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CLT FOR FLUCTUATIONS OF β-ENSEMBLES WITH GENERAL
POTENTIAL

FLORENT BEKERMAN, THOMAS LEBLÉ, AND SYLVIA SERFATY

Abstract. We prove a central limit theorem for the linear statistics of one-dimensional
log-gases, or β-ensembles. We use a method based on a change of variables which allows to
treat fairly general situations, including multi-cut and, for the first time, critical cases, and
generalizes the previously known results of Johansson, Borot-Guionnet and Shcherbina. In
the one-cut regular case, our approach also allows to retrieve a rate of convergence as well
as previously known expansions of the free energy to arbitrary order.
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1. Introduction

Let β > 0 be fixed. For N ≥ 1, we are interested in the N -point canonical Gibbs measure1

for a one-dimensional log-gas at the inverse temperature β, defined by

(1.1) dPVN,β( ~XN ) = 1
ZVN,β

exp
(
−β2H

V
N ( ~XN )

)
d ~XN ,

where ~XN = (x1, . . . , xN ) is an N -tuple of points in R, and HVN ( ~XN ), defined by

(1.2) HVN ( ~XN ) :=
∑

1≤i 6=j≤N
− log |xi − xj |+

N∑
i=1

NV (xi),

is the energy of the system in the state ~XN , given by the sum of the pairwise repulsive
logarithmic interaction between all particles plus the effect on each particle of an external
field or confining potential NV whose intensity is proportional to N . We will use d ~XN

to denote the Lebesgue measure on RN . The constant ZVN,β in the definition (1.1) is the
normalizing constant, called the partition function, and is equal to

ZVN,β :=
ˆ
RN

exp
(
−β2H

V
N ( ~XN )

)
d ~XN .

Such systems of particles with logarithmic repulsive interaction on the line have been exten-
sively studied, in particular because of their connection with random matrix theory, see [For10]
for a survey.

Under mild assumptions on V , it is known that the empirical measure of the particles
converges almost surely to some deterministic probability measure on R called the equilibrium

Date: Wednesday 28th June, 2017.
1We use β

2 instead of β in order to match the existing literature. The first sum in (1.2), over indices i 6= j,
is twice the physical one, but is more convenient for our analysis.
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measure µV , with no simple expression in terms of V . For any N ≥ 1, let us define the
fluctuation measure

(1.3) fluctN :=
N∑
i=1

δxi −NµV ,

which is a random signed measure. For any test function ξ regular enough we define the
fluctuations of the linear statistics associated to ξ as the random real variable

(1.4) FluctN (ξ) :=
ˆ
R
ξ dfluctN .

The goal of this paper is to prove a Central Limit Theorem (CLT) for FluctN (ξ), under some
regularity assumptions on V and ξ.

1.1. Assumptions.
(H1) - Regularity and growth of V : The potential V is in Cp(R) and satisfies the growth

condition

(1.5) lim inf
|x|→∞

V (x)
2 log |x| > 1.

It is well-known, see e.g. [ST13], that if V satisfies (H1) with p ≥ 0, then the logarithmic
potential energy functional defined on the space of probability measures by

(1.6) IV (µ) =
ˆ
R×R
− log |x− y| dµ(x) dµ(y) +

ˆ
R
V (x) dµ(x)

has a unique global minimizer µV , the aforementioned equilibrium measure. This measure
has a compact support that we will denote by ΣV , and µV is characterized by the fact that
there exists a constant cV such that the function ζV defined by

(1.7) ζV (x) :=
ˆ
− log |x− y|dµV (y) + V (x)

2 − cV

satisfies the Euler-Lagrange conditions

(1.8) ζV ≥ 0 in R, ζV = 0 on ΣV .

We will work under two additional assumptions: one deals with the possible form of µV
and the other one is a non-criticality hypothesis concerning ζV .
(H2) - Form of the equilibrium measure: The support ΣV of µV is a finite union of n+1

non-degenerate intervals

ΣV =
⋃

0≤l≤n
[αl,−;αl,+], with αl,− < αl,+.

The points αl,± are called the endpoints of the support ΣV . For x in ΣV , we let

(1.9) σ(x) :=
n∏
l=0

√
|x− αl,−||x− αl,+|.

We assume that the equilibrium measure has a density with respect to the Lebesgue
measure on ΣV given by

(1.10) µV (x) = S(x)σ(x),
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where S can be written as

(1.11) S(x) = S0(x)
m∏
i=1

(x− si)2ki , S0 > 0 on ΣV ,

where m ≥ 0, all the points si, called singular points2, belong to ΣV and the ki are
natural integers.

(H3) - Non-criticality of ζV : The function ζV is positive on R \ ΣV .
We introduce the operator ΞV , which acts on C1 functions by

(1.12) ΞV [ψ] := −1
2ψV

′ +
ˆ
ψ(·)− ψ(y)
· − y

dµV (y).

1.2. Main result.

Theorem 1 (Central limit theorem for fluctuations of linear statistics). Let ξ be a function
in Cr(R), assume that (H1)-(H3) hold. We let

k = max
i=1,...,m

2ki,

where the ki’s are as in (1.11), and assume that, p (resp. r) denoting the regularity of V
(resp. ξ)
(1.13) p ≥ (3k + 5), r ≥ (2k + 3).

If n ≥ 1, assume that ξ satisfies the n following conditions

(1.14)
ˆ

ΣV

ξ(y)yd

σ(y) dy = 0 for d = 0, . . . , n− 1.

Moreover, if m ≥ 1, assume that for all i = 1, . . . ,m

(1.15)
ˆ

ΣV

ξ(y)−Rsi,dξ(y)
σ(y)(y − si)d

dy = 0 for d = 1, . . . , 2ki,

where Rx,dξ is the Taylor expansion of ξ to order d− 1 around x given by

Rx,dξ(y) = ξ(x) + (y − x)ξ′(x) + · · ·+ (y − x)d−1

(d− 1)! ξ(d−1)(x).

Then there exists a constant cξ and a function ψ of class C2 in some open neighborhood
U of ΣV such that ΞV [ψ] = ξ

2 + cξ on U , and the fluctuation FluctN (ξ) converges in law as
N →∞ to a Gaussian distribution with mean

mξ =
(

1− 2
β

) ˆ
ψ′ dµV ,

and variance
vξ = − 2

β

ˆ
ψξ′dµV .

It is proven in (B.32) that the variance vξ has the equivalent expression

(1.16) vξ := 2
β

(¨ (
ψ(x)− ψ(y)

x− y

)2
dµV (x)dµV (y) +

ˆ
V ′′ψ2dµV

)
.

Let us note that ψ, hence also mξ and vξ, can be explicitly written in terms of ξ.

2Let us emphasize that a singular point si can be equal to an endpoint αl,±.
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1.3. Comments on the assumptions. The growth condition (1.5) is standard and ex-
presses the fact that the logarithmic repulsion is beaten at long distance by the confinement,
thus ensuring that µV has a compact support. Together with the non-criticality assumption
(H3) on ζV , it implies that the particles of the log-gas effectively stay within some neighbor-
hood of ΣV , up to very rare events.

The case n = 0, where the support has a single connected component, is called one-cut,
whereas n ≥ 1 is a multi-cut situation. If m ≥ 1, we are in a critical case.

The relationship between V and µV is complicated in general, and we mention some ex-
amples where µV is known to satisfy our assumptions.

• If V is real-analytic, then the assumptions are satisfied with n finite, m finite and S
analytic on ΣV , see [DKM98, Theorem 1.38], [DKM+99, Sec.1].
• If V is real-analytic, then for a “generic” V the assumptions are satisfied with n finite,

m = 0 and S analytic on ΣV , see [KM00].
• If V is uniformly convex and smooth, then the assumptions are satisfied with n = 0,

m = 0, and S smooth on ΣV , see e.g. [BdMPS95, Example 1].
• Examples of multi-cut, non-critical situations with n = 0, 1, 2 and m = 0, are men-

tioned in [BdMPS95, Examples 3-4].
• An example of criticality at the edge of the support is given by V (x) = 1

20x
4− 4

15x
3 +

1
5x

2 + 8
5x, for which the equilibrium measure, as computed in [CKI10, Example 1.2],

is given by

µV (x) = 1
10π

√
|x− (−2)||x− 2|(x− 2)21[−2,2](x).

• An example of criticality in the bulk of the support is given by V (x) = x4

4 − x
2, for

which the equilibrium measure, as computed in [CK06], is

µV (x) = 1
2π

√
|x− (−2)||x− 2|(x− 0)21[−2,2](x).

Following the terminology used in the literature [DKM+99, KM00, CK06], we may say that
our assumptions allow the existence of singular points of type II (the density vanishes in the
bulk) and III (the density vanishes at the edge faster than a square root). Assumption (H3)
rules out the possibility of singular points of type I, also called “birth of a new cut”, for which
the behavior might be quite different, see [Cla08,Mo08].

1.4. Existing literature, strategy and perspectives.

1.4.1. Connection to previous results. The CLT for fluctuations of linear statistics in the
context of β-ensembles was proven in the pioneering paper [Joh98] for polynomial potentials
in the case n = 0,m = 0, and generalized in [Shc13] to real-analytic potentials in the possibly
multi-cut, non-critical cases (n ≥ 0,m = 0), where a set of n necessary and sufficient conditions
on a given test function in order to satisfy the CLT is derived. If these conditions are
not fulfilled, the fluctuations are shown to exhibit oscillatory behaviour. Such results are
also a by-product of the all-orders expansion of the partition function obtained in [BG13b]
(n = 0,m = 0) and [BG13a] (n ≥ 0,m = 0). A CLT for the fluctuations of linear statistics for
test functions living at mesoscopic scales was recently obtained in [BL16].
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1.4.2. Motivation and strategy. Our goal is twofold: on the one hand, we provide a simple
proof of the CLT using a change of variables argument, retrieving the results cited above. On
the other hand, our method allows to substantially relax the assumptions on V , in particular
for the first time we are able to treat critical situations where m ≥ 1.

Our method, which is adapted from the one introduced in [LS16] for two-dimensional log-
gases, can be summarized as follows

(1) We prove the CLT by showing that the Laplace transform of the fluctuations converges
to the Laplace transform of the correct Gaussian law. This idea is already present
in [Joh98] and many further works. Computing the Laplace transform of FluctN (ξ)
leads to working with a new potential V + tξ (with t small), and thus to considering
the associated perturbed equilibrium measure.

(2) Following [LS16], our method then consists in finding a change of variables (or a
transport map) that pushes µV onto the perturbed equilibrium measure. In fact we
do not exactly achieve this, but rather we construct a transport map I + tψ, which
is a perturbation of identity, and consider the approximate perturbed equilibrium
measure (I + tψ)#µV . The map ψ is found by inverting the operator (1.12), which
is well-known in this context, it appears e.g. in [BG13b, BG13a, Shc13, BFG13]. A
CLT will hold if the function ξ is (up to constants) in the image of ΞV , leading to
the conditions (1.14)–(1.15). The change of variables approach for one-dimensional
log-gases was already used e.g. in [Shc14,BFG13], see also [GMS07,GS14] which deal
with the non-commutative context.

(3) The proof then leverages on the expansion of logZVN,β up to order N proven in [LS15],
valid in the multi-cut and critical case, and whose dependency in V is explicit enough.
This step replaces the a priori bound on the commutators used e.g. in [BG13b].

1.4.3. More comments and perspectives. Using the Cramér-Wold theorem, the result of The-
orem 1 extends readily to any finite family of test functions satisfying the conditions ((1.14),
(1.15)): the joint law of their fluctuations converges to a Gaussian vector, using the bilinear
form associated to (1.16) in order to determine the covariance.

In the multi-cut case, the CLT results of [Shc13] or [BG13a] are stated under n necessary
and sufficient conditions on the test function, and the non-Gaussian nature of the fluctuations
if these conditions are not satisfied is explicitly described. In the critical cases, we only state
sufficient conditions (1.15) under which the CLT holds. It would be interesting to prove
that these conditions are necessary, and to characterize the behavior of the fluctuations for
functions which do not satisfy (1.15).

Finally, we expect Theorem 1 to hold also at mesoscopic scales.

1.5. The one-cut noncritical case. In the case n = 0 and m = 0, following the transport
approach, we can obtain the convergence of the Laplace transform of fluctuations with an
explicit rate, under the assumption that ξ is very regular (we have not tried to optimize in
the regularity):
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Theorem 2 (Rate of convergence in the one-cut noncritical case). Under the assumptions of
Theorem 1, if in addition n = 0, m = 0, p ≥ 6 and r ≥ 17, then we also have

(1.17)
∣∣∣∣log EPV

N,β
(exp(sFluctN (ξ))− smξ − s2vξ

∣∣∣∣
≤ C

(
s

N
‖ξ‖C17(R) + s3

N
‖ξ‖C2(R) + s4

N2 ‖ξ‖
4
C3(R)

)
,

where the constant C depends only on V .

The assumed regularity on ξ allows to avoid using the result of [LS15] on the expansion
of logZVN,β . Our transport approach also provides a functional relation on the expectation
of fluctuations which allows by a boostrap procedure to recover an expansion of logZVN,β
(relative to a reference potential) to arbitrary powers of 1/N in very regular cases, i.e the
result of [BG13b] but without the analyticity assumption. All these results are presented in
Appendix A.

1.6. Some notation. We denote by P.V. the principal value of an integral having a singu-
larity at x0, i.e.

(1.18) P.V.

ˆ
f = lim

ε→0

ˆ x0−ε

−∞
f +
ˆ +∞

x0+ε
f.

If Φ is a C1-diffeomorphism and µ a probability measure, we denote by Φ#µ the push-
forward of µ by Φ, which is by definition such that for A ⊂ R Borel,

(Φ#µ)(A) := µ(Φ−1(A)).

If A ⊂ R we denote by Å its interior.
For k ≥ 0, and U some bounded domain in R, we endow the spaces Ck(U) with the usual

norm

‖ψ‖Ck(U) :=
k∑
j=0

sup
x∈U
|ψ(j)(x)|.

If z is a complex number, we denote by R(z) (resp. I(z)) its real (resp. imaginary) part.
For any probability measure µ on R we denote by hµ the logarithmic potential generated

by µ, defined as the map

(1.19) x ∈ R2 7→ hµ(x) =
ˆ
− log |x− y|dµ(y).

2. Expressing the Laplace transform of the fluctuations

We start by the standard approach of reexpressing the Laplace transform of the fluctuations
in terms the ratio of partition functions of a perturbed log-gas by that of the original one.
This is combined with the energy splitting formula of [SS15] that separates fixed leading order
terms from variable next order ones.
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2.1. The next-order energy. For any probability measure µ, let us define,

(2.1) FN ( ~XN , µ) = −
¨

R×R\4
log |x− y|

( N∑
i=1

δxi − µ
)
(x)
( N∑
i=1

δxi − µ
)
(y),

where 4 denotes the diagonal in R× R.
We have the following splitting formula for the energy, as introduced in [SS15] (we recall

the proof in Section B.1).

Lemma 2.1. For any ~XN ∈ RN , it holds that

(2.2) HVN ( ~XN ) = N2IV (µV ) + 2N
N∑
i=1

ζV (xi) + FN ( ~XN , µV ) .

Using this splitting formula (2.2), we may re-write PVN,β as

(2.3) dPVN,β( ~XN ) = 1
KN,β(µV , ζV ) exp

(
−β2

(
FN ( ~XN , µV ) + 2N

N∑
i=1

ζV (xi)
))

d ~XN ,

with a next-order partition function KN,β(µV , ζV ) defined by

(2.4) KN,β(µV , ζV ) :=
ˆ
RN

exp
(
−β2

(
FN ( ~XN , µV ) + 2N

N∑
i=1

ζV (xi)
))

d ~XN .

We extend this notation to KN,β(µ, ζ) where µ is a probability density and ζ is a confinement
potential.

2.2. Perturbed potential and equilibrium measure. Let ξ be in C0(R) with compact
support.

Definition 2.2. For any t ∈ R, we define
• The perturbed potential Vt as Vt := V + tξ.
• The perturbed equilibrium measure µt as the equilibrium measure associated to Vt.

Since ξ has compact support, Vt satisfies the growth assumption (1.5) and thus µt is
well-defined. In particular, µ0 coincides with µV .
• The next-order confinement term ζt := ζVt, as in (1.7).
• The next-order energy FN ( ~XN , µt) as in (2.1).
• The next-order partition function KN,β(µt, ζt) as in (2.4).

2.3. The Laplace transform of fluctuations as ratio of partition functions.

Lemma 2.3. For any s ∈ R we have, letting t := −2s
βN ,

(2.5) EPV
N,β

[exp (sFluctN (ξ))]

= KN,β(µt, ζt)
KN,β(µ0, ζ0) exp

(
−β2N

2
(
IVt(µt)− IV (µ0)− t

ˆ
ξdµ0

))
.

Proof. First, we notice that, for any s in R

(2.6) EPV
N,β

[exp(sFluctN (ξ))] =
ZVtN,β
ZVN,β

exp
(
−Ns

ˆ
ξ dµV

)
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Using the splitting formula (2.2) and the definition of KN,β as in (2.4) we see that for any t

(2.7) KN,β(µt, ζt) = ZVtN,β exp
(
β

2N
2IVt(µt)

)
,

thus combining (2.6) and (2.7), with t := −2s
βN we obtain (2.5). �

2.4. Comparison of partition functions. If µ is a probability density, we denote by Ent(µ)
the entropy function given by Ent(µ) :=

´
R µ logµ. The following asymptotic expansion is

proven [LS15, Corollary 1.5] (cf. [LS15, Remark 4.3]) and valid in a general multi-cut critical
situation.

Lemma 2.4. Let µ be a probability density on R. Assume that µ has the form (1.10), (1.11)
with S0 in C2(Σ), and that ζ is some Lipschitz function on R satisfying

ζ = 0 on Σ, ζ > 0 on R \ Σ,
ˆ
R
e−βNζ(x)dx <∞ for N large enough.

Then, with the notation of (2.4) and for some Cβ depending only on β, we have

(2.8) logKN,β(µ, ζ) = β

2N logN + CβN −N
(

1− β

2

)
Ent(µ) +NoN (1).

2.5. Additional bounds.

2.5.1. Exponential moments of the next-order energy.

Lemma 2.5. We have, for some constant C depending on β and V

(2.9)
∣∣∣∣log EPV

N,β

[
exp

(
β

4
(
FN ( ~XN , µV ) +N logN

))]∣∣∣∣ ≤ CN.
Proof. This follows e.g. from [SS15, Theorem 6], but we can also deduce it from Lemma 2.4.
We may write

EPV
N,β

[
exp

(
β

4FN ( ~XN , µV )
)]

= 1
KN,β(µV , ζV )

ˆ
exp

(
−β4

(
FN ( ~XN , µV )− 2N

N∑
i=1

2ζV (xi)
))

d ~XN

=
K
N,β2

(µV , 2ζV )

KN,β(µV , ζV ) .

Taking the log and using (2.8) to expand both terms up to order N yields the result. �

2.5.2. The next-order energy controls the fluctuations. The following result is a consequence
of the analysis of [SS15, PS14], we give the proof in Section B.2 for completeness. It shows
that FN controls fluctN . Here |Supp ξ| denotes the diameter of the support of ξ.

Proposition 2.6. If ξ is compactly supported and Lipschitz, we have, for some universal
constant C

(2.10)
∣∣∣∣ˆ ξ dfluctN

∣∣∣∣
≤ C|Supp ξ|

1
2 ‖∇ξ‖L∞

(
FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N

)1/2
.
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2.5.3. Confinement bound. We will also need the following bound on the confinement. The
proof is very simple and identical to the proof of Lemma 3.3 of [LS16].

Lemma 2.7. For any fixed open neighborhood U of Σ,

PVN,β
(
~XN ∈ UN

)
≥ 1− exp(−cN)

where c > 0 depends on U and β.

Lemma 2.7 is the only place where we use the non-degeneracy assumption (H3) on the
next-order confinement term ζV .

3. Inverting the operator and defining the approximate transport

The goal of this section is to find transport maps φt for t small enough such that the
transported measure φt#µ0 approximates the equilibrium measures µt. Since the equilibrium
measures are characterized by (1.7) with equality on the support, it is natural to seek φt such
that the quantity ˆ

− log |φt(x)− φt(y)|dµ0(y) + 1
2Vt(φt(x))

is close to a constant.

3.1. Preliminaries.

Lemma 3.1. We have the following
• The non-vanishing function S0 in (1.11) is in Cp−3−2k(ΣV ).
• There exists an open neighborhood U of ΣV and a non-vanishing function M in
Cp−3−2k(U \ Σ̊V ) such that

(3.1) ζ ′V (x) = M(x)σ(x)
m∏
i=1

(x− si)2ki .

In particular, (3.1) quantifies how fast ζ ′V vanishes near an endpoint of the support. We
postpone the proof to Section B.3.

3.2. The approximate equilibrium measure equation. In the following, we let
• U be an open neighborhood of ΣV such that (3.1) holds.
• B be the open ball of radius 1

2 in C2(U).
We define a map F from [−1, 1]×B to C1(U) by setting φ := Id + ψ and

(3.2) F(t, ψ) :=
ˆ
− log |φ(·)− φ(y)|dµV (y) + 1

2Vt ◦ φ(·) ,

Lemma 3.2. The map F takes values in C1(U) and has continuous partial derivatives in both
variables. Moreover there exists C depending only on V such that for all (t, ψ) in [−1, 1]×B
we have

(3.3)
∥∥∥∥F(t, ψ)−F(0, 0)− t

2ξ + ΞV [ψ]
∥∥∥∥
C1(U)

≤ Ct2‖ψ‖2C2(U).

The proof is postponed to Section B.4.
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3.3. Inverting the operator.

Lemma 3.3. Let ψ be defined by

ψ(x) = − 1
2π2S(x)

(ˆ
Σ

ξ(y)− ξ(x)
σ(y)(y − x)dy

)
for x in ΣV ,(3.4)

ψ(x) =

ˆ
ψ(y)
x− y

dµV (y) + ξ

2 + cξˆ 1
x− y

dµV (y)− 1
2V
′(x)

for x ∈ U\ΣV ,(3.5)

then ψ is in C l(U) with l = (p− 3− 3k) ∧ (r − 1− 2k) and
(3.6) ‖ψ‖C l(U) ≤ C‖ξ‖Cr(R)

for some constant C depending only on V , and there exists a constant cξ such that

ΞV [ψ] = ξ

2 + cξ in U,

with ΞV as in (1.12).

The proof of Lemma 3.3 is postponed to Section B.5. We may extend ψ to R in such a
way that ψ is in C l(R) with compact support.

3.4. Approximate transport and equilibrium measure. We let ψ be the function de-
fined in Lemma 3.3, and cξ be such that

ΞV [ψ] = ξ

2 + cξ on U.

Definition 3.4. For t ∈ [−tmax, tmax], where tmax =
(
2‖ψ‖C1(U)

)−1
,

• We let ψt be given by ψt := tψ.
• We let φt be the approximate transport, defined by φt := Id + ψt.
• We let µ̃t be the approximate equilibrium measure, defined by µ̃t := φt#µV .
• We let ζ̃t be the approximate confining term ζ̃t := ζV ◦ φ−1

t

• We let P(t)
N,β be the probability measure

(3.7) dP(t)
N,β( ~XN ) = 1

KN,β(µ̃t, ζ̃t)
exp

(
−β2

(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)
))

d ~XN ,

where KN,β(µ̃t, ζ̃t) is as in (2.4).
Finally, we let τt be defined by
(3.8) τt := F(t, ψt)−F(0, 0)− c̃t.
This quantifies how close µ̃t is from satisfying the Euler-Lagrange equation for Vt and thus
how well µ̃t approximates the real equilibrium measure µt. We also define the extension τ̂t of
τt ◦ φ−1

t to R2 by
(3.9) τ̂t(x, y) = χ(x, y) τt ◦ φ−1

t (x),
where χ is equal to one in a fixed neighborhood of supp(µV ) included in U and is in C∞c (R2).

Lemma 3.5. The following holds
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• The map ψt satisfies

ΞV [ψt] = t

2ξ + c̃t, for c̃t := tcξ.

• The map φt is a C1-diffeomorphism which coincides with the identity outside a com-
pact support independent of t ∈ [−tmax, tmax].
• The error τt is a O(t2), more precisely

‖τt‖C1(U) ≤ Ct2‖ψ‖2C2(U)(3.10)

‖τ̂t‖C1(R2) ≤ Ct2‖ψ‖2C2(U).(3.11)

• On φt(ΣV ), we have

(3.12) ζ̃t = hµ̃t + Vt
2 − c̃t − cV − τt ◦ φ

−1
t .

Proof. The first two points are straightforward, the bound (3.10) follows from combining (3.3)
with the conclusions of Lemma 3.2, and then (3.11) is an easy consequence.

For (3.12), let us first recall that

F(t, ψt) =
ˆ
− log |φt(·)− φt(y)|dµ0(y) + 1

2Vt ◦ φt,

which, with the notation of (1.19), yields

F(t, ψt) = hµ̃t ◦ φt + 1
2Vt ◦ φt.

On the other hand, by definition of τt as in (3.8), we have
F(t, ψt) = F(0, 0) + c̃t + τt.

Finally, we know that, on ΣV

F(0, 0) = ζV + cV .

We thus see that
ζV + cV + c̃t + τt = hµ̃t ◦ φt + 1

2Vt ◦ φt.

Since, by definition, ζ̃t = ζV ◦ φ−1
t , we get (3.12). �

4. Study of the Laplace transform

The next goal is to compare the partition functions associated to µt and µ0 = µV . We
split the comparison into two steps: first, we compare KN,β(µt, ζt) with KN,β(µ̃t, ζ̃t) using
the bounds, obtained in the previous section, showing that µ̃t is a good approximation to µt,
and then we compare KN,β(µ̃t, ζ̃t) and KN,β(µ0, ζ0) using the transport φt, as in [LS16].

4.1. Energy comparison: from µt to µ̃t.

Lemma 4.1. We have ˆ
R2
|∇hµt−µ̃t |2 ≤ Ct4‖ψ‖4C2(U),(4.1)

ˆ
R
ζtdµ̃t +

ˆ
R
ζ̃tdµt ≤ Ct4‖ψ‖4C2(U),(4.2)

where C is universal.
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Proof. For t small enough, φt(U) contains some fixed open neighborhood of ΣV , which itself
contains the support of µt. Integrating by parts we thus get

(4.3) 1
2π

ˆ
R2
|∇hµt−µ̃t |2 = 2π

ˆ
hµt−µ̃td(µt − µ̃t)

=
ˆ

(ζt − ζ̃t − τt ◦ φ−1
t ) d(µt − µ̃t)

= −
ˆ
ζtdµ̃t −

ˆ
ζ̃tdµt −

ˆ
R
τt ◦ φ−1

t d(µt − µ̃t)

≤ −
ˆ
τt ◦ φ−1

t d(µt − µ̃t).

In the first equality, we have re-written hµt and hµ̃t using the confining terms ζt and ζ̃t, see
(1.7) and (3.12), discarding the constants which disappear when integrated against d(µt− µ̃t).
In the second equality, we have used the fact that ζt vanishes on the support of µt and ζ̃t on
the support of µ̃t. Finally, the last inequality is due to the fact that ζt and ζ̃t are nonnegative
on R. Using (3.9) and (3.11), we may thus write

1
2π‖∇h

µt−µ̃t‖2L2(R2) ≤
∣∣∣∣ˆ

R2
τt ◦ φ−1

t d(µt − µ̃t)δR
∣∣∣∣ ≤ ‖∇τ̂t‖L2(R2)‖∇hµt−µ̃t‖L2(R2)

≤ Ct2‖ψ‖2C2(U)‖∇h
µt−µ̃t‖L2(R2),

which proves (4.1). Coming back to (4.3), we also obtain

0 ≤ −
ˆ
ζtdµ̃t −

ˆ
ζ̃tdµt +O

(
t4‖ψ‖4C2(U)

)
,

which in turn implies (4.2). �

Lemma 4.2 (Energy comparison : from µt to µ̃t). For any ~XN ∈ (φt(U))N , we have

(4.4)
∣∣∣∣∣
(
FN ( ~XN , µt) + 2N

N∑
i=1

ζt(xi)
)
−
(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)
)∣∣∣∣∣

≤ C
(
Nt2‖ψ‖2C2(U)(FN ( ~XN , µ̃t) +N logN)1/2 +N2t4‖ψ‖4C2(U)

)
.

Proof. By the definition (2.1) of the next-order energy, we may write

(4.5) FN ( ~XN , µt)− FN ( ~XN , µ̃t) = N2
ˆ
R×R
− log |x− y| d (µ̃t − µt) (x)d (µ̃t − µt) (y)

+ 2N
ˆ
R×R
− log |x− y|d(µ̃t − µt)(x)

(
N∑
i=1

δxi −Nµ̃t

)
(y)

= N2
ˆ
R2
|∇hµt−µ̃t |2 + 2N

ˆ
R
hµ̃t−µt

( N∑
i=1

δxi −Nµ̃t
)
.
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On the other hand, using that ζ̃t vanishes on the support of µ̃t, we get

(4.6)
N∑
i=1

(
ζt(xi)− ζ̃t(xi)

)
= N

ˆ
R

(ζt − ζ̃t)dµ̃t +
ˆ
R

(ζt − ζ̃t)
(

N∑
i=1

δxi −Nµ̃t

)

= N

ˆ
R
ζtdµ̃t +

ˆ
R

(ζt − ζ̃t)
(

N∑
i=1

δxi −Nµ̃t

)
.

Combining (4.5) and (4.6), we obtain(
FN ( ~XN , µt) + 2N

N∑
i=1

ζt(xi)
)
−
(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)
)

= N2
ˆ
R2
|∇hµt−µ̃t |2 + 2N2

ˆ
R
ζtdµ̃t + 2N

ˆ
R

(hµ̃t−µt + ζt − ζ̃t)
(

N∑
i=1

δxi −Nµ̃t

)
.

From (1.7), (3.12) (see also the notation (1.19)), we have

hµ̃t−µt + ζt − ζ̃t = τt ◦ φ−1
t + constant,

hence we find

(4.7)
(
FN ( ~XN , µt) + 2N

N∑
i=1

ζt(xi)
)
−
(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)
)

= N2
ˆ
R2
|∇hµt−µ̃t |2 + 2N2

ˆ
R
ζtdµ̃t + 2N

ˆ
τt ◦ φ−1

t

(
N∑
i=1

δxi −Nµ̃t

)
.

By the results of Lemma 4.1, the first two terms in the right-hand side of (4.7) are O(N2t4),
while the last term is bounded, using (3.10) and Proposition 2.6, by

N

ˆ
τt ◦ φ−1

t

(
N∑
i=1

δxi −Nµ̃t

)
= O

(
Nt2(FN ( ~XN , µ̃t) +N logN)1/2

)
,

which concludes the proof. �

Lemma 4.3. We have, for any fixed s ∈ R, with t = −2s
βN

(4.8)
∣∣∣∣∣log KN,β(µ̃t, ζ̃t)

KN,β(µt, ζt)

∣∣∣∣∣ ≤ CNt2√N‖ψ‖2C2(U) + Ct4N2‖ψ‖4C2(U)

= O
(
s2N−1/2‖ψ‖2C2 + s4N−2‖ψ‖4C2

)
.

Proof. By definition of the next-order partition functions we may write

KN,β(µ̃t, ζ̃t)
KN,β(µt, ζt)

=
ˆ
RN

exp
(
−β2

((
FN ( ~XN , µt) + 2N

N∑
i=1

ζt(xi)
)

−
(
FN ( ~XN , µ̃t) + 2N

N∑
i=1

ζ̃t(xi)
)))

d ~XN .
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The result follows from combining (2.9) and (4.4), and using Lemma 2.7 to argue that the
particles ~XN may be assumed to all belong to the neighborhood U for t small enough, except
for an event of exponentially small probability. �

4.2. Energy comparison: from µ̃t to µ0. Let us define

fluct(t)
N =

N∑
i=1

δxi −Nµ̃t Fluct(t)
N (ξ) =

ˆ
ξ dfluct(t)

N .

For any ψ, let us define the following quantity (that may be called anisotropy by analogy
with [LS16])

(4.9) A(t)[ ~XN , ψ] =
¨

R×R

ψ(x)− ψ(y)
x− y

dfluct(t)
N (x) dfluct(t)

N (y).

Lemma 4.4. Assume ψ ∈ C2(R). For any ~XN ∈ UN , letting Φt( ~XN ) = (φt(x1), · · · , φt(xN )),
we have

(4.10)
∣∣∣∣∣FN (Φt( ~XN ), µ̃t)− FN ( ~XN , µ0)−

N∑
i=1

log φ′t(xi) + t

2 A(0)[ ~XN , ψ]
∣∣∣∣∣

≤ Ct2
(
FN ( ~XN , µ0) +N logN

)
.

Proof. Since by definition µ̃t = φt#µ0 we may write

FN (Φt( ~XN ), µ̃t)− FN ( ~XN , µ0)

= −
¨

R×R\4
log |x− y|

( N∑
i=1

δφt(xi) −Nµ̃t
)
(x)
( N∑
i=1

δφt(xi) −Nµ̃t
)
(y)

+
¨

R×R\4
log |x− y|dfluctN (x)dfluctN (y)

= −
¨

R×R\4
log |φt(x)− φt(y)|

|x− y|
dfluctN (x)dfluctN (y)

= −
¨

R×R
log |φt(x)− φt(y)|

|x− y|
dfluctN (x)dfluctN (y) +

N∑
i=1

log φ′t(xi).

Using that by definition φt = Id + tψ where ψ is in C2
c (R), we get by the chain rule

log |φt(x)− φt(y)|
|x− y|

= t
ψ(x)− ψ(y)

x− y
+ t2 εt(x, y),

with ‖εt‖C2(R×R) uniformly bounded in t. Applying Proposition 2.6 twice, we get that∣∣∣∣¨ εt(x, y)dfluctN (x)dfluctN (y)
∣∣∣∣ ≤ Ct2 (FN ( ~XN , µ0) +N logN

)
,

which yields the result. �
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4.3. Comparison of partition functions I: using the transport. In this section and the
following one, we will write A instead of A(0)[ ~XN , ψ]

Proposition 4.5. We have, for any t small enough

(4.11) KN,β(µ̃t, ζ̃t)
KN,β(µ0, ζ0) = exp

(
N

(
1− β

2

)
(Ent(µ0)− Ent(µ̃t))

)
EP(0)

N,β

(
exp

(
β

2 tA + t2Error1( ~XN ) + tError2( ~XN )
))

,

with error terms bounded by

|Error1( ~XN )| ≤ C
(
FN ( ~XN , µ0) +N logN

)
,(4.12)

|Error2( ~XN )| ≤ C
(
FN ( ~XN , µ0) +N logN

)1/2
.(4.13)

Proof. By a change of variables and in view of (4.10), we may write

KN,β(µ̃t, ζ̃t) =
ˆ

exp
(
−β2

(
FN (Φt( ~XN ), µ̃t) + 2N

N∑
i=1

ζ̃t ◦ φt(xi)
)

+
N∑
i=1

log φ′t(xi)
)
d ~XN

=
ˆ

exp
(
−β2

(
FN (Φt( ~XN ), µ̃t) + 2N

N∑
i=1

ζ0(xi)
)

+
N∑
i=1

log φ′t(xi)
)
d ~XN ,

(4.14)

since ζ0 = ζ̃t ◦ φt by definition. Using Lemma 4.4 we may write

(4.15) KN,β(µ̃t, ζ̃t)
KN,β(µ0, ζ0) = 1

KN,β(µ0, ζ0)

ˆ
RN

exp
(
−β2

(
FN ( ~XN , µ0) + 2N

N∑
i=1

ζ(xi)
)

+
(

1− β

2

) N∑
i=1

log φ′t(xi) + β

2 tA + t2Error1( ~XN )
)
d ~XN

= EP(0)
N,β

(
exp

((
1− β

2

) N∑
i=1

log φ′t(xi) + β

2 tA + t2Error1( ~XN )
))

,

where the Error1 term is bounded as in (4.12). On the other hand, since φt is regular enough,
using Proposition 2.6 we may write

N∑
i=1

log φ′t(xi) = N

ˆ
R

log φ′t dµ0 + tError2( ~XN )

with an Error2 term as in (4.13). Finally, since by definition φt#µ0 = µ̃t we may observe that
φ′t = µ0

µ̃t◦φt and thus

(4.16)
ˆ
R

log φ′t dµ0 =
ˆ
R

logµ0 dµ0 −
ˆ
R

logµt ◦ φt dµ0 = Ent(µ0)− Ent(µ̃t).

This yields (4.11). �
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4.4. Comparison of partition functions II: the anisotropy is small.

Proposition 4.6. For any s, we have

(4.17) log EPV
N,β

(
exp

(−s
N

A
))

= oN (1).

Proof. Applying Cauchy-Schwarz to (4.11) we may write

(4.18) EPV
N,β

(
exp

(
β

4 tA
))2

≤ EPV
N,β

(
exp

(
β

2 tA + t2Error1 + tError2

))
EPV

N,β

(
exp

(
−t2Error1 − tError2

))
≤ KN,β(µ̃t, ζ̃t)
KN,β(µ0, ζ0) exp

((
1− β

2

)
N (Ent(µ̃t)− Ent(µ0))

)
EPV

N,β

(
exp(−t2Error1 − tError2)

)
.

In view of (2.9) we get, for t small enough,

(4.19) log EPV
N,β

(exp(tError1)) ≤ CtN, log EPV
N,β

(exp(tError2)) ≤ CtN.

Inserting (2.8) into (4.18) we obtain that for t small enough,

(4.20) log EPV
N,β

(
exp

(
β

4 tA
))
≤ C(Nt2 +N1/2t) + δN ,

for some sequence {δN}N with limN→∞ δN = 0. Applying this to t = 4ε/β with ε small and
using Hölder’s inequality, we deduce

log EPV
N,β

(
exp

(−s
N

A
))
≤ |s|
Nε

log EPV
N,β

(exp(εA)) ≤ C|s|ε+ |s|
ε
δN .

In particular, choosing ε =
√
δN , we get (4.17).

�

4.5. Conclusion: proof of Theorem 1.

Proof. Combining (4.11) for t = − 2s
βN (where s is independent of N) and (4.17) we find

(4.21) log
KN,β(µ̃−2s

βN
)

KN,β(µ0) =
(

1− β

2

)
N

(
Ent(µ0)− Ent(µ̃−2s

βN
)
)

+ oN (1).

Using again (4.16) and φ′t = 1 + tψ′, we may rewrite this as

(4.22) log
KN,β(µ̃−2s

βN
)

KN,β(µ0) = −
(

1− β

2

) 2s
β

ˆ
ψ′dµ0 + oN (1).

Combining (4.8) and (4.22) and sending N to +∞ we obtain,

(4.23) log
KN,β(µ̃−2s

βN
)

KN,β(µ0) = −
(

1− β

2

) 2s
β

ˆ
ψ′dµ0 + oN (1),

with an error oN (1) uniform for s in a compact set of R.
To conclude, we need the following relation, whose proof is given in Section B.6.
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Lemma 4.7.

(4.24) IVt(µt)− IV (µ0) = t

ˆ
ξdµ0 + t2

2

ˆ
ξ′ψdµ0 +O(t3‖ξ‖C2(U) + t4‖ψ‖4C2(U)),

where the O only depends on V .

Combining (2.5) with (4.23) and (4.24) we obtain,

log EPV
N,β

(exp(sFluctN (ξ)) = −
(

1− β

2

) 2s
β

ˆ
ψ′dµV −

s2

β

ˆ
R
ξ′ψ dµV + oN (1),

with an error oN (1) uniform for s in a compact set of R.
Thus the Laplace transform of FluctN (ξ) converges (uniformly on compact sets) to that

of a Gaussian of mean mξ and variance vξ, which implies convergence in law and proves the
main theorem. �

Appendix A. The one-cut regular case

In the one-cut noncritical case, every regular enough function is in the range of the operator
Ξ, so that the map ψ can always be built. This allows to bootstrap the approach used for
proving Theorem 1. In this appendix, we expand on how we can proceed in this simpler setting
without refering to the result of [LS15] but assuming more regularity of ξ, and retrieve the
findings of [BG13b] (but without assuming analyticity), as well as a rate of convergence for
the Laplace transform of the fluctuations.

A.1. The bootstrap argument. Let us first explain the main computational point for the
bootstrap argument: by (4.14) and in view of Lemma 4.4, we may write

(A.1) d

dt |t=0
logKN,β(µ̃t, ζ̃t) = EP(0)

N,β

[
−β2 A(0)[ ~XN , ψ] + (1− β

2 ) d
dt |t=0

N∑
i=1

log φ′t(xi)
]
.

Differentiating (2.5) with respect to t and using Lemma 4.7 we thus obtain

−βN
2 EP(0)

N,β

[Fluct(0)
N (ξ)] = EP(0)

N,β

[
−β2 A(0)[ ~XN , ψ] +

(
1− β

2

)
d

dt |t=0

N∑
i=1

log φ′t(xi)
]
.

This is true as well for all t ∈ [−tmax, tmax], i.e.

(A.2) EP(t)
N,β

[Fluct(t)
N (ξ)] = − 2

βN
EP(t)

N,β

[
−β2 A(t)[ ~XN , ψ] +

(
1− β

2

)
d

dt

N∑
i=1

log φ′t(xi)
]
.

We may in addition write that

(A.3) d

dt

N∑
i=1

log φ′t(xi) = N

ˆ
d

dt
log φ′t dµ̃t + Fluct(t)

N

(
d

dt
log φ′t

)
so that

(A.4) EP(t)
N,β

[Fluct(t)
N (ξ)] = − 2

β

(
1− β

2

) ˆ
d

dt
log φ′t dµ̃t

− 2
βN

EP(t)
N,β

[
−β2 A(t)[ ~XN , ψ] +

(
1− β

2

)
Fluct(t)

N

(
d

dt
log φ′t

)]
.

This provides a functional equation which gives the expectation of the fluctuation in terms of
a constant term plus a lower order expectation of another fluctuation and the A term (which
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itself can be written as a fluctuation, as noted below), allowing to expand it in powers of 1/N
recursively.

A.2. Improved control on the fluctuations.

Lemma A.1. Under the assumptions of Theorem 1 and assuming in addition

(A.5) p ≥ 3k + 6 r ≥ 2k + 4

we have for any t in (−tmax, tmax) and3 s in R

(A.6) log EP(0)
N,β

[
exp

(
sFluct(t)

N (ξ)
)]

≤ C
(
s‖ξ‖C2k+4(U) + s2‖ξ‖2C2k+3(U) + s3

N
‖ξ‖C2(U) + s4

N2 ‖ξ‖C2k+3(U) + s4

N2 ‖ξ‖
4
C2k+3(U)

)
where C depends only on V .

Proof. Note that in view of Lemma 3.3, the assumption (A.5) ensures that the transport map
ψ is in C3(U). By (4.14) and in view of Lemma 4.4, we may write

(A.7) d

dt |t=0
logKN,β(µ̃t, ζ̃t) = EP(0)

N,β

[
−β2 A(0)[ ~XN , ψ] + (1− β

2 ) d
dt |t=0

N∑
i=1

log φ′t(xi)
]
.

Similarly, we have for all t,

(A.8) d

dt
logKN,β(µ̃t, ζ̃t) = EP(t)

N,β

[
−β2 A(t)[ ~XN , ψ] + (1− β

2 ) d
dt

N∑
i=1

log φ′t(xi)
]
.

Indeed, Vt has the same regularity as V and µ̃t the same as µ0.
Next, we express the anisotropy term as a fluctuation, by writing

(A.9) A(t)[ ~XN , ψ] =
ˆ
g(x)dfluct(t)

N (x),

where we let

(A.10) g(x) :=
ˆ
ψ̂(x, y)dfluct(t)

N (y), ψ̂(x, y) := ψ(x)− ψ(y)
x− y

.

It is clear that

(A.11) ‖ψ̂‖C2(U×U) ≤ ‖ψ‖C3(U).

Using Proposition 2.6 twice, we can thus write

‖∇g‖L∞ ≤
∣∣∣∣ˆ ∇xψ̂(x, y)dfluct(t)

N (y)
∣∣∣∣ ≤ C‖∇x∇yψ̂‖L∞ (FN ( ~XN , µ̃t) +N logN + CN

) 1
2

and

|A(t)[ ~XN , ψ]| =
∣∣∣∣ˆ g(x)dfluct(t)

N (x)
∣∣∣∣ ≤ C‖∇g‖L∞ (FN ( ~XN , µ̃t) +N logN + CN

) 1
2

≤ C‖ψ̂‖C2(U×U)
(
FN ( ~XN , µ̃t) +N logN + CN

)
.

3In this statement, s and t are not related.
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In view of (2.9) and (A.11), we deduce that

(A.12)
∣∣∣∣EP(t)

N,β

[
−β2 A(t)[ ~XN , ψ]

]∣∣∣∣ ≤ CN‖ψ‖C3(U).

For the term log φ′t we use (A.3) and in view of Proposition 2.6, since φt = Id + tψ is regular
enough, we may write

(A.13)
∣∣∣∣ˆ d

dt
log φ′t dfluct(t)

N

∣∣∣∣ ≤ C‖ψ‖C2(U)
(
FN ( ~XN , µ̃t) +N logN + CN

) 1
2 .

We conclude from (A.8), using again (2.9) that

(A.14)
∣∣∣∣ ddt logKN,β(µ̃t, ζ̃t)

∣∣∣∣ ≤ CN‖ψ‖C3(U).

Integrating this relation between 0 and − 2s
βN , and combining with (4.8), we find that, for

t = −2s
βN ,

(A.15)
∣∣∣∣∣log KN,β(µt, ζt)

KN,β(µ0, ζ0)

∣∣∣∣∣ ≤ Cs‖ψ‖C3(U).

Inserting this, (4.8) and (4.24) into (2.5), we deduce that

(A.16)
∣∣∣∣log EP(0)

N,β

[exp(sFluctN (ξ))]
∣∣∣∣

≤ C
(
s‖ψ‖C3(U) + s2‖ψ‖C0(U)‖ξ‖C1(U) + s3

N
‖ξ‖C2(U) + s4

N2 ‖ψ‖C2(U)

+ s2
√
N
‖ψ‖2C2(U) + s4

N2 ‖ψ‖
4
C2(U)

)
.

In view of (3.6), it yields the result for the expectation under P(0)
N,β, and then this can be

generalized from P(0)
N,β to P(t)

N,β for t in (−tmax, tmax) because µ̃t has the same regularity as
µ0. �

Assuming from now on that n = 0 and m = 0 (so that every regular function is in the range
of Ξ) we can upgrade this control of exponential moments into the control of a weak norm of
Fluct(t)

N . Here we use the Sobolev spaces Hα(R).

Lemma A.2. Under the same assumptions, for α ≥ 8 we have

(A.17)
∣∣∣∣EP(t)

N,β

[
‖fluct(t)

N ‖
2
H−α

]∣∣∣∣ ≤ C,
where C depends only on V .

Proof. The proof is inspired by [AKM17], in particular we start from [AKM17, Prop. D.1]
which states that

(A.18) ‖u‖2H−α(R) ≤ C
ˆ 1

0
rα−1‖u ∗ Φ(r, ·)‖2L2(R) dr
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where Φ(r, ·) is the standard heat kernel, i.e. Φ(r, x) = 1√
4πre

− |x|
2

4r . It follows that

(A.19) EP(t)
N,β

[
‖fluct(t)

N ‖
2
H−α(R)‖

]
≤ C

ˆ 1

0
rα−1EP(t)

N,β

[
‖fluct(t)

N ∗ Φ(r, ·)‖2L2(R)

]
dr.

On the other hand we may easily check that, letting ξx,r := Φ(r, x− ·), we have

(A.20) EP(t)
N,β

[
‖fluct(t)

N ∗ Φ(r, ·)‖2L2(R)

]
=
ˆ

EP(t)
N,β

[(
Fluct(t)

N (ξx,r)
)2
]
dx.

Applying the result of Lemma A.1 to ξx,r gives us a control on the second moment of
Fluct(t)

N [ξx,r] of the form

EP(t)
N,β

[
(Fluct(t)

N (ξx,r))2
]
≤ C

(
‖ξx,r‖C4(U) + ‖ξx,r‖2C3(U)

)
.

Inserting into (A.19) and (A.20), we are led to

EP(t)
N,β

[
‖fluct(t)

N ‖
2
H−α(R)

]
≤ C

ˆ 1

0

ˆ
rα−1

(
‖ξx,r‖C4(U) + ‖ξx,r‖2C3(U)

)
dx dr.

Since U is bounded, we may check that this right-hand side can be bounded by C
´ 1

0 r
α−1r−7 dr,

which converges if α > 7. �

A.3. Proof of Theorem 2. For any test function φ(x, y) we may writeˆ
φ(x, y)dfluct(t)

N (x) dfluct(t)
N (y) ≤ ‖φ‖C2α(U×U)‖fluct(t)

N ‖
2
H−α(R)

and so by the result of Lemma A.2, we find

(A.21)
∣∣∣∣EPN,β

(ˆ
φ(x, y)dfluct(t)

N (x) dfluct(t)
N (y)

)∣∣∣∣ ≤ C‖φ‖C2α(U×U).

We may now bootstrap the result of Lemma A.1 by returning to (A.9) and, using (A.21),
writing that

(A.22)
∣∣∣∣EP(t)

N,β

[
A(t)[ ~XN , ψ]

]∣∣∣∣ ≤ C‖ψ‖C2α+1(U).

On the other hand, by differentiating (A.6) applied with ξ = d
dt log φ′t, we have

(A.23)
∣∣∣∣EP(t)

N,β

[ˆ
d

dt
log φ′tdfluct(t)

N

]∣∣∣∣ ≤ C‖ψ‖C5(U)

Inserting (4.16) and (A.22) and (A.23), (A.3) into (A.8), and integrating between 0 and
t = −2s/Nβ, we obtain

log KN,β(µ̃t, ζ̃t)
KN,β(µ0, ζ0) =

(
1− β

2

)
N (Ent(µ̃t)− Ent(µ0)) + s

N
O(‖ξ‖C2α+1(U)).

Using again (4.16) and φ′t = 1 + tψ′, we may rewrite this as

log
KN,β(µ̃−2s

βN
, ζ̃−2s

βN
)

KN,β(µ0, ζ0) = −
(

1− β

2

) 2s
β

ˆ
ψ′dµ0 +O( s

N
‖ξ‖C2α+1(U))
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Combining this with (4.8), (2.5) with (4.23) and (4.24) we obtain

(A.24)
∣∣∣∣∣log EPV

N,β
(exp(sFluctN (ξ)) +

(
1− β

2

) 2s
β

ˆ
ψ′dµV + s2

β

ˆ
R
ξ′ψ dµV

∣∣∣∣∣
≤ C

(
s

N
‖ξ‖C2α+1 + s3

N
‖ξ‖C2 + s4

N2 ‖ξ‖
4
C3

)
.

with C depending only on V . This proves Theorem 2.

A.4. Iteration and expansion of the partition function to arbitrary order. Let V,W
be two C∞ potentials, such that the associated equilibrium measures µV , µW satisfy our
assumptions with n = 0,m = 0. In this section, we explain how to iterate the procedure
described above to obtain a relative expansion of the partition function, namely an expansion
of logZWN,β − logZVN,β to any order of 1/N . Up to applying an affine transformation to one of
the gases, whose effect on the partition function is easy to compute, we may assume that µV
and µW have the same support Σ, which is a line segment.

Since V,W are C∞ and µV , µW have the same support and a density of the same form (1.10)
which is C∞ on the interior of Σ, the optimal transportation map (or monotone rearrange-
ment) φ from µV to µW is C∞ on Σ and can be extended as a C∞ function with compact
support on R. We let ψ := φ− Id, which is smooth, and for t ∈ [0, 1] the map φt := Id + tψ is
a C∞-diffeomorphism, by the properties of optimal transport. We let µ̃t := φt#µV as before.

We can integrate (A.8) to obtain

log KN,β(µW , ζW )
KN,β(µV , ζV )

=
ˆ 1

0
EP(t)

N,β

[
−β2 A(t)[ ~XN , ψ] +

(
1− β

2

)
N

ˆ
d

dt
log φ′t dµ̃t +

(
1− β

2

)ˆ
d

dt
log φ′tdfluct(t)

N

]
dt

= N

(
1− β

2

)
(Ent(µW )− Ent(µV ))

+
ˆ 1

0
EP(t)

N,β

[
−β2 A(t)[ ~XN , ψ] +

(
1− β

2

)
FluctN

[ˆ
d

dt
log φ′tdfluct(t)

N

]]
dt.

The integral on the right-hand side is of order 1, and we claim that the terms in the integral
can actually be computed and expanded up to an error O(1/N) using the previous lemma.
This is clear for the term EP(t)

N,β

[
Fluct(t)

N ( ddt log φ′t)
]

which can be computed up to an error

O(1/N) by the result of Theorem 2. The term EP(t)
N,β

[
−β

2 A(t)[ ~XN , ψ]
]

can on the other hand
be deduced from the knowledge of the covariance structure of the fluctuations. Let F denote
the Fourier transform. In view of (A.9), using the identity

ψ(x)− ψ(y)
x− y

=
ˆ 1

0
ψ′(sx+ (1− s)y)ds
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and the Fourier inversion formula we may write

(A.25) EP(t)
N,β

[
A(t)[ ~XN , ψ]

]
= EP(t)

N,β

[¨
R×R

ˆ 1

0
ψ′(sx+ (1− s)y)ds dfluct(t)

N (x)dfluct(t)
N (y)

]

=
ˆ ˆ 1

0
λF(ψ)(λ)EP(t)

N,β

[
Fluct(t)

N (eisλ·)Fluct(t)
N (ei(1−s)λ·)

]
ds dλ.

On the other hand, let ϕs,λ be the map associated to eisλ· by Lemma 3.3. Separating the real
part and the imaginary part we may use the results of the previous subsection to eisλ· and
obtain

EP(t)
N,β

[
Fluct(t)

N (eisλ·)
]

=
(

1− 2
β

) ˆ
ϕ′s,λdµ̃t +O( 1

N
) .

By polarization of the expression for the variance (see (1.16)) and linearity

EP(t)
N,β

[
Fluct(t)

N (eisλ·)Fluct(t)
N (ei(1−s)λ·)

]
= EP(t)

N,β

[
Fluct(t)

N (eisλ·)
]
EP(t)

N,β

[
Fluct(t)

N (ei(1−s)λ·)
]

+ 2
β

(¨ (
ϕs,λ(u)− ϕs,λ(v)

u− v

)(
ϕ(1−s),λ(u)− ϕ(1−s),λ(v)

u− v

)
dµ̃t(u)dµ̃t(v)

+
ˆ
V ′′t ϕs,λϕ(1−s),λdµ̃t

)
+O( 1

N
).

Letting N → ∞, we may then find the expansion up to O(1/N) of EP(t)
N,β

[
−β

2 A(t)[ ~XN , ψ]
]
.

Inserting it into the integral gives a relative expansion to order 1/N of the (logarithm of the)
partition function logKN,β . This procedure can then be iterated to yield a relative expansion
to arbitrary order of 1/N as desired.

Appendix B. Auxiliary proofs

B.1. Proof of Lemma 2.1.

Proof. Denoting 4 the diagonal in R× R we may write

HVN ( ~XN ) =
∑
i 6=j
− log |xi − xj |+N

N∑
i=1

V (xi)

=
¨
4c
− log |x− y|

( N∑
i=1

δxi

)
(x)
( N∑
i=1

δxi

)
(y) +N

ˆ
R
V (x)

( N∑
i=1

δxi

)
(x).

Writing
∑N
i=1 δxi as NµV + fluctN we get

(B.1) HVN ( ~XN ) = N2
¨
4c
− log |x− y|dµV (x)dµV (y) +N2

ˆ
R
V dµV

+ 2N
¨
4c
− log |x− y|dµV (x)dfluctN (y) +N

ˆ
R
V dfluctN

+
¨
4c
− log |x− y|dfluctN (x)dfluctN (y).
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We now recall that ζV was defined in (1.7), and that ζV = 0 in ΣV . With the help of this we
may rewrite the medium line in the right-hand side of (B.1) as

2N
¨
4c
− log |x− y|dµV (x)dfluctN (y) +N

ˆ
R
V dfluctN

= 2N
ˆ
R

(
− log | · | ∗ dµV )(x) + V

2

)
dfluctN = 2N

ˆ
R

(ζV + c)dfluctN

= 2N
ˆ
R
ζV d

( N∑
i=1

δxi −NµV
)

= 2N
N∑
i=1

ζV (xi).

The last equalities are due to the facts that ζV vanishes on the support of µV and that fluctN
has a total mass 0 since µV is a probability measure. We may also notice that since µV is
absolutely continuous with respect to the Lebesgue measure, we may include the diagonal
back into the domain of integration. By that same argument, one may recognize in the first
line of the right-hand side of (B.1) the quantity N2IV (µV ). �

B.2. Proof of Proposition 2.6. We follow the energy approach introduced in [SS15,PS14],
which views the energy as a Coulomb interaction in the plane, after embedding the real line
in the plane. We view R as identified with R × {0} ⊂ R2 = {(x, y), x ∈ R, y ∈ R}. Let us
denote by δR the uniform measure on R × {0}, i.e. such that for any smooth ϕ(x, y) (with
x ∈ R, y ∈ R) we have ˆ

R2
ϕδR =

ˆ
R
ϕ(x, 0) dx.

Given (x1, . . . , xN ) in RN , we identify them with the points (x1, 0), . . . , (xN , 0) in R2. For
a fixed ~XN and a given probability density µ we introduce the electric potential Hµ

N by

(B.2) Hµ
N = (− log | · |) ∗

(
N∑
i=1

δ(xi,0) −NµδR

)
.

Next, we define versions of this potential which are truncated hence regular near the point
charges. For that let δ(η)

x denote the uniform measure of mass 1 on ∂B(x, η) (where B denotes
an Euclidean ball in R2). We define Hµ

N,η in R2 by

(B.3) Hµ
N,η = (− log | · |) ∗

(
N∑
i=1

δ
(η)
(xi,0) −NµδR

)
.

These potentials make sense as functions in R2 and are harmonic outside of the real axis.
Moreover, Hµ

N,η solves

(B.4) −∆Hµ
N,η = 2π

(
N∑
i=1

δ
(η)
(xi,0) −NµδR

)
.

Lemma B.1. For any probability density µ, ~XN in RN and η in (0, 1), we have

(B.5) FN ( ~XN , µ) ≥ 1
2π

ˆ
R2
|∇Hµ

N,η|
2 +N log η − 2N2‖µ‖L∞η.
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Proof. First we notice that
´
R2 |∇HN,η|2 is a convergent integral and that

(B.6)
ˆ
R2
|∇HN,~η|2 = 2π

¨
− log |x− y|d

(
N∑
i=1

δ(η)
xi −NµδR

)
(x)d

(
N∑
i=1

δ(η)
xi −NµδR

)
(y).

Indeed, we may choose R large enough so that all the points of ~XN are contained in the ball
BR = B(0, R). By Green’s formula and (B.4), we have

(B.7)
ˆ
BR

|∇HN,η|2 =
ˆ
∂BR

HN,η
∂HN

∂ν
+ 2π

ˆ
BR

HN,η

(
N∑
i=1

δ(η)
xi −NµδR

)
.

In view of the decay of HN and ∇HN , the boundary integral tends to 0 as R → ∞, and so
we may write ˆ

R2
|∇HN,η|2 = 2π

ˆ
R2
HN,η

(
N∑
i=1

δ(η)
xi −Nµ

)
and thus (B.6) holds. We may next write

(B.8)
¨
− log |x− y|d

(
N∑
i=1

δ(η)
xi −NµδR

)
(x)d

(
N∑
i=1

δ(η)
xi −NµδR

)
(y)

−
¨
4c
− log |x− y| dfluctN (x) dfluctN (y)

= −
N∑
i=1

log η+
∑
i 6=j

¨
− log |x−y|

(
δ(η)
xi δ

(η)
xj − δxiδxj

)
+2N

N∑
i=1

¨
− log |x−y|

(
δxi − δ(η)

xi

)
µ.

Let us now observe that
´
− log |x − y|δ(η)

xi (y), the potential generated by δ
(η)
xi is equal to´

− log |x − y|δxi outside of B(xi, η), and smaller otherwise. Since its Laplacian is −2πδ(η)
xi ,

a negative measure, this is also a superharmonic function, so by the maximum principle, its
value at a point xj is larger or equal to its average on a sphere centered at xj . Moreover,
outside B(xi, η) it is a harmonic function, so its values are equal to its averages. We deduce
from these considerations, and reversing the roles of i and j, that for each i 6= j,

−
ˆ

log |x− y|δ(η)
xi δ

(η)
xj ≤ −

ˆ
log |x− y|δxiδ(η)

xj ≤ −
ˆ

log |x− y|δxiδxj .

We may also obviously writeˆ
− log |x− y|δxiδxj −

ˆ
− log |x− y|δ(η)

xi δ
(η)
xj ≤ − log |xi − xj |1|xi−xj |≤2η.

We conclude that the second term in the right-hand side of (B.8) is nonpositive, equal to 0 if
all the balls are disjoint, and bounded below by

∑
i 6=j log |xi − xj |1|xi−xj |≤2η. Finally, by the

above considerations, since
´
− log |x−y|δ(η)

xi coincides with
´
− log |x−y|δxi outside B(xi, η),

we may rewrite the last term in the right-hand side of (B.8) as

2N
N∑
i=1

ˆ
B(xi,η)

(− log |x− xi|+ log η))dµδR.
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But we have that

(B.9)
ˆ
B(0,η)

(− log |x|+ log η)δR = η

so if µ ∈ L∞, this last term is bounded by 2‖µ‖L∞N2η. Combining with all the above results
yields the proof. �

Proof of Proposition 2.6. We now apply Lemma B.1 for µV with η = 1
2N . We obtain

(B.10) 1
2π

ˆ
R2
|∇Hµ

N,η|
2 ≤ FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N.

Let ξ be a smooth compactly supported test function in R. We may extend it to a smooth
compactly supported test function in R2 coinciding with ξ(x) for any (x, y) such that |y| ≤ 1
and equal to 0 for |y| ≥ 2. Letting #I denote the number of balls B(xi, η) intersecting the
support of ξ, we have

(B.11)
∣∣∣∣∣
ˆ (

fluctN −
( N∑
i=1

δ(η)
xi −NµV

))
ξ

∣∣∣∣∣ =
∣∣∣∣∣
ˆ (

N∑
i=1

(δxi − δ(η)
xi )

)
ξ

∣∣∣∣∣
≤ #Iη‖∇ξ‖L∞ = 1

2
#I
N
‖∇ξ‖L∞ .

But in view of (B.4), we also have

(B.12)
∣∣∣∣∣
ˆ (

N∑
i=1

δ(η)
xi −NµV

)
ξ

∣∣∣∣∣ = 1
2π

∣∣∣∣ˆ
R2
∇HµV

N,η · ∇ξ
∣∣∣∣

≤ |Supp ξ|
1
2 ‖∇ξ‖L∞‖∇HµV

N,η‖L2(Supp ξ).

Combining (B.10), (B.11) and (B.12), we obtain

(B.13)
∣∣∣∣ˆ ξ fluctN

∣∣∣∣
≤ C‖∇ξ‖L∞

(#I
N

+ |Supp ξ|
1
2
(
FN ( ~XN , µV ) +N logN + C(‖µV ‖L∞ + 1)N

) 1
2
)
.

Bounding #I by N yields the result. �

B.3. Proof of Lemma 3.1.

Proof. Since µV minimizes the logarithmic potential energy (1.6), for any bounded continuous
function h we have

(B.14)
¨

h(x)− h(y)
x− y

dµV (x)dµV (y) =
ˆ
V ′(x)h(x)dµV (x).

Of course, an identity like (B.14) extends to complex-valued functions, and applying it to
h = 1

z−· for some fixed z ∈ C \ ΣV leads to

(B.15) G(z)2 −G(z)V ′(R(z)) + L(z) = 0,
where G is the usual Stieltjes transform of µV

(B.16) G(z) =
ˆ 1
z − y

dµV (y),
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and L is defined by

(B.17) L(z) =
ˆ
V ′(R(z))− V ′(y)

z − y
dµV (y).

Solving (B.15) for G yields

(B.18) G(z) = 1
2

(
V ′(R(z))−

√
V ′(R(z))2 − 4L(z)

)
.

As is well-known, − 1
πI(G(x+ iε)) converges towards the density µV (x) as ε→ 0+, hence we

have for x in ΣV

(B.19) µV (x)2 = S(x)2σ2(x) = − 1
(2π)2 (V ′(x)2 − 4L(x)).

This proves that µV has regularity Cp−2 at any point where it does not vanish. Assuming
the form (1.11) for S, we also deduce that the function S0 has regularity at least Cp−3−2k on
ΣV .

Applying (B.18) on R \ Σ, we obtain
1
2V
′(x)−

ˆ 1
x− y

dµV (y) = 1
2

√
V ′(x)2 − 4L(x),

and the left-hand side is equal to ζ ′(x).
Using (1.11), (B.19) and the fact that V is regular, we may find a neighborhood U small

enough such that ζ ′ does not vanish on U \ΣV and on which we can write ζ ′ as in (3.1). �

B.4. Proof of Lemma 3.2.

Proof. We first prove that the image of F is indeed contained in C1(U).
For (t, ψ) = (0, 0), we have indeed F(0, 0) = ζV + c and ζV is in C1(R) by the regularity

assumptions on V . We may also write

F(t, ψ) = F(0, 0)−
ˆ

log |φ(·)− φ(y)|
| · −y|

dµV (y) + 1
2(Vt ◦ φ− V ◦ φ),

and since ‖ψ‖C2(U) ≤ 1/2, the second and third terms are also in C1(U).
Next, we compute the partial derivatives of F at a fixed point (t0, ψ0) ∈ [−1, 1]×B. It is

easy to see that
∂F
∂t

∣∣∣
(t0,ψ0)

= 1
2ξ ◦ φ0,

and the map (t0, ψ0) 7→ ξ ◦ φ0 is indeed continuous.
The Fréchet derivative of F with respect to the second variable can be computed as follows

F(t0, ψ0 + ψ1) = −
ˆ

log
∣∣∣(φ0(·)− φ0(y)

)
+
(
ψ1(·)− ψ1(y)

)∣∣∣dµV (y) + 1
2Vt0 ◦ (φ0 + ψ1)

= F(t0, ψ0)−
ˆ

log
∣∣∣1 + ψ1(·)− ψ1(y)

φ0(·)− φ0(y)

∣∣∣dµV (y) + 1
2
(
Vt0 ◦ (φ0 + ψ1)− Vt0 ◦ φ0

)
= F(t0, ψ0)−

ˆ
ψ1(·)− ψ1(y)
φ0(·)− φ0(y) dµV (y) + 1

2ψ1V
′
t0 ◦ φ0 + εt0,ψ0(ψ1) ,
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where εt0,ψ0(ψ1) is given by

εt0,ψ0(ψ1) = −
ˆ [

log
∣∣∣1 + ψ1(·)− ψ1(y)

φ0(·)− φ0(y)

∣∣∣− ψ1(·)− ψ1(y)
φ0(·)− φ0(y)

]
dµV (y)

+ 1
2
(
Vt0 ◦ (φ0 + ψ1)− Vt0 ◦ φ0 − ψ1V

′
t0 ◦ φ0

)
.

By differentiating twice inside the integral we get the bound

‖εt0,ψ0(ψ1)‖C1(U) ≤ C(t0, ψ0)‖ψ1‖2C2(U),

with a constant depending on V . It implies that
∂F
∂ψ

∣∣∣
(t0,ψ0)

[ψ1] = −
ˆ
ψ1(·)− ψ1(y)
φ0(·)− φ0(y) dµV (y) + 1

2ψ1V
′
t0 ◦ φ0 ,

and we can check that this expression is also continuous in (t0, ψ0). In particular, we may
observe that

(B.20) ∂F
∂ψ

∣∣∣
(0,0)

[ψ] = −ΞV [ψ].

Finally, we prove the bound (3.3). For any fixed (t, ψ) ∈ [−1, 1]×B, we write

F(t, ψ)−F(0, 0) =
ˆ 1

0

dF(st, sψ)
ds

ds =
ˆ 1

0

(
t
∂F
∂t

∣∣∣
(st,sψ)

+ ∂F
∂ψ

∣∣∣
(st,sψ)

[ψ]
)
ds ,

we get

(B.21) ‖F(t, ψ)−F(0, 0)− t

2ξ + ΞV [ψ]‖C1(U) ≤
ˆ 1

0

(
t

2‖ξ ◦ φs − ξ‖C1(U)

+
∥∥∥∥∂F∂ψ

∣∣∣
(st,sψ)

[ψ]− ∂F
∂ψ

∣∣∣
(0,0)

[ψ]
∥∥∥∥
C1(U)

)
ds,

with φs = Id + sψ. It is straightforward to check that

‖ξ ◦ φs − ξ‖C1(U) ≤ C‖ξ‖C2(U)‖ψ‖C1(U) .

To control the second term inside the integral we write

∂F
∂ψ

∣∣∣
(st,sψ)

[ψ]− ∂F
∂ψ

∣∣∣
(0,0)

[ψ]

= −
ˆ (

ψ(·)− ψ(y)
φs(·)− φs(y) −

ψ(·)− ψ(y)
· − y

)
dµV (y) + 1

2
(
V ′st ◦ φs − V ′

)
ψ

and we obtain∥∥∥∥∂F∂ψ
∣∣∣
(st,sψ)

[ψ]− ∂F
∂ψ

∣∣∣
(0,0)

[ψ]
∥∥∥∥
C1(U)

≤
ˆ ∥∥∥∥ ψ(·)− ψ(y)

φs(·)− φs(y) −
ψ(·)− ψ(y)
· − y

∥∥∥∥
C1(U)

dµV (y)

+
∥∥(V ′st ◦ φs − V ′)ψ∥∥C1(U)
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We now use that∥∥∥∥( ψ(·)− ψ(y)
φs(·)− φs(y) −

ψ(·)− ψ(y)
· − y

)∥∥∥∥
C1(U)

=
∥∥∥∥(ψ(·)− ψ(y)

· − y

)( · − y
φs(·)− φs(y) − 1

)∥∥∥∥
C1(U)

≤ C‖ψ‖C2(U)

∥∥∥∥ · − y
φs(·)− φs(y) − 1

∥∥∥∥
C1(U)

= Cs‖ψ‖C2(U)

∥∥∥∥ ψ(·)− ψ(y)
φs(·)− φs(y)

∥∥∥∥
C1(U)

≤ C‖ψ‖2C2(U)

∥∥∥∥ · − y
φs(·)− φs(y)

∥∥∥∥
C1(U)

≤ C‖ψ‖2C2(U) .

In the second and the fourth line, we used Leibniz formula . In the last line we used that
s(ψ(·) − ψ(y))/(· − y) is uniformely bounded by 1/2 in C2(U) so its composition with the
function x→ 1/(1 + x) is bounded in C2(U). We conclude by checking that

‖
(
V ′st ◦ φs − V ′

)
ψ‖C1(U) ≤ C

(
‖V ‖C3(U)‖ψ‖C1(U) + t‖ψ‖C2(U)

)
‖ψ‖C0(U) .

�

B.5. Proof of Lemma 3.3.

Proof. First, we solve the equation ΞV [ψ] = 1
2ξ + cξ in Σ̊V , where ΞV is operator defined in

(1.12). For x in Σ̊V , we have the following Schwinger-Dyson equation

(B.22) V ′(x)
2 = P.V.

ˆ 1
x− y

dµV (y).

In particular, for x in Σ̊V , it implies

(B.23) ΞV [ψ](x) := P.V.

ˆ
ΣV

ψ(y)
y − x

µV (y)dy,

and we might thus try to solve

(B.24) P.V.

ˆ
ΣV

ψ(y)
y − x

µV (y)dy = 1
2ξ + cξ.

Equation (B.24) is a singular integral equation, we refer to [Mus92, Chap. 10-11-12] for a
detailed treatment. In particular, it is known that if the conditions (1.14) are satisfied, then
there exists a solution ψ0 to

(B.25) P.V.

ˆ
ΣV

ψ0(y)
y − x

dy = 1
2ξ + cξ on Σ̊V ,

which is explicitly given by the formula

(B.26) ψ0(x) = −σ(x)
2π2 P.V.

ˆ
ΣV

ξ(y)
σ(y)(y − x)dy.

Since we have, for x in Σ̊V

P.V.

ˆ
ΣV

1
σ(y)(y − x)dy = 0,
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we may re-write (B.26) as

(B.27) ψ0(x) = −σ(x)
2π2

ˆ
ΣV

ξ(y)− ξ(x)
σ(y)(y − x)dy on Σ̊V ,

where the integral is now a definite Riemann integral. From (B.27) we deduce that the map
ψ0
σ is of class Cr−1 in Σ̊V and extends readily to a Cr−1 function on ΣV .

For d = 0, . . . , r − 1 and for x ∈ ΣV , we compute that(
ψ0
σ

)(d)
(x) = − d!

2π2

ˆ
ΣV

ξ(y)−Rsi,d+1ξ(y)
σ(y)(y − si)d+1 dy.

In particular, if conditions (1.15) hold, in view of Lemma 3.1 the map

ψ(x) := ψ0(x)
S(x)σ(x)

extends to a function of class (p−3−2k)∧ (r−1−k), hence C2 on ΣV , and in view of (B.25)
it satisfies ΞV [ψ] = ξ

2 + cξ on ΣV .
Now, we define ψ outside ΣV . By definition, for x outside ΣV , the equation

ΞV [ψ](x) = 1
2ξ(x) + cξ

can be written as

ψ(x)
ˆ 1
x− y

dµV (y)−
ˆ

ψ(y)
x− y

dµV (y)− 1
2ψ(x)V ′(x) = 1

2ξ(x) + cξ,

and thus the choice (3.5) ensures that ΞV [ψ] = 1
2ξ+cξ. Moreover, ψ is clearly of class Cr∧(p−1)

on R \ΣV . It remains to check that ψ has the desired regularity at the endpoints of ΣV . For
a given endpoint α we consider ψ̃ the Taylor development of order l := (p−3−2k)∧(r−1−k)
at α of ψ. We can write (3.5) as

´ ψ(y)
x−y dµV (y) + ξ(x)

2 + cξ´ 1
x−ydµV (y)− 1

2V
′(x)

=
−
´ ψ̃(x)−ψ̃(y)

x−y dµV (y) + ψ̃(x)
´ 1
x−ydµV (y) + ξ(x)

2 + cξ´ 1
x−ydµV (y)− 1

2V
′(x)

= ψ̃(x) +
ξ(x)

2 + cξ − ΞV [ψ̃](x)´ 1
x−ydµV (y)− 1

2V
′(x)

.

As ΞV [ψ] = ξ
2 + cξ on ΣV , the numerator on the right hand side of the last equation

and its first l derivatives vanish at α. From Lemma (3.1) we conclude that ψ is of class
l − k = (p− 3− 3k) ∧ (r − 1− 2k) at α, hence C2 from (1.13).

�

B.6. Proof of Lemma 4.7. Using definition (1.6) we can write IVt(µt) in the following form

IVt(µt) =
ˆ
hµt dµt +

ˆ
Vt dµt.

To prove Lemma 4.7, we introduce the auxiliary quantity

I(µ̃t) :=
ˆ
hµ̃t dµ̃t +

ˆ
Vt dµ̃t,

and we first prove that I(µ̃t) is close to IVt(µt).
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Claim 1. We have
(B.28) IVt(µt) = I(µ̃t) +O

(
t4‖ψ‖4C2(U)

)
.

Proof. Let us write

IVt(µt) =
ˆ
hµt dµt +

ˆ
Vt dµt

=
ˆ
hµ̃t dµ̃t +

ˆ
(hµt + hµ̃t)d(µt − µ̃t) +

ˆ
Vt dµt.

(B.29)

We have used the fact that, integrating by parts twice,ˆ
hµtdµ̃t =

ˆ
hµ̃tdµt.

We have, using the definition of ζt, ζ̃t and (3.10)ˆ
(hµt + hµ̃t)d(µt − µ̃t) =

ˆ (
ζt −

1
2Vt − ct + ζ̃t −

1
2Vt − c̃t +O(t2‖ψ‖2C2(U))

)
d(µt − µ̃t).

In view of (4.1), (4.2), we thus get

(B.30)
ˆ

(hµt + hµ̃t)d(µt − µ̃t) +
ˆ
Vt dµt = O(t4‖ψ‖4C2(U)) +

ˆ
Vtdµ̃t.

Combining (B.29) and (B.30) yields the result. �

We may now compare I(µ̃t) and IV (µV ) using the transport map.

Claim 2. We have

(B.31) I(µ̃t) = IV (µV ) + t

ˆ
ξdµV

+ t2

2

(¨ (
ψ(x)− ψ(y)

x− y

)2
dµV (x)dµV (y) +

ˆ
V ′′ψ2dµV + 2

ˆ
ξ′ψdµV

)
+O(t3‖ξ‖C2(U)).

Proof. We may write

I(µ̃t) = −
ˆ

log |φt(x)− φt(y)|dµ0(x)dµ0(y) +
ˆ
V ◦ φt dµ0 + t

ˆ
ξ ◦ φt dµ0

=
ˆ
hµ0 dµ0 −

¨
log

∣∣∣1 + t
ψ(x)− ψ(y)

x− y

∣∣∣dµ0(x)dµ0(y) +
ˆ
V ◦ φt dµ0 + t

ˆ
ξ ◦ φt dµ0.

By a Taylor expansion, we obtain

I(µ̃t) = IV (µ0)− t
¨

ψ(x)− ψ(y)
x− y

dµ0(x)dµ0(y) + t2

2

¨ (
ψ(x)− ψ(y)

x− y

)2
dµ0(x)dµ0(y)

+ t

ˆ
V ′ψ dµV + t2

2

ˆ
V ′′ψ2dµV + t

ˆ
ξdµV + t2

ˆ
ξ′ψdµ0 +O(t3‖ξ‖C2(R)).

Let us recall that by definition µ0 = µV . By (B.14) we have¨
ψ(x)− ψ(y)

x− y
dµV (x)dµV (y) =

ˆ
V ′ψ dµV ,

hence we obtain (B.31). �
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To conclude the proof of Lemma 4.7 it remains to prove the following identity.

Claim 3.

(B.32)
ˆ
ξ′ψdµV = −

¨ (
ψ(x)− ψ(y)

x− y

)2
dµV (x)dµV (y)−

ˆ
V ′′ψ2dµV .

Proof. By definition of ψ we have
1
2(ξ + cξ) =

ˆ
ψ(x)− ψ(y)

x− y
dµV (y)− 1

2ψV
′ ,

and thus
ξ′ = 2

ˆ
ψ(y)− ψ(x)− ψ′(x)(y − x)

(x− y)2 dµV (y)− ψ′V ′ − ψV ′′ .

Integrating both sides against ψµV yields
ˆ
ξ′ψdµV = 2

¨ (ψ(y)− ψ(x)− ψ′(x)(y − x))ψ(x)
(x− y)2 dµV (y)dµV (x)

−
ˆ
ψψ′V ′dµV −

ˆ
V ′′ψ2dµV .

Using (B.14) for the second term we obtain
ˆ
ξ′ψdµV = 2

¨ (ψ(y)− ψ(x)− ψ′(x)(y − x))ψ(x)
(y − x)2 dµV (y)dµV (x)

−
¨

ψψ′(y)− ψψ′(x)
y − x

dµV (x)dµV (y)−
ˆ
V ′′ψ2dµV .

We may then combine the first two terms in the right-hand side to obtain (B.32). �
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