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Abstract. The Wave Finite Element (WFE) method is based on wave propagation in periodic
structures. Starting from a Finite Element (FE) analysis of a single period (sub-structure) we
are able to derive the dynamic behaviour relative to the entire structure. Thanks to a reduction
in the degrees of freedom (dofs) of the system and by decomposing the response of the structure
on a wave basis, the calculation time is considerably reduced compared to the classic FEM.
Numerous structures have been solved with this method but it can not deal easily on the bound-
ary conditions. In this study, we develop a technique of WFE to deal with more general cases
of structures constrained in a arbitrary manner as a multiple supported bridge. By using the
WFE method, the vectors of dofs and loads will be decomposed on the wave basis in function
of loads and reaction forces of the supports. Then, by substituting the boundary condition in
this wave decomposition, we obtain a relation between the reaction forces and the loads which
permits to calculate the structure response. The numerical applications show that the WFE and
FEM agree well and the new method permits to reduce significantly the calculation time.
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1 INTRODUCTION

The Wave Finite Element (WFE) is a powerful numerical method that allows to drastically
reduce the number of degrees of freedom of a structural model providing a great advantage in
terms of computational time. This method has been developed for periodic structures where the
geometry repeats itself in a certain direction, and is based on wave propagation. The objective is
to compute the wave modes which constitute a base that, similarly to the eigen modes often used
in the dynamic analysis, can be used to decompose the structural response in terms of forces and
displacements at the considered degrees of freedom. The wave modes are characteristics of the
elementary periodic element therefore they can be computed by solving an eigenvalues problem
consistently formulated for this element. According to the approach proposed by Duhamel et
al. [1, 2, 3] the periodic element can be modelled using the conventional finite element method
to retrieve its mass, stiffness and damping matrices. In this approach, these matrices are then
used to obtain the dynamic stiffness of the cell in the frequency domain and the theory of
periodic structure is used to build the dynamic stiffness matrix of the whole structure. Once
the wave base has been determined for the period of the structure and the dynamic problem
formulated in terms of this base, the solution of the dynamic equation can be carried out by
imposing the boundary conditions. This approach has been followed in Hoang et al. [4] that
proposed the wave approach, based on the computation of the dynamic response as the sum
of different wave contributions generated by the forces acting on the structure. In previous
studies [4, 5], the WFE has been applied considering constrains applied only at the ends of the
structure or included inside the periodic element, as for the case of railway tracks. The objective
of this paper is to extend the application of the WFE to the study of the dynamic response of
multi-supported periodic structures, including the possibility to account for different types of
boundary conditions. The extension proposed in this paper allows to analyse structures, such as
bridges, whose supports may be of different types and are not necessarily equally spaced. The
paper is structured in four sections. The second is dedicated to the introduction of the WFE
starting from the type of structures considered in the study and the approaches of resolution.
The third section contains the original part of this paper dealing with the analytical formulation
of the WFE of a periodic structure with multiple intermediate supports. Finally, in the fourth
section the numerical results will be presented with reference to a number of case studies.

2 WAVE FINITE ELEMENT

2.1 Discrete formulation

A periodic system consists of a number of identical elements, in terms of geometric shape,
physical properties, boundary conditions, and connections with other substructures, coupled
together to form the whole system, see figure 1. Using the FE method, the generic element
is modelled and two types of nodes can be defined: internal nodes and boundary nodes. The
boundary nodes are in turn divided into left nodes and right nodes with d degrees of freedom
(dofs) for each side. The kinematic behaviour of the system is described by the column vector
of nodal displacements q which number of components is equal to the total number of dofs of
the substructure. On the other hand, the respective nodal forces are described by the column
vector F. Their relation is given by the discrete equation of motion:

(K + iωC− ω2M)q(ω) = D(ω)q(ω) = F(ω) (1)
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Figure 1: General substructure.

where D is the dynamic stiffness matrix (DSM), and M, C and K are respectively the Mass,
Dumping and Stiffness Matrix. The dynamic equation can be rewritten in the expanded form in
order to separate the degrees of freedom into left (L), inner (I) and right (R) ones.DLL DLI DLR

DIL DII DIR

DRL DRI DRR

qL

qI

qR

 =

FL

FI

FR

 (2)

Writing the inner degrees of freedom qI in function of the boundary dof qR and qL, we can
reduce the inner nodes in order to obtain a condensed form of the dynamic stiffness matrix.[

D̄LIFI

D̄RIFI

]
+

[
D̄LL D̄LR

D̄RL D̄RR

] [
qL

qR

]
=

[
FL

FR

]
(3)

Where,

D̄LL = DLL −DLID
−1
II DIL, D̄LR = DLR −DLID

−1
II DIR, D̄RL = DRL −DRID

−1
II DIL

D̄RR = DRR −DRID
−1
II DIR, D̄LI = DLID

−1
II , D̄RI = DRID

−1
II

Considering two consecutive substructures (n) and (n+1), two fundamental conditions must be
always satisfied: continuity of the displacement along the junction q

(n)
R = q

(n+1)
L , equilibrium

of the forces acting in the junction: F
(n)
R + F

(n+1)
L = F

(n)
B . These equations can be manipulated

in order to write the terms regarding substructure (n + 1) in function of those regarding the
preceding substructure (n).[

q
(n+1)
L

−F
(n+1)
L

]
= S

[
q
(n)
L

−F
(n)
L

]
+

[
D̄qIF

(n)
I

D̄fIF
(n)
I − F

(n)
B

]
(4)

Where, S is the transfer matrix given by:

S =

[
−D̄−1

LRD̄LL −D̄−1
LR

D̄LR − D̄RRD̄−1
LRD̄LL −D̄RRD̄−1

LR

]
(5)

with D̄qI = −D̄−1
LRD̄LI and D̄fI = D̄RI − D̄RRD̄−1

LRD̄LI .
The nodal displacements q(n) and the nodal forces F(n), together describe the state of the sub-
structure. For this reason we define the state vector u(n) of the substructure (n) and b(n) the
vector of external loads acting on the substructure (n) as:

u(n) =

[
q
(n)
L

−F
(n)
L

]
, b(n) =

[
D̄qIF

(n)
I

D̄fIF
(n)
I − F

(n)
B

]
(6)
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Equation (4) can be written in a more synthetic form:

u(n+1) = Su(n) + b(n) (7)

This last equation represents the relation between the generic substructure (n) and its next
substructure (n+ 1) by means of the transfer matrix S. This leads to:

u(n) = Snu(0) +
n∑

k=1

Sn−kb(k−1) (8)

Equation (8) represents the relation between the state vector of the first substructure and the
state vector of the substructure (n). One also has

u(N) = SN−nu(n) +
N−1∑
k=n

SN−k−1b(k) (9)

2.2 Wave formulation

The wave modes are the eigenvectors solution of

S

[
qL

−FL

]
= λ

[
qL

−FL

]
(10)

Hence, each eigenvalue of the matrix S provides a propagation constant λi while the eigenvector
Φi represents the wave shapes, namely the way in which the substructure deforms. For each
eigenvalue λi of eigenvector Φi, there is an eigenvalue 1/λi associated to an eigenvector denoted
Φ∗

i .

The matrix S is symplectic meaning that tSJS = J with J =

[
O I
−I O

]
. The orthogonality

properties are such that tΦ∗JΦ = I, tΦ∗JΦ∗ = tΦJΦ = O with Φ = [Φ1, ...,Φd].
We can decompose the state vector u(n) and the load vector b(n) in the wave base as a

combination of positive and negative waves:

u(n) = ΦQ(n) −Φ∗Q∗(n)

b(n) = ΦQ
(n)
B −Φ∗Q

∗(n)
B (11)

Where Q(n) and Q∗(n) represent the vectors of wave amplitude of the positive-going and negative-
going waves. The terms Q

(n)
B and Q

∗(n)
B are the vectors of wave amplitude generated by the

external loads F
(n)
I and F

(n)
B . The wave amplitudes of the external loads can be derived from

equation (11), by multiplying both sides by Φ∗TJ as follow:

Φ∗TJb(n) = Φ∗TJΦQ
(n)
B −Φ∗TJΦ∗Q

∗(n)
B

= Q
(n)
B

= (Φ∗T
q D̄fI −Φ∗T

F D̄qI)F
(n)
I −Φ∗T

q F
(n)
B (12)

The same thing can be done to compute the value of Q
∗(k)
B . Multiplying both sides by ΦTJ:

ΦTJb(n) = ΦTJΦQ
(n)
B −ΦTJΦ∗Q

∗(n)
B

= Q
∗(n)
B

= (ΦT
q D̄fI −ΦT

F D̄qI)F
(n)
I −ΦT

q F
(n)
B (13)
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3 WFE FOR STRUCTURES WITH SEVERAL SUPPORTS

3.1 Derivation of the intermediate reactions

In this section, a technique of WFE will be developed to deal with more general cases of
structures constrained in a arbitrary manner as a multiple supported bridge. By convention,
the constrain can be placed only in the junction between two substructures. If we consider the
reactions as external forces acting on the structure, from the equilibrium of external forces and
internal forces we have:

F
(k)
R + F

(k+1)
L = F

(k)
ext + R(k) (14)

Hence this time FB is given by:
F

(k)
B = F

(k)
ext + R(k) (15)

The wave amplitudes can be expressed in function of the external loads F
(k)
ext and reactions

R(k) as follows from 12 and 13:

Q
(k)
B = (Φ∗T

q D̄fI −Φ∗T
F D̄qI)F

(k)
I −Φ∗T

q (F
(k)
ext + R(k)) (16)

Q
∗(k)
B = (ΦT

q D̄fI −ΦT
F D̄qI)F

(k)
I −ΦT

q (F
(k)
ext + R(k)) (17)

If we call R(ns) the vector of reaction corresponding to the constrain s placed in ns, then the
sum 8 can be modified as follow using 11:

u(n) = ΦµµµnQ−Φ∗µµµN−nQ∗ + T(n)+

−Φ
∑
ns≤n

µµµn−nsΦ∗T
q R(ns) −Φ∗

∑
ns>n

µµµns−nΦT
q R(ns) (18)

Where µµµ = [λ1, ..., λd] and T(n) gathers all the known terms obtained from F
(k)
ext and F

(k)
I

3.2 Boundary conditions

The application of the conditions can be written in a synthetic way at support s as:

Lsu
(ns) = Bs (19)

The matrix L is a logical matrix or (0, 1) matrix. It can assume different forms depending on
the type of constrain and his position along the structure. For a one-dimensional beam and a
fixed support, Ls is given by:

Ls =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


The index matrix Ls for two-dimensional and three-dimensional structures is not so easy to find.
The strategy used is to construct the matrix Ls by means of sub-matrices that subsequently can
be assembled. For multiple node junctions, the column state vector is composed by the d nodal
displacements followed by the d nodal forces. The Matrix Ls, that multiplies the state vector
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(see equation 19) can be seen as the composition of two square sub-matrices Lq and LF that
apply to displacements and forces respectively:

Lsu
(ns) =

[
Lq

∣∣∣∣ LF

]
{q}

{F}

 (20)

The matrices Lq and LF , in turn, consist of sub-matrices, corresponding to each node, named
Lq,sub and LF,sub. These sub-matrices are square, identical for every node and depend on the
kind of support. Their dimensions correspond to the number of dof for each node.

Lq =

Lq,sub

. . .
Lq,sub

 , LF =

LF,sub

. . .
LF,sub

 (21)

The sub-matrices Lq,sub and LF,sub have to be constructed for every type of structure (beam,
shell, plates, etc.) from whom the number of dof per node depends. The boundary conditions
are denoted by the column vector Bs, where the subscript refers to the respective constrain s.
Each component represents the admitted displacement of each dof. The vector Bs depend on
the type of constrain:

• rigid constrains: Bs = [0]

• elastic constrain: Bs 6= [0]

3.3 Solution of the problem

In order to apply the boundary conditions, equation (18) has to be multiplied for the index
matrix Ls and equalled to the vector Bs. For each support s, the boundary conditions can be
written as Bs = Lsu

(ns) so that:

LsΦµµµ
nsQ− LsΦ

∗µµµN−nsQ∗ + LsT
(ns)+

− LsΦ
∑
ni≤ns

µµµns−niΦ∗T
q R(ni) − LsΦ

∗
∑
ni>ns

µµµni−nsΦT
q R(ni) = Bs (22)

The next step consists in replacing the vector R(ni) with the expression LT
i R̃(ni) in order to

consider only the non zero components of the reaction. For a notation issue, the following
assumption are made:

ΦΦΦs = LsΦ; Φ∗
s = LsΦ

? (23)

Finally:

Φsµµµ
nsQ−Φs

∑
ni≤ns

µµµns−niΦ∗T
i R̃(ni)

−Φ∗
s

∑
ni>ns

µµµni−nsΦT
i R̃(ni) −Φ∗

sµµµ
N−nsQ∗ = Bs − LsT

(ns) (24)
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Equation (24) can be written for every constrain s, leading to a system of linear equations in
the form:

AX = F (25)

The vector of the unknowns is:

X =



Q

R̃(n1)

...
R̃(ns)

...
R̃(nS)

Q∗


(26)

Once matrix A and vector F are defined, it is possible to solve the problem:

X = A−1F (27)

Replacing the reactions R and wave amplitudes Q and Q∗ in equation (18), the response of the
entire periodic structure is obtained.

4 APPLICATIONS

In order to validate this technique, two applications have been developed. The two structures
will present different dimensions and types of constraints placed in an arbitrary manner. For
each application the frequency response function (FRF) of the structure will be calculated with
respect to a specific point. To confirm the results, every problem will be solved both by the
FE method and the WFE method. Furthermore, for both methods the calculation time will be
calculated so that the efficiency can be compared. The general procedure consists in dividing
the structure into a certain number of identical substructures. Using the software Abaqus, the
substructure is modelled and the stiffness and mass matrix obtained. By importing this data, the
problem can be solved by the software Matlab. In fact, from the stiffness and mass matrix it is
possible to obtain the dynamic stiffness matrix and the transfer matrix S.

4.1 1D Beam

The structure considered is the multi supported beam represented in Figure (2) with L =
50m. The objective of this application is to demonstrate the possibility of considering different
types of constrained not necessarily equispaced.

Figure 2: Multi-supported beam
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The section of the beam is a IPE 400, see figure 7. The external force is a vertical point force
and acts to the middle of the first span. His value is F = 5 kN . The material considered is steel
and the mechanical properties are summarized in Table (1).

Steel

Density d = 7850 kg/m3

Elastic modulus E = 210GPa
Poisson modulus ν = 0.3

Table 1: Mechanical properties of steel.

The beam is composed by 220 substructures of length l = 0.2m with 33 dofs by period and
6603 dofs in the whole structure. The type of element is a 2-node linear beam in a plane. In Fig-
ure (3) are reported the results of the analysis. The results match perfectly. The computational
time is drastically reduced being 49.31s for FEM and 5.57s for WFEM.
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Figure 3: Frequency response function. Logarithm of the modulus of the displacement in function of
the frequency.

4.2 Multi-supported bridge

In this section, the dynamic behaviour of a multi-supported bridge is studied. The total
length is L = 120m. The bridge is fixed to the ends and supported by two equispaced roller
supports. The maximum span is Lspan = 40m. The longitudinal scheme of the bridge is repre-
sented in Figure (4). The bridge presents a box-beam deck which dimensions are represented
in Figure (5). The external force is a vertical point force and acts to the middle of the structure;
its value is F = 10 kN . The position is at the right upper corner of figure 5. The response is
also computed at the right upper corner. The material considered is concrete and the mechanical
property are summarized in Table (2).

The bridge is composed by 480 substructures of length l = 0.25m with 1368 dofs by period
and 329004 dofs in the whole structure. The substructure has been modelled by a 8-node lin-
ear brick of dimensions 0.25m. The FRF has been computed every 0.15Hz in the range the
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Figure 4: Multi-supported bridge

Figure 5: Section of the bridge (m).

frequencies of 0 − 30Hz. The result obtained by applying the WFE method matches with the
one obtained with the FEM. Moreover the computational time is halved being 204 minutes for
FEM and 100 minutes for WFEM equivalent to 51% of time reduction. The results are showed
in Figure (6).

5 CONCLUSIONS

As already mentioned, the WFE method has proved to be an excellent calculation tool to ob-
tain results in a definitely shorter time compared to FEM. The proposed technique, that can be
seen as a way to impose the boundary conditions, is simple but at the same time very effective.
It is important to highlight the high efficiency in terms of time reduction and memory used dur-
ing the computation. Finally, through practical applications, we have validated the method by
finding results that coincide with the FEM but with the advantages of obtaining a computational
time that in the worst case is halved.
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HP Concrete

Density d = 2500 kg/m3

Elastic modulus E = 48GPa
Poisson modulus ν = 0.2

Table 2: Physical and Mechanical characteristic of concrete.
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Figure 6: FRF of the bridge. Comparison between the WFEM (o) and the FEM (-)
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Figure 7: IPE 400

IPE 400

h 400mm
b 180mm
tw 8.6mm
tf ν = 13.5mm

Table 3: Dimensions of IPE 400 section
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