and we thus obtain
—A+£/10 A\—£/10 07

Z Z \3/272)\ = sor(1).

i=—X\  j=A—L
This concludes the study of Main®.
* % Kk Kk
The term Maln . We recall that

A

Main (n) = (£ + |Discr|zjcir—e/s,5) Z sup  |0,Flv (s, D;
S lelen—t/8.]

Taking the expectation, we use the discrepancy estimates and get

E [ (¢ + [Diserjaiepn—ess]) Ds| < /7.

so we study
A

S /i o sp [04Flyay).
2 elei-e/s)

We split the sum into j < A — 3¢ and j > X — 3¢.
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(1) For j < XA — 3¢, we use (7.58) (switching the roles of z and y) and write, for z in [A — £/8, }]
L WO s(@)] 9 ()
+ + .
j—z G-2)? (-2
We replace j —x by A — j and (in view of (3.12)) |¢s(z)| by sfgﬁ, and we obtain
D UA©)| B [ ()
sup OyFlv(z,5) = - - 5
|w|€[x\—l/8,/\]| vFlvea) 2 A=j o N2A=5)2 (A—j)?
we are thus left to study
A—3¢
j TNRO- R ()\*J) '

j==X

|8 F‘VI] -

This is actually much smaller than (7.71), which was already treated.
(2) For j > XA — 3¢, we use (7.59) and write, for z in [A — £/8, A]

14

‘ . (2 -
Ve = G0 = S
and a direct computation gives
A
s Z ¢\/j sup |9, Flv (e, = st \F/\3/2€3/2 sog a(1).

j=A—30 |z|€[A—£/8,A]

This concludes the study of Mainf.

* K K K K
The term Maln . We recall that
. D . AL SUP |4 epn—e/8,7] [FIV () ~
Maing (n) = (£+ |DISCI"$|E[/\_5/87/\]|) Z 7 D;.
l7l=x—2¢

For the same reasons as above, we are led to study
A—£/10
> SUP|z|e[A—£/8,)] |F|V(z,j)€\[\
é K
lil=A—¢

and we split the sum in two parts: j near —\ and j near A. For the first part, we use (7.56), and for
the second part we use (7.57) to control |F|y(, ;). After some computation, we obtain sog x(1). This

concludes the study of MainsD , and the proof of the proposition. O
7.12. Proof of Corollary 5.4.

Proof of Corollary 5.4. We can split A® into {x > A} and {z < —A}, both parts yield an equivalent
contribution, so we only consider the first one. We need an adaptation of the a priori bound (1.10) to a
slightly different context.

Claim 7.9 (A priori bound - “hard edge” and decay assumption). Let g be a C! function such that
(7.72) limsup |zg(x)| < +o00, limsupz?|¢’(z)| < +oo,
rT—00

Tr— 00

then, Sineg-a.s. both sides of the following inequality are finite, and the inequality holds

+oo too .
[ ata)de — da) = 3 gl D= + () Discxag |
A s
Proof of Claim 7.9. We follow the same lines as for the proof of Proposition 1.6. We split the domain of
integration into unit intervals and use the mean value theorem, in order to get, for M > X fixed
M—1

k+1
/ g(a)(dC — d) Z / )(dC — dz) < 3" g(k)Diserp ) + Os (lgh.vy) (1 + [Disery])
A

k=X
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We write, for any k, Discr(y x41) = Discr(y k41) — Discry g, and perform a summation by parts to get

M—1 M-1
Z Q(k)DiSCT[k,kH] = Z (9(k —1) —g(k)) Discrpy g + g(M — 1)DiSCY[,\,M] + Q(A)DiSCT[,\,/\Hy
k=X k=X+1

In view of (7.72), the boundary term g(M — 1)Discry a) tends almost surely to 0 as M — oo, because
ﬁDiscrp\’M] tends almost surely to 0. On the other hand, the series

+o0

Z lgl1v;, (1 + [Discry gq1])
k=x

is almost surely convergent, because we have, in view of (1.11) and (7.72)
limsupE [(k2|g|17vk (1+ |Discr[k7k+1]|))2} < 4o00.
k—o0
Sending M — oo yields the result. O
We can easily check that ErrorDF satisfies the decay assumption (7.72). Using Claim 7.9, we get
+o0 +00 .
/ ErrorDF,(C)(x)(dC — dz) X s Y _ |ErrorDF,|y,v, D} + [ErrorDF, (A)|Discrp a41)-
A ;
J=A

The boundary term. We claim that

1
(7.73) E [|ErrorDF,(A)Discr y41)|] =< sg 0g(%)

) W = 50[)>\(1).

Indeed, using (5.5) and the discrepancy estimates (1.11) for ﬁiRight, we obtain

S (Ol LI g [ rien
E [|ErrorDF,(A)|Discriy y41y] =< Z ( )E |:Di ig Discr[,\7A+1]}

N2 T -

S ((ws(a) W”')m.

= \(z— )2 (x—1)

We use (3.8) and (2.12) to control the contribution of the v, (i) terms, and (3.12) to control the contri-
bution of the t4(i) terms. For example, we have

A—2 . e
|95 (0)] . L S gHog()

The main contribution. We now claim that

—+o0
(7.74) E | Y |ErrorDF,|y,v, D™ | = so;x(1).
J=A

To prove (7.74), we use (5.6) and write

+00 A—£
Right = W’s W’ ( )| ARight 77 R1ght
E |ErrorDFs|1,v; D; =< E E D;"*"D;

_ )2
PPN V) T
Taking the expectation and using Cauchy-Schwarz’s inequality, we get

+oo
(7.75) E | > [ErrorDF,|y v, D"

J=X
<35 (G g ey ] (o]

J=Ai=—A
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Using the discrepancy estimate (1.11) we obtain

+oo A—4 /(s
Z|Err0rDF |1, VJDnght = Z Z ( 1,0 (st_(i))z) VIx=ilVIx=l.

—’L
J=Ai=—A '7

Let us keep in mind that, as in the proof of Proposition 4.1, we may use the sharper discrepancy estimates
(1.12) instead of (1.11), and take advantage of the fact that

E [(5?@“)2] = 0j-Alo0 (= A).

The terms i far from A: We first treat the case —\ < i < \/2.
(1) For any j > A, using the estimates (3.12) on v, we may write

3 0 5V §/j ()] = 5208
G =i)? . ;3
We thus get:
=& ws | X VAllog(A)  flog(M)
(7.76) > Z VA=V A5 wE ST = sor(1).
J=Ai=— )\ J=X

(2) For any j > A, using (3.8) and (2.12), we write

A/2 vy )\/2
> BOLAT S ml<s%.
B V) i=—A
We thus get:
0o A2 oo
Zzw’s |\/)\f\/7>\< vajj_
J=Ni=— )\ j=X

A rough bound would only yield a O(1) contribution here. Instead, we split the sum into
A+log(A) \/X T — 1 log(\) \/»
Z 2 = e Z k= 00x(1),
J=A
and the remainder where j — A > log()\), in which we use (1.12) instead of (1.11), which

allows us to replace v/j — A by ox(v/7 — A), and
Jf VAx oy (Vi=2)

' j2 = Og,)\(l).
j=A+log())
Hence
+oo A/2 /(
(7.77) 3 Z W’ | VA =i x 0(«/ )\) = sopA(1).
Jj= )\z*f)\

“

Combining (7.76) and (7.77), we see that the contribution in (7.75) coming from the terms “i
far from A” i.e. here —\ < i < \/2, is sog A (1).
The terms i close to \: We now consider A\/2 <i < A —/¢
(1) For any j > ), using the estimates (3.12) on v, we may write

A—L A—L ;
|ws( )| f A—1
E VA—1=s E - —.
g (j—1)3 sy A3/2 (5 — A4+ X —i)3

We distinguish the cases A —i < j—Aand A—i>j— A\
(a) We have (the sum being non-empty only if j — A > ¢):

3/2 (4 — A3 — \3/2 (4 — 2 — \1/2 (5 — 27
1EN/2,A—L][A—i<j—X A / (J A + A Z) A / (J /\) 1EN/2A=L][A—i<j—X A / (] >\)
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(b) On the other hand (the sum being non-empty only if j — A < A/2):

3/2 3 — \3/2 — 02 = 3/25 )
PE[A/2 AL A—i>j—A AYE(G = A+ A=) A P€[A/2A—L)|A—i>j—A (A—1) AHEG—A

We may thus write

+oo A—4 3A/2

Wzs \\/7\/7 / 1 l /
ZZ A=t ‘7*)‘{‘92 172 ( 32+SZ 572 S = Sxijzgie Ty
j)\z)\/Q J,\H)‘/ / NEVG=X ALY A
We obtain
“+oo A4
(7.78) VA —iy/j— A= sopx(1).
j=Xi= /\/2

(2) Concerning the terms 1, (z) we use (3.7) and (2.12) and write, for any j > A,

i‘ LAGIRY Z Sias bt 1
— -1 = —i=s - )
2 U= S MV )‘—ZJ—Z) AVZ(j=A+0)?
We thus have
JiO/\Z:e ‘\/)\ i j )\<s+zoo ¢ Vi=A =s g
B 1/2 (45 _ 2 — 1/2p1/2
X i U ARG A0 e
and we obtain
S T LA
(7.79) Z Z W A—1 ]_)\:506,)\(1)
J=Xi=A/2

“

Combining (7.78) and (7.79), we see that the contribution in (7.75) coming from the terms “i
close to N7, i.e. here A/2 <i < X —/, is oz (1).

This concludes the proof of (7.74), which, combined with (7.73), yields (5.10). O
7.13. Proof of Lemma 5.5.

Proof of Lemma 5.5. For 3\/4 < |z| < 4\. For simplicity we consider LPy ,()), the proof extends
readily to LPy () for 3A/4 < |z| < 4X. We have, by definition

LPro(h) = [ = log(h — y)ma ()
The |y| < 3 part. We want to show:

A/2 2
(7.80) / log(A — g)mi o (y)dy < 28 Y.

—2/2 A
We recall that, by definition,

-1 1 —1 1 o () VA2 — 2
mA,cp(y) = 775/\&(:” = 7 \/WPV/ ( )y _— dt.

For |y| < A, we write

et~ o0 (4)) 20 ()

_ log(V) lyl | lyl*log(V) _ log(V) log(M)ly|
Vo (G M) < B o (M),

and thus

(7.81) log |\ =y

_ log( )55Ma( )+ O, (W) 1950 (1)].

1
\/ﬁﬁ/\,w(y)



CLT FOR FLUCTUATIONS OF LINEAR STATISTICS IN THE SINE-BETA PROCESS 47

Using (7.16), we get

M2 g o}

Using the bounds (2.7), we can check that

A/2
/ 092,50y = X log(),
2

and thus
A2 Jog(A £log”(\
(7.83) [ i oty = L,
—X/2
We obtain (7.80).
The |y| > A/2 part. We want to show:
Llog(A
(780 [t plma sy = .
ly[=A/2

We use (2.7) and an elementary computation. The mass of m, ,, outside [~A/2,A/2] is indeed O, (£).
Combining (7.80) and (7.84), we obtain (5.11).
For )\ < |z| < 4X. We can e.g. assume that A <z < 4\, write LP;\#}(.ﬁ) as

1

—_— t)dt
x_tmk,ga() )

LP')\M,(m) =

and we use (2.7). We have

Mo 1
) < —
| smmel< 5,

and we focus on the remaining part ¢ € [A/2, \]. We write

/A " m (t)|dzs</A ! £ _g=! /Wldv
e —th M T e AFA—tN2 =t N2 ), (x—-Atu)u

An elementary computation shows that

A/2 1 1
—< )
/0 (@=A+v)Vo = Vo—2X
which yields (5.12).
For |z > 4X. We write LP (x) as

1
LPI)\,LP(J") :/mmkﬁp(t)dt,

and, since my , has total mass 0, a first-order expansion yields
1
P () = 25 [ Itlma o0
We can use (2.7) to compute [ [t|[my ,(¢)]dt < £log(\), which yields (5.13). O
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