N
N

N

HAL

open science

CLT FOR FLUCTUATIONS OF BETA-ENSEMBLES
WITH GENERAL POTENTIAL

Florent Bekerman, Thomas Leblé, Sylvia Serfaty

» To cite this version:

Florent Bekerman, Thomas Leblé, Sylvia Serfaty. CLT FOR FLUCTUATIONS OF BETA-
ENSEMBLES WITH GENERAL POTENTIAL. 2020. hal-03040294

HAL Id: hal-03040294
https://hal.science/hal-03040294

Preprint submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03040294
https://hal.archives-ouvertes.fr

CLT FOR FLUCTUATIONS OF S-ENSEMBLES WITH GENERAL
POTENTIAL

FLORENT BEKERMAN, THOMAS LEBLE, AND SYLVIA SERFATY

ABSTRACT. We prove a central limit theorem for the linear statistics of one-dimensional
log-gases, or B-ensembles. We use a method based on a change of variables which allows to
treat fairly general situations, including multi-cut and, for the first time, critical cases, and
generalizes the previously known results of Johansson, Borot-Guionnet and Shcherbina. In
the one-cut regular case, our approach also allows to retrieve a rate of convergence as well
as previously known expansions of the free energy to arbitrary order.

keywords: (-ensembles, Log Gas, Central Limit Theorem, Linear statistics.
MSC classification: 60F05, 60K35, 60B10, 60B20, 82B05, 60G15.

1. INTRODUCTION

Let 5 > 0 be fixed. For N > 1, we are interested in the N-point canonical Gibbs measure'

for a one-dimensional log-gas at the inverse temperature 8, defined by

. 1 . .
(1.1) APy 5(Xn) = v XD <—§/H1‘G(XN)> dXn,
N7B

where Xy = (1,...,zy) is an N-tuple of points in R, and H%(X:N), defined by

N
(1.2) HEY(Xn) = Y —logla —zj| + > NV (),
1<i#j<N i=1

is the energy of the system in the state X ~, given by the sum of the pairwise repulsive
logarithmic interaction between all particles plus the effect on each particle of an external
field or confining potential NV whose intensity is proportional to N. We will use dXn
to denote the Lebesgue measure on RY. The constant Z]‘\/,ﬂ in the definition (1.1) is the
normalizing constant, called the partition function, and is equal to

ZX 5 ::/ exp (—QHYV(X’N)) dXy.
RN

Such systems of particles with logarithmic repulsive interaction on the line have been exten-
sively studied, in particular because of their connection with random matrix theory, see [For10]
for a survey.

Under mild assumptions on V, it is known that the empirical measure of the particles
converges almost surely to some deterministic probability measure on R called the equilibrium

Date: Wednesday 28" June, 2017.
LWe use g instead of 8 in order to match the existing literature. The first sum in (1.2), over indices i # 7,
is twice the physical one, but is more convenient for our analysis.
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2 FLORENT BEKERMAN, THOMAS LEBLE, AND SYLVIA SERFATY

measure py, with no simple expression in terms of V. For any N > 1, let us define the
fluctuation measure

N
(1.3) flucty := Zdwi — Nuy,
i=1

which is a random signed measure. For any test function £ regular enough we define the
fluctuations of the linear statistics associated to £ as the random real variable

(1.4) Flucty (£) ::/Rﬁdﬁuct]v.

The goal of this paper is to prove a Central Limit Theorem (CLT) for Flucty(§), under some
regularity assumptions on V' and &.

1.1. Assumptions.

(H1) - Regularity and growth of V: The potential V' is in CP(R) and satisfies the growth
condition

(1.5) liminf %)
|z|—oc 2log|z]

It is well-known, see e.g. [ST13], that if V satisfies (H1) with p > 0, then the logarithmic
potential energy functional defined on the space of probability measures by

(1.6) Ty () = /R  —logla — yldu(o) du(y) + /R V() du(z)

has a unique global minimizer py, the aforementioned equilibrium measure. This measure
has a compact support that we will denote by 3y, and py is characterized by the fact that
there exists a constant cy such that the function (y defined by

V(x
(17 rie) = [ —togle = slduty) + S - e
satisfies the Euler-Lagrange conditions
(1.8) (y >0inR, ({y =0o0n Xy.

We will work under two additional assumptions: one deals with the possible form of uy
and the other one is a non-criticality hypothesis concerning (i .

(H2) - Form of the equilibrium measure: The support Xy of uy is a finite union of n+1
non-degenerate intervals
Yy = U [Oél,_; al7+}, with o <o y.
0<i<n

The points oy 4+ are called the endpoints of the support Xy.. For x in 3y, we let

(1.9) o(x):= H \/|x —oq ||z —oag 4|
1=0

We assume that the equilibrium measure has a density with respect to the Lebesgue
measure on Xy given by

(1.10) pv (z) = S(x)o(z),
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where S can be written as

(1.11) S(x) = So(x) 2

(x — )7, Sp>0on Xy,

,’:13

=1

where m > 0, all the points s;, called singular points®, belong to ¥y and the k; are
natural integers.
(H3) - Non-criticality of (y: The function (y is positive on R\ Xy .
We introduce the operator =y, which acts on C! functions by

(112 Zviu] = —pov'+ [P gy,

1.2. Main result.

Theorem 1 (Central limit theorem for fluctuations of linear statistics). Let £ be a function
in C"(R), assume that (H1)-(H3) hold. We let

k= max 2k;,
i=1,...,m

where the k;’s are as in (1.11), and assume that, p (resp. r) denoting the regularity of V
(resp. &)
(1.13) p> (3k+5), r>(2k+3).

If n > 1, assume that £ satisfies the n following conditions

d
(1.14) SOV 0 ferd—o0.....n—1.
2y oY)
Moreover, if m > 1, assume that for alli=1,...,m

£(y) — R, .a€(y) i

(1.15) - o) = 1)1 =0 ford=1,...,2k,,
where R, 4§ is the Taylor expansion of & to order d — 1 around x given by
’ (y — x)d_l d—1
Ry a€(y) =&(@) + (y — )8 (x) + - + Wf( ) (x).

Then there exists a constant c¢ and a function v of class C? in some open neighborhood

U of Xy such that Zy[¢] = %—l— ce on U, and the fluctuation Flucty(§) converges in law as
N — 0o to a Gaussian distribution with mean

me = (1—;>/¢' duy,
ve =7 [ v€duy.

It is proven in (B.32) that the variance v¢ has the equivalent expression

(1.16) (/( ﬁzw@mmw+/WWwQ.

Let us note that 1, hence also m¢ and vg, can be explicitly written in terms of §.

and variance

2Let us emphasize that a singular point s; can be equal to an endpoint ay, +.
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1.3. Comments on the assumptions. The growth condition (1.5) is standard and ex-
presses the fact that the logarithmic repulsion is beaten at long distance by the confinement,
thus ensuring that uy has a compact support. Together with the non-criticality assumption
(H3) on (y, it implies that the particles of the log-gas effectively stay within some neighbor-
hood of ¥y, up to very rare events.

The case n = 0, where the support has a single connected component, is called one-cut,
whereas n > 1 is a multi-cut situation. If m > 1, we are in a critical case.

The relationship between V' and py is complicated in general, and we mention some ex-
amples where uy is known to satisfy our assumptions.

e If V is real-analytic, then the assumptions are satisfied with n finite, m finite and S
analytic on Yy, see [DKM98, Theorem 1.38], [DKM 99, Sec.1].

o If V is real-analytic, then for a “generic” V' the assumptions are satisfied with n finite,
m = 0 and S analytic on Xy, see [KMO0O0].

e If V is uniformly convex and smooth, then the assumptions are satisfied with n = 0,
m = 0, and S smooth on Xy, see e.g. [BAMPS95, Example 1].

e Examples of multi-cut, non-critical situations with n = 0,1,2 and m = 0, are men-
tioned in [BAMPS95, Examples 3-4].

e An example of criticality at the edge of the support is given by V(z) = 2%3:4 - %3:3 +
éx2 + %a:, for which the equilibrium measure, as computed in [CKI10, Example 1.2],
is given by

() = oo = (2l — 2@ — 21y (0).

z4

e An example of criticality in the bulk of the support is given by V(z) = 4 — 22, for
which the equilibrium measure, as computed in [CK06], is

() = ol — (“2)lle — 20w — 0)°1 Ly (x).

Following the terminology used in the literature [DKM 99, KM00, CK06], we may say that
our assumptions allow the existence of singular points of type II (the density vanishes in the
bulk) and IIT (the density vanishes at the edge faster than a square root). Assumption (H3)
rules out the possibility of singular points of type I, also called “birth of a new cut”, for which
the behavior might be quite different, see [Cla08, Mo08].

1.4. Existing literature, strategy and perspectives.

1.4.1. Connection to previous results. The CLT for fluctuations of linear statistics in the
context of S-ensembles was proven in the pioneering paper [Joh98] for polynomial potentials
in the case n = 0,m = 0, and generalized in [Shc13] to real-analytic potentials in the possibly
multi-cut, non-critical cases (n > 0, m = 0), where a set of n necessary and sufficient conditions
on a given test function in order to satisfy the CLT is derived. If these conditions are
not fulfilled, the fluctuations are shown to exhibit oscillatory behaviour. Such results are
also a by-product of the all-orders expansion of the partition function obtained in [BG13b]
(n=0,m=0) and [BG13a] (n > 0,m = 0). A CLT for the fluctuations of linear statistics for
test functions living at mesoscopic scales was recently obtained in [BL16].
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1.4.2. Motivation and strategy. Our goal is twofold: on the one hand, we provide a simple
proof of the CLT using a change of variables argument, retrieving the results cited above. On
the other hand, our method allows to substantially relax the assumptions on V', in particular
for the first time we are able to treat critical situations where m > 1.

Our method, which is adapted from the one introduced in [L.S16] for two-dimensional log-
gases, can be summarized as follows

(1) We prove the CLT by showing that the Laplace transform of the fluctuations converges
to the Laplace transform of the correct Gaussian law. This idea is already present
in [Joh98] and many further works. Computing the Laplace transform of Flucty (&)
leads to working with a new potential V' + t£ (with ¢ small), and thus to considering
the associated perturbed equilibrium measure.

(2) Following [LS16], our method then consists in finding a change of variables (or a
transport map) that pushes uy onto the perturbed equilibrium measure. In fact we
do not exactly achieve this, but rather we construct a transport map I + ¢, which
is a perturbation of identity, and consider the approximate perturbed equilibrium
measure (I + tY)#py. The map @ is found by inverting the operator (1.12), which
is well-known in this context, it appears e.g. in [BG13b, BG13a,Shcl3, BFG13]. A
CLT will hold if the function £ is (up to constants) in the image of Zy, leading to
the conditions (1.14)—(1.15). The change of variables approach for one-dimensional
log-gases was already used e.g. in [Shcl4, BFG13], see also [GMS07,GS14] which deal
with the non-commutative context.

(3) The proof then leverages on the expansion of log ZJ‘\/I, 5 up to order N proven in [LS15],
valid in the multi-cut and critical case, and whose dependency in V' is explicit enough.
This step replaces the a priori bound on the commutators used e.g. in [BG13b].

1.4.3. More comments and perspectives. Using the Cramér-Wold theorem, the result of The-
orem 1 extends readily to any finite family of test functions satisfying the conditions ((1.14),
(1.15)): the joint law of their fluctuations converges to a Gaussian vector, using the bilinear
form associated to (1.16) in order to determine the covariance.

In the multi-cut case, the CLT results of [Shc13] or [BG13a] are stated under n necessary
and sufficient conditions on the test function, and the non-Gaussian nature of the fluctuations
if these conditions are not satisfied is explicitly described. In the critical cases, we only state
sufficient conditions (1.15) under which the CLT holds. It would be interesting to prove
that these conditions are necessary, and to characterize the behavior of the fluctuations for
functions which do not satisfy (1.15).

Finally, we expect Theorem 1 to hold also at mesoscopic scales.

1.5. The one-cut noncritical case. In the case n = 0 and m = 0, following the transport
approach, we can obtain the convergence of the Laplace transform of fluctuations with an
explicit rate, under the assumption that £ is very regular (we have not tried to optimize in
the regularity):
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Theorem 2 (Rate of convergence in the one-cut noncritical case). Under the assumptions of
Theorem 1, if in additionn =0, m =0, p> 6 and r > 17, then we also have

(1.17)  |log Epy , (exp(sFluctn (€)) — sme — s%ve

S 83 54 4
<C NH&HCW(R) + NH&HC‘?(R) + m”ﬁ”czs(m) :

where the constant C' depends only on V.

The assumed regularity on & allows to avoid using the result of [LS15] on the expansion
of log Z%ﬂ. Our transport approach also provides a functional relation on the expectation
of fluctuations which allows by a boostrap procedure to recover an expansion of log Z%ﬁ
(relative to a reference potential) to arbitrary powers of 1/N in very regular cases, i.e the
result of [BG13b] but without the analyticity assumption. All these results are presented in
Appendix A.

1.6. Some notation. We denote by P.V. the principal value of an integral having a singu-
larity at zg, i.e.

(1.18) P.V/f:;gr%/_z_af+/35::f.

If ® is a C'-diffeomorphism and j a probability measure, we denote by ®#u the push-
forward of u by ®, which is by definition such that for A C R Borel,

(DHu)(A) = p(®71(A)).

If A C R we denote by A its interior.
For k > 0, and U some bounded domain in R, we endow the spaces C*(U) with the usual
norm

k
I lonwy = sup [ ().

§=0 xe

If z is a complex number, we denote by R(z) (resp. Z(z)) its real (resp. imaginary) part.
For any probability measure 1 on R we denote by h* the logarithmic potential generated
by u, defined as the map

(1.19) r € R? s hi(z) = /—log |z — y|du(y).

2. EXPRESSING THE LAPLACE TRANSFORM OF THE FLUCTUATIONS

We start by the standard approach of reexpressing the Laplace transform of the fluctuations
in terms the ratio of partition functions of a perturbed log-gas by that of the original one.
This is combined with the energy splitting formula of [SS15] that separates fixed leading order
terms from variable next order ones.
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2.1. The next-order energy. For any probability measure p, let us define,

- N N
en ==l sl —al(Y )@ (Lo )0,
X i=1 i=1

where A denotes the diagonal in R x R.
We have the following splitting formula for the energy, as introduced in [SS15] (we recall
the proof in Section B.1).

Lemma 2.1. For any Xy € RN, it holds that

N
(2.2) HY(Xn) = N2Zy (uy) + 2N Y Cv(@i) + Fy(Xn, py) -

=1

Using this splitting formula (2.2), we may re-write IP’}Q 5 as

= 1 8 . N .
(2.3) d]P}]‘(f,B(XN) = mexp (—2 (FN(XN,,uv) + 2N;CV($Z)>> dXn,

with a next-order partition function Ky g(pv,(y) defined by

8 - - .
(2.4) KN,B(HV»CV) = /RN exXp (—2 <FN(XN,,MV) + 2NZCV(:51)>> dXN.

i=1
We extend this notation to K g(u, () where p is a probability density and ¢ is a confinement
potential.

2.2. Perturbed potential and equilibrium measure. Let ¢ be in C°(R) with compact
support.

Definition 2.2. For any t € R, we define

e The perturbed potential Vy as Vi :=V + €.

o The perturbed equilibrium measure ps as the equilibrium measure associated to V.
Since & has compact support, Vi satisfies the growth assumption (1.5) and thus p is
well-defined. In particular, pg coincides with py .

e The next-order confinement term (; := Cy,, as in (1.7).

e The next-order energy Fx(Xn, ) as in (2.1).

e The next-order partition function Ky g(pu, () as in (2.4).

2.3. The Laplace transform of fluctuations as ratio of partition functions.

Lemma 2.3. For any s € R we have, letting t := E—JQVS,

(2.5) EIP%B [exp (sFluctn(€))]

= fm exp (—§N2 <Ivt (1) — Zv (po) — t/§duo>) :

Proof. First, we notice that, for any s in R
ZVz

(2.6) EPXB [exp(sFlucty (§))] = Z]‘\/f’ﬁ exp (—Ns/fd,uv)
: X8
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Using the splitting formula (2.2) and the definition of Ky g as in (2.4) we see that for any ¢

B
(2.7) Ky g, G) = ZN 5 exp <2N21Vt (Mt)) ;
thus combining (2.6) and (2.7), with ¢ := 512\/8 we obtain (2.5). O

2.4. Comparison of partition functlons If 1 is a probability density, we denote by Ent(u)
the entropy function given by Ent(u) := fR wlog pu. The following asymptotic expansion is
proven [LS15, Corollary 1.5] (cf. [LSlJ Remark 4.3]) and valid in a general multi-cut critical
situation.

Lemma 2.4. Let o be a probability density on R. Assume that v has the form (1.10), (1.11)
with Sy in C?(X), and that ¢ is some Lipschitz function on R satisfying

(=0o0nX%, (>0o0nR\X%, / e PN g < 50 for N large enough.
R

Then, with the notation of (2.4) and for some Cg depending only on (3, we have

(2.8) log Ky g(1,¢) = gNlogN +CsN — N (1 - g) Ent(p) + Non(1).

2.5. Additional bounds.

2.5.1. Ezponential moments of the next-order energy.

Lemma 2.5. We have, for some constant C depending on 8 and V

(2.9) log EPX,& {exp <§ (FN(XN, wy) + N log N))} ' < CN.

Proof. This follows e.g. from [SS15, Theorem 6], but we can also deduce it from Lemma 2.4.
We may write

EPX,ﬁ {GXP< Fn(Xn, v )]

5 . - ;
KNﬂ MV7CV /exp (—4 (FN(XN,Mv) - QN;QCV(%‘)>> dXn
KN7§(MV72CV)

-~ K, Gv)
Taking the log and using (2.8) to expand both terms up to order N yields the result. t

2.5.2. The next-order energy controls the fluctuations. The following result is a consequence
of the analysis of [SS15,PS14], we give the proof in Section B.2 for completeness. It shows
that Fiy controls flucty. Here [Supp | denotes the diameter of the support of €.

Proposition 2.6. If & is compactly supported and Lipschitz, we have, for some universal
constant C

(2.10) ’/fdﬂuctN’

1 = 1/2
< C[Supp €| | Ve e (Ex(Xn, i) + Nlog N+ C(llvlz= + DN)
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2.5.3. Confinement bound. We will also need the following bound on the confinement. The
proof is very simple and identical to the proof of Lemma 3.3 of [LS16].

Lemma 2.7. For any fixed open neighborhood U of 3,
Pl s (Xn € UN) > 1 - exp(—cN)
where ¢ > 0 depends on U and 5.
Lemma 2.7 is the only place where we use the non-degeneracy assumption (H3) on the
next-order confinement term (y .

3. INVERTING THE OPERATOR AND DEFINING THE APPROXIMATE TRANSPORT

The goal of this section is to find transport maps ¢; for ¢ small enough such that the
transported measure ¢;# 1o approximates the equilibrium measures p;. Since the equilibrium
measures are characterized by (1.7) with equality on the support, it is natural to seek ¢; such
that the quantity

[ ~108161(2) = 61 (lduotv) + Vilen()

is close to a constant.

3.1. Preliminaries.

Lemma 3.1. We have the following

e The non-vanishing function Sy in (1.11) is in CP7372K(Zy).
o There exists an open neighborhood U of Xy and a non-vanishing function M in
CP=3=2K(U \ By) such that

-

Il
—

(3.1) Cv(z) = M(x)o(z) | [(z — s

(2
In particular, (3.1) quantifies how fast ({, vanishes near an endpoint of the support. We
postpone the proof to Section B.3.

3.2. The approximate equilibrium measure equation. In the following, we let

e U be an open neighborhood of ¥y such that (3.1) holds.
e B be the open ball of radius 3 in C?(U).

We define a map F from [—1,1] x B to C}(U) by setting ¢ := Id + 1 and
1
(32) Fit.0) = [ ~log1o() ~ dlwldu () + 5Vioo()
Lemma 3.2. The map F takes values in C1(U) and has continuous partial derivatives in both

variables. Moreover there exists C' depending only on V' such that for all (t,%) in [-1,1] x B
we have

(3.3) 7w -F0.0 - Jeravpl| | <Ol
2 CI(U)

The proof is postponed to Section B.4.
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3.3. Inverting the operator.

Lemma 3.3. Let v be defined by

_ 1 €ly) — &(x) .
(3.4) Y(z) = ~525(a) (/E ) —2) dy) for x in Xy,
/w(y)duv(y) T
(3.5) W(z) = L2 - y : for x € U\,
[ - 3v'@)

then 1 is in C'(U) with | = (p — 3 — 3k) A (r — 1 — 2k) and
(3.6) [Yllevey < Cliélermy

for some constant C' depending only on V', and there exists a constant c¢ such that

Ev[w] = g + ce in U,
with Zy as in (1.12).
The proof of Lemma 3.3 is postponed to Section B.5. We may extend 1 to R in such a
way that ¢ is in C'(R) with compact support.

3.4. Approximate transport and equilibrium measure. We let 1) be the function de-
fined in Lemma 3.3, and c¢¢ be such that

Ev[T/)] = g +C§ on U.

-1
Definition 3.4. Fort € [—tmax, tmax), wWhere tmax = (2||1/1||01(U)) ,
We let iy be given by iy 1= ta).
We let ¢+ be the approzimate transport, defined by ¢ := Id + 4.
We let ji; be the approzimate equilibrium measure, defined by fir 1= ¢1#py .
We let (; be the approximate confining term (; := (y o ngt_l

We let IP’%)’B be the probability measure

N
3.7 PO (Xn) = — 1 ex (-ﬁ (F X, jir) +2N S i))df :
(3.7) N3(XnN) Knp(iins &) exp | =5 N(X N, i) + ;Q(ﬂﬁ ) N

where Ky g(fir, Ct) is as in (2.4).
Finally, we let 74 be defined by
(38) Tt ‘= f(t,l/]t) - f(O, 0) - 5,5.

This quantifies how close fi; is from satisfying the Fuler-Lagrange equation for Vi and thus
how well iy approximates the real equilibrium measure py. We also define the extension 7y of
0 ¢t to R? by

(3.9) fi(w,y) = x(z,y) o ¢ (@),
where x is equal to one in a fized neighborhood of supp(uy ) included in U and is in C°(R?).
Lemma 3.5. The following holds
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o The map Y, satisfies
= t _ .
:V[wt] = §§ + ¢, for & = tee.

o The map ¢; is a C*-diffeomorphism which coincides with the identity outside a com-
pact support independent of t € [—tmax, tmax) -
e The error 7 is a O(t?), more precisely

(3.10) I7tllcr @0y < CEIDIZ2 0
(3.11) I7llcr(rey < CEINE 0.
e On ¢y(Xy), we have
~ . Vi
(3.12) =ttt —cy —mody .

Proof. The first two points are straightforward, the bound (3.10) follows from combining (3.3)
with the conclusions of Lemma 3.2, and then (3.11) is an easy consequence.
For (3.12), let us first recall that

Fiton) = [ ~1og[6:() = 6uy)lduoly) + 5Vio o
which, with the notation of (1.19), yields
Flt ) = W 0 g1+ Vi .
On the other hand, by definition of 7; as in (3.8), we have

F(t, ) = F(0,0) + & + 7¢.
Finally, we know that, on Xy
F(0,0) =Cv +ev.
We thus see that
CV+CV+Et+Tt:hﬁto¢t+%wo¢t-

Since, by definition, ¢; = Cy o ¢; ', we get (3.12). a
4. STUDY OF THE LAPLACE TRANSFORM

The next goal is to compare the partition functions associated to u; and pg = py. We
split the comparison into two steps: first, we compare Ky g(us, () with Ky g(fit, () using
the bounds, obtained in the previous section, showing that fi; is a good approximation to i,
and then we compare Ky g(fi, ft) and K g(f0, o) using the transport ¢, as in [LS16].

4.1. Energy comparison: from p; to ;.

Lemma 4.1. We have
(4.1) /R2 VAt 2 < CE gl oy,

(4.2) Gdfie + | G < Oty
R R

where C is universal.
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Proof. For t small enough, ¢,(U) contains some fixed open neighborhood of 3y, which itself
contains the support of ;. Integrating by parts we thus get

1 N _
@3) o [ 1R = 2n [ 1 - )
R

_/(Ct_gt_7t0¢t_1) d(pe — fig)

_ —/Qdﬂt—/@dut —/Rnoqbtld(ut—ﬂt)

< —/Tt°¢>t_1d(ﬂt = f)-

In the first equality, we have re-written h** and h using the confining terms ¢; and ¢, see
(1.7) and (3.12), discarding the constants which disappear when integrated against d(p; — fir).
In the second equality, we have used the fact that ¢; vanishes on the support of y; and ¢ on
the support of ;. Finally, the last inequality is due to the fact that {; and (; are nonnegative
on R. Using (3.9) and (3.11), we may thus write

1 i _ -
gHth g ||%2(R2) < ‘/R? Tt 0 Py (s — i) or

< C|Y G20 VR | 2 g2y,

< (| VA 2 ey | VR# | 2 rey

which proves (4.1). Coming back to (4.3), we also obtain

0< —/Ctdﬂt - /étdﬂt +0 (754||¢||4c2(U)) ;
which in turn implies (4.2). O
Lemma 4.2 (Energy comparison : from i to fi). For any Xy € (¢4(U))Y, we have
N N
(4.4) ‘(FN(X'N,M) + 2N;Q(M) - (FN(XN,,[M&) + QNXEG(%))'
< O (NE[[12a 0y (Fn (X, i) + Nlog N)V2 + N2z ) ) -

Proof. By the definition (2.1) of the next-order energy, we may write
(4.5) Fx(Xn, ) — Fn(Xn, fir) = NQ/R . log |z — yld (fi — pue) (x)d (e — pe) ()
X

+ 2N —log |z — yld(fi — (Z% Nm) Y)

RxR

_NQ/ ’vhllt Mt‘2+2N/hMt ut 25 —N,ut)

=1
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On the other hand, using that ¢, vanishes on the support of 1, we get

al = ~
(4.6) ;(Ct(wi)_Ct($z N/ Gt — Ct d,ut+/ Gt — Ct <Z(5x1 NMt)

N
:N/Rgtdﬂt+/R(Ct§t) <;512N/1t>

Combining (4.5) and (4.6), we obtain

N N
(FN(XNWt) + QNZQ(%‘)> - (FN(XN,ﬁt) + QNZ@(%))

i=1 =1
i i /N
= N2 |tht—m|2_|_2N2/ Ctdﬂt—i-QN/(hut_ut +¢ _Ct) Z(S-Ti —Nﬂt .
R2 R R Pt
From (1.7), (3.12) (see also the notation (1.19)), we have
hA=EE ¢ — G = T3 0 ¢ ' 4 constant,
hence we find

N N
(4.7) (FN(XNaﬂt) + 2NZC1&(=’W)> - (FN(XNaﬂt) + 2NZ@($¢))

=1 =1
_NQ/ |V At Mt|2+2N2/Ctd,ut—|—2N/Tto¢t <Z(5mz_Nﬂt>
i=1

By the results of Lemma 4.1, the first two terms in the right-hand side of (4.7) are O(N%t%),
while the last term is bounded, using (3.10) and Proposition 2.6, by

N
N / 7o dp (Z Sa, — Nﬂt> -0 (NtQ(FN(X'N, fir) + N log N)1/2) ,
=1

which concludes the proof. ]
Lemma 4.3. We have, for any fixred s € R, with t = g—?\f

KN 5(“157 Ct)

< ONt2VN 2y + CEEN? [ ¢z

(4.8) ‘log

=0 (s2N—1/2||¢||%2 + 5 N2 ) -
Proof. By definition of the next-order partition functions we may write

Enp(inG) _ [ (.8 ) -
Knglpe, &) /RN p( 9 ((FN(XN,M) +2NZQ( z))

=1

— (FN(XN,ﬂt) + 2N§:§t($z)>>> dXy.

i=1
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The result follows from combining (2.9) and (4.4), and using Lemma 2.7 to argue that the
particles Xy may be assumed to all belong to the neighborhood U for ¢ small enough, except
for an event of exponentially small probability. O

4.2. Energy comparison: from ji; to pg. Let us define

ﬂuct(t) Z 0z, — N it Fluct N / £ dﬂuct

For any v, let us define the following quantity (that may be called anisotropy by analogy
with [LS16])

(4.9) XN, / (G ) dﬂuct(t)( ) dﬂuct%) (y)-
RxR T —

Lemma 4.4. Assume) € C*(R). For any )?N e UV, letting ®(Xn) = (¢e(x1), -+, de(zn)),
we have

(4.10)  |Fn(24(Xn), jit) — Fn(Xn, o) — Zlogast i) + - A<>[XN,¢]|

=1

< Ct* (Fn(X, o) + Nlog ).

Proof. Since by definition [i; = ¢¢#uo we may write
Fn(®(Xn), fir) — Fx(Xn, o)
N N
= - // log |z — Z/|(Z Oy (2i) — N/It) (ﬂf)(z Oy (i) — N/Zt)(y)
RxR\A i=1 i=1
+ // log |z — y|dfluct v (x)dfluct v ()
RXR\A

::(AZ log 121 = W] 4t ()t e ()
RXR\A

u—m

o 12:) — )| N
//R ) ¢ |$_ | T dfluct v (2)dfluct v (y) + Y log ¢ ().

Using that by definition ¢; = Id + t3) where v is in C?(R), we get by the chain rule

wx> Sl _, ¥(@) — ()
lz —yl r—y

+ t2 €t (l‘) y)a
with [[e¢]|c2(rxr) uniformly bounded in ¢. Applying Proposition 2.6 twice, we get that

‘//6t(x,y)dﬂuctN(:L‘)dﬂuctN(y)‘ < Ct? (FN()Z'N,MO) + Nlog N) ,

which yields the result. (|
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4.3. Comparison of partition functions I: using the transport. In this section and the
following one, we will write A instead of A [X 1]

Proposition 4.5. We have, for any t small enough

K 5(fit, )

(4.11) R sl &) = P (N (1 - g) (Ent(po) — Ent(m)))

EPE\?,)B (exp (gtA + t%Errory (Xn) + tErrorg()?N)>) ,
with error terms bounded by
(4.12) [Errory (Xx)| < € (Ex (X, o) + Nlog ),
(4.13) Errora(X)| < € (En (X ao) + Nlog N) '

Proof. By a change of variables and in view of (4.10), we may write

(4.14)

N N
Kng(fie, &) = /eXP <—§(FN(@t(XN)7ﬂt) +2N ) (i o ¢t($z’)) +> log ¢2($z)> dXy
i—1 i=1

3 B N N B
= /GXP (—2 (FN((I)t(XN)a,at) + 2NZC0($¢)> +Y log qbé(%)) dXn,
=1

=1

since (p = é o ¢ by definition. Using Lemma 4.4 we may write

Knpg(iu, &) 1 B % - .
(4.15) Kn(10,¢0)  Kn p(po, o) /RN eXp( 2 (FN(XN’MO) - QN;C(%O

B - g ¢ ) dX
+ <1 — 2> ZZ;log () + §tA + t2Error1(XN) dX N

N
= EPE\?,);a <exp ((1 — ’g) ;log oy (i) + gtA + tQErrorl()zN)>> :

where the Error; term is bounded as in (4.12). On the other hand, since ¢; is regular enough,
using Proposition 2.6 we may write

N
Z log ¢2($z) = N/ log (152 dug + tErrorg()Z'N)
i=1 R

with an Errory term as in (4.13). Finally, since by definition ¢;#u9 = fir we may observe that

¢} = o5, and thus

(4.16) [ 1o 6iduo = [ togadno ~ [ log i o 6xdiio = Ent(po) — Bl
R R R

This yields (4.11). O
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4.4. Comparison of partition functions II: the anisotropy is small.

Proposition 4.6. For any s, we have

(4.17) logEPKﬁ (exp (;A)) =on(1).

Proof. Applying Cauchy-Schwarz to (4.11) we may write

(4.18) Epy (exp (itA»Q

< E]P,Xw (exp <§tA + t?Errory + tError2)> E]P"zfm (exp (—tQErrorl — tError2>)

= lm exp ((1 - g) N (Ent (i) — Ent(uo))) EPK,B (exp(—tzErrorl - tEI’I’OI’Q)) .

In view of (2.9) we get, for ¢ small enough,

(4.19) log prﬂ (exp(tErrory)) < CtN, log EPK,B (exp(tErrorg)) < CtN.

Inserting (2.8) into (4.18) we obtain that for ¢ small enough,

(4.20) log EIPI‘\/T,B (exp (itA)) < C(Nt? + NY2t) + 6y,

for some sequence {dy}n with limy_o 6y = 0. Applying this to ¢t = 4e /5 with ¢ small and

using Holder’s inequality, we deduce

5]

— sl
log EPK,B (exp (NA>> < N—log EPX,B (exp(eA)) < C|sle + —dn.

9 9

In particular, choosing ¢ = /oy, we get (4.17).

4.5. Conclusion: proof of Theorem 1.

Proof. Combining (4.11) for ¢t = —;—Jf, (where s is independent of N) and (4.17) we find

Knp(fi—z) 8 )
(4.21) log - = (1 _ 2) N (Ent(uo) _ Ent(u;]zvs)) +on(1).
Using again (4.16) and ¢; = 1 + t¢’, we may rewrite this as

K p(iz:) o 2

4.22 1 ”:—(1—)/ 'd 1).
(4.22) T 3) % [ o +oxt1)
Combining (4.8) and (4.22) and sending N to +o0o we obtain,
4.2 log —— 28" — (1 -2} 25 [y 1
(4.23) og K5 (10) ( 2) 5 /1/1 dpo + on(1),

with an error on (1) uniform for s in a compact set of R.
To conclude, we need the following relation, whose proof is given in Section B.6.
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Lemma 4.7.

2
(4.24) Ty, (1) — Ty (no) = t / Edpo + / & pdpo + O [Ellc2wry + 19162 1)
where the O only depends on V.

Combining (2.5) with (4.23) and (4.24) we obtain,

2
log By, _ (exp(sFlucty (€)) = - (1 _ /23) 2; / Wy — % /R ¢ dpy + on (1),

with an error oy (1) uniform for s in a compact set of R.

Thus the Laplace transform of Flucty(§) converges (uniformly on compact sets) to that
of a Gaussian of mean m¢ and variance vg, which implies convergence in law and proves the
main theorem. ]

APPENDIX A. THE ONE-CUT REGULAR CASE

In the one-cut noncritical case, every regular enough function is in the range of the operator
=, so that the map ¢ can always be built. This allows to bootstrap the approach used for
proving Theorem 1. In this appendix, we expand on how we can proceed in this simpler setting
without refering to the result of [LS15] but assuming more regularity of £, and retrieve the
findings of [BG13b] (but without assuming analyticity), as well as a rate of convergence for
the Laplace transform of the fluctuations.

A.1. The bootstrap argument. Let us first explain the main computational point for the
bootstrap argument: by (4.14) and in view of Lemma 4.4, we may write

Bid oy
_ 2 1 NS

) i 2o B )

d x >
(A1) T Kl &) = Byo) [—fjw Xy v]+ (1
’ =1

dt |t=0
Differentiating (2.5) with respect to ¢t and using Lemma 4.7 we thus obtain

—BN O ey _ _Brog (ﬁ)d oo (o
5 Bpo) [Flucty’ ()] = Byo) | =5AD X, 9]+ (1- 3 dt|t:0;log¢t(azz) :
This is true as well for all ¢ € [~tmax, tmax], i-€.
N
® e — 2 EINCIS g\ d ‘o
(A.2) EP%)’ﬁ[FluctN (5)]__ﬁNEP§$?ﬁ [—2A (Xnovl+ (1= 5 aglogqbt(xl) :

We may in addition write that

d Y d _ @ (d
(A.3) 7 ; log ¢y (x;) = N/ 7 log ¢} dji; + Fluct <dt log qSQ)
so that
) ong 2 B d .
(A4) EP%?B [FluctN (f)] = _B (1 — 2) /dt log ¢t dﬂt
2 I6; > I6; d
~ By, | A vl ¢ (1 ) Py (1ot )|

This provides a functional equation which gives the expectation of the fluctuation in terms of
a constant term plus a lower order expectation of another fluctuation and the A term (which



18 FLORENT BEKERMAN, THOMAS LEBLE, AND SYLVIA SERFATY

itself can be written as a fluctuation, as noted below), allowing to expand it in powers of 1/N
recursively.

A.2. Improved control on the fluctuations.

Lemma A.1. Under the assumptions of Theorem 1 and assuming in addition
(A.5) p>3k+6 r>2k+4

we have for any t in (—tmax, tmax) and® s in R

(A.6) log EP%’)B {exp (sFluct%) (f))]

83 84 34
<C <3||§||C2k+4(U) + 8 (1€) Zers gy + ~ Elle2w) + €l c2ers ) + ﬁ”ﬁ”ézwsw)

where C depends only on V.

Proof. Note that in view of Lemma 3.3, the assumption (A.5) ensures that the transport map
Y is in C3(U). By (4.14) and in view of Lemma 4.4, we may write

d o 8 . g.d X
AT —  logK =E ~ZAO[X 1-5)= log ¢ () | -
(A7) G JosEn (. G) =By [ AR+ 1= S lsol(e >]
Similarly, we have for all t,
(A.8) ilOgKNﬁ(ﬂt () =B, Oz DXy, g+ (1 -5 Zl‘)g¢ )| -

dt ’ ’ PN g 2 N 2 dt t

Indeed, V; has the same regularity as V' and fi; the same as pyg.
Next, we express the anisotropy term as a fluctuation, by writing

(A.9) A®) [XN,w] = /g(w)dﬂuct%) (x),

where we let

(A.10) o) = [ pamey), ey = LD,
T~y

It is clear that

(A.11) 1Dl czwxey < 1¥loswy

Using Proposition 2.6 twice, we can thus write

N|—=

Vol < | [ Vaidip)dfucty ()] < 192V, 0= (Fy(Zn, ) + Nlog N + ON)
and

1
AD Xy, ]| = ' / g(x)dfuct) (z)| < C[[ Vgl (Fx(Xy, i) + Nlog N + CN)?

< CHIZJHCQ(UXU) (FN(XN)ﬂt) + Nlog N + C'N) .

3In this statement, s and t are not related.
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In view of (2.9) and (A.11), we deduce that
(A1 By [~SAORy,9l|| < ONlery
PN s 2

For the term log ¢} we use (A.3) and in view of Proposition 2.6, since ¢, = Id + ¢1) is regular
enough, we may write

d L 1
(A.13) ‘/ 7 log dflucty| < Cl¢lc2wy (FN(XN,M,;) + NlogN + CN) 2,
We conclude from (A.8), using again (2.9) that

d -
(A14) 2 tor Ky, G| < Nl onn
Integrating this relation between 0 and —52—]‘%, and combining with (4.8), we find that, for

-2
t= T]\?,
Knp(pe, G)

A.15 log ———"| < Cs||Y||c3(t)-
( ) | K (o, o) Iles )

Inserting this, (4.8) and (4.24) into (2.5), we deduce that

(A.16)

log By [exp(sFluct()]
N,B8

83 84
<C <8||¢||03(U) + S [¢llcoan léllor @y + ~ Ellezw) + 3z ¥llezw)

32 ) 34 4
+ ﬁ”lﬁﬂczw) + 2 lvlcaw |-

In view of (3.6), it yields the result for the expectation under IP)S\?’)ﬁ, and then this can be

generalized from ]P’ES)B to P%) 3 for t in (—tmax,tmax) because [i; has the same regularity as

Ho- U

Assuming from now on that n = 0 and m = 0 (so that every regular function is in the range
of Z) we can upgrade this control of exponential moments into the control of a weak norm of

Fluct%). Here we use the Sobolev spaces H*(R).

Lemma A.2. Under the same assumptions, for a > 8 we have

(A.17) <c,

()2

where C' depends only on V.

Proof. The proof is inspired by [AKM17], in particular we start from [AKM17, Prop. D.1]
which states that

1
(A.18) [l gy < C /0 PO B (r, )2y dr
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2
_l=*

where ®(r,-) is the standard heat kernel, i.e. ®(r,z) = T It follows that

1
(A19) By [Ifinct [fogml] <C /0 ra—lEP%)B ||ﬂuct§$’*<1><r,->\|%z<R)] dr.

On the other hand we may easily check that, letting &, , := ®(r,z — -), we have

2
(AQO) P(t) [HﬂUCtN) *(I)( )||%2(R):| = /EPE\?B |:<F1uCt§ff)(€m,r)> ] dx.

Applying the result of Lemma A.1 to &, gives us a control on the second moment of
Fluct%) [€2,r] of the form

() 2 2
By [(Fluct (€n))’] < C (I leaw) + erliésw)) -

Inserting into (A.19) and (A.20), we are led to

1
By [0t o] <€ [ [+ (I6erllonw)

Since U is bounded, we may check that this right-hand side can be bounded by C fol roeLr=7dp,
which converges if a > 7. g

) dx dr.

A.3. Proof of Theorem 2. For any test function ¢(x,y) we may write

/ o (a,y)dftuctly () dfluct ) (1) < 116l oze o IBuct 2o g

and so by the result of Lemma A.2, we find

(A21) Ep, , ( / o, y)dtuety) (z) dfiuct ! <y>)) < Cldllczewxon-

We may now bootstrap the result of Lemma A.1 by returning to (A.9) and, using (A.21),
writing that

(A.22) ‘Epg\i)ﬂ [A(t)[XN,Q/)]H < |9l cratr vy
On the other hand, by differentiating (A.6) applied with § = % 4 log ¢}, we have

(A.23)

d ¢
EP% [/dtlog ¢Qdﬂuct§$” < CllYllesw)

Inserting (4.16) and (A.22) and (A.23), (A.3) into (A.8), and integrating between 0 and
t = —2s/N 3, we obtain

Knpg(fie, &)
log Kng(po,G) (

Using again (4.16) and ¢, = 1 + t’, we may rewrite this as

1— g) N (Ent(/i;) — Ent(0)) + %O(IlichH(U))‘

log

KN,ﬁ(ﬂ%Vs,f%s) <

B\ [ s
Kiv (0.6 )2 [ o+ O el
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Combining this with (4.8), (2.5) with (4.23) and (4.24) we obtain

2
(A.24) |log prﬁ (exp(sFlucty(€)) + (1 — g) 2;/1/;’d,uv + Sﬁ/Rglw dpy

s 53 st
< O yléllozars + FllEllez + mllElcs | -

with C' depending only on V. This proves Theorem 2.

A .4. Tteration and expansion of the partition function to arbitrary order. Let V. W
be two C™ potentials, such that the associated equilibrium measures py, py satisfy our
assumptions with n = 0,m = 0. In this section, we explain how to iterate the procedure
described above to obtain a relative expansion of the partition function, namely an expansion
of log Z]VVVﬂ —log ZX}» 5 to any order of 1 /N. Up to applying an affine transformation to one of
the gases, whose effect on the partition function is easy to compute, we may assume that py
and g have the same support 3, which is a line segment.

Since V, W are C*° and py, uw have the same support and a density of the same form (1.10)
which is C* on the interior of ¥, the optimal transportation map (or monotone rearrange-
ment) ¢ from py to py is C*° on ¥ and can be extended as a C'*° function with compact
support on R. We let ¢ := ¢ — Id, which is smooth, and for ¢ € [0, 1] the map ¢; := Id + 1) is
a C*°-diffeomorphism, by the properties of optimal transport. We let fi; := ¢:+#uy as before.

We can integrate (A.8) to obtain

Kng(pw,Cw)
Kng(pv,Cv)

- /0 1 By [~5AOw 0+ (1= 5) N [ Gioseidn+ (1-7) [ 5 ogstdtuee?] a
_N (1 - g) (Ent () — Ent ()
+ /01 EPS\?,B {_SA@) [(Xn, ] + <1 — g) Fluct v [/ % log (Z)Qdﬂuct%)” dt.

log

The integral on the right-hand side is of order 1, and we claim that the terms in the integral
can actually be computed and expanded up to an error O(1/N) using the previous lemma.

This is clear for the term Eg) {Fluctsf,)(% log ¢;)} which can be computed up to an error
N,B
O(1/N) by the result of Theorem 2. The term Ej {—gA(t) (X, 1/1]} can on the other hand
N,p

be deduced from the knowledge of the covariance structure of the fluctuations. Let F denote
the Fourier transform. In view of (A.9), using the identity

Y(z) —P(y) _ ! / s s
I—y_/o Yi(sz+ (1 )y)d
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and the Fourier inversion formula we may write
(A.25) EPS\? {A( Xy, ¢ P(z) [//R R/ ' (sz+ (1 —s)y)ds dfuct )( )dﬂuctg\t,)(y)]
B X

= / / AF () (N By [Fluct ) (e Fluct ) (" =%)| ds ),
0 N,B

On the other hand, let ¢, y be the map associated to e’ by Lemma 3.3. Separating the real

part and the imaginary part we may use the results of the previous subsection to e** and

obtain

() ishy\] _ 2 P 1
E]}Pg\?B |:F1U‘CtN (6 ):| - <1 - B) /(ps,)\d,uft +O(N) .

By polarization of the expression for the variance (see (1.16)) and linearity

E. o [Fluctg?(&S*)Fluctg?(6“1—8)*)] = By [Fluct{ (") Byo  [Fluct) (¢10-9)]
PNs PN.s Prs

// (% Alu )= :JDS )\(U)> (90(15),>\(Ui : f(ls),x(v)> i) g ()

5 1
+/W/<Ps,,\90(1s),,\dﬂt) + O(ﬁ)-

Letting N — oo, we may then find the expansion up to O(1/N) of E {—ﬁA(t) [XN,¢]}
s

Inserting it into the integral gives a relative expansion to order 1/N of the (logarithm of the)
partition function log Ky 3. This procedure can then be iterated to yield a relative expansion
to arbitrary order of 1/N as desired.

APPENDIX B. AUXILIARY PROOFS

B.1. Proof of Lemma 2.1.

Proof. Denoting A the diagonal in R x R we may write

N
Hy(Xn) =Y —logle; —zj| + N> V(x

i#j i=1
N N N
- //A —logle — (D6, ) (@) (D ba ) ) + N/RV(a:)(Zém)(x).

¢ i=1 i=1 i=1
Writing 3N, 0z, as Npuy + flucty we get
(B.1) Hy(Xy)= NQ// —loglx — yldpy (z)duy (y) +N2/ Vdpy

e R

+ QN// —log |z — y|duy (z)dfluct y (y) + N/ Vdfluct
c R

+ // —log |z — y|dfluct x (z)dfluctn (y).
/\¢
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We now recall that ¢y was defined in (1.7), and that ¢y = 0 in Xy. With the help of this we
may rewrite the medium line in the right-hand side of (B.1) as

QN// —log |z — y|duy (z)dfluct v (y) +N/ Vdfluct
¢ R

= 2N/ <— log |- |*duy)(z) + ‘2/) dflucty = 2N/(CV + c)dflucty
R R

N N
- 2N/Rcvd(izlam - Nav) =2V G

The last equalities are due to the facts that (y vanishes on the support of uy and that fluct
has a total mass 0 since py is a probability measure. We may also notice that since uy is
absolutely continuous with respect to the Lebesgue measure, we may include the diagonal
back into the domain of integration. By that same argument, one may recognize in the first
line of the right-hand side of (B.1) the quantity N2Zy (uy ). O

B.2. Proof of Proposition 2.6. We follow the energy approach introduced in [SS15,PS14],
which views the energy as a Coulomb interaction in the plane, after embedding the real line
in the plane. We view R as identified with R x {0} € R? = {(z,y),2 € R,y € R}. Let us
denote by dr the uniform measure on R x {0}, i.e. such that for any smooth ¢(z,y) (with

z € R,y € R) we have
/ POR = / o(xz,0) dz.
R2 R

Given (x1,...,zy) in RY, we identify them with the points (x1,0),..., (zy,0) in R2. For
a fixed Xy and a given probability density ;1 we introduce the electric potential H, by

(B.2) HY = (—log| - | <Z§zl NM5R>.

Next, we define versions of this potential which are truncated hence regular near the point

charges. For that let 53(;7) denote the uniform measure of mass 1 on dB(x,n) (where B denotes
an Euclidean ball in R?). We define Hj p 0 R? by

(B.3) Hy, = (—log]-| (Z 57— NM6R> :

These potentials make sense as functions in R? and are harmonic outside of the real axis.
o
Moreover, H N solves

(B.4) — AHN, =27 (Z 5@ 0~ NM5R> :
i=1

Lemma B.1. For any probability density p, Xy in RY and n in (0,1), we have

= 1
(B.5) Fn(Xpn,p) > o /]R2 \VHJ’@J]F + Nlogn — 2N?||p|| o7
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Proof. First we notice that [, |[VH Nn|? is a convergent integral and that

N
(B.6) /RQ VHy 4 = 27?//—10ng —yld <Z 657 NM5R> <Z5 NN5R> (y)-
=1

Indeed, we may choose R large enough so that all the points of Xy are contained in the ball
Br = B(0,R). By Green’s formula and (B.4), we have

H N
(B?) / ‘VHN,UP = / HNnaJ + 27T/ HN,n <Z 55(573) — N/L(SR> .
Bgr O0BRr a Bgr i=1

In view of the decay of Hy and V Hy, the boundary integral tends to 0 as R — oo, and so

we may write
N
/ IV Hy ,|? :27r/ Hyy | D6 — Ny
R2 7 Rz \iD

and thus (B.6) holds. We may next write

(B.8) // —log |z — yld <Z5 N,U5R> <Z<5 Nu&a) (v)
=1
- //AC —log |z — y| dfluct y (z) dfluct 5 (y)

:—Zlogn+2//—log|x y\ 5(’7 —5@5 +2NZ// log |z — y| T — zz>

7]

(n)

Let us now observe that [ —log|z — y[ég(g?) (y), the potential generated by dg,” is equal to

)

[ —log |z — y|ds, outside of B(z;,7n), and smaller otherwise. Since its Laplacian is —2%53(6? ,
a negative measure, this is also a superharmonic function, so by the maximum principle, its
value at a point z; is larger or equal to its average on a sphere centered at x;. Moreover,
outside B(x;,n) it is a harmonic function, so its values are equal to its averages. We deduce
from these considerations, and reversing the roles of ¢ and j, that for each i # j,

- [ toglo — ylos) < - / log |z — 414,00 < - / log |z — Y1300,
We may also obviously write
/_ IOg |.CC - y|5x15xj - / lOg |£ZZ - y|5 77) < - log ‘xl - x]’1|x,7x]\<217

We conclude that the second term in the right-hand side of (B.8) is nonpositive, equal to 0 if
all the balls are disjoint, and bounded below by 3=, .;log |z; — |15, 4 ,|<2y- Finally, by the

above considerations, since [ —log |z —y[68" coincides with [ —log |z —y|dy, outside B(z;,n),
we may rewrite the last term in the right-hand side of (B.8) as

N
QNZ/ (—log |z — zi| + logn))dudr.
=1 T4,
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But we have that
(B.9) / (—log || + logn)dr = n
B(0,m)
so if € L, this last term is bounded by 2|||| L« N27. Combining with all the above results
yields the proof. O
Proof of Proposition 2.6. We now apply Lemma B.1 for py with n = ﬁ We obtain

1 =
©10) oo [ VP < Fv(R) + NIog N + Clla o + 1N,

Let & be a smooth compactly supported test function in R. We may extend it to a smooth
compactly supported test function in R? coinciding with &(z) for any (x,%) such that |y| < 1
and equal to 0 for |y| > 2. Letting #/ denote the number of balls B(x;,n) intersecting the
support of £, we have

(B.11) ‘/ (ﬂuctN— (%5@-1\%)) g‘—‘/ (i(axi—agp)) 5‘

=1

141
< HI|VEl| e = 521Vl

But in view of (B.4), we also have

N
1
B.12 > 6 — N :/ H . ‘
( ) ‘/ (i:lém MV) ‘5‘ 27T‘ RQV N Ve

1
< |Supp£|2 vaan||VHIA<7‘,/77||L2(Supp§)'
Combining (B.10), (B.11) and (B.12), we obtain

(B.13) ‘/{ﬂuctN‘

NI

I 1 S
< CI9elue (55 + ISupp el (Fw(Xx. ) + Nlog N + (v =+ DN) ).
Bounding #1 by N yields the result. O
B.3. Proof of Lemma 3.1.

Proof. Since py minimizes the logarithmic potential energy (1.6), for any bounded continuous
function h we have

(B.14) J M= by @i ) = [ V@@ o)

Of course, an identity like (B.14) extends to complex-valued functions, and applying it to
h = 2 for some fixed z € C\ Ty leads to

(B.15) G(2)? — G(2)V'(R(2)) + L(z) = 0,
where G is the usual Stieltjes transform of uy

1
(B.16) G(2) = [ —duvto),
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and L is defined by

(B.17 O )

Solving (B.15) for G yields

(B.18) G(z) = % ( )= /VI(R( (z)) |

As is well-known, —31Z(G(z + ie)) converges towards the density py(z) as e — 07, hence we
have for x in Xy

1

(B.19) pv(x)? = S(x)?0®(x) = “one

o (V/(2)? = 4L(2)).
This proves that jy has regularity CP~2 at any point where it does not vanish. Assuming
the form (1.11) for S, we also deduce that the function Sy has regularity at least CP~372 on
Sy

Applying (B.18) on R\ 3, we obtain

3V = [ duvt) = 3 Vi@? — L),

and the left-hand side is equal to {'(x).
Using (1.11), (B.19) and the fact that V' is regular, we may find a neighborhood U small
enough such that ¢’ does not vanish on U \ ¥y and on which we can write ¢/ as in (3.1). O

B.4. Proof of Lemma 3.2.

Proof. We first prove that the image of F is indeed contained in C*(U).
For (t,9) = (0,0), we have indeed F(0,0) = (v + ¢ and (y is in C}(R) by the regularity
assumptions on V. We may also write

[¢() — o(y)l
|-~y
and since [[1[|c2(ry < 1/2, the second and third terms are also in cH(U).

Next, we compute the partial derivatives of F at a fixed point (¢o,v9) € [—1,1] x B. It is
easy to see that

F(t,9) = F(0,0) — [ log dpy (4) + ~(Vio ¢~ Vo o),
2

OF
Ot | (t0,100) 75 %o,

and the map (to, o) — £ o ¢ is indeed continuous.
The Fréchet derivative of F' with respect to the second variable can be computed as follows

Flto, o+ 1) = — / tog |(é0(-) — do(v) + (¥1.() — a(u) |y () + 5Viy © (90 + )

1() —¥1(y) 1
(>—¢>ol(>‘d’“‘v<y) + 5 (Viy © (60 + 1) = Viy © )

- _ [8() =)
= Flto,%0) ¢o(-) = do(y) !

= Flto, bo) — /log 1+

1
NV(y) + §w1‘/;€/0 ° ¢0 + Eto,1bo (1/}1) )
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where &4, 4, (1) is given by
Y1() — iy )‘ () —i(y)
¢

() == [ ||+ =~
+ %(Vto o (¢o + 1) — Vig 0 o — V1 V{, © ¢y) .
By differentiating twice inside the integral we get the bound
lleto.0 (1) )y < Cto, %o) 911Gy

with a constant depending on V. It implies that

OF | [0 -6,

1 »
% (to,o) 1/}1 - ¢O() _ ¢O(y) /Lv(y> + 51/}1‘/750 ¢0 ,

27

and we can check that this expression is also continuous in (¢g,%p). In particular, we may

observe that

oF _
i (070)[1#] = —Ey[¢].

Finally, we prove the bound (3.3). For any fixed (¢,v) € [—1,1] x B, we write
oOF

(B.20)

_ Y G P A oF
]:(t’ IIZ)) ]:(O’O) - /0 ds ds = /0 (t ot (st,sv) + 6¢ (st,sv) W}])ds ’
we get
" 1
(B21) |F(t3) = F0.0) = 5 +Evillove < [ (€06~ el
oF
— d
H O (st S¢ oo M’ Cl(U)> >
with ¢s = Id 4 st. It is straightforward to check that
1€ 0 ¢s — Ellerwy < Cliéllezanl¥llerwy -

To control the second term inside the integral we write

oOF oOF

39 ¥ ™ 99100

V() —¥(y) V() —¥(y) L ’
=— — d —(Vgoops—V
[ Gaaty ) )+ 5 o=
and we obtain
oOF oOF
5] 1= 5] )
81/) (st,sv) 8’(/1 (0,0) oY)
V(i) —vly)  ¥() - )
— d
<=6t - = g,

cHw)
+ H(V;/t © ¢S - V,)sz)HCl(U)
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o ’K )<¢4&:wa"0‘

We now use that
( V(i) —vly) vl -y ‘
¢s() _¢s(y) Y

v )
< ClYllc2wy ()723(?;) - 1‘ L)
= Cs|Yllo2 vy w ()
C—y
< CllY Iz qbs(')—qbs(y)‘cl(U)
< CllYlI22 -

In the second and the fourth line, we used Leibniz formula . In the last line we used that
s(¥(-) — ¥(y))/(- — y) is uniformely bounded by 1/2 in C?(U) so its composition with the
function x — 1/(1 + z) is bounded in C?(U). We conclude by checking that

(Vi o 65 = V) ¥llerwy < C(IVIeay¥llerwy + tiellexn ) 1l cowy -

B.5. Proof of Lemma 3.3.
Proof. First, we solve the equation Zy [¢)] = %5 +c¢ in Xolv, where Zy is operator defined in
(1.12). For z in 3y, we have the following Schwinger-Dyson equation

V/;x) — PV. / xlyduv(y)'

(B.22)

In particular, for z in XQIV, it implies

(B.23) Ev[v)(x) := P.V. M/W(y)dy,
Sy Y-
and we might thus try to solve
1
(B.24) P.V. Muv(y)dy = 5{ + ce.

Sy Y=

Equation (B.24) is a singular integral equation, we refer to [Mus92, Chap. 10-11-12] for a
detailed treatment. In particular, it is known that if the conditions (1.14) are satisfied, then
there exists a solution g to

1 °
(B.25) PV. %(y)dy = Z¢+ ¢ on Dy,
Sy, Y= 2
which is explicitly given by the formula
o(x) £(y)
B.26 Yolz) = —P.V./ L VE—
(520 D=9 PV [ sy

Since we have, for x in Xy
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we may re-write (B.26) as

o(x) [ &) —¢&=) 3
B.27 Yo(x) = — dy on Xy,

(27 D=0 Ly, ol - )

where the integral is now a definite Riemann integral. From (B.27) we deduce that the map
%o

<2 is of class C1in XQ]V and extends readily to a C"~! function on Xy .

For d =0,...,r — 1 and for = € Xy, we compute that

v\ - dl £(y) — Rs,.ar1é(y)
(0) (= Y Sy o(y)(y — si)@H! .

In particular, if conditions (1.15) hold, in view of Lemma 3.1 the map

Yo ()

Y= Sao(w)
extends to a function of class (p— 3 —2k) A (r — 1 —k), hence C? on Sy, and in view of (B.25)
it satisfies 2y [¢] = % + c¢ on Xy
Now, we define 1 outside Xy/. By definition, for z outside Xy, the equation

=y [¥](z) = 5£(x) + cc

can be written as
0@ [ i) = [P ) - Jov @) = Je) + e

and thus the choice (3.5) ensures that Zy )] = $&+c¢. Moreover, 1 is clearly of class C™\(P~1)
on R\ Xy . It remains to check that 1) has the desired regularity at the endpoints of ¥y. For
a given endpoint a we consider ) the Taylor development of order I := (p—3—2k) A (r—1—k)
at o of 1. We can write (3.5) as

S Dy (y) + 55 + e — [P apy (y) + () [ duy (y) + 55+ e
\%4

|5 duv(y) — 3V (@) [ s5dpv(y) — $V'(2)
) + e —Ev[i](a)
S s duv(y) — 5V (@)
As Ey[y] = % + c¢ on Yy, the numerator on the right hand side of the last equation

and its first [ derivatives vanish at o. From Lemma (3.1) we conclude that 1 is of class
l—k=(p—3—-3k)A(r—1—2k) at a, hence C? from (1.13).

= P(z) +

O

B.6. Proof of Lemma 4.7. Using definition (1.6) we can write Zy, (1) in the following form

Ly, () :/hm dﬂt+/thut-

To prove Lemma 4.7, we introduce the auxiliary quantity
I(ﬂt) = /hﬂt dﬂt"‘/m dﬂh

and we first prove that Z(ji;) is close to Zy, ().
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Claim 1. We have
(B.28) Ty (1) = (i) + O (10 ) -

Proof. Let us write

Ty, () :/hm d#t—i-/thNt

= [ dpes [ @t )+ [ Vi
We have used the fact that, integrating by parts twice,
/h“td,at = /hﬁtdut.

We have, using the definition of ¢, ¢; and (3.10)

[ i oy = [ (6= 5V et &= 3 - e+ O I1Raq) ) e — ).
In view of (4.1), (4.2), we thus get
®30) [0 )+ [ Vidi = Ol Es) + [ Vide
Combining (B.29) and (B.30) yields the result.

(B.29)

We may now compare Z(ji;) and Zy (py ) using the transport map.
Claim 2. We have

(B:31) L) =T (uy) +t [ €l

+t22 <// (W)zduv(w)dﬂv(y) +/V”w2duv+2/£’wduv>

+ O(t|€]l o2 (7))
Proof. We may write

(i) = — / log [é1() — 1 ()l () dpo (y) + / Vo dr dug +1 / €0 dy duo

/h%duo—//log\wt ) gy ) y) + [Veordurt [ oo du.

By a Taylor expansion, we obtain

Z(fir) = Zv (po) //1/1 duo( Mo(y)thz// (M)Qduo(iﬂ)dﬂo(y)

vt [ Viduy + 5 / Viiduy -+t [ ey + 8 [ Sidno + O €loxm).
Let us recall that by definition MO = HV By (B.14) we have

[ = i @) = [ v dr

hence we obtain (B.31).
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To conclude the proof of Lemma 4.7 it remains to prove the following identity.

Claim 3.

(B.32)

[ vdwe - |f <M>2dﬂv($)dﬂv(y) - [ vty

xr —

Proof. By definition of 1) we have

and thus

pera = [P g ) - v,

€xr —

5/ _ 2/ w(y) — ¢((90) — W(x)(y — 37) d,UV(y) _ wlvl _ ¢V” )

— y)2

Integrating both sides against ©uy yields

/w 2 // () — () — V@ =)o),

(z —y)?

= [oeviam ~ [viiduy.

Using (B.14) for the second term we obtain

/w - // () — () V@ =)o),

(y—=x

)2

We may then combine the first two terms in the right-hand side to obtain (B.32). O
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