Marius Bozga
email: marius.bozga@univ-grenoble-alpes.fr

Radu Iosif
email: radu.iosif@univ-grenoble-alpes.fr

Joseph Sifakis
email: joseph.sifakis@univ-grenoble-alpes.fr

Checking Deadlock-Freedom of Parametric Component-Based Systems

Keywords: parametric systems, deadlock-freedom, invariants, trap invariants, interaction logic, cardinality constraints, quantifier elimination, positivation

We propose an automated method for computing inductive invariants used to proving deadlock freedom of parametric component-based systems. The method generalizes the approach for computing structural trap invariants from bounded to parametric systems with general architectures. It symbolically extracts trap invariants from interaction formulae defining the system architecture. The paper presents the theoretical foundations of the method and proves its soundness. It also reports on a preliminary experimental evaluation on several textbook examples.

Introduction

Modern computing systems exhibit dynamic and reconfigurable behavior. To tackle the complexity of such systems, engineers extensively use architectures that enforce, by construction, essential properties, such as fault tolerance or mutual exclusion. Architectures can be viewed as parametric operators that take as arguments instances of components of given types and enforce a characteristic property. For instance, clientserver architectures enforce atomicity and resilience of transactions, for any numbers of clients and servers. Similarly, token-ring architectures enforce mutual exclusion between any number of components in the ring.

Parametric verification is an extremely relevant and challenging problem in systems engineering. In contrast to the verification of bounded systems, consisting of a known set of components, there exist no general methods and tools succesfully applied to parametric systems. Verification problems for very simple parametric systems, even with finite-state components, are typically intractable [START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Bloem | Decidability of Parameterized Verification[END_REF]. Most work in this area puts emphasis on limitations determined mainly by three criteria [START_REF] German | Reasoning about systems with many processes[END_REF] the topology of the architecture, (2) the coordination primitives, and (3) the properties to be verified.

Seminal works in parameterized verification consider rendez-vous communication, with participants placed in a ring [START_REF] Browne | Reasoning about networks with many identical finite state processes[END_REF][START_REF] Emerson | Reasoning about rings[END_REF] or a clique [START_REF] German | Reasoning about systems with many processes[END_REF] of arbitrary size. Recently, classes of graphs (with bounded tree-and clique-width) definable in monadic second order logic and point-to-point rendez-vous communication have been considered [START_REF] Aminof | Parameterized model checking of rendezvous systems[END_REF]. Most approaches to define decidable problems focus on manually proving a cut-off bound c ≥ 2 such that correctness for at most c processes implies correctness for any number of processes [START_REF] Browne | Reasoning about networks with many identical finite state processes[END_REF][START_REF] Emerson | Reasoning about rings[END_REF][START_REF] Emerson | Reducing model checking of the many to the few[END_REF][START_REF] Außerlechner | Tight cutoffs for guarded protocols with fairness[END_REF][START_REF] Jacobs | Analyzing guarded protocols: Better cutoffs, more systems, more expressivity[END_REF]. Other methods identify systems with well-structured transition relations [START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Abdulla | General decidability theorems for infinite-state systems[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF]. An exhaustive chart of decidability results for verification of parameterized systems is drawn in [START_REF] Bloem | Decidability of Parameterized Verification[END_REF]. When decidability is not of concern, over-approximation and semi-algorithmic techniques such as regular model checking [START_REF] Kesten | Symbolic model checking with rich assertional languages[END_REF][START_REF] Abdulla | Regular model checking without transducers (on efficient verification of parameterized systems)[END_REF], SMT-based bounded model checking [START_REF] Alberti | A framework for the verification of parameterized infinitestate systems[END_REF][START_REF] Conchon | Cubicle: A parallel smt-based model checker for parameterized systems -tool paper[END_REF], abstraction [START_REF] Baukus | Abstracting WS1S systems to verify parameterized networks[END_REF][START_REF] Bouajjani | Abstract regular model checking[END_REF] and automata learning [START_REF] Chen | Learning to prove safety over parameterised concurrent systems[END_REF] can be used to deal with more general classes of systems.

The efficiency of a verification method crucially relies on its ability to synthesize an inductive safety invariant, i.e., an infinite set of configurations that contains the initial configurations, is closed under the transition relation, and excludes the error configurations. In general, automatically synthesizing invariants requires computationally expensive fixpoint iterations [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF]. In the particular case of parameterized systems, invariants can be either global, relating the local states of all processes [START_REF] Dams | Iterating transducers[END_REF], or modular, relating the local states of a bounded number of processes, whose identities are irrelevant [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF][START_REF] Clarke | Environment abstraction for parameterized verification[END_REF].

In contrast with existing invariant synthesis methods for parameterized verification, we synthesize parameterized invariants directly from the interaction formula of a system, without iterating its transition relation. Such invariants depend only on the structure (and not on the operational semantics) of an infinite family of Petri Nets, one for each instance of the system, and are thus structural invariants. Essentially, the invariants we infer use the traps2 of the system, which are sets W of local states with the property that, if a process is initially in a state from W , then always some process will be in a state from W . Following [START_REF] Bensalem | D-finder: A tool for compositional deadlock detection and verification[END_REF], we call them (parameterized) trap invariants. Computing trap invariants can be done via a syntactic transformation of the logical formula describing the architecture of the system and the result is expressed using the quantifier-free fragment of boolean algebra with cardinality constraints [START_REF] Kuncak | Deciding boolean algebra with Presburger arithmetic[END_REF]. Thus invariant computation is fairly cheap and the verification problem (proving the emptiness of the intersection between the invariant and the set of error states) is reduced to the unsatisfiability of a cardinality constraint. In practice, this check can be carried out quite efficiently by existing tools, such as CVC4 [START_REF] Barrett | Computer Aided Verification, 23rd International Conference, CAV 2011, Proceedings[END_REF].

We briefly describe our approach below. A system is the composition of a finite number of component instances of given types, using interactions that follow the Behaviour-Interaction-Priorities (BIP) paradigm [START_REF] Basu | Rigorous componentbased system design using the BIP framework[END_REF]. To simplify the technical part, we assume that components and interactions are finite abstractions of real-life systems. An instance is a finite-state transition system whose edges are labeled by ports. The instances communicate synchronously via a number of simultaneous interactions involving a set of ports each, such that no data is exchanged during interactions. If the number of instances in the system is fixed and known in advance, we say that the system is bounded, otherwise it is parametric.

For instance, the bounded system in Figure 1a consist of component types Semaphore, with one instance, and Task, with two instances. A semaphore goes from the free state r to the taken state s by an acquire action a, and viceversa from s to r by a release action e. A task goes from waiting w to busy u by action b and viceversa, by action f . For the bounded system in Figure 1a, the interactions are {a, b 1 }, {a, b 2 }, {e, f 1 } and {e, f 2 }, depicted with dashed lines. Since the number of instances is known in advance, we can view an interaction as a minimal satisfying valuation of the boolean formula Γ = (a ∧ b 1) ∨ (a ∧ b 2) ∨ (e ∧ f 1) ∨ (e ∧ f 2), where the port symbols are propositional variables. Because every instance has finitely many states, we can write a boolean formula ∆ = [¬r∨¬(w 1 ∨w 2)]∧[¬s∨¬(u 1 ∨u 2)], this time over propositional state variables, which defines the configurations in which all interactions are disabled (deadlock). Proving that no deadlock configuration is reachable from the initial configuration r ∧ w 1 ∧ w 2 , requires finding an over-approximation (invariant) I of the reachable configurations, such that the conjunction I ∧ ∆ is not satisfiable.

a e r a f 1 b 1 f 1 b 1 b 2 f 2 b 2 f 2 e s u 1 u 2 w 1 w 2 Semaphore Task1 Task2 Γ = a ∧ b 1 ∨ a ∧ b 2 ∨ e ∧ f 1 ∨ e ∧ f 2 (
The basic idea of our method, supported by the D-Finder deadlock detection tool [START_REF] Bensalem | D-finder: A tool for compositional deadlock detection and verification[END_REF] for bounded component-based systems, is to compute an invariant straight from the interaction formula, without going through costly abstract fixpoint iterations. The invariants we are looking for are in fact solutions of a system of boolean constraints Θ(Γ), of size linear in the size of Γ (written in DNF). These constraints capture the trap condition, namely that for each interaction in the system, if the pre-state of some port involved in the interaction is in the invariant, then the post-state of some (not necessarily the same) port of the interaction will be in the invariant. In our example, Θ(Γ) = i=1,2 (r ∨ w i) ↔ (s ∨ u i). Finding the (minimal) solutions of this constraint can be done, as currently implemented in D-Finder, by exhaustive model enumeration using a SAT solver. Here we propose a more efficient solution, which consists in writing Θ(Γ) in DNF and remove the negative literals from each minterm. In our case, this gives the invariant

I = (r ∨ s) ∧ i=1,2 (w i ∨ u i) ∧ (r ∨ u 1 ∨ u 2) ∧ (s ∨ w 1 ∨ w 2) and I ∧ ∆ is proved unsatisfiable using a SAT solver.
The main contribution of this paper is the generalization of this invariant generation method to the parametric case. To understand the problem, consider the parametric system from Figure 1, in which a Semaphore interacts with n Tasks, where n > 0 is not known in advance. The interactions are described by a fragment of first order logic, in which the ports are either propositional or monadic predicate symbols, in our case

Γ = [∃i. (a ∧ b(i))] ∨ [∃i. (e ∧ f (i))
]. This logic, called Monadic Interaction Logic (MIL), is also used to express the constraints Θ(Γ) and compute their solutions. In our case, we obtain

I = (r ∨ s) ∧ [∀i . w(i) ∨ u(i)] ∧ [r ∨ ∃i . u(i)] ∧ [s ∨ ∃i . w(i)].
As in the bounded case, we can give a parametric description of deadlock configurations ∆ = [¬r ∨ ¬∃i . w(i)] ∧ [¬s ∨ ¬∃i . u(i)] and prove that I ∧ ∆ is unsatisfiable, using the decidability of MIL, based on an early small model property result due to Löwenheim [START_REF] Lowenheim | Über Möglichkeiten im Relativkalkül[END_REF]. In practice, we avoid the model enumeration suggested by this result and check the satisfiability of such queries using a decidable theory of sets with cardinality constraints [START_REF] Kuncak | Deciding boolean algebra with Presburger arithmetic[END_REF], available in the CVC4 SMT solver [START_REF] Bansal | A new decision procedure for finite sets and cardinality constraints in SMT[END_REF].

The use of traps as invariants of the system, useful in proving safety properties, such as absence of deadlocks or mutual exclusion violations, is tightly connected to a semantic model that views a concurrent component-based system as a 1-safe Petri net, in which each place represents a local control state of a component and the presence of (at most) one token in the place indicates that the component is in that control state. In contrats, existing approaches [START_REF] German | Reasoning about systems with many processes[END_REF] consider general Petri nets, or equivalently vector addition systems, in which the tokens in a place represent the components that are in that control state. We consider 1-safe Petri nets of unbounded (parametric) size, in order to define the trap invariant by a first-order logic constraint, as a natural generalization of the propositional (boolean) constraint used to define traps in a bounded-size 1-safe Petri net [START_REF] Sifakis | Structural properties of petri nets[END_REF].

The paper is structured as follows: §2 presents existing results for checking deadlockfreedom of bounded systems using invariants, §3 formalizes the approach for computing invariants using MIL, §4 introduces cardinality constraints for invariant generation, §5 presents the integration of the above results within a verification technique for parametric systems and §6 reports on experiments carried out with a prototype tool. Finally, §7 presents concluding remarks and future work directions.

A short version of the paper has been published in [START_REF] Bozga | Checking deadlock-freedom of parametric component-based systems[END_REF]. This extended version includes the proofs for all technical results related to cardinality constraints, some of them being non-trivial to obtain and potentially useful for applications beyond the scope of this paper.

Bounded Component-based Systems

In this section, we recall the definition of bounded component-based systems, their execution semantics based on 1-safe Petri nets and the trap invariant synthesis method in this context [START_REF] Bensalem | D-finder: A tool for compositional deadlock detection and verification[END_REF]. The next section (3) is concerned with the generalization of these results to the parametric case, in which the number of components is finite but unknown.

A component is a tuple C = P, S, s 0 , ∆ , where P = {p, q, r, . . .} is a finite set of ports, S is a finite set of states, s 0 ∈ S is an initial state and ∆ ⊆ S × P × S is a set of transitions written s p -→ s . To simplify the technical details, we assume there are no two different transitions with the same port, i.e. if s

1 p 1 -→ s 1 , s 2 p 2 -→ s 2 ∈ ∆ and s 1 = s 2 or s 1 = s 2 then p 1 = p 2 .
In general, this restriction can be lifted, at the cost of cluttering the presentation.

A bounded system S = C 1 , . . . , C n , Γ consists of a fixed number (n) of components C k = P k , S k , s 0 k , ∆ k and an interaction formula Γ, describing the allowed interactions. Since the number of components is known in advance, we write interaction formulae using boolean logic over the set of propositional variables BVar

def = n k=1 (P k ∪ S k).
A boolean interaction formula is either a ∈ BVar, f 1 ∧f 2 or ¬f 1 , where f i are formulae, for i = 1, 2, respectively. We define the usual shorthands

f 1 ∨ f 2 def = ¬(¬f 1 ∧ ¬f 2), f 1 → f 2 def = ¬f 1 ∨ f 2 , f 1 ↔ f 2 def = (f 1 → f 2) ∧ (f 2 → f 1)
. A literal is either a variable or its negation and a minterm is a conjunction of literals. A formula is in disjunctive normal form (DNF) if it is written as n i=1 mi j=1 ij , where ij is a literal. A formula is positive if and only if each variable occurs under an even number of negations, or, equivalently, its DNF forms contains no negative literals. We assume interaction formulae of bounded systems to be always positive. As will be explained next, this restriction loses no generality.

A boolean valuation β : BVar → { , ⊥} maps each propositional variable to either true () or false (⊥). We write β |= f if and only if f = , when replacing each boolean variable a with β(a) in f . We say that β is a model of f in this case and write f ≡ g for

[[f]] = [[g]], where [[f]] def = {β | β |= f }. Given two valuations β 1 and β 2 we write β 1 ⊆ β 2 if and only if β 1 (a) = implies β 2 (a) = , for each variable a ∈ BVar. We write f ≡ µ g for [[f]] µ = [[g]] µ , where [[f]] µ def = {β ∈ [[f]] | for all β : β ⊆ β and β = β only if β ∈ [[f]]} is the set of minimal models of f .
In the rest of this section, we fix a bounded system S = C 1 , . . . , C n , Γ , where

C k = P k , S k , s 0 k , ∆ k , for all k ∈ [1, n]
and Γ is a positive boolean formula, over propositional variables denoting ports. The semantics of an interaction formula is given by the set of its minimal models. For this reason, it is sufficient to consider positive formulae only, for the description of the interactions in a bounded component-based system.

Execution Semantics of Bounded Systems

We use 1-safe marked Petri Nets to define the set of executions of a bounded system. A Petri Net (PN) is a tuple N = S, T, E , where S is a set of places, T is a set of transitions, S ∩ T = ∅, and E ⊆ S × T ∪ T × S is a set of edges. The elements of S ∪ T are called nodes. Given nodes m, n ∈ S ∪ T , we write E(m, n)

def = 1 if (m, n) ∈ E and E(m, n) def = 0, otherwise. For a node n, let • n def = {m ∈ S ∪ T | E(m, n) = 1}, n • def = {m ∈ S ∪ T | E(n, m) = 1}
and lift these definitions to sets of nodes, as usual.

A marking for a PN N = S, T, E is a function m : S → N. A transition t is enabled in m if and only if m(s) > 0 for each place s ∈ • t. The transition relation of N is defined as follows. For all markings m, m and all transitions t, we write m t -→ m whenever t is enabled in m and m (s) = m(s) -E(s, t) + E(t, s), for all s ∈ S. Given two markings m and m , a finite sequence of transitions σ = t 1 , . . . , t n is a firing sequence, written m σ -→ m if and only if either (i) n = 0 and m = m , or (ii) n ≥ 1 and there exist markings m 1 , . . . , m n-1 such that m

t 1 -→ m 1 . . . m n-1 tn -→ m .
A marked Petri net is a pair N = (N, m 0), where m 0 is the initial marking of N = S, T, E . A marking m is reachable in N if and only if there exists a firing sequence σ such that m 0 σ -→ m. We denote by R(N) the set of reachable markings of N . A set of markings M is an invariant of N = (N, m 0) if and only if m 0 ∈ M and for each m t -→ m such that m ∈ M, we have m ∈ M. A marked PN N is 1-safe if m(s) ≤ 1, for each s ∈ S and each m ∈ R(N). In the following, we consider only 1-safe marked PNs. In this case, any (necessarily finite) set of reachable markings can be defined by a boolean formula, which identifies markings with the induced boolean valuations.

A marking m is a deadlock if for no marking m and no transition t, do we have m

only if R(N) ∩ D(N) = ∅. A sufficient condition for deadlock freedom is M ∩ D(N) = ∅, for some invariant M of N .
The set of executions of the bounded system S is given by the 1-safe marked PN N S = (N, m 0), where N = (-→ s i ∈ ∆ i and β(p i) = . Moreover, nothing else is in T or E.

n i=1 S i , T, E), m 0 (s) = 1 if
For example, the marked PN from Figure 2 describes the set of executions of the bounded system from Figure 1a. Note that each transition of the PN corresponds to a minimal model of the interaction formula Γ = (a ∧ b 1) ∨ (a ∧ b 2) ∨ (e ∧ f 1) ∨ (e ∧ f 2), or equivalently, to the set of (positive) literals of some minterm in the DNF of Γ.

Proving Deadlock Freedom of Bounded Systems

A bounded system S is deadlock-free if and only if its corresponding marked PN N S is deadlock-free. In the following, we prove deadlock-freedom of a bounded system, by defining a class of invariants that are particularly useful for excluding unreachable deadlock markings.

Given a Petri Net N = (S, T, E), a set of places W ⊆ S is called a trap if and only if W • ⊆ • W . A trap W of N is a marked trap of the marked PN N = (N, m 0) if and only if m 0 (s) = 1 for some s ∈ W . A minimal marked trap is a marked trap such that none of its strict subsets is a marked trap. A marked trap defines an invariant of the PN because some place in the trap will always be marked, no matter which transition is fired. The trap invariant of N is the least set of markings that mark each trap of N . Clearly, the trap invariant of N subsumes the set of reachable markings of N , because the latter is the least invariant of N and invariants are closed under intersection 3 . Lemma 1. Given a bounded system S, the boolean formula:

Trap(N S) def = { k i=1 s i | {s 1 , . . . , s k } is a marked trap of N S }
defines an invariant of N S . 3 The intersection of two or more invariants is again an invariant.

Proof. Let N S = (N, m 0), where N = (S, T, E). First, we prove that m 0 |= Trap(N S). Let S = {s 1 , . . . , s k } be a marked trap of N S . Since S is marked, m 0 (s i) = 1 for some i ∈ Next, we describe a method for computing trap invariants that does not explicitly enumerate all the marked traps of a marked PN. First, we consider a trap constraint Θ(Γ), derived from the interaction formula Γ, in linear time. By slight abuse of notation, we define, for a given port p ∈ P i of the component C i , for some i ∈ [1, n], the pre-and post-state of p in C i as • p def = s and p • def = s , where s p -→ s is the unique rule4 involving p in ∆ i , and

• p = p • def = ⊥ if there is no such rule. Assuming that the interaction formula is written in DNF as Γ = N k=1 M k =1 p k , we define the trap constraint: Θ(Γ) def = N k=1 M k =1 • p k → M k =1 p k •
Here N is the number of clauses of the interaction formula, or equivalently, the number of interactions in the bounded component-based system, and M k is the number of ports in the k-th interaction. We also consider the formula Init(S) def = n k=1 s 0 k defining a non-empty intersection with initial marking of the system, and prove the following: Lemma 2. Let S be a bounded system with interaction formula Γ and β be a boolean valuation. Then

β ∈ [[Θ(Γ) ∧ Init(S)]] iff {s | β(s) = } is a marked trap of N S . Moreover, β ∈ [[Θ(Γ) ∧ Init(S)]] µ iff {s | β(s) = } is a minimal marked trap of N S .
Proof.

Let C i = P i , S i , s 0 i , ∆ i , for all i ∈ [1, n], N S = (N, m 0) and N = Q, T, E , where Q = n i=1 S i and T = {t β | β ∈ [[Γ]]
µ }. Given a trap S ⊆ Q of N , we have the following equivalences:

S • ⊆ • S ⇐⇒ s∈S [s ∈ S → {t ∈ T | (s, t) ∈ E} ⊆ {t ∈ T | (t, s) ∈ E}] ⇐⇒ s∈S [s ∈ S → (t∈T s ∈ • t → s ∈S s ∈ S ∧ s ∈ t •)] ⇐⇒ s∈S t∈T (s ∈ S ∧ s ∈ • t → s ∈S s ∈ S ∧ s ∈ t •) ⇐⇒ t∈T (s ∈ • t s ∈ S → s ∈t • s ∈ S) Assume that [s ∈ S] is a propositional variable. Then for each transition t β ∈ T , we have: s ∈ • t β [s ∈ S] ⇐⇒ β(p)= • p s ∈ t β • [s ∈ S] ⇐⇒ β(p)= p • Clearly, for any valuation β ∈ [[Θ(Γ)]] of the propositional variables corresponding to the places in Q that satisfies Θ(Γ), the set S β = {s | β(s) = } is a trap of N . If, moreover, β |= n i=1 s 0 i then S β is a marked trap of N S . Furthermore, β is a minimal model of Θ(Γ) ∧ n i=1 s 0 i iff for each valuation β ⊆ β, such that β = β, we have β |= Θ(Γ) ∧ n i=1 s 0 i . But then, no strict subset of {s | β(s) = } is a marked trap of N S , thus {s | β(s) = } is a minimal marked trap of N S .
Because Θ(Γ) and Init(S) are boolean formulae, it is, in principle, possible to compute the trap invariant Trap(N S) by enumerating the (minimal) models of Θ(Γ) ∧ Init(S) and applying the definition from Lemma 1. However, model enumeration is inefficient and, moreover, does not admit generalization for the parametric case, in which the size of the system is unknown. For these reasons, we prefer a computation of the trap invariant, based on two symbolic transformations of boolean formulae, described next.

For a formula f we denote by f + the positive formula obtained by deleting all negative literals from the DNF of f . In lack of a better term, we shall call this operation positivation. Second, for a positive boolean formula f , we define the formula (f)

∼ recursively on the structure of f , as follows:

(f 1 ∧ f 2) ∼ def = f 1 ∼ ∨ f 2 ∼ , (f 1 ∨ f 2) ∼ def = f 1 ∼ ∧ f 2 ∼
and a ∼ def = a, for any a ∈ BVar. Note that f ∼ is equivalent to the negation of the formula obtained from f by substituting each variable a with ¬a in f . This operation, called dualization, applies only to positive formulae and is undefined elsewhere. Lemma 3. Given boolean formulae f and g, we have f ≡ g only if

(f +) ∼ ≡ (g +) ∼ .
Proof. If f ≡ g, the set of minterms in the DNF of f is identical to the one of g, modulo commutativity of conjunctions. Then the set of minterms in the DNF of f + equals the one of g + , thus f + ≡ g + . Second, the CNF of (f +) ∼ is the same of the CNF of (g +) ∼ , as both are obtained directly from the DNF of f + and g + , respectively, by interchanging disjunctions with conjunctions.

The following theorem gives the main result of this section, the symbolic computation of the trap invariant of a bounded system, directly from its interaction formula. Theorem 1. For any bounded system S, with interaction formula Γ, we have:

Trap(N S) ≡ [Θ(Γ) ∧ Init(S)] + ∼
Proof. For a boolean valuation β, we denote by µ β the complete minterm β(a)= a ∧ β(a)=⊥ ¬a. By Lemma 2 we obtain the equivalence:

Θ(Γ) ∧ Init(N S) ≡ µ γ | {s | γ(s) = } is a marked trap of N and thus: [Θ(Γ) ∧ Init(N S)] + ≡ µ γ + | {s | γ(s) = } is a marked trap of N S ≡ k i=1 s i | {s 1 , . . . , s k } is a marked trap of N S ≡ (Trap(N S)) ∼
The equivalence of the statement is obtained by applying Lemma 3.

Just as any invariants, trap invariants can be used to prove absence of deadlocks in a bounded system. Assuming, as before, that the interaction formula is given in DNF as Γ = N k=1 M k =1 p k , we define the set of deadlock markings of N S by the formula ∆(Γ)

def = N k=1 M k =1 ¬(• p k).
This is the set of configurations in which all interactions are disabled. With this definition, proving deadlock freedom amounts to proving unsatisfiability of a boolean formula.

Corollary 1. A bounded system S with interaction formula Γ is deadlock-free if the boolean formula [Θ(Γ) ∧ Init(S)]

+ ∼ ∧ ∆(Γ) is unsatisfiable.
Proof. Let N S = (N, m 0), where N = (S, T, E) and define the set of deadlock markings:

Dead (N S) def = t∈T s ∈ • t
¬s Suppose, by contradiction, that S is not deadlock-free, thus R(N S) ∧ Dead (N S) has a satisfying valuation β. Because Trap(N S) defines an invariant of N S and R(N S) defines its least invariant, we have

R(N S) → Trap(N S) thus β |= Trap(N S) ∧ Dead (N S). By Theorem 1, we have Trap(N S) → [Θ(Γ) ∧ Init(N S)] + ∼
and, from the definition of N S , one also obtains that Dead

(N S) → ∆(Γ) leading to β |= [Θ(Γ) ∧ Init(N S)] + ∼ ∧ ∆(Γ), which contradicts [Θ(Γ) ∧ Init(N S)] + ∼ ∧ ∆(Γ) → ⊥.

Parametric Component-based Systems

From now on we shall focus on parametric systems, consisting of a fixed set of component types C 1 , . . . , C n , such that the number of instances of each type is not known in advance. These numbers are given by a function M : [1, n] → N, where M(k) denotes the number of components of type C k that are active in the system. To simplify the technical presentation of the results, we assume that all instances of a component type are created at once, before the system is started 5 . For the rest of this section, we fix a parametric system S = C 1 , . . . , C n , M, Γ , where each component type C k = P k , S k , s 0 k , ∆ k has the same definition as a component in a bounded system and Γ is an interaction formula, written in the fragment of first order logic, defined next. Pred k . Moreover, we consider that Var k ∩Var = ∅ and Pred k ∩Pred = ∅, for all 1 ≤ k < ≤ n. For simplicity's sake, we assume that all predicate symbols in Pred are of arity one. For component types C k , such that M(k) = 1 and predicate symbols pred ∈ Pred k , we shall write pred instead of pred(1), as in the interaction formula of the system from Figure 1b. The syntax of the monadic interaction logic (MIL) is given below:

Monadic Interaction Logic

i, j ∈ Var index variables φ := i = j | pred(i) | φ 1 ∧ φ 2 | ¬φ 1 | ∃i . φ 1
where, for each predicate atom pred(i), if pred ∈ Pred k and i ∈ Var then k = . We use the shorthands ∀i . φ 1 def = ¬(∃i . ¬φ 1) and distinct(i 1 , . . . , i m) def = 1≤j< ≤m ¬i j = i6 . A sentence is a formula in which all variables are in the scope of a quantifier. A formula is positive if each predicate symbol occurs under an even number of negations. The semantics of MIL is given in terms of structures I = (U, ν, ι), where:

• U def = [1, max n k=1 M(k)]
is the universe of instances, over which variables range, • ν : Var → U is a valuation mapping variables to elements of the universe, • ι : Pred → 2 U is an interpretation of predicates as subsets of the universe. For a structure I = (U, ν, ι) and a formula φ, the satisfaction relation I |= φ is defined as:

I |= ⊥ ⇔ never I |= i = j ⇔ ν(i) = ν(j) I |= p(i) ⇔ ν(i) ∈ ι(p) I |= φ 1 ∧ φ 2 ⇔ I |= φ 1 and I |= φ 2 I |= ¬φ 1 ⇔ I |= φ 1 I |= ∃i . φ 1 ⇔ (U, ν[i ← m], ι) |= φ 1 for some m ∈ [1, M(k)] provided that i ∈ Var k
where ν[i ← m] is the valuation that acts as ν, except for i, which is assigned to m. Whenever I |= φ, we say that I is a model of φ. It is known that, if a MIL formula has a model, then it has a model with universe of cardinality at most exponential in the size (number of symbols) of the formula [START_REF] Lowenheim | Über Möglichkeiten im Relativkalkül[END_REF]. This result, due to Löwenheim, is among the first decidability results for a fragment of first order logic. Given structures]} of models and minimal models of a MIL formula, respectively. Given formulae φ 1 and φ 2 , we write

I i = (U, ν i , ι i), for i = 1, 2, we write I 1 ⊆ I 2 iff ι 1 (p) ⊆ ι 2 (p)
φ 1 ≡ φ 2 for [[φ 1]] = [[φ 2]] and φ 1 ≡ µ φ 2 for [[φ 1]] µ = [[φ 2]] µ .

Execution Semantics of Parametric Systems

We consider the interaction formulae Γ of parametric systems to be finite disjunctions of interaction formulae clauses C of the form below:

∃i 1 . . . ∃i . ϕ ∧ j=1 p j (i j) ∧ +m j= +1 ∀i j . ψ j → p j (i j) (1)
where ϕ, ψ +1 , . . . , ψ +m are conjunctions of equalities and disequalities involving index variables such that moreover for any distinct j 1 , j 2 such that j 1 < j 2 and p j1 , p j2 ∈ Pred k it holds either (a) j 1 ≤ , j 2 ≤ and ϕ implies ¬i j1 = i j2 or (b) j 1 ≤ , < j 2 and ψ j2 implies ¬i j1 = i j2 . Intuitively, the formulae (1) state that there are at most component instances that engage in a valid multiparty rendez-vous interaction on ports p 1 (i 1), . . . , p (i), together with a broadcast to the ports p +1 (i +1), . . . , p +m (i +m) of the instances that fulfill the constraints ψ +1 , . . . , ψ +m . Due to the enforced constraints, all these ports belong to distinct components. Observe that, if m = 0, the above formula corresponds to a multiparty (generalized) rendez-vous interaction ∃i 1 . . . ∃i . ϕ∧ j=1 p j (i j).

An example of peer-to-peer rendez-vous is the parametric system from Figure 1. Another example of broadcast is given below.

Example 1. Consider the parametric system obtained from an arbitrary number of Worker components (Figure 3), where C 1 = Worker , Var 1 = {i, i 1 , i 2 , j} and Pred 1 = {a, b, f, u, w}. Any pair of instances can jointly execute the b (begin) action provided all others are taking the a (await) action. Any instance can also execute alone the f (finish) action.

...

w(i 1) u(i 1) f (i 1)
a(i 1)

f (i 1) b(i 1)
Worker(i 1)

...

w(i 2) u(i 2) f (i 2) a(i 2) f (i 2) b(i 2)
Worker(i 2)

...

w(j) u(j) f (j) a(j) f (j) b(j) Worker(j) b(j)
... The execution semantics of a parametric system S is the marked PN N S = (N, m 0), where N = (

a(j) a(i 2) a(i 1) b(i 1) b(i 2) Γ = [∃i 1 ∃i 2 . i 1 = i 2 ∧ b(i 1) ∧ b(i 2) ∧ ∀j . j = i 1 ∧ j = i 2 → a(j)] ∨ ∃i.f (i)
n k=1 S k ×[1, M(k)], T, E), m 0 ((s 0 k , i)) = 1, for all k ∈ [1, n] and i ∈ [1, M(k)]
, and the sets of transitions T and edges E are defined next. For each interaction formulae clause C belonging to Γ, for each minimal model

I = (U, ν, ι) ∈ [[C]]
µ , we have a transition t I ∈ T and the edges ((s i , k), t I), (t I ,

(s i , k)) ∈ E for all i ∈ [1, n] such that s i p i -→ s i ∈ ∆ i and k ∈ ι(p i). Moreover, nothing else is in T or E.
As a remark, unlike in the case of bounded systems, the size of the marked PN N S , that describes the execution semantics of a parametric system S, depends on the maximum number of instances of each component type. The definition of the trap invariant Trap(N S) is the same as in the bounded case, except that, in this case, the size of the boolean formula depends on the (unbounded) number of instances in the system. The challenge, addressed in the following, is to define trap invariants using MIL formulae of a fixed size.

Computing Parametric Trap Invariants

To start with, we define the trap constraint Θ(Γ) of an interaction formula Γ consisting of a finite disjunction of (1) clauses, as the finite conjunction of formulae of the form:

∀i 1 . . . ∀i . ϕ ∧ j=1 • p j (i j) ∨ +m j= +1 ∃i j . ψ j ∧ • p j (i j) → j=1 p j • (i j) ∨ +m j= +1 ∃i j . ψ j ∧ p j • (i j)
where, for a port p ∈ P k of some component type C k ,

• p(i) and p(i)

• denote the unique predicate atoms s(i) and s (i), such that s Example 2. The interaction formula of the parametric (rendez-vous) system in Figure 1b is

Γ = ∃i. (a ∧ b(i)) ∨ ∃i. (e ∧ f (i))
The corresponding trap constraint is obtained by applying the syntactic transformation, separately on the two clauses, and taking their conjunction, that is:

Θ(Γ) = ∀i. [(• a ∨ • b(i))] → [(a • ∨ b • (i))] ∧ ∀i. [(• e ∨ • f (i))] → [(e • ∨ f • (i))] = ∀i. [r ∨ w(i)] → [s ∨ u(i)] ∧ ∀i. [s ∨ u(i)] → [r ∨ w(i)]
Analogously, the interaction formula for the parametric (broadcast) system in Figure 3 is:

Γ = [∃i 1 ∃i 2 . i 1 = i 2 ∧ b(i 1) ∧ b(i 2) ∧ ∀j . j = i 1 ∧ j = i 2 → a(j)] ∨ ∃i.f (i)
Notice that the first clause defines a broadcast interaction, and the second a unary (single port) interaction. The corresponding trap constraint is again obtained by applying the syntactic transformation separately on the two clauses, and taking their conjunction, that is:

Θ(Γ) = ∀i 1 .∀i 2 . [i 1 = i 2 ∧ (• b(i 1) ∨ • b(i 2) ∨ ∃j. (j = i 1 ∧ j = i 2 ∧ • a(j)))] → [(b • (i 1) ∨ b • (i 2) ∨ ∃j. (j = i 1 ∧ j = i 2 ∧ a • (j)))] ∀i. [• f (i) → f • (i)] = ∀i 1 .∀i 2 . [i 1 = i 2 ∧ (w(i 1) ∨ w(i 2) ∨ ∃j. (j = i 1 ∧ j = i 2 ∧ w(j)))] → [(u(i 1) ∨ u(i 2) ∨ ∃j. (j = i 1 ∧ j = i 2 ∧ w(j)))] ∀i. [u(i) → w(i)]
To prove the correctness of the above parametric trap constraint definition, we define a translation of MIL formulae into boolean formulae of unbounded size. Given a function M : [1, n] → N, the unfolding of a MIL sentence φ is the boolean formula B M (φ) obtained by replacing:

• each existential quantifier ∃i . ψ(i), for i ∈ Var k , by a finite disjunction

M(k) =1 ψ[/i],
• each universal quantifier ∀i . ψ(i), for i ∈ Var k , by a finite conjunction

M(k) =1 ψ[/i],
where the substitution of the constant ∈ M(k) for the variable i is defined recursively as usual, except for pred(i)[/i] def = (pred,), which is a propositional variable. Further, we relate structures to boolean valuations of unbounded sizes as follows. For a structure I = (U, ν, ι) we define the boolean valuation β I ((pred,)) = if and only if ∈ ι(pred), for each predicate symbol pred and each integer constant . Conversely, for each valuation β of the propositional variables (pred,), there exists a structure µ . The other direction is symmetric.

I β = (U, ν, ι) such that ι(pred) def = { | β((pred,)) = },
Considering the MIL formula Init(S)

def = n k=1 ∃i k . s 0 k (i k)
, that defines a non-empty intersection with the set of initial configurations of a parametric system S, the following lemma proves the correctness of the above parametric trap constraint definition: Lemma 5. Let S be a parametric system with interaction formula Γ and I be a structure.

Then I |= Θ(Γ) ∧ Init(S) iff {(s, k) | k ∈ ι(s)} is a marked trap of N S . Moreover, I ∈ [[Θ(Γ) ∧ Init(S)]] µ iff {(s, k) | k ∈ ι(s)} is a minimal marked trap of N S .
Proof. Let C k = P k , S k , s 0 k , ∆ k and define the bounded system:

U(S) def = {C k,i | k ∈ [1, n], i ∈ [1, M(k)]}, B M (Γ) C k,i def = P k × {i}, S k × {i}, s 0 k × {i}, {(s, i) (p,i) --→ (s , i) | s p -→ s ∈ ∆ k }
It is not hard to prove that N S is the same as N U (S) , thus their marked traps coincide.

The following equivalences follow from Lemma 4: As we aim at computing an invariant able to prove safety properties, such as deadlock freedom, independently of how many components are present in the system, we must define the trap invariant using a formula depending exclusively on Γ, i.e. not on M.

I |= Θ(Γ) ⇐⇒ β I |= Θ(B M (Γ)) I |= Init(S) ⇐⇒ β I |= Init(U(S)) Moreover, {(s, k) | k ∈ ι(s)} = {(s, k) | β I ((s, k)) = }
Observe first that Trap(N S) can be equivalently defined using only the minimal marked traps of N S , which, by Lemma 5, are exactly the sets

{(s, k) | k ∈ ι(s)}, defined by some structure (U, ν, ι) ∈ [[Θ(Γ) ∧ Init(S)]] µ . Assuming that the set of structures [[Θ(Γ) ∧ Init(S)]]
µ , or an over-approximation of it, can be defined by a positive MIL formula, the trap invariant is defined using a generalization of boolean dualisation to predicate logic, defined recursively, as follows:

(i = j) ∼ def = ¬i = j (φ 1 ∨ φ 2) ∼ def = φ 1 ∼ ∧ φ 2 ∼ (∃i . φ 1) ∼ def = ∀i . φ 1 ∼ (¬i = j) ∼ def = i = j (φ 1 ∧ φ 2) ∼ def = φ 1 ∼ ∨ φ 2 ∼ (∀i . φ 1) ∼ def = ∃i . φ 1 ∼ p(i) ∼ def = p(i)
The crux of the method is the ability of defining, given an arbitrary MIL formula φ, a positive MIL formula φ ⊕ that preserve its minimal models, formally φ ≡ µ φ ⊕ . Because of quantification over unbounded domains, a MIL formula φ does not have a disjunctive normal form and thus one cannot define φ ⊕ by simply deleting the negative literals in DNF, as was done for the definition of the positivation operation (.) + , in the propositional case. For now we assume that the transformation (.)

⊕ of monadic predicate formulae into positive formulae preserving minimal models is defined (a detailed presentation of this step is given next in §4) and close this section with a parametric counterpart of Theorem 1.

Before giving the proof of the main result of this section, we shall be needing a few technical lemmas. For a set S of boolean valuations, let S↑ obtain the following equivalences:

(Θ(B M (Γ)) ∧ B M (Init(S))) + ∼ since Θ(B M (Γ)) ≡ B M (Θ(Γ)) ≡ (B M (Θ(Γ)) ∧ B M (Init(S))) + ∼ ≡ (B M (Θ(Γ) ∧ Init(S))) + ∼ by Lemma 7 ≡ B M (Θ(Γ) ∧ Init(S)) ⊕ ∼ ≡ B M Θ(Γ) ∧ Init(S) ⊕ ∼

Cardinality Constraints

This section is concerned with the definition of a positivation operator (.) ⊕ for MIL sentences, whose only requirements are that φ ⊕ is positive and φ ≡ µ φ ⊕ . For this purpose, we use a logic of quantifier-free boolean cardinality constraints [START_REF] Kuncak | Deciding boolean algebra with Presburger arithmetic[END_REF][START_REF] Bansal | A new decision procedure for finite sets and cardinality constraints in SMT[END_REF] as an equivalent intermediate language, on which the positive formulae are defined. The translation of MIL into cardinality constraints is done by an equivalence-preserving quantifier elimination procedure, described in §4.1. As a byproduct, since the satisfiability of quantifier-free cardinality constraints is NP-complete [START_REF] Kuncak | Deciding boolean algebra with Presburger arithmetic[END_REF] and integrated with SMT [START_REF] Bansal | A new decision procedure for finite sets and cardinality constraints in SMT[END_REF], we obtain a practical decision procedure for MIL that does not use model enumeration, as suggested by the small model property [START_REF] Lowenheim | Über Möglichkeiten im Relativkalkül[END_REF]. Finally, the definition of a positive MIL formula from a boolean combination of quantifier-free cardinality constraints is given in §4.2.

We start by giving the definition of cardinality constraints. Given the set of monadic predicate symbols Pred, a boolean term is generated by the syntax:

t := p ∈ Pred | ¬t 1 | t 1 ∧ t 2 | t 1 ∨ t 2
When there is no risk of confusion, we borrow the terminology of boolean logic and say that a term is in DNF if it is a disjunction of conjunctions (minterms). We also write t 1 → t 2 if and only if the implication is valid when t 1 and t 2 are interpreted as boolean formulae, with each predicate symbol viewed as a propositional variable. Two boolean terms t 1 and t 2 are said to be compatible if and only if t 1 ∧ t 2 is satisfiable, when viewed as a boolean formula.

For a boolean term t and a first-order variable i ∈ Var, we define the shorthand t(i) recursively, as (¬t 1)(i)

def = ¬t 1 (i), (t 1 ∧ t 2)(i) def = t 1 (i) ∧ t 2 (i) and (t 1 ∨ t 2)(i) def = t 1 (i) ∨ t 2 (i).
Given a positive integer n ∈ N and t a boolean term, we define the following cardinality constraints, by MIL formulae:

|t| ≥ n def = ∃i 1 . . . ∃i n . distinct(i 1 , . . . , i n) ∧ n j=1 t(i j) |t| ≤ n def = ¬(|t| ≥ n + 1)
We shall further use cardinality constraints with n = ∞, by defining |t| ≥ ∞ def = ⊥ and |t| ≤ ∞ def = . The intuitive semantics of cardinality constraints is formally defined in terms of structures I = (U, ν, ι) by the semantics of monadic predicate logic, given in the previous. For instance, |p ∧ q| ≥ 1 means that the intersection of the sets p and q is not empty, whereas |¬p| ≤ 0 means p contains all elements from the universe.

Quantifier Elimination

Given a sentence φ, written in MIL, we build an equivalent boolean combination of cardinality constraints qe(φ), using quantifier elimination. Actually, this construction is a direct consequence of the quantifier elimination procedure for the first-order theory of Boolean algebra [START_REF] Skolem | Untersuchungen über die axiome des klassenkalküls and über "produktations-und summationsprobleme", elche gewisse klassen von aussagen betreffen[END_REF][START_REF] Lowenheim | Über Möglichkeiten im Relativkalkül[END_REF]. We describe the elimination of a single existential quantifier and the generalization to several existential or universal quantifiers is immediate. Assume that φ = ∃i 1 . k∈K ψ k (i 1 , . . . , i m), where K is a finite set of indices and, for each k ∈ K, ψ k is a quantifier-free conjunction of atomic propositions of the form i j = i , P (i j) and their negations, for some j, ∈ [1, m]. We write, equivalently, φ ≡ k∈K ϕ k ∧ ∃i 1 . θ k (i 1 , . . . , i m), where ϕ k does not contain occurrences of i 1 and θ k is a conjunction of literals of the form P (i 1), ¬P (i 1), i 1 = i j and ¬i 1 = i j , for some j ∈ [2, m]. For each k ∈ K, we distinguish the following cases:

1. if i 1 = i j is a consequence of θ k , for some j > 1, let qe(∃i

1 . θ k) def = θ k [i j /i 1]. 2. else, θ k = j∈J k ¬i 1 = i j ∧ t k (i 1) for some J k ⊆ [2,
m] and boolean term t k , and let:

qe

(∃i 1 . θ k) def = J⊆J k distinct {i j } j∈J ∧ j∈J t k (i j) → |t k | ≥ ||J|| + 1 qe(φ) def = k∈K ϕ k ∧ qe(∃i 1 . θ k) Example 3.
The following examples illustrate quantifier elimination as defined above:

∃i. P (i) ≡ |P | ≥ 1 ∃i. ¬P (i) ≡ |¬P | ≥ 1 ∃i. P (i) ∧ Q(i) ≡ |P ∧ Q| ≥ 1 ∃i. P (i) ∧ ¬Q(i) ≡ |P ∧ ¬Q| ≥ 1 ∃i. ¬i = j ∧ P (i) ≡ (P (j) → |P | ≥ 2) ∧ (|P | ≥ 1) ∃i. ¬i = j ∧ P (i) ∧ ¬Q(i) ≡ ((P (j) ∧ ¬Q(j)) → |P ∧ ¬Q| ≥ 2) ∧ (|P ∧ ¬Q| ≥ 1) ∃i. ¬i = j ∧ ¬i = k ∧ P (i) ≡ ((¬j = k ∧ P (j) ∧ P (k)) → |P | ≥ 3) ∧ (P (j) → |P | ≥ 2) ∧ (P (k) → |P | ≥ 2) ∧ |P | ≥ 1
Universal quantification is dealt with using the duality qe(∀i 1 . ψ) def = ¬qe(∃i 1 . ¬ψ). For a prenex formula φ = Q n i n . . . Q 1 i 1 . ψ, where Q 1 , . . . , Q n ∈ {∃, ∀} and ψ is quantifierfree, we define, recursively qe(φ)

def = qe(Q n i n . qe(Q n-1 i n-1 . . . Q 1 i 1 . ψ)).
It is easy to see that, if φ is a sentence, qe(φ) is a boolean combination of cardinality constraints. The correctness of the construction is a consequence of the following lemma:

Lemma 8. Given a MIL formula φ = Q n i n . . . Q i i 1 . ψ, where Q 1 , . . . , Q n ∈ {∀, ∃}
and ψ is a quantifier-free conjunction of equality and predicate atoms, we have φ ≡ qe(φ).

Proof. We give the proof only for the case n = 1 and Q 1 = ∃, the general case being an easy consequence. Suppose that ψ = ϕ ∧ θ(i 1), where i 1 does not occur within ϕ. If θ |= i 1 = i j for some j = 1 then ∃i 1 . θ ≡ θ[i j /i 1]. Otherwise, let θ = j∈J ¬i 1 = i j ∧ t j (i 1), for some boolean terms t j and show:

∃i 1 . θ ≡ K⊆J distinct({i k } k∈K) ∧ k∈K t(i k) → |t| ≥ ||K|| + 1 "⇒" Let (U, ν[i 1 ← u], ι) |= j∈J ¬i 1 = i j ∧ t(i 1)
, for some u ∈ U and let K be the maximal subset of J such that ν(i k1) = ν(i k2), for all k 1 = k 2 ∈ K and ν(i j) ∈ ι(t). Since, moreover, ν(i 1) ∈ {ν(i k)} k∈k , we obtain ||ι(t)|| ≥ ||K|| + 1. "⇐" Let (U, ν, ι) be a model of the right-hand side formula and let K ⊆ J be a set such that ν(x k1) = ν(x k2) for all k 1 = k 2 ∈ K and {ν(x k)} k∈K ∈ ι(t). Then, since ||ι(t)|| ≥ ||K|| + 1, there exists u ∈ ι(t) \ {ν(x k)} k∈K and thus (U,

ν[i 1 ← u], ι) |= j∈J ¬x 1 = x j ∧ t(x 1). Example 4. (contd. from Example 2) The constraint Θ(Γ) ∧ Init(S) for the parametric system in Figure 1b is ∀i. [r ∨ w(i)] → [s ∨ u(i)] ∧ ∀i. [s ∨ u(i)] → [r ∨ w(i)] ∧ (r ∨ ∃i. w(i))
Let focus on the quantifier elimination of the first term of the conjunction. First, we use the double negation duality to rewrite the universal quantifier into an existential one, then standard Boolean algebra rules such that to achieve miniscoping of the existential quantifier. The term is progressively rewritten as follows:

∀i. [r ∨ w(i)] → [s ∨ u(i)] ≡ ¬∃i. ¬([r ∨ w(i)] → [s ∨ u(i)]) ≡ ¬∃i. ((r ∨ w(i)) ∧ ¬(s ∨ u(i))) ≡ ¬∃i. ((r ∨ w(i)) ∧ ¬s ∧ ¬u(i)) ≡ ¬∃i. ((r ∧ ¬s ∧ ¬u(i)) ∨ (w(i) ∧ ¬s ∧ ¬u(i))) ≡ ¬(∃i. (r ∧ ¬s ∧ ¬u(i)) ∨ ∃i. (w(i) ∧ ¬s ∧ ¬u(i))) ≡ ¬((r ∧ ¬s ∧ ∃i. ¬u(i)) ∨ (¬s ∧ ∃i. (w(i) ∧ ¬u(i))))
We can now perform quantifier elimination by taking respectively ∃i. ¬u(i) ≡ |¬u| ≥ 1 and ∃i. (w(i) ∧ ¬u(i)) ≡ |w ∧ ¬u| ≥ 1. Therefore, the result of quantifier elimination of the first term proceeds as follows:

∀i. [r ∨ w(i)] → [s ∨ u(i)] ≡ ¬((r ∧ ¬s ∧ |¬u| ≥ 1) ∨ (¬s ∧ |w ∧ ¬u| ≥ 1)) ≡ ¬(r ∧ ¬s ∧ |¬u| ≥ 1) ∧ ¬(¬s ∧ |w ∧ ¬u| ≥ 1) ≡ (¬r ∨ s ∨ |¬u| ≤ 0) ∧ (s ∨ |w ∧ ¬u| ≤ 0) ≡ s ∨ (¬r ∨ |¬u| ≤ 0) ∧ |w ∧ ¬u| ≤ 0 ≡ s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ (|¬u| ≤ 0 ∧ |w ∧ ¬u| ≤ 0) ≡ s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ |¬u| ≤ 0
In the last step, we used that |¬u| ≤ 0 implies |w ∧ ¬u| ≤ 0. Now, a similar result is obtained for the second term of our initial conjunction. Moreover, for the third term quantifier elimination can be directly applied by taking ∃i. w(i) ≡ |w| ≥ 1. Finally, the complete result of quantifier elimination within Θ(Γ) ∧ Init(S) is

(s ∨ (¬r ∧ |w ∧ ¬u| ≤ 0) ∨ |¬u| ≤ 0) ∧ (r ∨ (¬s ∧ |u ∧ ¬w| ≤ 0) ∨ |¬w| ≤ 0) ∧ (r ∨ |w| ≥ 1)
which, after transformation into disjunctive normal form and simplification, becomes:

(¬r ∧ ¬s ∧ |w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨ (¬r ∧ |w ∧ ¬u| ≤ 0 ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) ∨ (s ∧ r) ∨ (r ∧ |u| ≤ 0) ∨ (s ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) ∨ (¬s ∧ |¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨ (|¬u| ≤ 0 ∧ |¬w| ≤ 0 ∧ 1 ≤ |w|) .
The same procedure can be applied for the parametric system in Figure 3. As several (nested) variables are used in the definition of the trap constraint, and moreover subject to disequalities, quantifier elimination generates cardinality constraints of higher order (instead of 0 and 1 as for the previous example). The result after simplification and transformation into disjunctive normal form is

(|u ∧ ¬w| ≤ 0 ∧ 3 ≤ |w|) ∨ (|w ∧ ¬u| ≤ 1 ∧ |u ∧ ¬w| ≤ 0 ∧ 2 ≤ |w|) ∨ (|¬u| ≤ 1 ∧ |¬u ∧ ¬w| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) ∨ (|w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w|) .

Building Positive Formulae that Preserve Minimal Models

Let φ be a MIL formula, not necessarily positive. We shall build a positive formula φ ⊕ , such that φ ≡ µ φ ⊕ . By the result of the last section, φ is equivalent to a boolean combination of cardinality constraints qe(φ), obtained by quantifier elimination. Thus we assume w.l.o.g. that the DNF of φ is a disjunction of conjunctions of the form

i∈L |t i | ≥ i ∧ j∈U |t j | ≤ u j ,
for some sets of indices L, U and some positive integers { i } i∈L and {u j } j∈U .

For a boolean combination of cardinality constraints ψ, we denote by P(ψ) the set of predicate symbols that occur in a boolean term of ψ and by P + (ψ) (P -(ψ)) the set of predicate symbols that occur under an even (odd) number of negations in ψ.

The following proposition allows to restrict the form of φ even further, without losing generality: Proposition 1. Given MIL formulae φ 1 and φ 2 , for any positivation operator (.)

⊕ , the following hold:

1.

(φ 1 ∨ φ 2) ⊕ ≡ µ φ 1 ⊕ ∨ φ 2 ⊕ , 2. (φ 1 ∧ φ 2) ⊕ ≡ µ φ 1 ⊕ ∧ φ 2 ⊕ , provided that P(φ 1) ∩ P(φ 2) = ∅.
From now on, we assume that φ is a conjunction of cardinality constraints that cannot be split as φ = φ 1 ∧ φ 2 , such that P(φ 1) ∩ P(φ 2) = ∅.

Let us consider a cardinality constraint |t| ≥ that occurs in φ. Given a set P of predicate symbols, for a set of predicates S ⊆ P, the complete boolean minterm corresponding to S with respect to P is t P S def = p∈S p ∧ p∈P\S ¬p. Moreover, let S t def = {S ⊆ P(φ) | t S → t} be the set of sets S of predicate symbols for which the complete minterm t S implies t. Finally, each cardinality constraint |t| ≥ is replaced by the equivalent disjunction 7 , in which each boolean term is complete with respect to P(φ): Notice that, restricting the sets of predicates in S t to subsets of P(φ), instead of the entire set of predicates, allows to apply Proposition 1 and reduce the number of complete minterms to be considered. That is, whenever possible, we write each minterm

i∈L |t i | ≥ i ∧ j∈U |t j | ≤ u j in
the DNF of φ as ψ 1 ∧. . .∧ψ k , such that P(ψ i)∩P(ψ j) = ∅ for all 1 ≤ i < j ≤ k. In practice, this optimisation turns out to be quite effective, as shown by the small execution times of our test cases, reported in §6.

The second step is building, for each conjunction C = { S ≤ t P(φ) S ∧ t P(φ)

S

≤ u S | S ⊆ P(φ)}8 , as above, a positive formula C ⊕ , that preserves its set of minimal models

[[C]]
µ . The generalization to arbitrary boolean combinations of cardinality constraints is a direct consequence of Proposition 1. Let L + (φ) (resp. L -(φ)) be the set of positive boolean combinations of predicate symbols p ∈ P + (φ) (resp. ¬p, where p ∈ P -(φ)). Further, for a complete minterm t P S , we write t P S + (t P S -) for the conjunction of the positive (negative) literals in t P S . Then, we define:

C ⊕ def = |τ | ≥ t P S + →τ S | τ ∈ L + (φ) ∧ |τ | ≤ t P S -→τ u S | τ ∈ L -(φ)}
Here t P + S →τ S (resp.

t P - S -→τ u S)
is the sum over all lower (resp. upper) bounds of the cardinalities of the positive (resp. negative) minterms that imply τ , in the boolean sense. It is not hard to see that C ⊕ is a positive MIL formula, because:

• for each τ ∈ L + (φ), we have |τ | ≥ k ≡ ∃i 1 . . . ∃i k . distinct(i 1 , . . . , i k) ∧ k j=1 τ (j) • for each τ ∈ L -(φ), we have |τ | ≤ k ≡ ∀i 1 . . . ∀i k+1 . distinct(i 1 , . . . , i k+1) → k+1 j=1 ¬τ (i j)
The following lemma proves that the above definition meets the second requirement of positivation operators, concerning the preservation of minimal models.

¬r ∧ ¬s ∧ |w ∧ ¬u| ≤ 0 ∧ |u ∧ ¬w| ≤ 0 ∧ 1 ≤ |w| ⊕ = 1 ≤ |u ∧ w|
Intuitively, the negative literals ¬r and ¬s may safely disappear, because no minimal model will assign r or s to true. Further, the constraints |w ∧ ¬u| ≤ 0 and |u ∧ ¬w| ≤ 0 are equivalent to the fact that, in any structure I = (U, ν, ι), we must have ι(u) = ι(w).

Finally, because |w| ≥ 1, then necessarily |u ∧ w| ≥ 1.

Similarly, the result of positivation applied to the second conjunct of the DNF cardinality constraint corresponding to the system in Figure 3 is given below:

2 ≤ |w| ∧ |w ∧ ¬u| ≤ 1 ∧ |u ∧ ¬w| ≤ 0 ⊕ = 2 ≤ |w| ∧ 1 ≤ |u ∧ w|
Here, the number of elements in w is at least 2 and, in any structure I = (U, ν, ι), we must have ι(u) ⊆ ι(w) and at most one element in ι(w) \ ι(u). Consequently, the intersection of the sets ι(u) and ι(w) must contain at least one element, i.e. |u ∧ w| ≥ 1.

The proof of positivation lemma

Lemma 9 states the most intricate technical result of the paper. Its proof requires several additional notions, which are the concern of this subsection. If t is any boolean term, its interpretation in the structure I = (U, ν, ι) is the set t I ⊆ U defined recursively, as follows:

p I def = ι(p) (¬t) I def = U \ t I (t 1 ∧ t 2) I def = t I 1 ∩ t I 2 (t 1 ∨ t 2) I def = t I 1 ∪ t I 2
Next, we generalize upward closures and upward closed sets from boolean valuations to first order structures as follows. If S is a set of structures sharing the same universe, then S ↑ def = {I | ∃I ∈ S . I ⊆ I} denotes its upward closure. Moreover, S is upward closed iff S = S↑. Then we have the following facts, whose proofs are folklore:

Fact Given a positive MIL formula φ, the set [[φ]] is upward closed.
Proof. By induction on the structure of φ. Fact 2. Given MIL formulae φ 1 and φ 2 , we have

φ 1 ≡ µ φ 2 if and only if [[φ 1]]↑= [[φ 2]]↑. If, moreover, φ 2 is positive, φ 1 ≡ µ φ 2 if and only if [[φ 1]]↑= [[φ 2]]. Proof. The first point is due to the observation [[φ i]]↑= {I | ∃I ∈ [[φ i]]
µ . I ⊆ I}, for i = 1, 2. The second point is obtained applying Fact 1. 1. We express [[C]]↑ using the reachability set of a vector addition system with states of a special form, that is, moreover, definable as the set of solutions of an integer linear system. 2. We use Hoffman's Circulation Theorem [START_REF] Schrijver | Combinatorial Optimization -Polyhedra and Efficiency[END_REF]Theorem 11.2] to show that the set of solutions of the linear system above defines [[C ⊕]]. The developments of the two points rely on the observation that, each model of a cardinality constraint is uniquely defined, up to the renaming of its elements, by the positive cardinality of each complete minterm. In the following we shall consider this fact implicit and work with mappings of minterms into positive integer values, instead of first order structures.

Given a conjunction

Vector Addition Systems

The goal of this subsection is to reduce the problem

[[C]] ↑= [[C ⊕]]
of equivalence between sets of first order structures to the resolution of a linear integer system. To begin with observe that, given an arbitrary MIL formula φ, if I |= φ, then any structure obtained from I by a renaming of its elements is also a model of φ. This is because φ uses only equalities and disequalities, which cannot distigush the particular identity of elements. In other words, [[φ]] is closed under isomorphic transformations of structures.

In the following, we assume that the finite set P of predicate symbols is indexed by a total order . Then any set S ⊆ P corresponds to a word w S which is the sequence of its elements, in the order. Moreover, let lex be the lexicographic order induced by . The following definition introduces a total order on sets of predicate symbols, that is compatible with the subset ordering. Definition 1. Given sets S, T ⊆ P, where P is totally ordered via , we define the total order S † T if and only if one of the following holds:

1. S ⊆ T , or 2. S ⊆ T and w S lex w T .

As usual, we write S † T for S † T and S = T . Let t I def = ||(t P S) I || S⊆P be the vector of cardinalities of the interpretations for all complete minterms in the structure I, arranged in the † order. In the following, we sometimes refer to this vector as the cardinality vector of the structure I.

Since the interpretations of the complete minterms w.r.t P are pairwise disjoint, for any predicate symbol p ∈ P, we have p I = p∈S (t P S) I . Using the recursive definitions above, we can write any boolean term as a finite union of complete minterms, which corresponds to the DNF of the boolean formula associated with it. T) I || = ||(t P T) I ||, for all T ⊆ P, such that T = S and T = S \ {p}. We denote by the reflexive and transitive closure of the ≺ 1 relation.

Lemma 10. For a boolean combination of cardinality constraints φ, the following hold:

1. Proof. "⇒" For any two structures I 1 and I 2 , sharing the same universe, we have t I1 ≺ 1 t I2 iff there exists a set S ⊆ P and a predicate symbol p ∈ S such that:

[[φ]] = {I | t I |= φ}, 2. [[φ]]↑= {I | ∃I ∈ [[φ]] . t I t I }.
• t I2 (S) = t I1 (S) + 1, • t I2 (S \ {p}) = t I1 (S \ {p}) -1,
• t I2 (T) = t I1 (T), for all T ⊆ P, such that T = S and T = S \ {p}. Then, using the fact that t I (S) = ||(t P S) I ||, for all S ⊆ P, we establish that t I1 ≺ 1 t I2 . Hence t I t I implies the existence of a sequence σ of vectors from V P such that t I σ -→ V P t I . "⇐" For any two configurations c and c , if c v -→ V P c for some vector v ∈ V P , then c 1 c , by Definition 2. Consequently, t I σ -→ V P t I implies t I t I , by straightforward induction on the length of σ.

For a tuple of variables x = x 1 , . . . , x k and a valuation ν mapping these variables into Z, we denote by ν(x) the tuple of integers ν(x 1), . . . , ν(x k) . The following lemma gives an equivalent condition for the existence of an execution in V P , that ends in a given configuration: Lemma 12. Let x = [x S] S⊆P and y = [y S] S⊆P be column vectors of variables and {k S,p | S ⊆ P, p ∈ S} be variables. Then for any positive valuation ν of the variables x and y, the following are equivalent:

1. ν can be extended to a positive solution of the integer linear system:

x = S⊆P,p∈S k S,p • v(S, p) + y 2. ν(y) * -→ V P ν(x).
Proof. "⇒" Consider the sequence of vectors ν(y) = c 0 , c 1 , . . . , c k = ν(x), such that c i+1 = c i +v(S i+1 , p i+1) for all 1 ≤ i < k and the sequence of vectors v(S 1 , p 1), . . . , v(S k , p k) occur in order, each vector v(S i , p i) occurring ν(k Si,pi) ≥ 0 times in the sequence. To show that this is an execution of V P , observe that each sequence of entries c 0 (S), . . . , c k (S), for some S ⊆ P is first increased, then decreased, zero or more times. Because c 0 (S) ≥ 0 and c k (S) ≥ 0, we have that c i (S) ≥ 0, for all 0 ≤ i ≤ k. Since the choice of S was arbitrary, every vector c i has only positive entries, hence the sequence is an execution of V P . "⇐" Immediate, since in every execution ν(y) * -→ V P ν(x), each vector v(S, p) occurs a positive number of times and let ν(k S,p) be that number.

Turning back to the original problem [[C]]↑= [[C

⊕]], we notice that the set of vectors {t I | ∃I . t I |= C ∧ t I t I }, which corresponds (up to isomorphism) to the left-hand side of the required equality, is the set of vectors ν(y), where ν is a positive solutions of the linear system below:

x = S⊆P,p∈S k S,p • v(S, p) + y ∧ S⊆P S ≤ x(S) ≤ u S (2)
The formal argument combines the results of Lemmas 10, 11 and 12. Next, we show that the right-hand side corresponds to the linear system obtained by eliminating the x and {k S,p | S ⊆ P, p ∈ S} variables from the above system.

b c • ν(k S,p) = X(e), where e = (S, S \ {p}), for some p ∈ S. By definition, ν is a positive valuation. It remains to show that ν is indeed a solution of (2). The condition S ≤ ν(x(S)) ≤ u S is clearly satisfied for each S ⊆ P, because L P (e) = S and U P (e) = u S , for each edge e = (S, ζ). To prove the remaining condition, observe that ν(x(S)) + p∈S ν(k S,p) = ν(y(S)) + q ∈S ν(k S∪{q},q), for each S ⊆ P, which leads to ν(x) = S⊆P,p∈S ν(k S,p) • v(S, p) + ν(y), as required.

[abc , u abc] ζ [bc , u bc] [b , u b] [∅ , u ∅] [0, ∞] [0, ∞] [0, ∞] ∅ [0, ∞] [0, ∞] bc [0, ∞]
[y ∅ , y ∅] ζ [0, ∞] [0, ∞] [0, ∞] [0, ∞] [0, ∞] [0, ∞] [ab , u ab] [ac, uac] [c, uc] ac [a, ua] [ya, ya]
Theorem 3 gives an equivalent condition for the existence of a circulation in G P [y]. In the following, we write another linear system, with unknowns y only, that captures this condition. A set of sets S ⊆ 2 P is downward closed iff any subset of a set in S is in S. Dually, S is upward closed iff any superset of a set in S is in S. It is easy to check that the complement of a downward (upward) closed set is upward (downward) closed.

Consider any capacitated graph G P [y], e.g. refer to Figure 4 for an example. If S ⊆ 2 P is not downward closed, then there exists an outgoing edge e ∈ S • with U (e) = ∞. Consequently, we have e∈S • U (e) = ∞ in this case, thus the condition of Theorem 3 is trivially satisfied, for such sets. In the light of this remark, it is obvious that we need to consider only downward closed sets in order to characterize circulations in G P [y], as in the example below:

y ∅ ≤ u ∅ y a + y ∅ ≤ u a + u ∅ y b + y ∅ ≤ u b + u ∅ y c + y ∅ ≤ u c + u ∅ y a + y b + y ∅ ≤ u a + u b + u ∅ y b + y c + y ∅ ≤ u b + u c + u ∅ y a + y c + y ∅ ≤ u a + u c + u ∅ y a + y b + y c + y ∅ ≤ u a + u b + u c + u ∅ . . . y abc + y bc + y ac + y ab + y b + y c + y a + y ∅ ≤ u abc + u bc + u ac + u ab + u b + u c + u a + u ∅
These inequalities correspond to the enumeration of the downward closed sets S in order {∅}, {{a}, ∅}, {{b}, ∅}, {{c}, ∅}, {{a}, {b}, ∅}, {{b}, {c}, ∅}, {{a}, {c}, ∅}, {{a}, {b}, {c}, ∅}, ..., {{a, b, c}, {a, b}, {b, c}, {a, c}{a}, {b}, {c}, ∅} = 2 P . In similar way, by considering sets of vertices S ∪ {ζ} for every downward closed set S ⊆ 2 P we obtain the following inequalities: At this point it is easy to generalize the above example and infer an equivalent condition for the existence of a circulation in G P [y]:

abc + bc + ac + ab + b + c + a + ∅ ≤ y abc + y bc + y ac + y ab + y b + y c + y a + y ∅ abc + bc + ac + ab + b + c + a ≤
S∈2 P S∈S y S ≤ S∈S u S ∧ S ∈S S ≤ S ∈S y S (3)
Let us now turn to the definition of C ⊕ , given in terms of complete minterms, and notice the following facts:

1. for each positive boolean combination τ ∈ L + (φ), the set {S ⊆ P | t P S + → τ } is upward closed and its set of minimal elements corresponds to the minterms of τ in DNF, 2. dually, for each negative boolean combination τ ∈ L -(φ), the set {S ⊆ P | t P S -→ τ } is downward closed and its set of maximal elements corresponds to the minterms of τ in DNF,

I | ∃I ∈ [[C]] . t I t I } = {t I | I ∈ [[C ⊕]]}.
Subsequently, Lemmas 11 and 12 prove that the left-hand side of the latter equality is the set of positive solutions of the linear system (2), restricted to the tuple of variables y = y S S⊆P . By Hoffman's Circulation Theorem (Theorem 3), this is the set of positive solutions to the linear system (3), obtained from the elimination of the x and k S,p variables from (2). Finally, this set is exactly the right-hand side of the equality above, as a result of interpreting the definition of C ⊕ in terms of vertices of the capacitated graph G P [y], on which the circulation theorem was applied.

Proving Deadlock Freedom of Parametric Systems

We have gathered all the ingredients necessary for checking deadlock freedom of parametric systems, using our method based on trap invariant generation (Figure 5). In particular, we derive a trap constraint Θ(Γ) directly from the interaction formula Γ, both of which are written in MIL. Second, we compute a positive formula that preserves the set of minimal models of Θ(Γ) ∧ Init(S), by first converting the MIL formula into a quantifier-free cardinality constraint, using quantifier elimination, and deriving a positive MIL formula from the latter. The conjunction between the dual of this positive formula and the formula ∆(Γ) that defines the deadlock states is then checked for satisfiability. Formally, given a parametric system S, with an interaction formula Γ written in the form (1), the MIL formula characterizing the deadlock states of the system is the following:

(Γ) ∧ Init(S) [Θ(Γ) ∧ Init(S)] ⊕ [Θ(Γ) ∧ Init(S)] ⊕ ∼ ∆(Γ) smt-checking (CVC4)
∆(Γ) def = ∀i 1 . . . ∀i . ϕ → j=1 ¬ • p j (i j) ∨ +m j= +1 ∃i j . ψ j ∧ ¬ • p j (i j)
We state a sufficient verification condition for deadlock freedom in the parametric case:

Corollary 2. A parametric system S = C 1 , . . . , C n , M, Γ is deadlock-free if (Θ(Γ) ∧ Init(S)) ⊕ ∼ ∧ ∆(Γ) → ⊥
The satisfiability check is carried out using the conversion to cardinality constraints via quantifier elimination §4.1 and an effective set theory solver for cardinality constraints, implemented in the CVC4 SMT solver [START_REF] Barrett | Computer Aided Verification, 23rd International Conference, CAV 2011, Proceedings[END_REF].

Experimental Results

To assess our method for proving deadlock freedom of parametric component-based systems, we ran a number of experiments on systems with a small numbers of rather simple component types, but with nontrivial interaction patterns, given by MIL formulae. We check deadlock freedom of parameterized component-based systems, in which the number of instances of each component type is finite but unbounded. The task-sem i/n examples, i = 1, 2, 3, are generalizations of the parametric Task -Semaphore example depicted in Figure 1b, in which n Task s synchronize using n Semaphores, such that i Task s interact with a single Semaphore at once, in a multiparty rendez-vous. In a similar vein, the broadcast i/n examples, i = 2, 3 are generalizations of the system in Figure 3, in which i out of n Worker s engage in rendez-vous on the b port, whereas all the other stay idle -here idling is modeled as a broadcast on the a ports. Next, in the sync i/n examples, i = 1, 2, 3, we consider systems composed of n Worker s (Figure 1b) such that either i out of n instances simultaneously interact on the b ports, or all interact on the f ports. Notice that, for i = 2, 3, these systems have a deadlock if and only if n = 0 mod i. This is because, if n = m mod i, for some 0 < m < i, there will be m instances that cannot synchronize on their b port, in order to move from w to u, in order to engage in the f broadcast.

Finally, the synapse and mesi examples refer to models of cache coherence protocols from [START_REF] Delzanno | Automatic verification of parameterized cache coherence protocols[END_REF]. In both cases, the model consists of n identical processes accessing and updating their local cache containing the copy of some globally shared data. Every process can be either actively reading (r) or writing (w) the shared data, or gets notified about the reading (r) or writing (w) by another process. All interactions are therefore of type broadcast, that is, every active reading or writing by some process notifies instantaneously all the other processes such that they can consistenly update their cache status. The property of interest was cache coherency, that is, (1) at most one process has a dirty cache and (2) no dirty cache coexists with one or more caches in shared state. For both protocols, the coherency property was successfully proven valid.

All experiments were carried out on a Intel(R) Xeon(R) CPU @ 2.00GHz virtual machine with 4GB of RAM. Table 1 shows separately the times needed to generate the proof obligations (trap invariants and deadlock states) from the interaction formulae and example interaction formula t-gen t-smt result task-sem 1/n ∃i∃j 1 . a(i) ∧ b(j 1) ∃i∃j 1 . e(i) ∧ f (j 1) 22 ms 20 ms unsat task-sem 2/n ∃i∃j 1 ∃j 2 . j 1 = j 2 ∧ a(i) ∧ b(j 1) ∧ b(j 2) ∃i∃j 1 ∃j 2 . j 1 = j 2 ∧ e(i) ∧ f (j 1) ∧ f (j 2) 34 ms 40 ms unsat task-sem 3/n ∃i∃j 1 ∃j 2 ∃j 3 . distinct(j 1 , j 2 , j 3) ∧ a(i) ∧ b(j 1) ∧ b(j 2) ∧ b(j 3) ∃i∃j 1 ∃j 2 ∃j 3 . distinct(j 1 , j 2 , j 3) ∧ e(i) ∧ f (j 1) ∧ f (j 2) ∧ f (j 3) 73 ms 40 ms unsat broadcast 2/n ∃i 1 ∃i 2 .i 1 = i 2 ∧ b(i 1) ∧ b(i 2) ∧ ∀j. j = i 1 ∧ j = i 2 → a(j) ∃i.f (i) 14 ms 20 ms unsat broadcast 3/n ∃i 1 ∃i 2 ∃i 3 .distinct(i 1 , i 2 , i ∃i.r(i) ∧ ∀j. j = i → r(i) ∃i.w(i) ∧ ∀j. j = i → w(i) 45 ms 70 ms unsat mesi n ∃i.r(i) ∧ ∀j. j = i → r(i) ∃i.w(i) ∧ ∀j. j = i → w(i) 508 ms 90 ms unsat Table 1: Benchmarks -t-gen provides the time of invariant generation (that is, quantifier elimination, positivation and dualization), t-smt provides the time of satisfiabiliy checking (using the CVC4 solver) and result provides the verification result (that is, unsat: property successfully verified, sat: inconclusive, property cannot be verified by our method)

29

the times needed by CVC4 1.7 to show unsatisfiabilty or come up with a model. All systems considered, for which deadlock freedom could not be shown using our method, have a real deadlock scenario that manifests only under certain modulo constraints on the number n of instances. These constraints cannot be captured by MIL formulae, or, equivalently by cardinality constraints, and would require cardinality constraints of the form |t| = n mod m, for some constants n, m ∈ N.

Conclusions

This work is part of a lasting research program on BIP linking two work directions: (1) recent work on modeling architectures using interaction logics, and (2) older work on verification by using invariants. Its rationale is to overcome as much as possible complexity and undecidability issues by proposing methods which are adequate for the verification of essential system properties.

The presented results are applicable to a large class of architectures characterized by the MIL. A key technical result is the translation of MIL formulas into cardinality constraints. This allows on the one hand the computation of the MIL formula characterizing the minimal trap invariant. On the other hand, it provides a decision procedure for MIL, that leverages from recent advances in SMT, implemented in the CVC4 solver [START_REF] Barrett | Computer Aided Verification, 23rd International Conference, CAV 2011, Proceedings[END_REF].

Our approach sheds new light on the intricacy of the interaction structure between components. This clearly depends on the topology of the architecture but also on the multiplicity of interactions. Centralized control systems seem to be the easier to verify (parametric systems with single controller and without interaction between components). For distributed control systems, easier to check seem to be systems where interactions between components are uniform each component of a class interacts in the same manner with all the other components.

The hardest case corresponds to systems where interaction between components depends on a neighborhood which usually implies some arithmetic relation between indices. To model such systems MIL should be extended with arithmetic predicates on indices. This is the objective of an ongoing work direction [START_REF] Bozga | Structural invariants for the verification of systems with parameterized architectures[END_REF].

 a ∧ ∃i.b(i) ∨ e ∧ ∃i.f (i)

Figure 1 :

 1 Figure 1: Mutual Exclusion Example

Figure 2 :

 2 Figure 2: Petri Net for Mutual Exclusion Example

 [1, k], thus m 0 |= k i=1 s i . Because the choice of S is arbitrary, we have m 0 |= Trap(N S). Second, let m |= Trap(N S) and t ∈ T such that m t -→ m . We prove that m |= Trap(N S). Let S = {s 1 , . . . , s k } be a marked trap of N S . Then m |= s i for some i ∈ [1, k] and, because S is a trap, m |= s j for some j ∈ [1, k]. Since the choice of S was arbitrary, we obtain m |= Trap(N S).

 For each component type C k , where k ∈ [1, n], we assume a set of index variables Var k and a set of predicate symbols Pred k def = P k ∪ S k . We also define the sets Var def = n k=1 Var k and Pred def = n k=1

 , for all p ∈ Pred and I 1 ⊂ I 2 iff I 1 ⊆ I 2 and I 1 = I 2 . As before, we define the sets [[φ]] = {I | I |= φ} and [[φ]] µ = {I ∈ [[φ]] | ∀I . I ⊂ I → I ∈ [[φ]

Figure 3 :

 3 Figure 3: Parametric System with Broadcast

Lemma 4 .

 4 for each pred ∈ Pred. The following lemma relates the semantics of MIL formulae with that of their boolean unfoldings: Given a MIL sentence φ and a function M : [1, n] → N, the following hold:1. for each structure I ∈ [[φ]], we haveβ I ∈ [[B M (φ)]] and conversely, for each valuation β ∈ [[B M (φ)]], we have I β ∈ [[φ]]. 2. for each structure I ∈ [[φ]] µ , we have β I ∈ [[B M (φ)]] µ and conversely, for each valuation β ∈ [[B M (φ)]] µ , we have I β ∈ [[φ]] µ .Proof.(1) By induction on the structure of φ. (2) First, it is routine to prove that, for any two structures I 1 ⊆ I 2 , we have β I1 ⊆ β I2 and, conversely, for any two valuationsβ 1 ⊆ β 2 ,we have I β1 ⊆ I β2 . Next, let I ∈ [[φ]] µ . By the point (1), we have β I ∈ [[B M (φ)]]. Suppose β I ∈ [[B M (φ)]] µ , which means that there exists β β I such that β ∈ [[B M (φ)]]. By the point (1), I β ∈ [[φ]] and, moreover, I β I, which contradicts the minimality of I. Thus β I ∈ [[B M (φ)]]

 and we apply Lemma 2.We are currently left with the task of computing a MIL formula which defines the trap invariant Trap(N S) of a parametric component-based system S = C 1 , . . . , C n , M, Γ . The difficulty lies in the fact that the size of N S and thus, that of the boolean formula Trap(N S) depends on the number M(k) of instances of each component type k ∈[1, n].

≥

 S | for some constants { S ∈ N} S∈St such that S∈St S = Note that because any two complete minterms t S and t T , for S = T , are incompatible, then necessarily |t S ∨ t T | = |t S | + |t T |. Thus |t S ∨ t T | ≥ if and only if there exist

Lemma 9 . 3 Example 5 .

 935 Given P a finite set of monadic predicate symbols, { S ∈ N} S⊆P and {u S ∈ N ∪ {∞}} S⊆P sets of constants, for any conjunction C = { S ≤ |t P S | ∧ |t P S | ≤ u S | S ⊆ P}, we have C ≡ µ C ⊕ . Proof. completed in section 4.(contd. from Example 4) Consider the first minterm of the DNF of the cardinality constraint obtained by quantifier elimination in Example 4, from the system in Figure 1b. The result of positivation for this minterm is given below:

 C = { S ≤ |t P S | ∧ |t P S | ≤ u S | S ⊆ P} of cardinality constraints involving all complete minterms with respect to P, for some arbitrary MIL formula φ, Lemma 9 requires showing that [[C]]↑= [[C ⊕]]. We shall do this in two stages:

Proof. (1)

 1 One shows that, for any structure I, we have I |= φ ⇐⇒ t I |= φ, by induction on the structure of φ. The base case φ = |t| ≥ n is by definition and the inductive steps are routine. (2) We show that, for any structure I = (U, ν, ι), the following are equivalent: (i) there exists I ∈ [[φ]] such that I ⊆ I, and

 , y abc] [y ab , y ab] [yac, yac] [y bc , y bc] [y b , y b] [yc, yc]

Figure 4 :

 4 Figure 4: The Capacitated Graph G {a,b,c} [y] -the ζ node is duplicated, for clarity.

Example 6 .

 6 Consider the capacitated graph G {a,b,c} [y] from Figure 4. The necessary and sufficient condition for the existence of a circulation in G {a,b,c} [y], are partly shown below. By considering sets of vertices S for every downward closed set S ⊆ 2 P we obtain the following inequalities:

3 .

 3 because the complete minterms are pairwise disjoint, in each structure I, we have τ I = t P S + →τ (t P S) I , for all τ ∈ L + (φ) and τ I = t P S -→τ (t P S) I , for all τ ∈ L -(φ), 4. for each positive solution ν of (3), there exists a structure I ∈ [[C ⊕]] such that ν(y S) = ||(t P S) I || and viceversa, each structure I ∈ [[C ⊕]] induces a positive solution of (3), where ν(y S) = ||(t P S) I ||, for all S ⊆ P. To summarize, we prove that C ≡ µ C ⊕ by proving the equivalent statement [[C]]↑= [[C ⊕]]. Since both the left and the right-hand side of this equality are sets of structures closed under isomorphism, we reduce the problem to an equivalence between sets of integer tuples {t I | I ∈ [[C]] ↑} = {t I | I ∈ [[C ⊕]]}. By Lemma 10, this is equivalent to {t

Figure 5 :

 5 Figure 5: Verification of Parametric Component-based Systems

 3) ∧ b(i 1) ∧ b(i 2) ∧ b(i 3) ∧ ∀j. j = i 1 ∧ j = i 2 ∧ j = i 3 → a(j) ∃i.f (i) 409 ms 20 ms unsat sync 1/n ∃i.b(i) ∀i.f (i) 5 ms 20 ms unsat sync 2/n ∃i 1 ∃i 2 . i 1 = i 2 ∧ b(i 1) ∧ b(i 2) ∀i.f (i) 7 ms 50 ms sat sync 3/n ∃i 1 ∃i 2 ∃i 3 . distinct(i 1 , i 2 , i 3) ∧ b(i 1) ∧ b(i 2) ∧ b(i 3) ∀i.f (i)11 ms 40 ms sat synapse n

 and only if s ∈ {s 0 i | i ∈ [1, n]} and T , E are as follows. For each minimal model β ∈ [[Γ]] µ , we have a transition t β ∈ T and edges (s i , t β), (t β , s i) ∈ E, for all i ∈ [1, n] such that s i

	p i

 Hence, for any cardinality constraint |t| ≥ n, we have I |= |t| ≥ n if and only if k i=1 ||(t P Si) I || ≥ n, where t P S1 , . . . , t P S k is the set of complete minterms that occur in the DNF of t. In general, for a boolean combination of cardinality constraints φ, we write t I |= φ if and only if the formula obtained by replacing each term |t| with the sum above is logically valid. A formal definition can be given recursively, on the structure of φ. At this point, we can identify the set of models [[φ]], where φ is any boolean combination of cardinality constraints, by the set of vectors {t I | t I |= φ}, up to isomorphism of first order structures. It remains now to define upward closures in the same way. A first remark is that, because the set [[φ]] is closed under isomorphism, so is its upward closure [[φ]]↑. However, the definition of [[φ]]↑ in terms of vectors t I requires a partial order that captures the pointwise inclusion between structures I ⊆ I . Given structures I and I with the same universe, we define the relation t I ≺ 1 t I if and only if there exists a set S ⊆ P and a predicate symbol p ∈ S such that: 1. ||(t P S) I || = ||(t P S) I || + 1, 2. ||(t P S\{p}) I || = ||(t P S\{p}) I || -1, 3. ||(t P

	Definition 2.

 y abc + y bc + y ac + y ab + y b + y c + y a abc + bc + ac + ab + b + c ≤ y abc + y bc + y ac + y ab + y b + y c abc + bc + ac + ab + a + c ≤ y abc + y bc + y ac + y ab + y a + y c abc + bc + ac + ab + a + b ≤ y abc + y bc + y ac + y ab + y a + y b abc + bc + ac + ab + c ≤ y abc + y bc + y ac + y ab + y c abc + bc + ac + ab + a ≤ y abc + y bc + y ac + y ab + y a abc + bc + ac + ab + b ≤ y abc + y bc + y ac + y ab + y b abc + bc + ac + ab ≤ y abc + y bc + y ac + y ab . . .

abc ≤ y abc

These inequalities correspond to the enumeration of downward closed sets in order ∅, {∅}, {{a}, ∅}, {{b}, ∅}, {{c}, ∅}, {{a}, {b}, ∅}, {{b}, {c}, ∅}, {{a}, {c}, ∅}, {{a}, {b}, {c}, ∅}, ..., {{a, b}, {b, c}, {a, c}{a}, {b}, {c}, ∅} = 2 P \ {{a, b, c}}.

Called in this way by analogy with the notion of traps for Petri Nets[START_REF] Sifakis | Structural properties of petri nets[END_REF].

We have assumed that each port is associated a unique transition rule.

This is not a limitation, since dynamic creation of a finite number of instances can be simulated by considering that all instances are initially in a waiting state, which is left as result of an interaction involving a designated "spawn" port. This is w.l.o.g., since we consider safety properties, that require reasoning about finite executions.

Throughout this paper, we consider that i∈I φ i = if I = ∅.

p-→ s ∈ ∆ k is the (unique) transition involving p in T k , or ⊥ if there is no such rule.

,

∈ N such that 1 + 2 = and |t S | ≥ 1 , |t T | ≥ 2 ,respectively.[START_REF] Außerlechner | Tight cutoffs for guarded protocols with fairness[END_REF] The constraints |t| ≤ u are dealt with as ¬(|t| ≥ u + 1).

Missing lower bounds S are replaced with 0 and missing upper bounds u S with ∞.

def

= {β | ∃β ∈ S . β ⊆ β} be its upward closure. A set S of boolean valuations is upward-closed iff S = S↑. The following lemma shows that the set of models of a positive boolean formula is upward-closed and thus uniquely determined by its minimal elements. Lemma 6. Given a positive boolean formula f , we have

µ ↑ be a valuation. Then there exists β ∈

Lemma 7. Given a MIL sentence φ with quantified variables i 1 , . . . , i n and a function

Proof. Because B M (φ) + and B M (φ ⊕) are both positive boolean formulae, we have

µ be a valuation. Then, we also have β ∈

[[B M (φ)]] µ , since ϕ + ≡ µ ϕ, in general for any boolean formula ϕ. Then, by Lemma 4 (2), there exists a structure

µ be a boolean valuation. By Lemma 4 (2), we obtain a structure

Theorem 2. For any parametric system S = C 1 , . . . , C n , M, Γ , we have

. We (ii) there exists I ∈ [[φ]] such that t I t I . (i) ⇒ (ii) We let I = I and prove t I t I . If, for all predicate symbols p ∈ P, we have p I = p I , then I = I and t I = t I follows. Assuming that this is not the case, let p be an arbitrary predicate symbol such that p I ⊂ p I . We build a sequence of structures I = I 0 , . . . , I k such that p I0 ⊃ . . . ⊃ p I k and t I0 1 . . . 1 t I k . Let u ∈ p I \ p I be an element and let S u def = {q ∈ P | u ∈ q I }. Clearly, we have that p ∈ S u . Let I 1 = (U, ν, ι 1) be the structure such that ι 1 (p) = ι(p) \ {u} and ι 1 (q) = ι(q) for all q ∈ P \ {p}. It is not hard to see that:

||, for all T ⊆ P, such that T = S u and T = S u \ {p}. By Definition 2, we have t I0 1 t I1 . We continue chosing elements u ∈ p I \ p I until no such elements can be found, then pick another predicate symbol for which I and I differ. In this way we obtain a finite sequence of structures {I j } n j=0 , such that I j 1 I j+1 for all 0 ≤ j < n, thus t I t I , as required. (ii) ⇒ (i) By induction on the length of the sequence of structures I = I 0 , . . . , I k = I such that t I0 1 . . . 1 t I k . In the base case k = 0, we have t I = t I , thus we have t I |= φ and consequently I ∈ [[φ]], by point [START_REF] German | Reasoning about systems with many processes[END_REF]. For the induction step k > 0, we observe that t I0 1 t I1 implies the existence of a structure I 1 ⊂ I 0 which is isomorphic to I 1 , thus t I 1 = t I1 . By the induction hypothesis, there exists I ∈ [[φ]] such that I ⊆ I 1 , hence I ⊆ I, as required.

In the following, we define a vector addition system whose reachability relation matches the partial order on cardinality vectors t I . Definition 3. An n-dimensional vector addition system (VAS) is a finite set of vectors

The fact that c, c ∈ N n is important here, because configurations of a VAS are not allowed to contain negative values. For a finite sequence σ = v i1 . . . v i k of vectors from V , we write c σ -→ V c for the sequence of transitions c

. Moreover, we write c * -→ V P c when σ is not important.

For a vector v ∈ {-1, 0, 1} 2 ||P|| and a set S ⊆ P, let v(S) be the entry in v corresponding to S. Moreover, for some predicate symbol p ∈ S, we denote by v(S, p) the vector u such that u(S) = -1, u(S \ {p}) = 1 and u(T) = 0, for all T ⊆ P such that T = S and T = S \ {p}. Intuitively, v(S, p) transfers an element from t P S into t P S\{p} , thus decreasing the cardinality of t P S and increasing that of t P S\{p} by one, respectively. We now define the 2 ||P|| -dimensional VAS V P def = {v(S, p) | S ⊆ P, p ∈ S}. This particular VAS captures the partial order on cardinality vectors as a reachability relation, as stated by the lemma below: Lemma 11. For any two structures I and I sharing the same universe, we have t I t I if and only if t I * -→ V P t I .

Circulations in a Weighted Graph

We eliminate the k S,p variables from (2) using Hoffman's Circulation Theorem, given below. Let G = (V, E) be a directed graph, where V is a finite set of vertices and E ⊆ V × V a set of edges. Further, we associate each edge in G a lower and upper capacity, formally L : E → N and U : E → N ∪ {∞}, such that L(e) ≤ U (e), for all e ∈ E. For brevity, we call G = (V, E, L, U) a capacitated graph in the following. Given a vertex v ∈ V , we denote by • v (v •) the set of incoming (outgoing) edges with destination (source) v. We lift these notations to sets of vertices in the usual way. A circulation is a mapping X : E → N such that, for all v ∈ V , we have e ∈ • v X(e) = e∈v • X(e) and L(e) ≤ X(e) ≤ U (e), for all e ∈ E. The following is known as Hoffman's Circulation Theorem [START_REF] Schrijver | Combinatorial Optimization -Polyhedra and Efficiency[END_REF]Theorem 11.2]: Theorem 3. Given a capacitated graph G = (V, E, L, U), there exists a circulation in G if and only if e ∈ • S L(e) ≤ e ∈ S • U (e), for each set of vertices S ⊆ V .

We encode the existence of positive solutions of the linear integer system (2) as a circulation problem in the capacitated graph G P [y] = (2 P ∪ {ζ}, E P , L P , U P), where:

• ζ ∈ 2 P is a special vertex, not a subset of P,

• y is a tuple of parameters, indexed by sets of predicate symbols,

• for each set S ⊆ P there exists an edge e = (ζ, S), with L P (e) = U P (e) = y(S),

• for each set S ⊆ P, there exists an edge e = (S, ζ), with L P (e) = S and U P (e) = u S , • for each nonempty set S ⊆ P and each predicate symbol p ∈ S, there exists an edge e = (S, S \ {p}), with L(e) = 0 and U (e) = ∞. Moreover, nothing else is in E P , L P and U P , respectively. For example, given P = {a, b, c}, the graph G P is depicted in Figure 4. The following lemma relates the existence of positive solutions of the linear integer system (2) with the existence of a circulation in G P [y].

Lemma 13. Given a set P of predicate symbols and a positive valuation ν of the variables y, the following are equivalent: (a) ν can be extended to a positive solution of the integer system (2), (b) the capacitated graph G P [ν(y)] has a circulation.

Proof. (a) ⇒ (b) Assume that ν is a positive solution of (2). We define the mapping X : E → N as follows, for all S ⊆ P:

•

• X(e) = ν(k S,p) if e = (S, S \ {p}), for some p ∈ S. We prove that X is a circulation in G P . The condition L P (e) ≤ X(e) ≤ U P , for all e ∈ E P is immediate, because either L P (e) = 0 and U P (e) = ∞ or it follows directly from [START_REF] Bloem | Decidability of Parameterized Verification[END_REF]. It remains to check that e ∈ • u X(e) = e ∈ u • X(e), for any vertex u ∈ 2 P ∪ {ζ}. If u = ζ, we have S⊆P ν(x(S)) = S⊆P ν(y(S)), because the sum of the elements of each vector v(S, p) is zero, for any S ⊆ P and p ∈ S. Else, if u is some set S ⊆ P, we have ν(x(S)) + p∈S ν(k S,p) = ν(y(S)) + q ∈ Sν(k S∪{q},q). (b) ⇒ (a) Given a circulation X in G P , we define ν as follows, for all S ⊆ P:

• ν(y(S)) = X(e), where e = (ζ, S),

• ν(x(S)) = X(e), where e = (S, ζ),