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Checking Deadlock-Freedom of
Parametric Component-Based Systems

Marius Bozga, Radu Iosif, Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Grenoble France

Abstract

We propose an automated method for computing inductive invariants used to proving
deadlock freedom of parametric component-based systems. The method generalizes the
approach for computing structural trap invariants from bounded to parametric systems
with general architectures. It symbolically extracts trap invariants from interaction for-
mulae defining the system architecture. The paper presents the theoretical foundations
of the method and proves its soundness. It also reports on a preliminary experimental
evaluation on several textbook examples.
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1. Introduction

Modern computing systems exhibit dynamic and reconfigurable behavior. To tackle
the complexity of such systems, engineers extensively use architectures that enforce,
by construction, essential properties, such as fault tolerance or mutual exclusion. Ar-
chitectures can be viewed as parametric operators that take as arguments instances of
components of given types and enforce a characteristic property. For instance, client-
server architectures enforce atomicity and resilience of transactions, for any numbers of
clients and servers. Similarly, token-ring architectures enforce mutual exclusion between
any number of components in the ring.

Parametric verification is an extremely relevant and challenging problem in systems
engineering. In contrast to the verification of bounded systems, consisting of a known set
of components, there exist no general methods and tools succesfully applied to parametric
systems. Verification problems for very simple parametric systems, even with finite-state
components, are typically intractable [1, 2]. Most work in this area puts emphasis on
limitations determined mainly by three criteria (1) the topology of the architecture,
(2) the coordination primitives, and (3) the properties to be verified.

Email addresses: Marius.Bozga@univ-grenoble-alpes.fr (Marius Bozga),
Radu.Iosif@univ-grenoble-alpes.fr (Radu Iosif), Joseph.Sifakis@univ-grenoble-alpes.fr (Joseph
Sifakis)

1Institute of Engineering Univ. Grenoble Alpes

Preprint submitted to Journal of Logical and Algebraic Methods in Programming December 14, 2020



Seminal works in parameterized verification consider rendez-vous communication,
with participants placed in a ring [3, 4] or a clique [1] of arbitrary size. Recently, classes of
graphs (with bounded tree- and clique-width) definable in monadic second order logic and
point-to-point rendez-vous communication have been considered [5]. Most approaches
to define decidable problems focus on manually proving a cut-off bound c ≥ 2 such
that correctness for at most c processes implies correctness for any number of processes
[3, 4, 6, 7, 8]. Other methods identify systems with well-structured transition relations
[1, 9, 10]. An exhaustive chart of decidability results for verification of parameterized
systems is drawn in [2]. When decidability is not of concern, over-approximation and
semi-algorithmic techniques such as regular model checking [11, 12], SMT-based bounded
model checking [13, 14], abstraction [15, 16] and automata learning [17] can be used to
deal with more general classes of systems.

The efficiency of a verification method crucially relies on its ability to synthesize an
inductive safety invariant, i.e., an infinite set of configurations that contains the initial
configurations, is closed under the transition relation, and excludes the error configura-
tions. In general, automatically synthesizing invariants requires computationally expen-
sive fixpoint iterations [18]. In the particular case of parameterized systems, invariants
can be either global, relating the local states of all processes [19], or modular, relating the
local states of a bounded number of processes, whose identities are irrelevant [20, 21].

In contrast with existing invariant synthesis methods for parameterized verification,
we synthesize parameterized invariants directly from the interaction formula of a system,
without iterating its transition relation. Such invariants depend only on the structure
(and not on the operational semantics) of an infinite family of Petri Nets, one for each
instance of the system, and are thus structural invariants. Essentially, the invariants we
infer use the traps2 of the system, which are sets W of local states with the property
that, if a process is initially in a state from W , then always some process will be in a state
from W . Following [23], we call them (parameterized) trap invariants. Computing trap
invariants can be done via a syntactic transformation of the logical formula describing the
architecture of the system and the result is expressed using the quantifier-free fragment
of boolean algebra with cardinality constraints [24]. Thus invariant computation is fairly
cheap and the verification problem (proving the emptiness of the intersection between
the invariant and the set of error states) is reduced to the unsatisfiability of a cardinality
constraint. In practice, this check can be carried out quite efficiently by existing tools,
such as CVC4 [25].

We briefly describe our approach below. A system is the composition of a finite num-
ber of component instances of given types, using interactions that follow the Behaviour-
Interaction-Priorities (BIP) paradigm [26]. To simplify the technical part, we assume
that components and interactions are finite abstractions of real-life systems. An instance
is a finite-state transition system whose edges are labeled by ports. The instances com-
municate synchronously via a number of simultaneous interactions involving a set of ports
each, such that no data is exchanged during interactions. If the number of instances in
the system is fixed and known in advance, we say that the system is bounded, otherwise
it is parametric.

For instance, the bounded system in Figure 1a consist of component types Semaphore,
with one instance, and Task, with two instances. A semaphore goes from the free state

2Called in this way by analogy with the notion of traps for Petri Nets [22].
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Figure 1: Mutual Exclusion Example

r to the taken state s by an acquire action a, and viceversa from s to r by a release
action e. A task goes from waiting w to busy u by action b and viceversa, by action
f . For the bounded system in Figure 1a, the interactions are {a, b1}, {a, b2}, {e, f1} and
{e, f2}, depicted with dashed lines. Since the number of instances is known in advance,
we can view an interaction as a minimal satisfying valuation of the boolean formula
Γ = (a ∧ b1) ∨ (a ∧ b2) ∨ (e ∧ f1) ∨ (e ∧ f2), where the port symbols are propositional
variables. Because every instance has finitely many states, we can write a boolean formula
∆ = [¬r∨¬(w1∨w2)]∧[¬s∨¬(u1∨u2)], this time over propositional state variables, which
defines the configurations in which all interactions are disabled (deadlock). Proving that
no deadlock configuration is reachable from the initial configuration r∧w1∧w2, requires
finding an over-approximation (invariant) I of the reachable configurations, such that
the conjunction I ∧∆ is not satisfiable.

The basic idea of our method, supported by the D-Finder deadlock detection tool
[23] for bounded component-based systems, is to compute an invariant straight from
the interaction formula, without going through costly abstract fixpoint iterations. The
invariants we are looking for are in fact solutions of a system of boolean constraints
Θ(Γ), of size linear in the size of Γ (written in DNF). These constraints capture the
trap condition, namely that for each interaction in the system, if the pre-state of some
port involved in the interaction is in the invariant, then the post-state of some (not
necessarily the same) port of the interaction will be in the invariant. In our example,
Θ(Γ) =

∧
i=1,2(r ∨ wi) ↔ (s ∨ ui). Finding the (minimal) solutions of this constraint

can be done, as currently implemented in D-Finder, by exhaustive model enumeration
using a SAT solver. Here we propose a more efficient solution, which consists in writing
Θ(Γ) in DNF and remove the negative literals from each minterm. In our case, this gives
the invariant I = (r ∨ s) ∧

∧
i=1,2(wi ∨ ui) ∧ (r ∨ u1 ∨ u2) ∧ (s ∨ w1 ∨ w2) and I ∧∆ is

proved unsatisfiable using a SAT solver.
The main contribution of this paper is the generalization of this invariant generation

method to the parametric case. To understand the problem, consider the parametric
system from Figure 1, in which a Semaphore interacts with n Tasks, where n > 0
is not known in advance. The interactions are described by a fragment of first order
logic, in which the ports are either propositional or monadic predicate symbols, in our
case Γ = [∃i. (a ∧ b(i))] ∨ [∃i. (e ∧ f(i))]. This logic, called Monadic Interaction Logic
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(MIL), is also used to express the constraints Θ(Γ) and compute their solutions. In our
case, we obtain I = (r ∨ s) ∧ [∀i . w(i) ∨ u(i)] ∧ [r ∨ ∃i . u(i)] ∧ [s ∨ ∃i . w(i)]. As
in the bounded case, we can give a parametric description of deadlock configurations
∆ = [¬r ∨ ¬∃i . w(i)] ∧ [¬s ∨ ¬∃i . u(i)] and prove that I ∧∆ is unsatisfiable, using the
decidability of MIL, based on an early small model property result due to Löwenheim
[27]. In practice, we avoid the model enumeration suggested by this result and check the
satisfiability of such queries using a decidable theory of sets with cardinality constraints
[24], available in the CVC4 SMT solver [28].

The use of traps as invariants of the system, useful in proving safety properties,
such as absence of deadlocks or mutual exclusion violations, is tightly connected to a
semantic model that views a concurrent component-based system as a 1-safe Petri net,
in which each place represents a local control state of a component and the presence of
(at most) one token in the place indicates that the component is in that control state.
In contrats, existing approaches [1] consider general Petri nets, or equivalently vector
addition systems, in which the tokens in a place represent the components that are in
that control state. We consider 1-safe Petri nets of unbounded (parametric) size, in order
to define the trap invariant by a first-order logic constraint, as a natural generalization
of the propositional (boolean) constraint used to define traps in a bounded-size 1-safe
Petri net [22].

The paper is structured as follows: §2 presents existing results for checking deadlock-
freedom of bounded systems using invariants, §3 formalizes the approach for computing
invariants using MIL, §4 introduces cardinality constraints for invariant generation, §5
presents the integration of the above results within a verification technique for parametric
systems and §6 reports on experiments carried out with a prototype tool. Finally, §7
presents concluding remarks and future work directions.

A short version of the paper has been published in [29]. This extended version includes
the proofs for all technical results related to cardinality constraints, some of them being
non-trivial to obtain and potentially useful for applications beyond the scope of this
paper.

2. Bounded Component-based Systems

In this section, we recall the definition of bounded component-based systems, their
execution semantics based on 1-safe Petri nets and the trap invariant synthesis method
in this context [23]. The next section (3) is concerned with the generalization of these
results to the parametric case, in which the number of components is finite but unknown.

A component is a tuple C = 〈P,S, s0,∆〉, where P = {p, q, r, . . .} is a finite set of
ports, S is a finite set of states, s0 ∈ S is an initial state and ∆ ⊆ S × P × S is a set of
transitions written s

p−→ s′. To simplify the technical details, we assume there are no two
different transitions with the same port, i.e. if s1

p1−→ s′1, s2
p2−→ s′2 ∈ ∆ and s1 6= s2 or

s′1 6= s′2 then p1 6= p2. In general, this restriction can be lifted, at the cost of cluttering
the presentation.

A bounded system S = 〈C1, . . . , Cn,Γ〉 consists of a fixed number (n) of components
Ck = 〈Pk,Sk, s0k,∆k〉 and an interaction formula Γ, describing the allowed interactions.
Since the number of components is known in advance, we write interaction formulae

using boolean logic over the set of propositional variables BVar
def
=
⋃n
k=1(Pk ∪ Sk).
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A boolean interaction formula is either a ∈ BVar, f1∧f2 or ¬f1, where fi are formulae,

for i = 1, 2, respectively. We define the usual shorthands f1 ∨ f2
def
= ¬(¬f1 ∧ ¬f2),

f1 → f2
def
= ¬f1 ∨ f2, f1 ↔ f2

def
= (f1 → f2) ∧ (f2 → f1). A literal is either a variable

or its negation and a minterm is a conjunction of literals. A formula is in disjunctive
normal form (DNF) if it is written as

∨n
i=1

∧mi
j=1 `ij , where `ij is a literal. A formula

is positive if and only if each variable occurs under an even number of negations, or,
equivalently, its DNF forms contains no negative literals. We assume interaction formulae
of bounded systems to be always positive. As will be explained next, this restriction loses
no generality.

A boolean valuation β : BVar → {>,⊥} maps each propositional variable to either
true (>) or false (⊥). We write β |= f if and only if f = >, when replacing each boolean
variable a with β(a) in f . We say that β is a model of f in this case and write f ≡ g for

[[f ]] = [[g]], where [[f ]]
def
= {β | β |= f}. Given two valuations β1 and β2 we write β1 ⊆ β2 if

and only if β1(a) = > implies β2(a) = >, for each variable a ∈ BVar. We write f ≡µ g
for [[f ]]

µ
= [[g]]

µ
, where [[f ]]

µ def
= {β ∈ [[f ]] | for all β′ : β′ ⊆ β and β′ 6= β only if β′ 6∈ [[f ]]}

is the set of minimal models of f .
In the rest of this section, we fix a bounded system S = 〈C1, . . . , Cn,Γ〉, where Ck =

〈Pk,Sk, s0k,∆k〉, for all k ∈ [1, n] and Γ is a positive boolean formula, over propositional
variables denoting ports. The semantics of an interaction formula is given by the set of
its minimal models. For this reason, it is sufficient to consider positive formulæ only, for
the description of the interactions in a bounded component-based system.

2.1. Execution Semantics of Bounded Systems
We use 1-safe marked Petri Nets to define the set of executions of a bounded system.

A Petri Net (PN) is a tuple N = 〈S, T,E〉, where S is a set of places, T is a set of
transitions, S ∩ T = ∅, and E ⊆ S × T ∪ T × S is a set of edges. The elements of

S ∪ T are called nodes. Given nodes m,n ∈ S ∪ T , we write E(m,n)
def
= 1 if (m,n) ∈ E

and E(m,n)
def
= 0, otherwise. For a node n, let •n

def
= {m ∈ S ∪ T | E(m,n) = 1},

n•
def
= {m ∈ S ∪ T | E(n,m) = 1} and lift these definitions to sets of nodes, as usual.
A marking for a PN N = 〈S, T,E〉 is a function m : S → N. A transition t is enabled

in m if and only if m(s) > 0 for each place s ∈ •t. The transition relation of N is defined

as follows. For all markings m, m′ and all transitions t, we write m
t−→ m′ whenever t is

enabled in m and m′(s) = m(s) − E(s, t) + E(t, s), for all s ∈ S. Given two markings
m and m′, a finite sequence of transitions σ = t1, . . . , tn is a firing sequence, written
m

σ−→ m′ if and only if either (i) n = 0 and m = m′, or (ii) n ≥ 1 and there exist

markings m1, . . . ,mn−1 such that m
t1−→ m1 . . .mn−1

tn−→ m′.
A marked Petri net is a pair N = (N,m0), where m0 is the initial marking of

N = 〈S, T,E〉. A marking m is reachable in N if and only if there exists a firing
sequence σ such that m0

σ−→ m. We denote by R(N ) the set of reachable markings of N .
A set of markingsM is an invariant of N = (N,m0) if and only if m0 ∈M and for each

m
t−→ m′ such that m ∈ M, we have m′ ∈ M. A marked PN N is 1-safe if m(s) ≤ 1,

for each s ∈ S and each m ∈ R(N ). In the following, we consider only 1-safe marked
PNs. In this case, any (necessarily finite) set of reachable markings can be defined by a
boolean formula, which identifies markings with the induced boolean valuations.

A marking m is a deadlock if for no marking m′ and no transition t, do we have
m

t−→ m′. Let D(N ) be the set of deadlocks of N . A marked PN N is deadlock-free if and
5
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Figure 2: Petri Net for Mutual Exclusion Example

only if R(N )∩D(N ) = ∅. A sufficient condition for deadlock freedom isM∩D(N ) = ∅,
for some invariant M of N .

The set of executions of the bounded system S is given by the 1-safe marked PN
NS = (N,m0), where N = (

⋃n
i=1 S

i, T, E), m0(s) = 1 if and only if s ∈ {s0i | i ∈ [1, n]}
and T , E are as follows. For each minimal model β ∈ [[Γ]]

µ
, we have a transition tβ ∈ T

and edges (si, tβ), (tβ , s
′
i) ∈ E, for all i ∈ [1, n] such that si

pi−→ s′i ∈ ∆i and β(pi) = >.
Moreover, nothing else is in T or E.

For example, the marked PN from Figure 2 describes the set of executions of the
bounded system from Figure 1a. Note that each transition of the PN corresponds to a
minimal model of the interaction formula Γ = (a ∧ b1) ∨ (a ∧ b2) ∨ (e ∧ f1) ∨ (e ∧ f2), or
equivalently, to the set of (positive) literals of some minterm in the DNF of Γ.

2.2. Proving Deadlock Freedom of Bounded Systems

A bounded system S is deadlock-free if and only if its corresponding marked PN
NS is deadlock-free. In the following, we prove deadlock-freedom of a bounded system,
by defining a class of invariants that are particularly useful for excluding unreachable
deadlock markings.

Given a Petri Net N = (S, T,E), a set of places W ⊆ S is called a trap if and only if
W • ⊆ •W . A trap W of N is a marked trap of the marked PN N = (N,m0) if and only
if m0(s) = 1 for some s ∈W . A minimal marked trap is a marked trap such that none of
its strict subsets is a marked trap. A marked trap defines an invariant of the PN because
some place in the trap will always be marked, no matter which transition is fired. The
trap invariant of N is the least set of markings that mark each trap of N . Clearly, the
trap invariant of N subsumes the set of reachable markings of N , because the latter is
the least invariant of N and invariants are closed under intersection3.

Lemma 1. Given a bounded system S, the boolean formula:

Trap(NS)
def
=
∧
{
∨k
i=1 si | {s1, . . . , sk} is a marked trap of NS}

defines an invariant of NS .

3The intersection of two or more invariants is again an invariant.
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Proof. Let NS = (N,m0), where N = (S, T,E). First, we prove that m0 |= Trap(NS).
Let S = {s1, . . . , sk} be a marked trap of NS . Since S is marked, m0(si) = 1 for

some i ∈ [1, k], thus m0 |=
∨k
i=1 si. Because the choice of S is arbitrary, we have

m0 |= Trap(NS). Second, let m |= Trap(NS) and t ∈ T such that m
t−→ m′. We prove

that m′ |= Trap(NS). Let S = {s1, . . . , sk} be a marked trap of NS . Then m |= si for
some i ∈ [1, k] and, because S is a trap, m′ |= sj for some j ∈ [1, k]. Since the choice of
S was arbitrary, we obtain m′ |= Trap(NS). �

Next, we describe a method for computing trap invariants that does not explicitly
enumerate all the marked traps of a marked PN. First, we consider a trap constraint
Θ(Γ), derived from the interaction formula Γ, in linear time. By slight abuse of notation,
we define, for a given port p ∈ Pi of the component Ci, for some i ∈ [1, n], the pre- and

post-state of p in Ci as •p
def
= s and p•

def
= s′, where s

p−→ s′ is the unique rule4 involving p

in ∆i, and •p = p•
def
= ⊥ if there is no such rule. Assuming that the interaction formula

is written in DNF as Γ =
∨N
k=1

∧Mk

`=1 pk`, we define the trap constraint:

Θ(Γ)
def
=
∧N
k=1

(∨Mk

`=1
•pk`

)
→
(∨Mk

`=1 pk`
•
)

Here N is the number of clauses of the interaction formula, or equivalently, the number
of interactions in the bounded component-based system, and Mk is the number of ports

in the k-th interaction. We also consider the formula Init(S)
def
=
∨n
k=1 s0

k defining a
non-empty intersection with initial marking of the system, and prove the following:

Lemma 2. Let S be a bounded system with interaction formula Γ and β be a boolean
valuation. Then β ∈ [[Θ(Γ) ∧ Init(S)]] iff {s | β(s) = >} is a marked trap of NS .
Moreover, β ∈ [[Θ(Γ) ∧ Init(S)]]

µ
iff {s | β(s) = >} is a minimal marked trap of NS .

Proof. Let Ci = 〈Pi,Si, s0i,∆i〉, for all i ∈ [1, n], NS = (N,m0) and N = 〈Q,T,E〉,
where Q =

⋃n
i=1 S

i and T = {tβ | β ∈ [[Γ]]
µ}. Given a trap S ⊆ Q of N , we have the

following equivalences:

S• ⊆ •S ⇐⇒∧
s∈S [s ∈ S → {t ∈ T | (s, t) ∈ E} ⊆ {t ∈ T | (t, s) ∈ E}] ⇐⇒∧
s∈S [s ∈ S → (

∧
t∈T s ∈ •t→

∨
s′∈S s

′ ∈ S ∧ s′ ∈ t•)] ⇐⇒∧
s∈S

∧
t∈T (s ∈ S ∧ s ∈ •t →

∨
s′∈S s

′ ∈ S ∧ s′ ∈ t•) ⇐⇒∧
t∈T (

∨
s ∈ •t s ∈ S →

∨
s′∈t• s

′ ∈ S)

Assume that [s ∈ S] is a propositional variable. Then for each transition tβ ∈ T , we
have: ∨

s ∈ •tβ [s ∈ S] ⇐⇒
∨
β(p)=>

•p∨
s ∈ tβ

• [s ∈ S] ⇐⇒
∨
β(p)=> p

•

Clearly, for any valuation β ∈ [[Θ(Γ)]] of the propositional variables corresponding to
the places in Q that satisfies Θ(Γ), the set Sβ = {s | β(s) = >} is a trap of N . If,
moreover, β |=

∨n
i=1 s0

i then Sβ is a marked trap of NS . Furthermore, β is a minimal
model of Θ(Γ) ∧

∧n
i=1 s0

i iff for each valuation β′ ⊆ β, such that β′ 6= β, we have
β′ 6|= Θ(Γ) ∧

∨n
i=1 s0

i. But then, no strict subset of {s | β(s) = >} is a marked trap of
NS , thus {s | β(s) = >} is a minimal marked trap of NS . �

4We have assumed that each port is associated a unique transition rule.
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Because Θ(Γ) and Init(S) are boolean formulae, it is, in principle, possible to compute
the trap invariant Trap(NS) by enumerating the (minimal) models of Θ(Γ)∧ Init(S) and
applying the definition from Lemma 1. However, model enumeration is inefficient and,
moreover, does not admit generalization for the parametric case, in which the size of the
system is unknown. For these reasons, we prefer a computation of the trap invariant,
based on two symbolic transformations of boolean formulae, described next.

For a formula f we denote by f+ the positive formula obtained by deleting all neg-
ative literals from the DNF of f . In lack of a better term, we shall call this operation
positivation. Second, for a positive boolean formula f , we define the formula (f)

∼
recur-

sively on the structure of f , as follows: (f1 ∧ f2)
∼ def

= f1
∼ ∨ f2∼, (f1 ∨ f2)

∼ def
= f1

∼ ∧ f2∼

and a∼
def
= a, for any a ∈ BVar. Note that f∼ is equivalent to the negation of the formula

obtained from f by substituting each variable a with ¬a in f . This operation, called
dualization, applies only to positive formulae and is undefined elsewhere.

Lemma 3. Given boolean formulae f and g, we have f ≡ g only if (f+)
∼ ≡ (g+)

∼
.

Proof. If f ≡ g, the set of minterms in the DNF of f is identical to the one of g, modulo
commutativity of conjunctions. Then the set of minterms in the DNF of f+ equals the
one of g+, thus f+ ≡ g+. Second, the CNF of (f+)

∼
is the same of the CNF of (g+)

∼
,

as both are obtained directly from the DNF of f+ and g+, respectively, by interchanging
disjunctions with conjunctions. �

The following theorem gives the main result of this section, the symbolic computation
of the trap invariant of a bounded system, directly from its interaction formula.

Theorem 1. For any bounded system S, with interaction formula Γ, we have:

Trap(NS) ≡
(

[Θ(Γ) ∧ Init(S)]
+
)∼

Proof. For a boolean valuation β, we denote by µβ the complete minterm
∧
β(a)=> a∧∧

β(a)=⊥ ¬a. By Lemma 2 we obtain the equivalence:

Θ(Γ) ∧ Init(NS) ≡
∨{

µγ | {s | γ(s) = >} is a marked trap of N
}

and thus:

[Θ(Γ) ∧ Init(NS)]
+ ≡

∨{
µγ

+ | {s | γ(s) = >} is a marked trap of NS
}

≡
∨{∨k

i=1 si | {s1, . . . , sk} is a marked trap of NS
}

≡ (Trap(NS))
∼

The equivalence of the statement is obtained by applying Lemma 3. �

Just as any invariants, trap invariants can be used to prove absence of deadlocks in
a bounded system. Assuming, as before, that the interaction formula is given in DNF as

Γ =
∨N
k=1

∧Mk

`=1 pk`, we define the set of deadlock markings of NS by the formula ∆(Γ)
def
=∧N

k=1

∨Mk

`=1 ¬(•pk`). This is the set of configurations in which all interactions are disabled.
With this definition, proving deadlock freedom amounts to proving unsatisfiability of a
boolean formula.
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Corollary 1. A bounded system S with interaction formula Γ is deadlock-free if the

boolean formula
(

[Θ(Γ) ∧ Init(S)]
+
)∼
∧∆(Γ) is unsatisfiable.

Proof. LetNS = (N,m0), where N = (S, T,E) and define the set of deadlock markings:

Dead(NS)
def
=
∧
t∈T

∨
s ∈ •t

¬s

Suppose, by contradiction, that S is not deadlock-free, thus R(NS) ∧ Dead(NS) has a
satisfying valuation β. Because Trap(NS) defines an invariant of NS and R(NS) defines
its least invariant, we have R(NS) → Trap(NS) thus β |= Trap(NS) ∧ Dead(NS). By

Theorem 1, we have Trap(NS)→
(

[Θ(Γ) ∧ Init(NS)]
+
)∼

and, from the definition of NS ,

one also obtains that Dead(NS)→ ∆(Γ) leading to β |=
(

[Θ(Γ) ∧ Init(NS)]
+
)∼
∧∆(Γ),

which contradicts
(

[Θ(Γ) ∧ Init(NS)]
+
)∼
∧∆(Γ)→ ⊥. �

3. Parametric Component-based Systems

From now on we shall focus on parametric systems, consisting of a fixed set of com-
ponent types C1, . . . , Cn, such that the number of instances of each type is not known in
advance. These numbers are given by a function M : [1, n]→ N, where M(k) denotes the
number of components of type Ck that are active in the system. To simplify the technical
presentation of the results, we assume that all instances of a component type are created
at once, before the system is started5. For the rest of this section, we fix a parametric
system S = 〈C1, . . . , Cn,M,Γ〉, where each component type Ck = 〈Pk,Sk, s0k,∆k〉 has the
same definition as a component in a bounded system and Γ is an interaction formula,
written in the fragment of first order logic, defined next.

3.1. Monadic Interaction Logic

For each component type Ck, where k ∈ [1, n], we assume a set of index variables Vark

and a set of predicate symbols Predk
def
= Pk ∪ Sk. We also define the sets Var

def
=
⋃n
k=1 Var

k

and Pred
def
=
⋃n
k=1 Pred

k. Moreover, we consider that Vark∩Var` = ∅ and Predk∩Pred` = ∅,
for all 1 ≤ k < ` ≤ n. For simplicity’s sake, we assume that all predicate symbols in Pred
are of arity one. For component types Ck, such that M(k) = 1 and predicate symbols
pred ∈ Predk, we shall write pred instead of pred(1), as in the interaction formula of the
system from Figure 1b. The syntax of the monadic interaction logic (MIL) is given below:

i, j ∈ Var index variables
φ := i = j | pred(i) | φ1 ∧ φ2 | ¬φ1 | ∃i . φ1

5This is not a limitation, since dynamic creation of a finite number of instances can be simulated
by considering that all instances are initially in a waiting state, which is left as result of an interaction
involving a designated “spawn” port. This is w.l.o.g., since we consider safety properties, that require
reasoning about finite executions.
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where, for each predicate atom pred(i), if pred ∈ Predk and i ∈ Var` then k = `. We use

the shorthands ∀i . φ1
def
= ¬(∃i . ¬φ1) and distinct(i1, . . . , im)

def
=
∧

1≤j<`≤m ¬ij = i`
6. A

sentence is a formula in which all variables are in the scope of a quantifier. A formula
is positive if each predicate symbol occurs under an even number of negations. The
semantics of MIL is given in terms of structures I = (U, ν, ι), where:

• U
def
= [1,maxnk=1 M(k)] is the universe of instances, over which variables range,

• ν : Var→ U is a valuation mapping variables to elements of the universe,
• ι : Pred→ 2U is an interpretation of predicates as subsets of the universe.

For a structure I = (U, ν, ι) and a formula φ, the satisfaction relation I |= φ is defined
as:

I |= ⊥ ⇔ never I |= i = j ⇔ ν(i) = ν(j)
I |= p(i) ⇔ ν(i) ∈ ι(p) I |= φ1 ∧ φ2 ⇔ I |= φ1 and I |= φ2
I |= ¬φ1 ⇔ I 6|= φ1 I |= ∃i . φ1 ⇔ (U, ν[i← m], ι) |= φ1

for some m ∈ [1,M(k)]
provided that i ∈ Vark

where ν[i ← m] is the valuation that acts as ν, except for i, which is assigned to m.
Whenever I |= φ, we say that I is a model of φ. It is known that, if a MIL formula has
a model, then it has a model with universe of cardinality at most exponential in the size
(number of symbols) of the formula [27]. This result, due to Löwenheim, is among the
first decidability results for a fragment of first order logic.

Given structures Ii = (U, νi, ιi), for i = 1, 2, we write I1 ⊆ I2 iff ι1(p) ⊆ ι2(p),
for all p ∈ Pred and I1 ⊂ I2 iff I1 ⊆ I2 and I1 6= I2. As before, we define the sets
[[φ]] = {I | I |= φ} and [[φ]]

µ
= {I ∈ [[φ]] | ∀I ′ . I ′ ⊂ I → I ′ 6∈ [[φ]]} of models and

minimal models of a MIL formula, respectively. Given formulae φ1 and φ2, we write
φ1 ≡ φ2 for [[φ1]] = [[φ2]] and φ1 ≡µ φ2 for [[φ1]]

µ
= [[φ2]]

µ
.

3.2. Execution Semantics of Parametric Systems

We consider the interaction formulae Γ of parametric systems to be finite disjunctions
of interaction formulae clauses C of the form below:

∃i1 . . . ∃i` . ϕ ∧
∧̀
j=1

pj(ij) ∧
`+m∧
j=`+1

∀ij . ψj → pj(ij) (1)

where ϕ,ψ`+1, . . . , ψ`+m are conjunctions of equalities and disequalities involving index
variables such that moreover for any distinct j1, j2 such that j1 < j2 and pj1 , pj2 ∈ Predk

it holds either (a) j1 ≤ `, j2 ≤ ` and ϕ implies ¬ij1 = ij2 or (b) j1 ≤ `, ` < j2
and ψj2 implies ¬ij1 = ij2 . Intuitively, the formulae (1) state that there are at most `
component instances that engage in a valid multiparty rendez-vous interaction on ports
p1(i1), . . . , p`(i`), together with a broadcast to the ports p`+1(i`+1), . . . , p`+m(i`+m) of the
instances that fulfill the constraints ψ`+1, . . . , ψ`+m. Due to the enforced constraints, all
these ports belong to distinct components. Observe that, if m = 0, the above formula cor-
responds to a multiparty (generalized) rendez-vous interaction ∃i1 . . . ∃i` . ϕ∧

∧`
j=1 pj(ij).

An example of peer-to-peer rendez-vous is the parametric system from Figure 1. Another
example of broadcast is given below.

6Throughout this paper, we consider that
∧

i∈I φi = > if I = ∅.
10



Example 1. Consider the parametric system obtained from an arbitrary number of
Worker components (Figure 3), where C1 = Worker , Var1 = {i, i1, i2, j} and Pred1 =
{a, b, f, u, w}. Any pair of instances can jointly execute the b (begin) action provided all
others are taking the a (await) action. Any instance can also execute alone the f (finish)
action. �

...

w(i1)

u(i1)

f(i1)

a(i1)

f(i1)

b(i1)

Worker(i1)

...

w(i2)

u(i2)

f(i2)

a(i2)

f(i2)

b(i2)

Worker(i2)

...

w(j)

u(j)

f(j)

a(j)

f(j)

b(j)

Worker(j)

b(j)

...

a(j)a(i2)a(i1)b(i1) b(i2)

Γ = [∃i1∃i2 . i1 6= i2 ∧ b(i1) ∧ b(i2) ∧ ∀j . j 6= i1 ∧ j 6= i2 → a(j)] ∨ ∃i.f(i)

Figure 3: Parametric System with Broadcast

The execution semantics of a parametric system S is the marked PN NS = (N,m0),
where N = (

⋃n
k=1 S

k×[1,M(k)], T, E), m0((s0
k, i)) = 1, for all k ∈ [1, n] and i ∈ [1,M(k)],

and the sets of transitions T and edges E are defined next. For each interaction formulae
clause C belonging to Γ, for each minimal model I = (U, ν, ι) ∈ [[C]]µ, we have a transition

tI ∈ T and the edges ((si, k), tI), (tI , (s
′
i, k)) ∈ E for all i ∈ [1, n] such that si

pi−→ s′i ∈ ∆i

and k ∈ ι(pi). Moreover, nothing else is in T or E.
As a remark, unlike in the case of bounded systems, the size of the marked PN

NS , that describes the execution semantics of a parametric system S, depends on the
maximum number of instances of each component type. The definition of the trap
invariant Trap(NS) is the same as in the bounded case, except that, in this case, the size
of the boolean formula depends on the (unbounded) number of instances in the system.
The challenge, addressed in the following, is to define trap invariants using MIL formulae
of a fixed size.

3.3. Computing Parametric Trap Invariants

To start with, we define the trap constraint Θ(Γ) of an interaction formula Γ consisting
of a finite disjunction of (1) clauses, as the finite conjunction of formulae of the form:

∀i1 . . . ∀i` .
[
ϕ ∧

(∨`
j=1

•pj(ij) ∨
∨`+m
j=`+1 ∃ij . ψj ∧ •pj(ij)

)]
→[(∨`

j=1 pj
•(ij) ∨

∨`+m
j=`+1 ∃ij . ψj ∧ pj•(ij)

)]
where, for a port p ∈ Pk of some component type Ck, •p(i) and p(i)

•
denote the unique

predicate atoms s(i) and s′(i), such that s
p−→ s′ ∈ ∆k is the (unique) transition involving

p in T k, or ⊥ if there is no such rule.
11



Example 2. The interaction formula of the parametric (rendez-vous) system in Figure
1b is

Γ = ∃i. (a ∧ b(i)) ∨ ∃i. (e ∧ f(i))

The corresponding trap constraint is obtained by applying the syntactic transformation,
separately on the two clauses, and taking their conjunction, that is:

Θ(Γ) = ∀i. [(•a ∨ •b(i))]→ [(a• ∨ b•(i))] ∧ ∀i. [(•e ∨ •f(i))]→ [(e• ∨ f•(i))]
= ∀i. [r ∨ w(i)]→ [s ∨ u(i)] ∧ ∀i. [s ∨ u(i)]→ [r ∨ w(i)]

Analogously, the interaction formula for the parametric (broadcast) system in Figure 3
is:

Γ = [∃i1∃i2 . i1 6= i2 ∧ b(i1) ∧ b(i2) ∧ ∀j . j 6= i1 ∧ j 6= i2 → a(j)] ∨ ∃i.f(i)

Notice that the first clause defines a broadcast interaction, and the second a unary (single
port) interaction. The corresponding trap constraint is again obtained by applying the
syntactic transformation separately on the two clauses, and taking their conjunction,
that is:

Θ(Γ) = ∀i1.∀i2. [i1 6= i2 ∧ (•b(i1) ∨ •b(i2) ∨ ∃j. (j 6= i1 ∧ j 6= i2 ∧ •a(j)))]→
[(b•(i1) ∨ b•(i2) ∨ ∃j. (j 6= i1 ∧ j 6= i2 ∧ a•(j)))]

∧
∀i. [•f(i)→ f•(i)]

= ∀i1.∀i2. [i1 6= i2 ∧ (w(i1) ∨ w(i2) ∨ ∃j. (j 6= i1 ∧ j 6= i2 ∧ w(j)))]→
[(u(i1) ∨ u(i2) ∨ ∃j. (j 6= i1 ∧ j 6= i2 ∧ w(j)))]

∧
∀i. [u(i)→ w(i)]

�

To prove the correctness of the above parametric trap constraint definition, we define
a translation of MIL formulae into boolean formulae of unbounded size. Given a function
M : [1, n]→ N, the unfolding of a MIL sentence φ is the boolean formula BM (φ) obtained
by replacing:

• each existential quantifier ∃i . ψ(i), for i ∈ Vark, by a finite disjunction
∨M(k)
`=1 ψ[`/i],

• each universal quantifier ∀i . ψ(i), for i ∈ Vark, by a finite conjunction
∧M(k)
`=1 ψ[`/i],

where the substitution of the constant ` ∈ M(k) for the variable i is defined recursively

as usual, except for pred(i)[`/i]
def
= (pred, `), which is a propositional variable. Further,

we relate structures to boolean valuations of unbounded sizes as follows. For a structure
I = (U, ν, ι) we define the boolean valuation βI((pred, `)) = > if and only if ` ∈ ι(pred),
for each predicate symbol pred and each integer constant `. Conversely, for each valuation
β of the propositional variables (pred, `), there exists a structure Iβ = (U, ν, ι) such that

ι(pred)
def
= {` | β((pred, `)) = >}, for each pred ∈ Pred. The following lemma relates the

semantics of MIL formulae with that of their boolean unfoldings:

Lemma 4. Given a MIL sentence φ and a function M : [1, n]→ N, the following hold:
1. for each structure I ∈ [[φ]], we have βI ∈ [[BM (φ) ]] and conversely, for each valua-

tion β ∈ [[BM (φ) ]], we have Iβ ∈ [[φ]].
2. for each structure I ∈ [[φ]]

µ
, we have βI ∈ [[BM (φ) ]]

µ
and conversely, for each

valuation β ∈ [[BM (φ) ]]
µ

, we have Iβ ∈ [[φ]]
µ

.
12



Proof. (1) By induction on the structure of φ. (2) First, it is routine to prove that, for
any two structures I1 ⊆ I2, we have βI1 ⊆ βI2 and, conversely, for any two valuations
β1 ⊆ β2, we have Iβ1

⊆ Iβ2
. Next, let I ∈ [[φ]]

µ
. By the point (1), we have βI ∈ [[BM (φ) ]].

Suppose βI 6∈ [[BM (φ) ]]
µ
, which means that there exists β′ ( βI such that β′ ∈ [[BM (φ) ]].

By the point (1), Iβ′ ∈ [[φ]] and, moreover, Iβ′ ( I, which contradicts the minimality of
I. Thus βI ∈ [[BM (φ) ]]

µ
. The other direction is symmetric. �

Considering the MIL formula Init(S)
def
=
∨n
k=1 ∃ik . s0k(ik), that defines a non-empty

intersection with the set of initial configurations of a parametric system S, the following
lemma proves the correctness of the above parametric trap constraint definition:

Lemma 5. Let S be a parametric system with interaction formula Γ and I be a structure.
Then I |= Θ(Γ) ∧ Init(S) iff {(s, k) | k ∈ ι(s)} is a marked trap of NS . Moreover,
I ∈ [[Θ(Γ) ∧ Init(S)]]

µ
iff {(s, k) | k ∈ ι(s)} is a minimal marked trap of NS .

Proof. Let Ck = 〈Pk,Sk, s0k,∆k〉 and define the bounded system:

U(S)
def
= 〈{Ck,i | k ∈ [1, n], i ∈ [1,M(k)]},BM (Γ)〉

Ck,i def
= 〈Pk × {i},Sk × {i}, s0k × {i}, {(s, i)

(p,i)−−→ (s′, i) | s p−→ s′ ∈ ∆k}〉

It is not hard to prove that NS is the same as NU(S), thus their marked traps coincide.
The following equivalences follow from Lemma 4:

I |= Θ(Γ) ⇐⇒ βI |= Θ(BM (Γ))
I |= Init(S) ⇐⇒ βI |= Init(U(S))

Moreover, {(s, k) | k ∈ ι(s)} = {(s, k) | βI((s, k)) = >} and we apply Lemma 2. �

We are currently left with the task of computing a MIL formula which defines the
trap invariant Trap(NS) of a parametric component-based system S = 〈C1, . . . , Cn,M,Γ〉.
The difficulty lies in the fact that the size of NS and thus, that of the boolean formula
Trap(NS) depends on the number M(k) of instances of each component type k ∈ [1, n].
As we aim at computing an invariant able to prove safety properties, such as deadlock
freedom, independently of how many components are present in the system, we must
define the trap invariant using a formula depending exclusively on Γ, i.e. not on M.

Observe first that Trap(NS) can be equivalently defined using only the minimal
marked traps of NS , which, by Lemma 5, are exactly the sets {(s, k) | k ∈ ι(s)}, defined
by some structure (U, ν, ι) ∈ [[Θ(Γ) ∧ Init(S)]]

µ
. Assuming that the set of structures

[[Θ(Γ) ∧ Init(S)]]
µ
, or an over-approximation of it, can be defined by a positive MIL

formula, the trap invariant is defined using a generalization of boolean dualisation to
predicate logic, defined recursively, as follows:

(i = j)
∼ def

= ¬i = j (φ1 ∨ φ2)
∼ def

= φ1
∼ ∧ φ2∼ (∃i . φ1)

∼ def
= ∀i . φ1∼

(¬i = j)
∼ def

= i = j (φ1 ∧ φ2)
∼ def

= φ1
∼ ∨ φ2∼ (∀i . φ1)

∼ def
= ∃i . φ1∼

p(i)
∼ def

= p(i)

The crux of the method is the ability of defining, given an arbitrary MIL formula φ, a
positive MIL formula φ⊕ that preserve its minimal models, formally φ ≡µ φ⊕. Because
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of quantification over unbounded domains, a MIL formula φ does not have a disjunctive
normal form and thus one cannot define φ⊕ by simply deleting the negative literals in
DNF, as was done for the definition of the positivation operation (.)

+
, in the propositional

case. For now we assume that the transformation (.)
⊕

of monadic predicate formulae
into positive formulae preserving minimal models is defined (a detailed presentation of
this step is given next in §4) and close this section with a parametric counterpart of
Theorem 1.

Before giving the proof of the main result of this section, we shall be needing a few

technical lemmas. For a set S of boolean valuations, let S↑ def
= {β | ∃β′ ∈ S . β′ ⊆ β} be its

upward closure. A set S of boolean valuations is upward-closed iff S = S↑. The following
lemma shows that the set of models of a positive boolean formula is upward-closed and
thus uniquely determined by its minimal elements.

Lemma 6. Given a positive boolean formula f , we have [[f ]] = [[f ]]↑ = ([[f ]]
µ
)↑.

Proof. The inclusions [[f ]] ⊆ [[f ]]↑ ⊆ ([[f ]]
µ
)↑ are immediate. To show that ([[f ]]

µ
)↑ ⊆

[[f ]], observe that, if f is positive and β |= f then any valuation β′ such that β ⊆ β′ is
also model of f . Let β ∈ [[f ]]

µ↑ be a valuation. Then there exists β′ ∈ [[f ]]
µ

such that
β′ ⊆ β. Since β′ |= f and f is positive, we obtain β ∈ [[f ]].

Lemma 7. Given a MIL sentence φ with quantified variables i1, . . . , in and a function
M : [1, n]→ N, we have BM (φ)

+ ≡ BM (φ⊕).

Proof. Because BM (φ)
+

and BM (φ⊕) are both positive boolean formulæ, we have

[[BM (φ)
+

]] =
(

[[BM (φ)
+

]]
µ
)
↑ and [[BM (φ⊕) ]] = ([[BM (φ⊕) ]]

µ
)↑, by Lemma 6. It is

sufficient to show BM (φ)
+ ≡µ BM (φ⊕), i.e. [[BM (φ)

+
]]
µ

= [[BM (φ⊕) ]]
µ

to obtain the
equivalence in general. To prove [[BM (φ)

+
]]
µ

= [[BM (φ⊕) ]]
µ
, we show that [[BM (φ)

+
]]
µ ⊆

[[BM (φ⊕) ]] and [[BM (φ⊕) ]]
µ ⊆ [[BM (φ)

+
]], respectively.

[[BM (φ)
+

]]
µ ⊆ [[BM

(
φ⊕
)

]] Let β ∈ [[BM (φ)
+

]]
µ

be a valuation. Then, we also have β ∈
[[BM (φ) ]]

µ
, since ϕ+ ≡µ ϕ, in general for any boolean formula ϕ. Then, by Lemma 4 (2),

there exists a structure I ∈ [[φ]]
µ

such that β = βI . Hence we obtain I ∈ [[φ⊕]]
µ ⊆ [[φ⊕]].

But then β ∈ [[BM (φ⊕) ]], by Lemma 4 (1).

[[BM

(
φ⊕
)

]]
µ ⊆ [[BM (φ)

+
]] Let β ∈ [[BM (φ⊕) ]]

µ
be a boolean valuation. By Lemma

4 (2), we obtain a structure I ∈ [[φ⊕]]
µ

such that β = βI . But then I ∈ [[φ]]
µ

and
β ∈ [[BM (φ) ]]

µ
, by Lemma 4 (2). Hence β ∈ [[BM (φ)

+
]]. �

Theorem 2. For any parametric system S = 〈C1, . . . , Cn,M,Γ〉, we have

Trap(NS) ≡ BM

((
(Θ(Γ) ∧ Init(S))

⊕
)∼)

Proof. By Theorem 1, we have Trap(NS) ≡
(

(Θ(BM (Γ)) ∧ BM (Init(S)))
+
)∼

. We
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obtain the following equivalences:(
(Θ(BM (Γ)) ∧ BM (Init(S)))

+
)∼

since Θ(BM (Γ)) ≡ BM (Θ(Γ))

≡
(

(BM (Θ(Γ)) ∧ BM (Init(S)))
+
)∼

≡
(

(BM (Θ(Γ) ∧ Init(S)))
+
)∼

by Lemma 7

≡
(

BM

(
(Θ(Γ) ∧ Init(S))

⊕
))∼

≡ BM

((
Θ(Γ) ∧ Init(S)

⊕
)∼)

�

4. Cardinality Constraints

This section is concerned with the definition of a positivation operator (.)
⊕

for MIL
sentences, whose only requirements are that φ⊕ is positive and φ ≡µ φ⊕. For this purpose,
we use a logic of quantifier-free boolean cardinality constraints [24, 28] as an equivalent
intermediate language, on which the positive formulae are defined. The translation of MIL
into cardinality constraints is done by an equivalence-preserving quantifier elimination
procedure, described in §4.1. As a byproduct, since the satisfiability of quantifier-free
cardinality constraints is NP-complete [24] and integrated with SMT [28], we obtain a
practical decision procedure for MIL that does not use model enumeration, as suggested
by the small model property [27]. Finally, the definition of a positive MIL formula from
a boolean combination of quantifier-free cardinality constraints is given in §4.2.

We start by giving the definition of cardinality constraints. Given the set of monadic
predicate symbols Pred, a boolean term is generated by the syntax:

t := p ∈ Pred | ¬t1 | t1 ∧ t2 | t1 ∨ t2

When there is no risk of confusion, we borrow the terminology of boolean logic and say
that a term is in DNF if it is a disjunction of conjunctions (minterms). We also write
t1 → t2 if and only if the implication is valid when t1 and t2 are interpreted as boolean
formulae, with each predicate symbol viewed as a propositional variable. Two boolean
terms t1 and t2 are said to be compatible if and only if t1 ∧ t2 is satisfiable, when viewed
as a boolean formula.

For a boolean term t and a first-order variable i ∈ Var, we define the shorthand t(i)

recursively, as (¬t1)(i)
def
= ¬t1(i), (t1 ∧ t2)(i)

def
= t1(i)∧ t2(i) and (t1 ∨ t2)(i)

def
= t1(i)∨ t2(i).

Given a positive integer n ∈ N and t a boolean term, we define the following cardinality
constraints, by MIL formulae:

|t| ≥ n def
= ∃i1 . . . ∃in . distinct(i1, . . . , in) ∧

∧n
j=1 t(ij)

|t| ≤ n def
= ¬(|t| ≥ n+ 1)

We shall further use cardinality constraints with n = ∞, by defining |t| ≥ ∞ def
= ⊥ and

|t| ≤ ∞ def
= >. The intuitive semantics of cardinality constraints is formally defined in

terms of structures I = (U, ν, ι) by the semantics of monadic predicate logic, given in the
previous. For instance, |p ∧ q| ≥ 1 means that the intersection of the sets p and q is not
empty, whereas |¬p| ≤ 0 means p contains all elements from the universe.
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4.1. Quantifier Elimination

Given a sentence φ, written in MIL, we build an equivalent boolean combination of
cardinality constraints qe(φ), using quantifier elimination. Actually, this construction is
a direct consequence of the quantifier elimination procedure for the first-order theory of
Boolean algebra [30, 27]. We describe the elimination of a single existential quantifier and
the generalization to several existential or universal quantifiers is immediate. Assume
that φ = ∃i1 .

∨
k∈K ψk(i1, . . . , im), where K is a finite set of indices and, for each

k ∈ K, ψk is a quantifier-free conjunction of atomic propositions of the form ij = i`,
P (ij) and their negations, for some j, ` ∈ [1,m]. We write, equivalently, φ ≡

∨
k∈K ϕk ∧

∃i1 . θk(i1, . . . , im), where ϕk does not contain occurrences of i1 and θk is a conjunction
of literals of the form P (i1), ¬P (i1), i1 = ij and ¬i1 = ij , for some j ∈ [2,m]. For each
k ∈ K, we distinguish the following cases:

1. if i1 = ij is a consequence of θk, for some j > 1, let qe(∃i1 . θk)
def
= θk[ij/i1].

2. else, θk =
∧
j∈Jk ¬i1 = ij ∧ tk(i1) for some Jk ⊆ [2,m] and boolean term tk, and

let:

qe(∃i1 . θk)
def
=

∧
J⊆Jk

[
distinct

(
{ij}j∈J

)
∧
∧
j∈J tk(ij)

]
→ |tk| ≥ ||J ||+ 1

qe(φ)
def
=

∨
k∈K ϕk ∧ qe(∃i1 . θk)

Example 3. The following examples illustrate quantifier elimination as defined above:

∃i. P (i) ≡ |P | ≥ 1
∃i. ¬P (i) ≡ |¬P | ≥ 1

∃i. P (i) ∧Q(i) ≡ |P ∧Q| ≥ 1
∃i. P (i) ∧ ¬Q(i) ≡ |P ∧ ¬Q| ≥ 1
∃i. ¬i = j ∧ P (i) ≡ (P (j)→ |P | ≥ 2) ∧ (|P | ≥ 1)

∃i. ¬i = j ∧ P (i) ∧ ¬Q(i) ≡ ((P (j) ∧ ¬Q(j))→ |P ∧ ¬Q| ≥ 2) ∧ (|P ∧ ¬Q| ≥ 1)
∃i. ¬i = j ∧ ¬i = k ∧ P (i) ≡ ((¬j = k ∧ P (j) ∧ P (k))→ |P | ≥ 3) ∧

(P (j)→ |P | ≥ 2) ∧ (P (k)→ |P | ≥ 2) ∧ |P | ≥ 1

�

Universal quantification is dealt with using the duality qe(∀i1 . ψ)
def
= ¬qe(∃i1 . ¬ψ). For

a prenex formula φ = Qnin . . . Q1i1 . ψ, where Q1, . . . , Qn ∈ {∃,∀} and ψ is quantifier-

free, we define, recursively qe(φ)
def
= qe(Qnin . qe(Qn−1in−1 . . . Q1i1 . ψ)). It is easy to

see that, if φ is a sentence, qe(φ) is a boolean combination of cardinality constraints.
The correctness of the construction is a consequence of the following lemma:

Lemma 8. Given a MIL formula φ = Qnin . . . Qii1 . ψ, where Q1, . . . , Qn ∈ {∀,∃} and
ψ is a quantifier-free conjunction of equality and predicate atoms, we have φ ≡ qe(φ).

Proof. We give the proof only for the case n = 1 and Q1 = ∃, the general case being an
easy consequence. Suppose that ψ = ϕ∧ θ(i1), where i1 does not occur within ϕ. If θ |=
i1 = ij for some j 6= 1 then ∃i1 . θ ≡ θ[ij/i1]. Otherwise, let θ =

∧
j∈J ¬i1 = ij ∧ tj(i1),

for some boolean terms tj and show:

∃i1 . θ ≡
∧
K⊆J

(
distinct({ik}k∈K) ∧

∧
k∈K

t(ik)

)
→ |t| ≥ ||K||+ 1

16



“⇒” Let (U, ν[i1 ← u], ι) |=
∧
j∈J ¬i1 = ij ∧ t(i1), for some u ∈ U and let K be the

maximal subset of J such that ν(ik1) 6= ν(ik2), for all k1 6= k2 ∈ K and ν(ij) ∈ ι(t).
Since, moreover, ν(i1) 6∈ {ν(ik)}k∈k, we obtain ||ι(t)|| ≥ ||K||+ 1.
“⇐” Let (U, ν, ι) be a model of the right-hand side formula and let K ⊆ J be a set
such that ν(xk1) 6= ν(xk2) for all k1 6= k2 ∈ K and {ν(xk)}k∈K ∈ ι(t). Then, since
||ι(t)|| ≥ ||K|| + 1, there exists u ∈ ι(t) \ {ν(xk)}k∈K and thus (U, ν[i1 ← u], ι) |=∧
j∈J ¬x1 = xj ∧ t(x1). �

Example 4. (contd. from Example 2) The constraint Θ(Γ)∧ Init(S) for the parametric
system in Figure 1b is

∀i. [r ∨ w(i)]→ [s ∨ u(i)] ∧ ∀i. [s ∨ u(i)]→ [r ∨ w(i)] ∧ (r ∨ ∃i. w(i))

Let focus on the quantifier elimination of the first term of the conjunction. First, we use
the double negation duality to rewrite the universal quantifier into an existential one,
then standard Boolean algebra rules such that to achieve miniscoping of the existential
quantifier. The term is progressively rewritten as follows:

∀i. [r ∨ w(i)]→ [s ∨ u(i)] ≡ ¬∃i. ¬([r ∨ w(i)]→ [s ∨ u(i)])
≡ ¬∃i. ((r ∨ w(i)) ∧ ¬(s ∨ u(i)))
≡ ¬∃i. ((r ∨ w(i)) ∧ ¬s ∧ ¬u(i))
≡ ¬∃i. ((r ∧ ¬s ∧ ¬u(i)) ∨ (w(i) ∧ ¬s ∧ ¬u(i)))
≡ ¬(∃i. (r ∧ ¬s ∧ ¬u(i)) ∨ ∃i. (w(i) ∧ ¬s ∧ ¬u(i)))
≡ ¬((r ∧ ¬s ∧ ∃i. ¬u(i)) ∨ (¬s ∧ ∃i. (w(i) ∧ ¬u(i))))

We can now perform quantifier elimination by taking respectively ∃i. ¬u(i) ≡ |¬u| ≥ 1
and ∃i. (w(i) ∧ ¬u(i)) ≡ |w ∧ ¬u| ≥ 1. Therefore, the result of quantifier elimination of
the first term proceeds as follows:

∀i. [r ∨ w(i)]→ [s ∨ u(i)] ≡ ¬((r ∧ ¬s ∧ |¬u| ≥ 1) ∨ (¬s ∧ |w ∧ ¬u| ≥ 1))
≡ ¬(r ∧ ¬s ∧ |¬u| ≥ 1) ∧ ¬(¬s ∧ |w ∧ ¬u| ≥ 1)
≡ (¬r ∨ s ∨ |¬u| ≤ 0) ∧ (s ∨ |w ∧ ¬u| ≤ 0)
≡ s ∨ (¬r ∨ |¬u| ≤ 0) ∧ |w ∧ ¬u| ≤ 0
≡ s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ (|¬u| ≤ 0 ∧ |w ∧ ¬u| ≤ 0)
≡ s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ |¬u| ≤ 0

In the last step, we used that |¬u| ≤ 0 implies |w ∧ ¬u| ≤ 0. Now, a similar result is
obtained for the second term of our initial conjunction. Moreover, for the third term
quantifier elimination can be directly applied by taking ∃i. w(i) ≡ |w| ≥ 1. Finally, the
complete result of quantifier elimination within Θ(Γ) ∧ Init(S) is

(s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ |¬u| ≤ 0) ∧ (r ∨ (¬s ∧ |u ∧ ¬w| ≤ 0) ∨ |¬w| ≤ 0) ∧ (r ∨ |w| ≥ 1)

which, after transformation into disjunctive normal form and simplification, becomes:

(¬r ∧ ¬s ∧ |w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨
(¬r ∧ |w ∧ ¬u| ≤ 0 ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) ∨

(s ∧ r) ∨ (r ∧ |u| ≤ 0) ∨ (s ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) ∨
(¬s ∧ |¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨

(|¬u| ≤ 0 ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) .
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The same procedure can be applied for the parametric system in Figure 3. As several
(nested) variables are used in the definition of the trap constraint, and moreover subject
to disequalities, quantifier elimination generates cardinality constraints of higher order
(instead of 0 and 1 as for the previous example). The result after simplification and
transformation into disjunctive normal form is

(|u ∧ ¬w| ≤ 0 ∧ 3 ≤ |w|) ∨
(|w ∧ ¬u| ≤ 1 ∧ |u ∧ ¬w| ≤ 0 ∧ 2 ≤ |w|) ∨

(|¬u| ≤ 1 ∧ |¬u ∧ ¬w| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨
(|w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) .

�

4.2. Building Positive Formulae that Preserve Minimal Models

Let φ be a MIL formula, not necessarily positive. We shall build a positive formula
φ⊕, such that φ ≡µ φ⊕. By the result of the last section, φ is equivalent to a boolean
combination of cardinality constraints qe(φ), obtained by quantifier elimination. Thus
we assume w.l.o.g. that the DNF of φ is a disjunction of conjunctions of the form∧
i∈L |ti| ≥ `i ∧

∧
j∈U |tj | ≤ uj , for some sets of indices L, U and some positive integers

{`i}i∈L and {uj}j∈U .
For a boolean combination of cardinality constraints ψ, we denote by P(ψ) the set

of predicate symbols that occur in a boolean term of ψ and by P+(ψ) (P−(ψ)) the
set of predicate symbols that occur under an even (odd) number of negations in ψ.
The following proposition allows to restrict the form of φ even further, without losing
generality:

Proposition 1. Given MIL formulae φ1 and φ2, for any positivation operator (.)
⊕

, the
following hold:

1. (φ1 ∨ φ2)
⊕ ≡µ φ1⊕ ∨ φ2⊕,

2. (φ1 ∧ φ2)
⊕ ≡µ φ1⊕ ∧ φ2⊕, provided that P(φ1) ∩ P(φ2) = ∅.

From now on, we assume that φ is a conjunction of cardinality constraints that cannot
be split as φ = φ1 ∧ φ2, such that P(φ1) ∩ P(φ2) = ∅.

Let us consider a cardinality constraint |t| ≥ ` that occurs in φ. Given a set P
of predicate symbols, for a set of predicates S ⊆ P, the complete boolean minterm

corresponding to S with respect to P is tPS
def
=
∧
p∈S p ∧

∧
p∈P\S ¬p. Moreover, let St

def
=

{S ⊆ P(φ) | tS → t} be the set of sets S of predicate symbols for which the complete
minterm tS implies t. Finally, each cardinality constraint |t| ≥ ` is replaced by the
equivalent disjunction7, in which each boolean term is complete with respect to P(φ):

|t| ≥ ` ≡
∨{ ∧

S∈St

∣∣tP(φ)

S

∣∣ ≥ `S | for some constants {`S ∈ N}S∈St such that
∑
S∈St

`S = `
}

Note that because any two complete minterms tS and tT , for S 6= T , are incompatible,
then necessarily |tS ∨ tT | = |tS | + |tT |. Thus |tS ∨ tT | ≥ ` if and only if there exist
`1, `2 ∈ N such that `1 + `2 = ` and |tS | ≥ `1, |tT | ≥ `2, respectively.

7The constraints |t| ≤ u are dealt with as ¬(|t| ≥ u+ 1).
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Notice that, restricting the sets of predicates in St to subsets of P(φ), instead of
the entire set of predicates, allows to apply Proposition 1 and reduce the number of
complete minterms to be considered. That is, whenever possible, we write each minterm∧
i∈L |ti| ≥ `i∧

∧
j∈U |tj | ≤ uj in the DNF of φ as ψ1∧. . .∧ψk, such that P(ψi)∩P(ψj) = ∅

for all 1 ≤ i < j ≤ k. In practice, this optimisation turns out to be quite effective, as
shown by the small execution times of our test cases, reported in §6.

The second step is building, for each conjunction C =
∧
{`S ≤

∣∣tP(φ)

S

∣∣ ∧ ∣∣tP(φ)

S

∣∣ ≤ uS |
S ⊆ P(φ)}8, as above, a positive formula C⊕, that preserves its set of minimal models
[[C]]

µ
. The generalization to arbitrary boolean combinations of cardinality constraints is

a direct consequence of Proposition 1. Let L+(φ) (resp. L−(φ)) be the set of positive
boolean combinations of predicate symbols p ∈ P+(φ) (resp. ¬p, where p ∈ P−(φ)).
Further, for a complete minterm tPS , we write tPS

+ (tPS
−) for the conjunction of the

positive (negative) literals in tPS . Then, we define:

C⊕
def
=
∧{
|τ | ≥

∑
tPS

+→τ

`S | τ ∈ L+(φ)
}
∧
∧{
|τ | ≤

∑
tPS
−→τ

uS | τ ∈ L−(φ)}

Here
∑
tP+
S →τ

`S (resp.
∑
tP−S −→τ uS) is the sum over all lower (resp. upper) bounds of

the cardinalities of the positive (resp. negative) minterms that imply τ , in the boolean
sense. It is not hard to see that C⊕ is a positive MIL formula, because:
• for each τ ∈ L+(φ), we have

|τ | ≥ k ≡ ∃i1 . . . ∃ik . distinct(i1, . . . , ik) ∧
∧k
j=1 τ(j)

• for each τ ∈ L−(φ), we have

|τ | ≤ k ≡ ∀i1 . . . ∀ik+1 . distinct(i1, . . . , ik+1)→
∨k+1
j=1 ¬τ(ij)

The following lemma proves that the above definition meets the second requirement of
positivation operators, concerning the preservation of minimal models.

Lemma 9. Given P a finite set of monadic predicate symbols, {`S ∈ N}S⊆P and {uS ∈
N ∪ {∞}}S⊆P sets of constants, for any conjunction C =

∧
{`S ≤ |tPS | ∧ |tPS | ≤ uS | S ⊆

P}, we have C ≡µ C⊕.

Proof. completed in section 4.3 �

Example 5. (contd. from Example 4) Consider the first minterm of the DNF of the
cardinality constraint obtained by quantifier elimination in Example 4, from the system
in Figure 1b. The result of positivation for this minterm is given below:(

¬r ∧ ¬s ∧ |w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|
)⊕

= 1 ≤ |u ∧ w|

Intuitively, the negative literals ¬r and ¬s may safely disappear, because no minimal
model will assign r or s to true. Further, the constraints |w ∧ ¬u| ≤ 0 and |u ∧ ¬w| ≤ 0
are equivalent to the fact that, in any structure I = (U, ν, ι), we must have ι(u) = ι(w).
Finally, because |w| ≥ 1, then necessarily |u ∧ w| ≥ 1.

Similarly, the result of positivation applied to the second conjunct of the DNF cardi-
nality constraint corresponding to the system in Figure 3 is given below:(

2 ≤ |w| ∧ |w ∧ ¬u| ≤ 1 ∧ |u ∧ ¬w| ≤ 0
)⊕

= 2 ≤ |w| ∧ 1 ≤ |u ∧ w|

8Missing lower bounds `S are replaced with 0 and missing upper bounds uS with ∞.
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Here, the number of elements in w is at least 2 and, in any structure I = (U, ν, ι), we must
have ι(u) ⊆ ι(w) and at most one element in ι(w) \ ι(u). Consequently, the intersection
of the sets ι(u) and ι(w) must contain at least one element, i.e. |u ∧ w| ≥ 1. �

4.3. The proof of positivation lemma

Lemma 9 states the most intricate technical result of the paper. Its proof requires
several additional notions, which are the concern of this subsection. If t is any boolean
term, its interpretation in the structure I = (U, ν, ι) is the set tI ⊆ U defined recursively,
as follows:

pI
def
= ι(p) (¬t)I def

= U \ tI (t1 ∧ t2)I
def
= tI1 ∩ tI2 (t1 ∨ t2)I

def
= tI1 ∪ tI2

Next, we generalize upward closures and upward closed sets from boolean valuations to
first order structures as follows. If S is a set of structures sharing the same universe,

then S↑def= {I | ∃I ′ ∈ S . I ′ ⊆ I} denotes its upward closure. Moreover, S is upward
closed iff S = S↑. Then we have the following facts, whose proofs are folklore:

Fact 1. Given a positive MIL formula φ, the set [[φ]] is upward closed.

Proof. By induction on the structure of φ. �

Fact 2. Given MIL formulae φ1 and φ2, we have φ1 ≡µ φ2 if and only if [[φ1]]↑= [[φ2]]↑.
If, moreover, φ2 is positive, φ1 ≡µ φ2 if and only if [[φ1]]↑= [[φ2]].

Proof. The first point is due to the observation [[φi]]↑= {I | ∃I ′ ∈ [[φi]]
µ
. I ′ ⊆ I}, for

i = 1, 2. The second point is obtained applying Fact 1. �

Given a conjunction C =
∧
{`S ≤ |tPS | ∧ |tPS | ≤ uS | S ⊆ P} of cardinality constraints

involving all complete minterms with respect to P, for some arbitrary MIL formula φ,
Lemma 9 requires showing that [[C]]↑= [[C⊕]]. We shall do this in two stages:

1. We express [[C]]↑ using the reachability set of a vector addition system with states
of a special form, that is, moreover, definable as the set of solutions of an integer
linear system.

2. We use Hoffman’s Circulation Theorem [31, Theorem 11.2] to show that the set of
solutions of the linear system above defines [[C⊕]].

The developments of the two points rely on the observation that, each model of a cardi-
nality constraint is uniquely defined, up to the renaming of its elements, by the positive
cardinality of each complete minterm. In the following we shall consider this fact implicit
and work with mappings of minterms into positive integer values, instead of first order
structures.

4.3.1. Vector Addition Systems

The goal of this subsection is to reduce the problem [[C]] ↑= [[C⊕]] of equivalence
between sets of first order structures to the resolution of a linear integer system. To
begin with observe that, given an arbitrary MIL formula φ, if I |= φ, then any structure
obtained from I by a renaming of its elements is also a model of φ. This is because φ
uses only equalities and disequalities, which cannot distigush the particular identity of
elements. In other words, [[φ]] is closed under isomorphic transformations of structures.
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In the following, we assume that the finite set P of predicate symbols is indexed by
a total order C. Then any set S ⊆ P corresponds to a word wS which is the sequence
of its elements, in the C order. Moreover, let Clex be the lexicographic order induced by
C. The following definition introduces a total order on sets of predicate symbols, that is
compatible with the subset ordering.

Definition 1. Given sets S, T ⊆ P, where P is totally ordered via C, we define the total
order S E† T if and only if one of the following holds:

1. S ⊆ T , or
2. S 6⊆ T and wS Clex wT .

As usual, we write S C† T for S E† T and S 6= T .

Let tI
def
= 〈||(tPS)I ||〉S⊆P be the vector of cardinalities of the interpretations for all

complete minterms in the structure I, arranged in the E† order. In the following, we
sometimes refer to this vector as the cardinality vector of the structure I.

Since the interpretations of the complete minterms w.r.t P are pairwise disjoint, for
any predicate symbol p ∈ P, we have pI =

⋃
p∈S(tPS)I . Using the recursive definitions

above, we can write any boolean term as a finite union of complete minterms, which
corresponds to the DNF of the boolean formula associated with it. Hence, for any
cardinality constraint |t| ≥ n, we have I |= |t| ≥ n if and only if

∑k
i=1 ||(tPSi)

I || ≥ n,
where tPS1

, . . . , tPSk is the set of complete minterms that occur in the DNF of t. In general,

for a boolean combination of cardinality constraints φ, we write tI |= φ if and only if
the formula obtained by replacing each term |t| with the sum above is logically valid. A
formal definition can be given recursively, on the structure of φ.

At this point, we can identify the set of models [[φ]], where φ is any boolean combina-
tion of cardinality constraints, by the set of vectors {tI | tI |= φ}, up to isomorphism of
first order structures. It remains now to define upward closures in the same way. A first
remark is that, because the set [[φ]] is closed under isomorphism, so is its upward closure
[[φ]]↑. However, the definition of [[φ]]↑ in terms of vectors tI requires a partial order that
captures the pointwise inclusion between structures I ⊆ I ′.

Definition 2. Given structures I and I ′ with the same universe, we define the relation
tI
′ ≺1 tI if and only if there exists a set S ⊆ P and a predicate symbol p ∈ S such that:
1. ||(tPS)I || = ||(tPS)I

′ ||+ 1,

2. ||(tPS\{p})
I || = ||(tPS\{p})

I′ || − 1,

3. ||(tPT )I || = ||(tPT )I
′ ||, for all T ⊆ P, such that T 6= S and T 6= S \ {p}.

We denote by � the reflexive and transitive closure of the ≺1 relation.

Lemma 10. For a boolean combination of cardinality constraints φ, the following hold:
1. [[φ]] = {I | tI |= φ},
2. [[φ]]↑= {I | ∃I ′ ∈ [[φ]] . tI

′ � tI}.

Proof. (1) One shows that, for any structure I, we have I |= φ ⇐⇒ tI |= φ,
by induction on the structure of φ. The base case φ = |t| ≥ n is by definition and
the inductive steps are routine. (2) We show that, for any structure I = (U, ν, ι), the
following are equivalent:

(i) there exists I ′ ∈ [[φ]] such that I ′ ⊆ I, and
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(ii) there exists I ′′ ∈ [[φ]] such that tI
′′ � tI .

(i)⇒ (ii) We let I ′′ = I ′ and prove tI
′ � tI . If, for all predicate symbols p ∈ P, we have

pI
′

= pI , then I ′ = I and tI
′

= tI follows. Assuming that this is not the case, let p
be an arbitrary predicate symbol such that pI

′ ⊂ pI . We build a sequence of structures
I = I0, . . . , Ik such that pI0 ⊃ . . . ⊃ pIk and tI0 �1 . . . �1 tIk . Let u ∈ pI \ pI′ be an

element and let Su
def
= {q ∈ P | u ∈ qI}. Clearly, we have that p ∈ Su. Let I1 = (U, ν, ι1)

be the structure such that ι1(p) = ι(p) \ {u} and ι1(q) = ι(q) for all q ∈ P \ {p}. It is
not hard to see that:
• ||(tPSu)I || = ||(tPSu)I1 ||+ 1,

• ||(tPSu\{p})
I || = ||(tPSu\{p})

I1 || − 1,

• ||(tPT )I || = ||(tPT )I1 ||, for all T ⊆ P, such that T 6= Su and T 6= Su \ {p}.
By Definition 2, we have tI0 �1 tI1 . We continue chosing elements u ∈ pI \ pI′ until
no such elements can be found, then pick another predicate symbol for which I and I ′
differ. In this way we obtain a finite sequence of structures {Ij}nj=0, such that Ij �1 Ij+1

for all 0 ≤ j < n, thus tI � tI
′
, as required.

(ii) ⇒ (i) By induction on the length of the sequence of structures I = I0, . . . , Ik = I ′′
such that tI0 �1 . . . �1 tIk . In the base case k = 0, we have tI

′′
= tI , thus we have

tI |= φ and consequently I ∈ [[φ]], by point (1). For the induction step k > 0, we observe
that tI0 �1 tI1 implies the existence of a structure I ′1 ⊂ I0 which is isomorphic to I1,
thus tI

′
1 = tI1 . By the induction hypothesis, there exists I ′ ∈ [[φ]] such that I ′ ⊆ I ′1,

hence I ′ ⊆ I, as required. �

In the following, we define a vector addition system whose reachability relation
matches the � partial order on cardinality vectors tI .

Definition 3. An n-dimensional vector addition system (VAS) is a finite set of vectors
V = {v1, . . . ,vk} ⊆ Zn.

A configuration of V = {v1, . . . ,vk} is a vector c ∈ Nn. The one-step reachability

relation in V is c
vi−→V c′ if and only if c′ = c + vi, for some 1 ≤ i ≤ k. The fact

that c, c′ ∈ Nn is important here, because configurations of a VAS are not allowed to
contain negative values. For a finite sequence σ = vi1 . . .vik of vectors from V , we write

c
σ−→V c′ for the sequence of transitions c

vi1−−→V c1
vi2−−→V . . .

vik−−→V c′. Moreover, we write
c
∗−→VP c′ when σ is not important.

For a vector v ∈ {−1, 0, 1}2||P|| and a set S ⊆ P, let v(S) be the entry in v corre-
sponding to S. Moreover, for some predicate symbol p ∈ S, we denote by v(S, p) the
vector u such that u(S) = −1, u(S \ {p}) = 1 and u(T ) = 0, for all T ⊆ P such that
T 6= S and T 6= S \ {p}. Intuitively, v(S, p) transfers an element from tPS into tPS\{p},

thus decreasing the cardinality of tPS and increasing that of tPS\{p} by one, respectively.

We now define the 2||P||-dimensional VAS VP
def
= {v(S, p) | S ⊆ P, p ∈ S}. This

particular VAS captures the � partial order on cardinality vectors as a reachability
relation, as stated by the lemma below:

Lemma 11. For any two structures I and I ′ sharing the same universe, we have tI
′ �

tI if and only if tI
∗−→VP tI

′
.
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Proof. “⇒” For any two structures I1 and I2, sharing the same universe, we have
tI1 ≺1 tI2 iff there exists a set S ⊆ P and a predicate symbol p ∈ S such that:
• tI2(S) = tI1(S) + 1,
• tI2(S \ {p}) = tI1(S \ {p})− 1,
• tI2(T ) = tI1(T ), for all T ⊆ P, such that T 6= S and T 6= S \ {p}.

Then, using the fact that tI(S) = ||(tPS)I ||, for all S ⊆ P, we establish that tI1 ≺1 tI2 .

Hence tI
′ � tI implies the existence of a sequence σ of vectors from VP such that

tI
σ−→VP tI

′
. “⇐” For any two configurations c and c′, if c

v−→VP c′ for some vector

v ∈ VP , then c �1 c′, by Definition 2. Consequently, tI
σ−→VP tI

′
implies tI

′ � tI , by
straightforward induction on the length of σ. �

For a tuple of variables x = 〈x1, . . . , xk〉 and a valuation ν mapping these variables
into Z, we denote by ν(x) the tuple of integers 〈ν(x1), . . . , ν(xk)〉. The following lemma
gives an equivalent condition for the existence of an execution in VP , that ends in a given
configuration:

Lemma 12. Let x = [xS ]S⊆P and y = [yS ]S⊆P be column vectors of variables and
{kS,p | S ⊆ P, p ∈ S} be variables. Then for any positive valuation ν of the variables x
and y, the following are equivalent:

1. ν can be extended to a positive solution of the integer linear system:

x =
∑

S⊆P,p∈S

kS,p · v(S, p) + y

2. ν(y)
∗−→VP ν(x).

Proof. “⇒” Consider the sequence of vectors ν(y) = c0, c1, . . . , ck = ν(x), such that
ci+1 = ci+v(Si+1, pi+1) for all 1 ≤ i < k and the sequence of vectors v(S1, p1), . . . ,v(Sk, pk)
occur in order, each vector v(Si, pi) occurring ν(kSi,pi) ≥ 0 times in the sequence. To
show that this is an execution of VP , observe that each sequence of entries c0(S), . . . , ck(S),
for some S ⊆ P is first increased, then decreased, zero or more times. Because c0(S) ≥ 0
and ck(S) ≥ 0, we have that ci(S) ≥ 0, for all 0 ≤ i ≤ k. Since the choice of S was
arbitrary, every vector ci has only positive entries, hence the sequence is an execution of
VP . ”⇐” Immediate, since in every execution ν(y)

∗−→VP ν(x), each vector v(S, p) occurs
a positive number of times and let ν(kS,p) be that number. �

Turning back to the original problem [[C]]↑= [[C⊕]], we notice that the set of vectors
{tI | ∃I ′ . tI

′ |= C ∧ tI
′ � tI}, which corresponds (up to isomorphism) to the left-hand

side of the required equality, is the set of vectors ν(y), where ν is a positive solutions of
the linear system below:

x =
∑

S⊆P,p∈S

kS,p · v(S, p) + y ∧
∧
S⊆P

`S ≤ x(S) ≤ uS (2)

The formal argument combines the results of Lemmas 10, 11 and 12. Next, we show that
the right-hand side corresponds to the linear system obtained by eliminating the x and
{kS,p | S ⊆ P, p ∈ S} variables from the above system.
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4.3.2. Circulations in a Weighted Graph

We eliminate the kS,p variables from (2) using Hoffman’s Circulation Theorem, given
below. Let G = (V,E) be a directed graph, where V is a finite set of vertices and
E ⊆ V × V a set of edges. Further, we associate each edge in G a lower and upper
capacity, formally L : E → N and U : E → N ∪ {∞}, such that L(e) ≤ U(e), for all
e ∈ E. For brevity, we call G = (V,E, L, U) a capacitated graph in the following. Given a
vertex v ∈ V , we denote by •v (v•) the set of incoming (outgoing) edges with destination
(source) v. We lift these notations to sets of vertices in the usual way. A circulation is
a mapping X : E → N such that, for all v ∈ V , we have

∑
e ∈ •vX(e) =

∑
e∈v• X(e)

and L(e) ≤ X(e) ≤ U(e), for all e ∈ E. The following is known as Hoffman’s Circulation
Theorem [31, Theorem 11.2]:

Theorem 3. Given a capacitated graph G = (V,E,L, U), there exists a circulation in G
if and only if

∑
e ∈ •S L(e) ≤

∑
e ∈ S• U(e), for each set of vertices S ⊆ V .

We encode the existence of positive solutions of the linear integer system (2) as a
circulation problem in the capacitated graph GP [y] = (2P ∪ {ζ}, EP , LP , UP), where:
• ζ 6∈ 2P is a special vertex, not a subset of P,
• y is a tuple of parameters, indexed by sets of predicate symbols,
• for each set S ⊆ P there exists an edge e = (ζ, S), with LP(e) = UP(e) = y(S),
• for each set S ⊆ P, there exists an edge e = (S, ζ), with LP(e) = `S and UP(e) =
uS ,

• for each nonempty set S ⊆ P and each predicate symbol p ∈ S, there exists an
edge e = (S, S \ {p}), with L(e) = 0 and U(e) =∞.

Moreover, nothing else is in EP , LP and UP , respectively. For example, given P =
{a, b, c}, the graph GP is depicted in Figure 4. The following lemma relates the existence
of positive solutions of the linear integer system (2) with the existence of a circulation
in GP [y].

Lemma 13. Given a set P of predicate symbols and a positive valuation ν of the vari-
ables y, the following are equivalent:
(a) ν can be extended to a positive solution of the integer system (2),
(b) the capacitated graph GP [ν(y)] has a circulation.

Proof. (a) ⇒ (b) Assume that ν is a positive solution of (2). We define the mapping
X : E → N as follows, for all S ⊆ P:
• X(e) = ν(yS) if e = (ζ, S),
• X(e) = ν(xS) if e = (S, ζ),
• X(e) = ν(kS,p) if e = (S, S \ {p}), for some p ∈ S.

We prove thatX is a circulation inGP . The condition LP(e) ≤ X(e) ≤ UP , for all e ∈ EP
is immediate, because either LP(e) = 0 and UP(e) = ∞ or it follows directly from (2).
It remains to check that

∑
e ∈ •uX(e) =

∑
e ∈ u• X(e), for any vertex u ∈ 2P ∪ {ζ}. If

u = ζ, we have
∑
S⊆P ν(x(S)) =

∑
S⊆P ν(y(S)), because the sum of the elements of

each vector v(S, p) is zero, for any S ⊆ P and p ∈ S. Else, if u is some set S ⊆ P, we
have ν(x(S)) +

∑
p∈S ν(kS,p) = ν(y(S)) +

∑
q 6∈ Sν(kS∪{q},q).

(b) ⇒ (a) Given a circulation X in GP , we define ν as follows, for all S ⊆ P:
• ν(y(S)) = X(e), where e = (ζ, S),
• ν(x(S)) = X(e), where e = (S, ζ),
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Figure 4: The Capacitated Graph G{a,b,c}[y] — the ζ node is duplicated, for clarity.

• ν(kS,p) = X(e), where e = (S, S \ {p}), for some p ∈ S.
By definition, ν is a positive valuation. It remains to show that ν is indeed a solution
of (2). The condition `S ≤ ν(x(S)) ≤ uS is clearly satisfied for each S ⊆ P, because
LP(e) = `S and UP(e) = uS , for each edge e = (S, ζ). To prove the remaining condition,
observe that ν(x(S)) +

∑
p∈S ν(kS,p) = ν(y(S)) +

∑
q 6∈S ν(kS∪{q},q), for each S ⊆ P,

which leads to ν(x) =
∑
S⊆P,p∈S ν(kS,p) · v(S, p) + ν(y), as required. �

Theorem 3 gives an equivalent condition for the existence of a circulation in GP [y].
In the following, we write another linear system, with unknowns y only, that captures
this condition. A set of sets S ⊆ 2P is downward closed iff any subset of a set in S is in
S. Dually, S is upward closed iff any superset of a set in S is in S. It is easy to check
that the complement of a downward (upward) closed set is upward (downward) closed.

Consider any capacitated graph GP [y], e.g. refer to Figure 4 for an example. If
S ⊆ 2P is not downward closed, then there exists an outgoing edge e ∈ S• with U(e) =∞.
Consequently, we have

∑
e∈S• U(e) =∞ in this case, thus the condition of Theorem 3 is

trivially satisfied, for such sets. In the light of this remark, it is obvious that we need to
consider only downward closed sets in order to characterize circulations in GP [y], as in
the example below:

Example 6. Consider the capacitated graph G{a,b,c}[y] from Figure 4. The necessary
and sufficient condition for the existence of a circulation in G{a,b,c}[y], are partly shown
below. By considering sets of vertices S for every downward closed set S ⊆ 2P we obtain
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the following inequalities:

y∅ ≤ u∅
ya + y∅ ≤ ua + u∅
yb + y∅ ≤ ub + u∅
yc + y∅ ≤ uc + u∅

ya + yb + y∅ ≤ ua + ub + u∅
yb + yc + y∅ ≤ ub + uc + u∅
ya + yc + y∅ ≤ ua + uc + u∅

ya + yb + yc + y∅ ≤ ua + ub + uc + u∅
. . .

yabc + ybc + yac + yab + yb + yc + ya + y∅ ≤ uabc + ubc + uac + uab + ub + uc + ua + u∅

These inequalities correspond to the enumeration of the downward closed sets S in order
{∅}, {{a}, ∅}, {{b}, ∅}, {{c}, ∅}, {{a}, {b}, ∅}, {{b}, {c}, ∅}, {{a}, {c}, ∅}, {{a}, {b}, {c}, ∅},
..., {{a, b, c}, {a, b}, {b, c}, {a, c}{a}, {b}, {c}, ∅} = 2P . In similar way, by considering sets
of vertices S ∪ {ζ} for every downward closed set S ⊆ 2P we obtain the following in-
equalities:

`abc + `bc + `ac + `ab + `b + `c + `a + `∅ ≤ yabc + ybc + yac + yab + yb + yc + ya + y∅
`abc + `bc + `ac + `ab + `b + `c + `a ≤ yabc + ybc + yac + yab + yb + yc + ya

`abc + `bc + `ac + `ab + `b + `c ≤ yabc + ybc + yac + yab + yb + yc
`abc + `bc + `ac + `ab + `a + `c ≤ yabc + ybc + yac + yab + ya + yc
`abc + `bc + `ac + `ab + `a + `b ≤ yabc + ybc + yac + yab + ya + yb

`abc + `bc + `ac + `ab + `c ≤ yabc + ybc + yac + yab + yc
`abc + `bc + `ac + `ab + `a ≤ yabc + ybc + yac + yab + ya
`abc + `bc + `ac + `ab + `b ≤ yabc + ybc + yac + yab + yb

`abc + `bc + `ac + `ab ≤ yabc + ybc + yac + yab
. . .

`abc ≤ yabc

These inequalities correspond to the enumeration of downward closed sets in order ∅, {∅},
{{a}, ∅}, {{b}, ∅}, {{c}, ∅}, {{a}, {b}, ∅}, {{b}, {c}, ∅}, {{a}, {c}, ∅}, {{a}, {b}, {c}, ∅}, ...,
{{a, b}, {b, c}, {a, c}{a}, {b}, {c}, ∅} = 2P \ {{a, b, c}}. �

At this point it is easy to generalize the above example and infer an equivalent
condition for the existence of a circulation in GP [y]:∧

S∈2P

(∑
S∈S

yS ≤
∑
S∈S

uS ∧
∑
S 6∈S

`S ≤
∑
S 6∈S

yS

)
(3)

Let us now turn to the definition of C⊕, given in terms of complete minterms, and
notice the following facts:

1. for each positive boolean combination τ ∈ L+(φ), the set {S ⊆ P | tPS
+ → τ} is

upward closed and its set of minimal elements corresponds to the minterms of τ in
DNF,

2. dually, for each negative boolean combination τ ∈ L−(φ), the set {S ⊆ P | tPS
− →

τ} is downward closed and its set of maximal elements corresponds to the minterms
of τ in DNF,
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3. because the complete minterms are pairwise disjoint, in each structure I, we have
τI =

⋃
tPS

+→τ (tPS)
I
, for all τ ∈ L+(φ) and τI =

⋃
tPS
−→τ (tPS)

I
, for all τ ∈ L−(φ),

4. for each positive solution ν of (3), there exists a structure I ∈ [[C⊕]] such that

ν(yS) = ||(tPS)
I || and viceversa, each structure I ∈ [[C⊕]] induces a positive solution

of (3), where ν(yS) = ||(tPS)
I ||, for all S ⊆ P.

To summarize, we prove that C ≡µ C⊕ by proving the equivalent statement [[C]]↑= [[C⊕]].
Since both the left and the right-hand side of this equality are sets of structures closed
under isomorphism, we reduce the problem to an equivalence between sets of integer
tuples {tI | I ∈ [[C]] ↑} = {tI | I ∈ [[C⊕]]}. By Lemma 10, this is equivalent to
{tI | ∃I ′ ∈ [[C]] . tI

′ � tI} = {tI | I ∈ [[C⊕]]}. Subsequently, Lemmas 11 and 12 prove
that the left-hand side of the latter equality is the set of positive solutions of the linear
system (2), restricted to the tuple of variables y = 〈yS〉S⊆P . By Hoffman’s Circulation
Theorem (Theorem 3), this is the set of positive solutions to the linear system (3),
obtained from the elimination of the x and kS,p variables from (2). Finally, this set is
exactly the right-hand side of the equality above, as a result of interpreting the definition
of C⊕ in terms of vertices of the capacitated graph GP [y], on which the circulation
theorem was applied.

5. Proving Deadlock Freedom of Parametric Systems

We have gathered all the ingredients necessary for checking deadlock freedom of
parametric systems, using our method based on trap invariant generation (Figure 5).
In particular, we derive a trap constraint Θ(Γ) directly from the interaction formula Γ,
both of which are written in MIL. Second, we compute a positive formula that preserves
the set of minimal models of Θ(Γ) ∧ Init(S), by first converting the MIL formula into a
quantifier-free cardinality constraint, using quantifier elimination, and deriving a positive
MIL formula from the latter.

unsat /

sat /
potential deadlock

deadlock-free

S

∆(Γ)

(deadlock states)

(trap constraints)

Θ(Γ) ∧ Init(S)

qe

qe

(trap invariant)

(deadlock-freedom condition)

Cardinality Constraints

dual

positivation

Monadic Interaction Logic

Θ(Γ) ∧ Init(S)

[Θ(Γ) ∧ Init(S)]⊕

(
[Θ(Γ) ∧ Init(S)]⊕

)∼

∆(Γ)

∧ smt-checking

(CVC4)

Figure 5: Verification of Parametric Component-based Systems

The conjunction between the dual of this positive formula and the formula ∆(Γ)
that defines the deadlock states is then checked for satisfiability. Formally, given a
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parametric system S, with an interaction formula Γ written in the form (1), the MIL
formula characterizing the deadlock states of the system is the following:

∆(Γ)
def
= ∀i1 . . . ∀i` . ϕ→

[∨`
j=1 ¬•pj(ij) ∨

∨`+m
j=`+1 ∃ij . ψj ∧ ¬•pj(ij)

]
We state a sufficient verification condition for deadlock freedom in the parametric case:

Corollary 2. A parametric system S = 〈C1, . . . , Cn,M,Γ〉 is deadlock-free if(
(Θ(Γ) ∧ Init(S))

⊕
)∼
∧∆(Γ)→ ⊥

The satisfiability check is carried out using the conversion to cardinality constraints via
quantifier elimination §4.1 and an effective set theory solver for cardinality constraints,
implemented in the CVC4 SMT solver [25].

6. Experimental Results

To assess our method for proving deadlock freedom of parametric component-based
systems, we ran a number of experiments on systems with a small numbers of rather
simple component types, but with nontrivial interaction patterns, given by MIL formulae.
We check deadlock freedom of parameterized component-based systems, in which the
number of instances of each component type is finite but unbounded. The task-sem

i/n examples, i = 1, 2, 3, are generalizations of the parametric Task -Semaphore example
depicted in Figure 1b, in which n Tasks synchronize using n Semaphores, such that i
Tasks interact with a single Semaphore at once, in a multiparty rendez-vous. In a similar
vein, the broadcast i/n examples, i = 2, 3 are generalizations of the system in Figure 3,
in which i out of n Workers engage in rendez-vous on the b port, whereas all the other
stay idle — here idling is modeled as a broadcast on the a ports. Next, in the sync i/n
examples, i = 1, 2, 3, we consider systems composed of n Workers (Figure 1b) such that
either i out of n instances simultaneously interact on the b ports, or all interact on the
f ports. Notice that, for i = 2, 3, these systems have a deadlock if and only if n 6= 0
mod i. This is because, if n = m mod i, for some 0 < m < i, there will be m instances
that cannot synchronize on their b port, in order to move from w to u, in order to engage
in the f broadcast.

Finally, the synapse and mesi examples refer to models of cache coherence proto-
cols from [32]. In both cases, the model consists of n identical processes accessing and
updating their local cache containing the copy of some globally shared data. Every pro-
cess can be either actively reading (r) or writing (w) the shared data, or gets notified
about the reading (r̄) or writing (w̄) by another process. All interactions are therefore
of type broadcast, that is, every active reading or writing by some process notifies in-
stantaneously all the other processes such that they can consistenly update their cache
status. The property of interest was cache coherency, that is, (1) at most one process
has a dirty cache and (2) no dirty cache coexists with one or more caches in shared state.
For both protocols, the coherency property was successfully proven valid.

All experiments were carried out on a Intel(R) Xeon(R) CPU @ 2.00GHz virtual
machine with 4GB of RAM. Table 1 shows separately the times needed to generate the
proof obligations (trap invariants and deadlock states) from the interaction formulae and
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example interaction formula t-gen t-smt result
task-sem 1/n ∃i∃j1. a(i) ∧ b(j1)∨

∃i∃j1. e(i) ∧ f(j1) 22 ms 20 ms unsat
task-sem 2/n ∃i∃j1∃j2. j1 6= j2 ∧ a(i) ∧ b(j1) ∧ b(j2)∨

∃i∃j1∃j2. j1 6= j2 ∧ e(i) ∧ f(j1) ∧ f(j2) 34 ms 40 ms unsat
task-sem 3/n ∃i∃j1∃j2∃j3. distinct(j1, j2, j3) ∧

a(i) ∧ b(j1) ∧ b(j2) ∧ b(j3)∨
∃i∃j1∃j2∃j3. distinct(j1, j2, j3) ∧
e(i) ∧ f(j1) ∧ f(j2) ∧ f(j3) 73 ms 40 ms unsat

broadcast 2/n ∃i1∃i2.i1 6= i2 ∧ b(i1) ∧ b(i2) ∧
∀j. j 6= i1 ∧ j 6= i2 → a(j)

∨
∃i.f(i) 14 ms 20 ms unsat

broadcast 3/n ∃i1∃i2∃i3.distinct(i1, i2, i3) ∧
b(i1) ∧ b(i2) ∧ b(i3) ∧
∀j. j 6= i1 ∧ j 6= i2 ∧ j 6= i3 → a(j)∨
∃i.f(i) 409 ms 20 ms unsat

sync 1/n ∃i.b(i)
∨
∀i.f(i) 5 ms 20 ms unsat

sync 2/n ∃i1∃i2. i1 6= i2 ∧ b(i1) ∧ b(i2)
∨
∀i.f(i) 7 ms 50 ms sat

sync 3/n ∃i1∃i2∃i3. distinct(i1, i2, i3) ∧
b(i1) ∧ b(i2) ∧ b(i3)

∨
∀i.f(i) 11 ms 40 ms sat

synapse n ∃i.r(i) ∧ ∀j. j 6= i→ r̄(i)
∨

∃i.w(i) ∧ ∀j. j 6= i→ w̄(i) 45 ms 70 ms unsat
mesi n ∃i.r(i) ∧ ∀j. j 6= i→ r̄(i)

∨
∃i.w(i) ∧ ∀j. j 6= i→ w̄(i) 508 ms 90 ms unsat

Table 1: Benchmarks - t-gen provides the time of invariant generation (that is, quantifier elimination,
positivation and dualization), t-smt provides the time of satisfiabiliy checking (using the CVC4 solver)
and result provides the verification result (that is, unsat: property successfully verified, sat: inconclusive,
property cannot be verified by our method)
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the times needed by CVC4 1.7 to show unsatisfiabilty or come up with a model. All
systems considered, for which deadlock freedom could not be shown using our method,
have a real deadlock scenario that manifests only under certain modulo constraints on
the number n of instances. These constraints cannot be captured by MIL formulae, or,
equivalently by cardinality constraints, and would require cardinality constraints of the
form |t| = n mod m, for some constants n,m ∈ N.

7. Conclusions

This work is part of a lasting research program on BIP linking two work directions:
(1) recent work on modeling architectures using interaction logics, and (2) older work
on verification by using invariants. Its rationale is to overcome as much as possible
complexity and undecidability issues by proposing methods which are adequate for the
verification of essential system properties.

The presented results are applicable to a large class of architectures characterized by
the MIL. A key technical result is the translation of MIL formulas into cardinality con-
straints. This allows on the one hand the computation of the MIL formula characterizing
the minimal trap invariant. On the other hand, it provides a decision procedure for MIL,
that leverages from recent advances in SMT, implemented in the CVC4 solver [25].

Our approach sheds new light on the intricacy of the interaction structure between
components. This clearly depends on the topology of the architecture but also on the
multiplicity of interactions. Centralized control systems seem to be the easier to verify
(parametric systems with single controller and without interaction between components).
For distributed control systems, easier to check seem to be systems where interactions
between components are uniform each component of a class interacts in the same manner
with all the other components.

The hardest case corresponds to systems where interaction between components de-
pends on a neighborhood which usually implies some arithmetic relation between indices.
To model such systems MIL should be extended with arithmetic predicates on indices.
This is the objective of an ongoing work direction [33].
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mationsprobleme”, elche gewisse klassen von aussagen betreffen, Skrifter utgit av Vidnskapssel-
skapet i Kristiania, I. klasse, no. 3, Oslo (1919).

[31] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency, Vol. A, Springer, 2003.
[32] G. Delzanno, Automatic verification of parameterized cache coherence protocols, in: E. A. Emer-

son, A. P. Sistla (Eds.), Computer Aided Verification, 12th International Conference, CAV 2000,
Proceedings, Vol. 1855 of LNCS, Springer, 2000, pp. 53–68.

[33] M. Bozga, J. Esparza, R. Iosif, J. Sifakis, C. Welzel, Structural invariants for the verification of sys-
tems with parameterized architectures, in: A. Biere, D. Parker (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems - 26th International Conference, TACAS 2020, Proceedings,
Vol. 12078 of LNCS, Springer, 2020, pp. 228–246.

32


	Introduction
	Bounded Component-based Systems
	Execution Semantics of Bounded Systems
	Proving Deadlock Freedom of Bounded Systems

	Parametric Component-based Systems
	Monadic Interaction Logic
	Execution Semantics of Parametric Systems
	Computing Parametric Trap Invariants

	Cardinality Constraints
	Quantifier Elimination
	Building Positive Formulae that Preserve Minimal Models
	The proof of positivation lemma
	Vector Addition Systems
	Circulations in a Weighted Graph


	Proving Deadlock Freedom of Parametric Systems
	Experimental Results
	Conclusions

