
HAL Id: hal-03040282
https://hal.science/hal-03040282

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GIDE: Graphic Interface for Discrete Element
Harold Trannois, Jerome Fortin, C. Drocourt, Frédéric Dubois

To cite this version:
Harold Trannois, Jerome Fortin, C. Drocourt, Frédéric Dubois. GIDE: Graphic Interface for Dis-
crete Element. Visual Computing - Scientific Visualization and Imaging Systems, pp.63-79, 2014,
�10.1007/978-3-642-55131-4_3�. �hal-03040282�

https://hal.science/hal-03040282
https://hal.archives-ouvertes.fr

GIDE : Graphic Interface
for Discrete Element

H. Trannois1, J. Fortin1, C. Drocourt1 and F. Dubois2

1 Université de Picardie Jules Verne
Laboratoire des Technologies Innovantes EA 3899

INSSET, 48 rue Raspail, 02100 Saint-Quentin, France
{harold.trannois,jerome.fortin,cyril.drocourt}@u-picardie.fr

2 CNRS / Université Montpellier 2
Laboratoire De Mécanique et Génie Civil (LMGC)

dubois@lmgc.univ-montp2.fr

Abstract. In this paper we propose a graphic display tool for the results of
calculations carried out using a discrete element code: Graphic Interface for
Discrete Element Code (GIDE). This is a post-processing application writ-
ten in C++ based on portable open source libraries, making GIDE compati-
ble with different OS (Windows, Linux, Unix, MacOS etc.).

 1 Introduction

Traditionally, when carrying out a numeric investigation of the mechanical be-
haviour of a deformable body undergoing divers stresses, use is made of the Finite
Element Method (FEM) which is an important tool in the analysis of structures
and more generally in engineering science [1]. It is based on the mechanics of
continuous media; however, the bodies are not continuous, but the assumption of
continuity affords a simplification making it possible to solve the problems of
classical mechanics. However, the assumption of continuity appears difficult to
accept for systems composed of several rigid or deformable parts, interconnected
by links. We then refer to multi-body systems. Currently, numerous applications
involve the study of such systems. In the field of sport, we study the movements
of athletes. In civil engineering, the modelling of granular materials by a multi-
body system enables understanding of the origin of mechanical behaviour,
whether it is microscopic, macroscopic etc. In the field of the automobile and
transport, we seek continually to improve the performance, comfort and safety of
cars, lorries and trains. In granular mechanics, geomaterials or masonry, numerical
simulations based on the individual behaviour of grains or blocks are qualified as

2 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

DEM or Distinct Element Method [2], in contrast to the FEM strategy used when
a homogenised behaviour law has been chosen, assimilating the granulate or ma-
sonry to a continuous medium.

For the moment in granulate mechanics, because of limitations in memory size
and calculation time, discrete numerical simulations are limited to samples of a
few thousand, or even a few tens of thousands of grains. For comparison, 1cm3 of
sand with 0.1mm diameter grains contains about 106 grains. Thus, another sub-
stantial problem in modelling granular media is to be able to define the average
magnitudes (average stresses, average strains etc.), taking into account the overall
behaviour of a granular medium considered as a continuous medium, and repre-
sentative of the physics at the scale of the grain (contact efforts, volume efforts,
local rotations and speeds etc.). The final aim is to obtain homogenised behaviour
laws. This is the object of the micro-mechanical approaches that can be enriched
with the results obtained by discrete numerical simulations of granular media,
some quantities such as intergranular forces being difficult to measure experimen-
tally.

A modelling problem is generally characterised by defining a real physical
system in which certain quantities are a priori unknown, and others assumed to be
known. The first step in the modelling process consists in making a series of sim-
plifying assumptions that make it possible to model the problem: idealisation of
the geometry, boundary conditions, stresses. The second step consist in selecting
the relations that govern the model (taking account of friction, shock law, thermal
effect, wearing phenomena; or remote interactions), eliminating certain variables
between these relations, making simplifying assumptions (rigidity of bodies), then
choosing the methods of discretising the equations thus obtained. Creating such a
discretised model uses numerous implicit or explicit knowledge of the user: choice
of time step, choice of stiffness, choice of coefficients of restitution, etc. We can
thus obtain a system of algebraic equations which approximately represents the
behaviour of the physical system being investigated [3].

Solving the system supplies the unknowns, here the speeds and local reactions.
The development of a numerical tool enabling the display in 2D and 3D of me-
chanical systems in unilateral dynamics, of large size, i.e. containing more than
10 000 particles, naturally involves a series of conditions to be satisfied by the
model:

• Portability : it must be easy to integrate and to use in divers calculation
environments ;

• Performance: it must have minimum cost while enabling faithful model-
ling of the mechanical part of the system;

• Reliability: it must be accurate and robust so as to represent as accurately
as possible the behaviour of the mechanical system whatever the condi-
tions to which it is submitted and the time interval that is simulated.

GIDE : Graphic Interface for Discrete Element Code 3

The aim of this paper is to propose a graphic display tool for the results of cal-
culations performed with the aid of a Discrete Element code [5]: Graphic Inter-
faces for Discrete Elements (GIDE). This is a post-processing application based
on portable open source libraries, making GIDE compatible with various OS
(Windows, Linux, Unix, MacOS etc.). GIDE is a vector tool; this alternative ap-
proach to current display tools allows the discrete aspect of bodies to be con-
served; two bodies interconnected by a third are not transformed into a 3D image,
they remain 3 graphically representative elements that can be selected individual-
ly.

The choice of libraries has been a determining factor, whether with HDF [6]
for the handling of data files or OpenSceneGraph (OGS) [7][10] for managing of
3D scenes in OpenGL.

GIDE is also a post-processing application enabling a body to be tracked in
time or data to be extracted with the aid of the tool called “capteur” in reference to
the tool that can be found when experiments are carried out.

Finally, GIDE is equipped with a filter allowing the importing/conversion of
data files from various calculation codes (MULTICOR, LMGC90 [4]).

 2 Technology choice

GIDE was designed to be as open as possible through recourse to recognised
and free libraries. We have been particularly attentive to the documentation of the
code and the development environment through collaborative work. The tools
used are all from open sources. The result is an application entirely uncoupled
from EE calculation code.

 2.1 Data format

First version of the data format

In order not to be intrusive, the initial aim of GIDE was to be capable of func-
tioning without any modification of upstream software, such as MULTICORPS or
other simulators, only via the transformation of data from these applications. The
transformation is based on an XML file describing the organisation of the data and
a conversion tool (included in the GIDE). Thus, all results data files are trans-
formed into the format HDF5 before use.

The format HDF5 was adopted as the native GIDE format; its advantages are:
• A data model allowing the representation of complex data,

4 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

• A portable file format,
• A library that can be used on different platforms, with interfaces in C, C+

+. Fortran and Java,
• Optimised performance for access time and size of data,
• Tools for the display and processing of data in the format HDF.

Reading and writing are optimised in order to exploit various types of archi-
tecture: simple file on a standard file system, several files on a standard file sys-
tem, several files on a parallel file system and other situations. The first version of
the organisation of data in the HDF file offers the following architecture (Figure
1) :

Fig. 1. HDF representation

Starting from the root ‘/’ w access the simulation of global data, then we ac-
cess each scene and finally the block of data for each type of discrete element. In
the HDF file there are sets of data called DATASET which are gathered into
groups called GROUP. Each GROUP or DATASET has a name; it is the name of
the DATASET that determines the representation of a discrete element. The tree
representing the organisation of the data looks like Figure 1. Access to the first
DATASET is via path/scene/pas01/. The data are not only organised in the form
of a tree in the files, but also in the memory. OSG also organises the various ele-
ments of a 3D scene in the form of a tree and even more in the form of a graph.
GIDE re-uses the mechanisms of OSG for this part; the discrete elements of GIDE
are specialisations of the GROUP of OSG. While data are being read, the tree is
built up of the scene for each step in the simulation, Figure 2.

GIDE : Graphic Interface for Discrete Element Code 5

Fig. 2. Representation in the memory

Second version of the data

The second phase in the development of the GIDE project was to integrate the
recording of data directly in the format HDF5 into the simulator application such
as MULTICORPS. The constraints were as follows:

• Ability to consult the data from the simulator without going through the
GIDE graphic interface,

• Enable the selection of only a part of the variables from the set of time
steps, which the first version of the file format did not allow,

• Not cause any increase in the current processing time of simulator appli-
cations, and possibly improve this.

The first point is resolved natively by the choice of HDF5 format, since the
files saved in this format can be consulted with ancillary tools such as “hdfview”,
which even allow the exporting of a selection of data.

The second point made us think about an alternative in the representation of
data in the HDF5 file, and the solution adopted is a matrix:

Step 1 Step 2 ... Step M

Var 1

Var 2

...

Vat N

Fig. 3 Representation matrix

6 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

With the possibilities afforded by the DATASET of the HDF files, there are
then two solutions possible:

• Build the matrix initially with the desired size, from the start of the pro-
gram, and update it at each time step (Figure 4),

Fig. 4. Internal representation 1

• Use a redimensionable matrix of initially empty size, and expand it at
each time step, with the size of a vector of dimension [1: N] (Figure 5).

Fig. 5. Internal representation 2

For a solution to the third point a series of tests on the various solutions had to
be devised, and the best solution selected. The possible solutions are as follows:

• Write the data in text form, using standard recording primitive (current
solution),

• Write the data in raw binary form, using the standard recording primi-
tives (reference solution),

• Use the HDF5 format of the first version of the GIDE,
• Use an initialised matrix at maximum size,
• Use a matrix of empty size, increasing it by one vector at each time step.

Step 1 Step 2 ... Step M

Var 1 XX 1 0 0 0

Var 2 YY 1 0 0 0

... ... 0 0 0

Var N ZZ 1 0 0 0

Step 1 Step 2 ... Step M

Var 1 XX 1 XX 2 0 0

Var 2 YY 1 YY 2 0 0

...

Var N ZZ 1 ZZ 2 0 0

Step 1

Var 1 XX 1

Var 2 YY 1

... ...

Var N ZZ 1

Step 1 Step 2

Var 1 XX 1 XX 2

Var 2 YY 1 YY 2

...

Var N ZZ 1 ZZ 2

GIDE : Graphic Interface for Discrete Element Code 7

Each of these solutions was tested with the recording of 4096 variables of the
« long int » type (32 bits), over 4096 time units. These tests were carried out with
the “time” command under Linux, and the result is given in the table of figure 6.

A B C D E

real 0m4.596s 0m0.351s 0m0.974s 11m36.040s 0m0.557s

user 0m4.023s 0m0.001s 0m0.485s 0m9.820s 0m0.227s

sys 0m0.417s 0m0.292s 0m0.411s 7m1.452s 0m0.292s

Fig. 6. Results of the tests

The good results from solution B are due to the possibility in binary mode of
recording a vector in a single operation, stating the memory address and the length
of this vector. However, this solution does not satisfy the prerequisites overall.

Aside from this point, it clearly appears that solution “E” gives the best results,
and this is therefore the solution selected and integrated in the GIDE. Moreover it
offers the advantage of satisfying our three initial constraints.

 2.2 3D motor

The choice of 3D library is crucial. Though this interface is considered as a
navigation tool in an ocean of data, the first contact with the user is nevertheless
visual and this is his first expectation: to display the results of the simulation.
There was no question of making an nth 3D library, but rather of choosing the
most appropriate one from existing ones. Four constraints were set:

First constraint: Targeting the material and operating system to
the users.

Most work stations are individual laptops; these are not supercomputers or
CAD stations and the post-processing of results is for the moment a poorly fur-
nished second order activity. The use of the API 3D standards Direc3D or OpenGl
is therefore strongly indicated! They allow currently available graphic cards to be
driven and use to be made of their internal calculator thereby leaving the main
processor free.

For the operating system, we decided on portability over the three commonly
used OS: Linux, Windows, MacOS. This constraint eliminates the API OpenGl
which is for the moment only supported by Windows. GIDE therefore uses the
API OpenGl to drive the graphic cards.

8 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

Second constraint: Displaying a large number of elements.

This constraint turns out to be difficult to respect. It is in contradiction with the
first. Without making use of a dedicated display machine a large number of bodies
cannot be displayed. The threshold of 10 000 is often the limit beyond which ma-
nipulation of the display becomes jerky and even blocks for small configurations.
It is in the organisation of the bodies that we hope to overcome this constraint. To
do this we use graphs of scenes, techniques developed initially for an IRIS project
[9] and then taken up by one of its authors in an OSG project involving more gen-
eral use [10].

The data from the discrete element calculation code are particularly well suited
to to the construction of graphs of scenes since the latter are made up of vector el-
ements: circles, rectangles, spheres, cylinders, polyhedra etc., and it is these same
basic elements that are used in simulations of the MED type.

Fig. 7. Cube in 3D (40 000 bodies)

GIDE : Graphic Interface for Discrete Element Code 9

One of the major strengths of this approach lies in the elimination of calcula-
tions for masked bodies and other elements of the scene, called culling [11], and it
is this strength that is particularly interesting in our case. From experience, MED
simulations have bodies organised in heaps, which means that most of the bodies
need not be represented as they are masked by those on the surface. For example,

if we take a cube of 50 bodies along aside, the simulation will count 503 =
125 000 bodies for only 3 visible faces on a maximum of 2 rows, i.e. 50x50x2 =
15 000 bodies, which is the limit of manipulability on a laptop.

Third constraint: Select the bodies.

The currently available offer of applications for displaying MEF is very rich,
unlike that for MED which is very poor.

What is the difference between the two which justifies such a disparity?

There is first of all the recency of MED which has only been used for a few
years, but also the unsuitability of methods for representing discrete finite ele-
ments. It is for example impossible to select several 3D bodies graphically since
the notion of group of nodes forming a body is in contradiction with the spirit of
meshes used in MEF.

Representation in the form of vector elements is also a good response to this
constraint! This reinforces the choice of a data structure in the form of a graph as
in AutoCAD, Adobe Illustrator, Acrobat 3D etc.

In conclusion to this section, we stress the fact that GIDE is closer to to a vec-
tor image application than bitmap streaming. This explains why we will not fur-
ther refer to remote display solutions [12] suitable for representing a very number
of data, which only partially meet our requirements.

 2.3 The user interface / Documentation

The choice of library to use for user interface management: menu, dialog box,
window management, mouse etc. must respect the above constraints which can be
summarised as: Portability and Compatibility.

The choice of OSG library and the portability of the various OS (cross-plat-
form) limit the possibilities.

OSG interfaces well with the libraries or toolkits: GLUT, FLTK, QT, GTK
and WxWidgets and also with FOX and MCF which are not themselves cross-
platform. Among these 5 only those richest in functions are selected, QT, GTK
and WxWidgets.

10 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

At this stage all 3 are suitable, but preference is for WxWidgets with its better
integration with the host “windows manager”, and the look and feel of the native
system are retained

To summarise, the GIDE architecture is represented by the following diagram
(Figure 8):

Fig. 8. GIDE Architecture

Documentation

GIDE uses a project tracking tool “Trac”, visible at the following address:
http://iged.insset.u-picardie.fr/. Trac is a complete open source project manage-
ment by internet system, developed in Python. Trac includes: a Wiki, Route card
management, History, Bug report, Subversion explorer. The Web display of Trac
works through an engine in the ClearSilver template.

 3 Characteristic of the application

In the previous chapter, we saw that GIDE is a vector type application allow-
ing the selection of simulation elements as unitary entities. This characteristic is
present in design applications such as computer aided design or drawing.

To make things clear, take two flagship applications from Adobe: Illustrator
and Photoshop. The former, vectorial, is used to create illustrations, the patter,
raster, to retouch images. Vector scan is used for creation and raster scan for dis-
play.

The scientific data visualisation application Paraview produces 3D without no-
tions of vectors. So why do we proceed as we do? Why process the image as a set
of vectors when there is no question of modifying the simulation – we have not
the right to change the data!

WxWidgets

OpenSceneGraph

OpenGl HDF

C++

http://iged.insset.u-picardie.fr/

GIDE : Graphic Interface for Discrete Element Code 11

The idea is actually quite different here; the aim is not to allow modification of
the image but to allow the bodies to be tracked in time, by tracing them or, for ex-
ample, by numbering them within a particular zone.

 3.1 Tracer

In GIDE a tracer is a visual marker applicable to a body. It enables one or
more bodies to be followed throughout the simulation. To apply a marker a zone
of space is selected. All bodies within this zone will be marked (Figure 9).

Fig. 9. Figure showing marking of an element

The user has several tools at his disposal, to delimit a zone of space: { the
point, the line, the plane, the cubic volume }. Each of these tools is directly ma-
nipulable with the aid of the mouse. Marking is then done by intersection of the
zone with the set of bodies; all the bodies having an intersection, even partial, with
the defined zone will be marked.

The following example illustrates the marking of a layer in a silo, and its fol-
low-up during the flowing (Figure 10, 11, 12 and 13).

12 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

Fig. 10. Emptying of a silo

Fig. 11. Marking bodies by intersection of volume

Fig. 12. Detail of marking of bodies

GIDE : Graphic Interface for Discrete Element Code 13

Fig. 13. Emptying of silo with marking of bodies

 3.2 Sensor

A sensor is defined as an active element. With it, data can be extracted and
calculations performed on them. This part is currently limited to applying a calcu-
lation formula to each of the bodies encountered by the sensor and to trace the re-
sult.

14 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

Fig. 14. Curve

Developments are in hand to script the sensors. A sensor will be able to exe-
cute a script (python), and the latter will be able to access the body via an API and
to produce outputs (Figure 14).

 4 The representation

The display of mechanical phenomena is the most important part. GIDE in-
cludes the main possibilities of 3D software: rotations, displacements etc. We
have, however, added the capability of following a body in time and tracing the
associated curves: we can thus at any moment display the information on this
body. The interface currently allows:

• 3D display – of isovalues – in wire frame /hidden face mode,
• Rotation, zoom, dynamic translation with the aid of the mouse,
• The ability to cut through the structure to examine a field in non-visible

parts,
• Recording of mpeg formats for films, jpeg for images and svg for ex-

ploited data.

GIDE : Graphic Interface for Discrete Element Code 15

 4.1 Flexibility of representation

In GIDE a discrete element is an indivisible entity, it is a unitary element. It is
thus possible to select it, to manipulate it, to track it, to decorate it etc. This ap-
proach is very different from representations by meshing. It more closely matches
the granular world and enables the virtual experimental medium to be observed
and dissected, and its characteristics extracted for comparison with theory.

The drawing of an element in GIDE is done via plugins, affording a represen-
tation library adapted to each phenomenon under study. By default the name
DATASET is the name of the plugins giving, for example, the possibility of
changing the representation during display. Some simulations are done in 2D or
the body is considered mechanically as a cylinder when it is actually comprised of
spherical elements; in this case, the user needs to change the representation ac-
cording to the desired approach.

The change in representation is done according to the available plugins. The
following figures illustrate the example of the spherical representation becoming
cylindrical (Figure 15).

Fig. 15. Example of change of representation

 4.2 Representation of physical data.

Apart from displaying the position of a body, a researcher often studies other
physical phenomena: temperature, speed, electric potential etc. He should there-
fore be able to display these data. The notion of decorators has been implemented
in GIDE; it is based on Design Pattern. It allows the graph representing the scene
to be modified by adding nodes. The modifications are cumulable with each other.
The representation of forces can for example be activated with that of tempera-
tures (Figure 16).

16 H. Trannois, J. Fortin, C. Drocourt and F. Dubois

Fig. 16. Speed vector

 5 Conclusion

The language C++ was chosen for the development. With this language the
OpenGL graphic card capacities can be fully exploited, which is necessary for the
processing of 3D scenes rich in bodies. Moreover, as libraries such as OSG are
also written in C++, we have been able to exploit them and use them to the full via
the inheritance. The data organisation tree in the HDF file has enabled a cache to
be implemented; this is managed with the aid of a thread whose parametrisable
number has up to now enabled smooth animations.

GIDE has a threadsafe cache and OSG is also threadsafe. The graphic inter-
face has bee developed with the aid of the WxWidget toolkit portable on all the
OS. This is a display tool for better exploitation of data from a Discrete Element
code. It provides a representation that supports the researcher’s discourse. Finally,
respecting the design patterns during development should allow other developers a
relatively rapid learning curve. The presentation of GIDE will be through various
digital applications from the code ED MULTICOR developed in the Laboratoire
des Technologies Innovantes and the code LMGC90 developed in the LMGC of
Montpellier.

Acknowledgements: we thank Frédéric Dubois of the LMGC (UMR 5508) for
the numerous discussions and proposals for the development of GIDE.

GIDE : Graphic Interface for Discrete Element Code 17

 6 References

[1] Zienkiewicz, OC., the finite element method, 3rd edition, McGraw-Hill, 1977.
[2] B. Cambou, M. Jean, Micromécanique des matériaux granulaires, Hermès science,

Paris, 2001.
[3] J. Duran, Sables, poudres et grains. Introduction à la physique des milieux granulaires,

Eyrolles sciences, 1997.
[4] F. Dubois, M. Jean, Lmgc90 une plateforme de développement dédiée à la modèlisa-

tion de problèmes d’intéraction. 6 ème colloque national en calcul des structures, page
111–page 118, 2003

[5] J. Fortin, O. Millet, G. de Saxcé, Numerical simulation of granular materials by an im-
proved discrete element method Int. J. Numer. Meth. Engng, 62, page 639 – page 663,
2005

[6] Hierarchical Data Format (HDF) http://www.hdfgroup.org
[7] 3D graphics toolkit http://www.openscenegraph.org/projects/osg
[8] CrossPlatform GUI Library http://www.wxwidgets.org/
[9] IRIS performer: a high performance multiprocessing toolkit for real-time 3D graphics,

John Rohlf, James Helman, July 1994, SIGGRAPH '94: Proceedings of the 21st annual
conference on Computer graphics and interactive techniques

[10] OSG http://www.openscenegraph.org
[11] Computers & Graphics, Volume 28, Issue 1, February 2004, Pages 87-92, Occlusion

Cullingnext term in OpenSG PLUS, Dirk Staneker Dirk Bartzb and Wolfgang Straßera
[12] Rapport de Recherche, http://www.univ-orleans.fr/lifo, La visualisation distante,

Sébastien Limet, Souley Madougou, Emmanuel Melin et Sophie Robert, Université
d'Orléans LIFO, Rapport N° 2006-12, 20/12/2006, http:// www.univ-
orleans.fr/lifo/prodsci/rapports/RR/RR2006/RR-2006-12.pdf.

http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2006/RR-2006-12.pdf
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2006/RR-2006-12.pdf
http://www.univ-orleans.fr/lifo/prodsci/rapports/RR/RR2006/RR-2006-12.pdf
http://www.openscenegraph.org/

