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Abstract

This paper deals with the dynamic characterisation of plate structures with elliptical or-
thotropic stiffness properties, using an equivalent thin plate theory using a wave fitting
approach. The method consists in projecting the experimentally determined transverse dis-
placement field of a plate on an analytical Green’s function of an elliptical orthotropic
plate based on Hankel’s functions. The error between the projected and measured fields is
then minimized, varying the characteristics of the function until an optimal fit is reached.
The thus obtained characteristics are the two flexural rigidities defining the elliptical or-
thotropy of the plate, and the orthotropy angle. This fitting procedure is applied at each
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frequency, enabling the determination of frequency dependent dynamic material proper-
ties. The method is applied to a honeycomb sandwich panel to validate the proposed fitting
approach. The identified flexural rigidities are compared to the estimations obtained by
means of an analytical model and the IWC (Inhomogeneous Wave Correlation) method
assuming three different type of plate characteristics (anisotropic, orthotropic and ellipti-
cal orthotropic). For the elliptical orthotropic assumption, consistent results are observed
between the methods and the model over a large frequency range (from 1 to 50 kHz).

Key words: Elliptical orthotropy; sandwich panels; wave fitting approach; flexural
rigidities; dynamic equivalent properties; experimental validation

1 Introduction

Nowadays, composite materials and honeycomb sandwich structures are widely
used in industry. Different experimental procedures exist for the characterisation of
such anisotropic structures. At high frequencies, where modal analysis approaches
become inappropriate, other techniques based on vibration field analysis have demon-
strated their efficiency. They can be classified in two main categories.

The first category comprises the global methods which consider the measurement
data over a whole plate area. Among them, wave fitting approaches, such as the
IWC (Inhomogeneous Wave Correlation) method developed by Berthaut et al. [1],
stand out. The fitting methodology consists in correlating the measured vibration
field with a numerically generated vibration field, consisting of plane waves, to
identify the dispersion properties of the structure. The IWC method has been used
in many applications. Cherif et al. [2] employed such an approach to character-
ize composite plates and aluminium panels treated with viscoelastic patches. Ich-
chou et al. [3] applied the IWC method assuming that the measured structure can be
represented by a thin plate under Love-Kirchhoff’s theory. They used this assump-
tion to identify the dynamic flexural properties of a honeycomb sandwich plate. Fi-
nally, Rak et al. [4] showed that the IWC method gives different estimations of the
structural loss factor as compared to McDaniel’s method [5]. Another wave fitting
approach has been developed by Cuenca et al. [6,7]. In this method, the projected
field corresponds to the Green’s function of a finite plate with simply supported
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boundary conditions and is constructed combining Hankel’s functions and the im-
age sources method. This fitting approach requires knowledge about the position
of the source. As mentioned by Roozen et al. [8], the Green’s function is ”better
suited to represent the vibrational field of a point excited plate”, especially close
to the source and at high frequencies, as compared to the plane wave of the IWC
method. The Hankel’s functions are defined assuming that the measured structure
behaves as a thin plate of Love-Kirchhoff. Based upon this assumption, the material
properties identified by the method correspond to the complex flexural rigidity of
the thin plate. Roozen et al. [8] proposed to combine the image source method with
a bayesian regularisation to increase the accuracy of the method.

The second category of vibration field analysis methods comprises local approaches
which locally solve the equation of motion of the structure. The main advantage of
the local aspect is to apply the method without any knowledge outside the studied
area (boundary conditions or sources). The FAT (Force Analysis Technique) ap-
proach [9] estimates the equation of motion by means of a finite different scheme
applied on the measured vibration field. The bias error of this scheme is reduced
with the CFAT (Corrected FAT) [10] approach by adding correction factors. The
FAT and CFAT methods have been used to characterise isotropic [11,12] and or-
thotropic [13] plates modelling the measured structures as Love-Kirchhoff’s thin
plates. Another local approach is the VFM (Virtual Field Method) [14], which is
based on the principle of virtual works. With this principle, the equation of motion
is solved estimating the partial derivatives of the measured displacement field at the
order 2 only. Hence, the VFM has the advantage to be less sensitive to measurement
uncertainties than the FAT or CFAT methods.

In this paper, the Hankel fitting approach is adapted for the characterisation of plate
structures defined by an elliptical orthotropic behaviour of the flexural motion, us-
ing the equivalent thin plate theory [15]. Spruce woods or honeycomb sandwich
panels are good examples of such structures. The theory of the proposed method
is detailed in Section 2. Then, Section 3 describes the IWC method and an analyt-
ical model, which will be used to validate the proposed Hankel fitting approach.
Finally, an experimental application performed on a honeycomb sandwich plate is
presented in Section 4.

2 Proposed method: Elliptical orthotropic Hankel fitting approach

This section details the adaptation of the Hankel fitting approach [6,8] for elliptical
orthotropic plates. This type of plate is characterised by an elliptical wavenumber
curve for flexural motion (see Figure 1). The method considers the transverse dis-
placement field W of an harmonically excited plate measured over a regular grid
mesh (xp, yq). An off-axes orthotropy is considered assuming that the main axes
of the measurement mesh (x, y) are different from the orthotropy axes (x′, y′) of
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the plate, as indicated in Figure 1. The angle between the two coordinate systems
corresponds to the orthotropy angle θ′. The main idea of the methodology consists
in approximating the measured displacement field by means of Green’s functions
of an elliptical orthotropic plate under Love-Kirchhoff’s theory. The identification
of the analytical expression of such functions for elliptical orthotropic plates is ad-
dressed in section 2.1. The fitting approach is then developed in section 2.2.

x'

y'

x

y

'

Fig. 1. Theoretical example of the flexural wavenumber curve of an elliptical orthotropic
plate (red line). Axes of the measurement mesh (x, y). Orthotropy axes (x′, y′).

2.1 Elliptical orthotropic Green’s function

The equation of motion of an elliptical orthotropic plate excited by a point force δ
is defined in the (x′, y′) coordinate system by the Love-Kirchhoff’s theory as:

(√D′11 ∂2∂x′2
+
√
D′22

∂2

∂y′2

)2

− ρhω2

w(x′, y′) = δ(x′ − x′0, y′ − y′0), (1)

where w is the transverse motion, ω is the angular frequency, ρ is the plate density,
h is the plate thickness and (x′0, y

′
0) is the position of the source. TheD′ coefficients

correspond to the flexural rigidities of the structure in the (x′, y′) coordinate system
along the directions of orthotropy (see Figure 1).

For infinite lateral dimensions of the plate, the solution of Eq. (1) corresponds to
an elliptical orthotropic Green’s function G∞. Berthaut [16] gave, in the appendix
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of his thesis, the analytical expression 1 of such a function referring to Hamet [17]:

G∞(x′, y′, ω) =
j 4

√
D′11D

′
22

8
√
ρhω2

(
H

(1)
0 (κr)−H(1)

0 (jκr)
)
, (2)

where H(1)
0 corresponds to the cylindrical Hankel’s function of the first kind of or-

der 0, κ is a pseudo-wavenumber and r is the source distance. The product between
κ and r is defined by:

κr = 4

√
ρhω2

√√√√√(x′ − x′0)2√
D′11

+
(y′ − y′0)2√

D′22
. (3)

Then, the Green’s function (2) can be written in the (x, y) measurement coordinate
system using the matrix relation (see Figure 1):x′

y′

 =

 cos(θ′) sin(θ′)

− sin(θ′) cos(θ′)


x
y

 . (4)

2.2 Fitting methodology

In [6,8], the image source method is used to account for the reflection of waves
caused by the finiteness of the plate in lateral dimensions. The implementation of
the image source method to orthotropic panels with arbitrary orthotropy angle is
not straightforward. For such structures, a plane wave travelling to the edge with
some angle is reflected in another direction with a different wavelength. Symmetri-
cal Green’s functions are used in the image source method to estimate the reflected
field involving that the wavelength of the reflected wave remains the same as the
incident wave. Thus, the validity of the image source method may be doubted for
orthotropic panels with arbitrary orthotropy angle. The reader may notice that the
method is yet valid if the orthotropy axes are aligned with the edges of the plate.
Since the characterisation technique developed in this work can be applied on ellip-
tical orthotropic plates with arbitrary orthotropy angle, we preferred not to use the
image source method and neglect the reflected waves in the projected field. Based
upon this assumption, the measured vibration field W (xp, yq, ω) can be approxi-
mated by the projected field:

W̃ (xp, yq, ω) = α(ω)G∞(xp, yq, ω), (5)

1 Berthaut also tried different methods to identify the Green’s function of non-elliptical
orthotropic plates. He concluded that ”it is very sensitive or even impossible” to identify
analytically the Green’s function of such plates.
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where α is the strength of the Green’s function and is calculated by means of a
generalized inverse approach assuming that the measured field W is equal to the
virtual field W̃ :

α(ω) =
(
GTG

)−1
GTW , (6)

where the right hand side of Eq. (6) is evaluated for each frequency ω separately,
and where W and G are vectors containing W (xp, yq, ω) and G∞(xp, yq, ω), re-
spectively, for each frequency ω being considered. The superscript T indicates the
transpose of the vector. The reconstruction error between the measuredW and pro-
jected W̃ vibration fields is then given by:

e(ω) =
‖W − W̃‖2

‖W‖2
, (7)

where ‖...‖ denotes the Euclidean norm of a matrix.

The fitting procedure consists in calculating the error (Eq. (7)) at each frequency
for different projected field, varying the parameters of the Green’s function. These
parameters correspond to the two flexural rigidities D′11, D′22 and the orthotropy
angle θ′, assuming that the surface mass ρh of the plate is known. The values of
these parameters that minimize the error are considered as the dynamic material
characteristics of the plate. For structures with damping, in general the flexural
rigidities are complex. In this study, we will essentially focus on the identification
of the real part of these parameters, thus ignoring dissipation terms.

3 Reference characterisation techniques and analytical model

In order to validate the proposed Hankel fitting approach developed in section 2, we
will use the IWC [1] (Inhomogeneous Wave Correlation) characterisation technique
as well as an analytical model of multilayer systems as references and compare their
results. This section briefly describes these two methods.

3.1 IWC method

The IWC method considers the same measured transverse vibration fieldW (xp, yq, ω).
The projected field used in this correlation method corresponds to an inhomoge-
neous wave φ defined by a propagation angle θ and a wavenumber k:

φk,θ(xp, yq) = e−jk(xp cos(θ)+yq sin(θ)). (8)

The correlation coefficient between the inhomogeneous wave and the measured
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field is defined by:

IWC(k, θ) =

∣∣∣∑p

∑
qW (xp, yq, ω)φ∗k,θ(xp, yq)

∣∣∣√∑
p

∑
q |W (xp, yq)|2.

∑
p

∑
q |φk,θ(xp, yq)|2

, (9)

where the superscript ∗ denotes the complex conjugate. As mention in the previ-
ous section, this study is focused on the identification of the elastic parameters of
the structure. Hence, the wavenumber k is supposed to be real. At each angular
frequency ω, the coefficient (9) is calculated for different values of the propagat-
ing parameters (k, θ). For a given θ and ω, the value of k that maximizes the IWC
coefficient is considered as the flexural wavenumber of the structure kf(θ, ω).

In a similar way as the Hankel fitting approach, we assume that the measured struc-
ture behaves as a thin plate of Love-Kirchhoff. This hypothesis implies that the
flexural wavenumber kf(θ, ω), identified by the IWC method, is a solution of the
dispersion relation of the equivalent thin plate. This relation is defined as function
of ω and θ by:

Di =
ρhω2

k4f (θ, ω)
, (10)

where Di depends on the nature of the equivalent plate. Three different equivalent
plate characteristics are studied in this section, i.e.

a) Anisotropic plate characteristics (i = 1). In this case, the dispersion relation
is defined by five flexural rigidities D. The coefficient D1 can be written as:

D1 = D11c
4
θ +D22s

4
θ +D12c

2
θs

2
θ +D16c

3
θsθ +D26cθs

3
θ, (11)

with cθ = cos(θ) and sθ = sin(θ).
b) Orthotropic plate characteristics (i = 2). In this case, the dispersion rela-

tion is defined by three flexural rigidities D′ and the orthotropy angle θ′. The
coefficient D2 can be written as:

D2 = D′11c
4
θ−θ′ +D′22s

4
θ−θ′ +D′12c

2
θ−θ′s

2
θ−θ′ , (12)

with cθ−θ′ = cos(θ − θ′) and sθ−θ′ = sin(θ − θ′).
c) Elliptical orthotropic plate characteristics (i = 3). In this final case, the previ-

ousD′ coefficients are related to each other by the relationD′12 = 2
√
D′11D

′
22.

The coefficient D3 is then written as:

D3 =
(√

D′11c
2
θ−θ′ +

√
D′22s

2
θ−θ′

)2

. (13)

For a given angular frequency ω, the equivalent characteristics, written as Xi, can
be identified for each case i using the following minimization problem:

Xi = argmin
Xi

∑
θ

∣∣∣∣∣Di − ρhω2

k4f (θ, ω)

∣∣∣∣∣
2
 , (14)
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where

X1 =
{
D11, D22, D12, D16, D26

}
,

X2 =
{
D′11, D

′
22, D

′
12, θ

′
}
,

X3 =
{
D′11, D

′
22, θ

′
}
.

This minimization problem can be solved using the Nelder-Mead’s method [18]
which is based on a non-linear simplex algorithm. We can observe that the number
of characterisation parameters decreases as soon as we add hypothesis on the nature
of the equivalent plate (i.e. i increases).

3.2 Equivalent analytical model

The analytical model used in this paper was initially developed by Guyader and
Lesueur [19] for orthotropic multilayers and has been extended to anisotropic struc-
tures by Loredo and Castel [20]. The behaviour of each layer is described by a
Reissner-Mindlin’s displacement field taking into account the flexural, membrane
and shearing effects. The transverse displacement is supposed to be constant for all
layers, neglecting the deformation through the thickness. An energetic methodol-
ogy governed by Hamilton’s principle is used to derive the equations of motion and
the dispersion curves of the plate as function of the angular frequency ω and the
direction θ.

In order to characterize the structure, the same equivalent methodology as men-
tioned in section 3.1 can be applied using the flexural wavenumber estimated by
the model. Three different equivalent plate characteristics (anisotropic, orthotropic
or elliptical orthotropic) have been assumed as well. Note that a similar equivalent
methodology has already been studied with this analytical model for the anisotropic
case on carbon fiber composite plates [21].

4 Experimental application

This section focuses on an experimental application of the proposed Hankel fitting
approach presented in Section 2. This application deals with the characterisation of
a honeycomb sandwich structure over a large frequency band. Comparisons with
the IWC method and the analytical model presented in Section 3 are also given.
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4.1 Protocol

The structure under test is composed of two aluminium skins separated with a
Nomex honeycomb core. The thickness of each skin is 0.6 mm while the thick-
ness of the core is 9 mm. The area of the plate is 0.73× 0.52 m2.

The plate is hung to a frame using elastics in order to tend toward free-free bound-
ary conditions (see Fig. 2). A broadband chirp excitation is applied on the structure
by means of a thin piezoelectric actuator (type EPZ-20MS64W from Ekulit) glued
in the middle of the plate. The transverse displacement field of the structure is mea-
sured on a regular 2D mesh grid around the excitation by means of a 3D infrared
scanning laser Doppler vibrometer (PSV 500 XTRA, Polytec). Note that the axes
of this mesh (x, y) are parallel to the edges of the plate. A rope is threaded into
holes placed in the edges of the plate to locally increase the damping at the edges
of the structure. This procedure is used to attenuate the reflected waves and improve
the performances of the IWC and Hankel fitting methods.

𝑆

𝑥

𝑦 𝜃′

Measured area Rope Source

Fig. 2. Measurement set-up. Laser Doppler Vibrometer (left). Sketch of the measured hon-
eycomb plate structure (right).

Two measurements have been performed in the frequency ranges 1–10 kHz and
10-50 kHz to reduce experimental noise levels due to high sample frequencies.
Different configurations of mesh have been used for each measurement to obtain at
least 3 points per wavelength at the maximum frequency (see Table 1).

4.2 Reconstruction error of the Hankel approach

In a first analysis, a 2D spatial Fourier Transform was applied to the measurement
data to observe the flexural wavenumber in the k-space domain. Figure 3 presents
this result at 18 kHz and 45 kHz. At 18 kHz, the non-circular shape of the maxi-
mum of level means that the flexural behaviour of the structure is orthotropic. This
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Measurement n◦1 Measurement n◦2

Frequency band 1 - 10 kHz 10 - 50 kHz

Sample frequency 25 kS/s 125 kS/s

Mesh 138× 94 points 270× 187 points

Spatial steps dx = dy ≈ 4 mm dx = dy ≈ 2 mm
Table 1
Characteristics of the measurements performed on the honeycomb sandwich plate by means
of a Laser Doppler Vibrometer.

orthotropy is due to the honeycomb core and, based upon its shape, can be con-
sidered elliptical. We also observe that the axes of orthotropy (dashed blue lines
in Figure 3) are not aligned with the axes of the measurement mesh (x, y). The
orthotropy angle θ′ (which is unknown) between the two coordinate system as well
as the axes of orthotropy (x′, y′) are drawn in Figure 2. At 45 kHz, the shape of the
maximum of level of the Fourier transform seems more circular meaning that the
behaviour of the structure at higher frequencies tends to be isotropic.

Based on the previous observations, we can assume that the honeycomb sandwich
can be described as an elliptical orthotropic plate. Thus, the hypothesis of the pro-
posed Hankel fitting approach are well adapted to characterise the structure under
test.
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Fig. 3. Spatial Fourier Transform applied on the measured transverse displacement field
of the honeycomb structure at 18 kHz (a) and 45 kHz (b). Assumed orthotropy axes (blue
dashed lines).

The proposed Hankel fitting approach has been applied to the measured data. Fig-
ure 4a presents the reconstruction error e (Eq. (7)) of the Hankel approach and the
measured quadratic FRF as function of frequency. Both spectra contain the results
of measurement 1 and 2. From 4.5 kHz up to 25 kHz, the reconstruction error is rel-
atively low since the hypothesis of the method (i.e. omnidirectional source in free
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field) are valid in this frequency range as can be seen in Figure 5b. Below 4.5 kHz,
the modal behaviour of the structure involves a higher amount of error since the
free field assumption is not respected (see Figure 5a). Above 25 kHz, the higher
reconstruction error can be explained by the fact that the source is not omnidirec-
tional (see Figure 5c). This non-omnidirectionality is caused by the fact that the
natural wavelength of the structure is lower than the diameter of the piezoelectric
actuator (20 mm). The small discontinuity of the error spectrum at 10 kHz can be
explained by the fact that we use two different datasets.
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Fig. 4. Error spectrum (Eq. (7)) of the Hankel fitting approach (a) and measured quadratic
frequency response function (b).

4.3 Characterisation of the structure

Figure 6 compares the angle of orthotropy identified by the Hankel approach and
the IWC method (only for orthotropic and elliptical orthotropic plate characteris-
tics) as function of frequency. Between 4.5 and 25 kHz, the results are approxi-
mately constant for all techniques and converge to an average value of θ′ ≈ −7.2◦.
We notice that the IWC method gives noisier results than the Hankel fitting ap-
proach in this frequency band. Below 4.5 kHz and above 25 kHz, the inconsisten-
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Fig. 5. Operational deflection shape measured at 4 (a), 19 (b) and 45 (c) kHz.

cies of the methods can be related to the observations made on the reconstruction
error in section 4.2. We can also observed that the orthotropy angle identified by
the IWC method is quite similar assuming elliptical or non-elliptical orthotropy.
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Fig. 6. Orthotropy angle identified by the Hankel fitting approach (black dot-dashed line)
and the IWC method assuming orthotropic (blue line) and elliptical orthotropic (red dashed
line) plate characteristics.

Figure 7 presents the flexural rigidities identified by the Hankel fitting approach for
elliptical orthotropic plates as well as the IWC method using three different plate
characteristics as defined in Section 3.1. The analytical model described in Sec-
tion 3.2 is shown as well. Materials parameters of the layers used in the analytical
model are summarized in Table 2. Classical parameters have been chosen for the
aluminium skins. Concerning the honeycomb core, different simulations have been
performed with the analytical model varying the parameters of this layer around
values obtained from literature [22]. We selected the optimal parameters that mini-
mize the differences between the flexural rigidities identified by the model and the
IWC method (assuming anisotropic plate characteristic) on the whole frequency
band. We noticed that the results of the model are essentially driven by the shear
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modulus Gxz and Gyz as well as the mass density ρ of this layer. As a consequence,
the other parameters of the core (Young’s modulus Ex and Ey, shear modulus Gxy

and Poisson’s ratios νxy and νyx) have been assumed null. Finally, the value of
the orthotropy angle of the honeycomb core has been chosen equal to θ′ = −7.2◦

according to the experimental results described in Figure 6.

Aluminium Nomex
skins honeycomb core

Thickness h = 0.6 mm h = 9 mm

Density ρ = 2700 kg.m−3 ρ = 170 kg.m−3

Young’s / shear modulus E = 70 GPa Gxz = 50 MPa; Gyz = 115 MPa

Poisson ratio ν = 0.3 -

Orthotropy angle - θ′ = −7.2◦

Table 2
Mechanical parameters of the layers used in the analytical model.

Figure 7a shows the flexural rigidities identified by the IWC approach assuming
full anisotropic plate characteristics. Five rigidities (D11, D22, D12, D16 and D26)
are identified. Above 5 kHz the rigidities D11, D22 and D12 correspond well with
the rigidities predicted by the model. The rigidities D16 and D26 are noisier as
compared to the estimates of D11, D22 and D12 above 5 kHz. Below 5 kHz the
identification is less good as a result of resonant behaviour and standing waves.

Figure 7b shows the flexural rigidities identified by the IWC approach assuming
orthotropic plate characteristics. In this case, three rigidities are identified, i.e. D′11,
D′22 andD′12. Again, above 5 kHz all three rigidities correspond well with the rigidi-
ties predicted by the model; no noticeable difference can be seen with respect to the
IWC fitting results shown in Figure 7a.

Figure 7c shows the flexural rigidities identified by the IWC approach assuming
elliptical orthotropic plate characteristics. In this case only two rigidities are iden-
tified, i.e. D′11 and D′22. The estimated rigidities are smoother as compared to the
previous cases, as a result of the fact that fewer parameters need to be estimated.
The IWC fit results for an elliptical orthotropic plate characteristic correspond well
with the model for frequencies above 4 kHz. This indicates that the elliptical or-
thotropic plate characteristic assumption seems to be a valid assumption in this
case.

Figure 7d shows the flexural rigidities identified by the Hankel approach, also as-
suming an elliptical orthotropic plate characteristic. More consistent results are ob-
tained with the analytical model as compared to the results of the IWC method
shown in Figure 7c, especially in the frequency band 3-10 kHz.

Finally, the dynamic behaviour of the plate can be well described using the Hankel

13



100

102

104

F
le

xu
ra

l r
ig

id
ity

 (
N

.m
)

D
11

D
22

D
12

D
16

D
26

Model

a) IWC (anisotropic case)

100

102

104

F
le

xu
ra

l r
ig

id
ity

 (
N

.m
)

D
11

'

D
22

'

D
12

'

Model

b) IWC (orthotropic case)

100

102

104

F
le

xu
ra

l r
ig

id
ity

 (
N

.m
)

D
11

'

D
22

'

Model

c) IWC (elliptical orthotropic case)
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Fig. 7. Equivalent flexural rigidities identified with the IWC method for anisotropic (a),
orthotropic (b), elliptical orthotropic (c) cases and Hankel fitting approach (d).

fitting approach or the IWC method assuming elliptical orthotropic plate character-
istics. Figure 8 presents the ratio between the flexural rigidities D′11 and D′22 iden-
tified in Figures 7c and 7d. The observed dynamic behaviour is discussed below in
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Fig. 8. Ratio between the flexural rigidities D′11 and D′22 identified by the Hankel fitting
approach (blue line) and the IWC method assuming elliptical orthotropic plate characteris-
tics (red dashed line) and estimated by the analytical model (black dot-dashed line).

three different frequency ranges. In the frequency range below 1 kHz, as estimated
by the model, the behaviour of the structure is essentially controlled by the flexural
motion of the skins. In this case, the ratio D′11/D

′
22 tends to 1, meaning that the

equivalent material properties are isotropic. In the mid frequency range between 1
and 50 kHz, the dynamic behaviour is governed by the shearing effect of the core.
It involves a decrease of the equivalent flexural rigidities since the thin plate theory
only considers the flexural motion of the structure. The equivalent material proper-
ties are anisotropic (D′11/D

′
22 6= 1). At higher frequencies, a decoupling effect of

the layers is observed and the dynamic behaviour is controlled by the flexural mo-
tion of one skin. The equivalent material properties in this frequency range become,
again, isotropic.

4.4 Influence of the excitation position on the Hankel fitting approach

The Hankel fitting approach requires the position (x0, y0) of the source exciting
the plate. The performance of the method can be affected by the validity of this
position. To illustrate this aspect, we applied the Hankel fitting approach on the
measurements varying the excitation position in an area of 2 × 2 cm2 around the
assumed position. Figure 9 presents the error of the method (Eq. (7)) at 15 and
30 kHz as function of the deviation (∆x0,∆y0) of the assumed point of excitation.
For the current experimental application, a noticeable increase of the error can be
avoided with a deviation smaller than 6 mm at 15 kHz and 3.5 mm at 30 kHz.
From these observations, it can concluded that the allowable deviation decreases
with increasing frequency and depends on the flexural wavelength of the structure,
which is about 31 mm at 15 kHz and about 17 mm at 30 kHz according to the
results of the IWC method (averaged in θ). It can be concluded from these results
that the required precision for the source positioning is approximately a fifth of the
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Fig. 9. Error (Eq. (7)) of the Hankel fitting approach as function of the devia-
tion (∆x0,∆y0) of the assumed excitation position at 15 kHz (a) and 30 kHz (b).

4.5 Effects of the honeycomb cells

In the present work, it is assumed that the core of the honeycomb structure may
be represented by means of an equivalent homogeneous orthotropic core structure.
This assumption is validated experimentally through the spatial Fourier transform
maps, exhibiting nice elliptical natural wavenumber curves (see Figure 3). Note that
at the highest frequency considered in this study, the smallest natural wavelength
(2π/max(k)) is still larger than 10 mm, whilst the characteristic cell size is about
6 mm. However, the cell structure has some second order effects that are discussed
hereafter.

A first effect is related to the drop in the quadratic velocity curve (see Figure 4b)
observed at 20 kHz. This drop is associated to a peak in the fitting error (see Fig-
ure 4a), the operational deflection shape at this specific frequency is drawn in Fig-
ure 10. The high fitting error is due to a strong attenuation of the vibration level as
a function of the distance to the source, much stronger than the assumed geometric
attenuation in 1/

√
r, caused by a distributed damping specifically acting at this fre-

quency. 20 kHz corresponds to the first acoustic mode of the cell (half a wavelength
in the thickness of the core), each cell thus acting as a (acoustically dominated)
vibro-acoustic tuned-mass-damper, resonating at f = 344/(2 ∗ 0.009) ≈ 20 kHz.
The distribution of these resonators logically generates a strong and distributed
damping effect, explaining the observed attenuation. Such effect can be related to
the singularity observed by Margerit et al [23] around 34 kHz on a similar honey-
comb sandwich (of around 5 mm of thickness) for both real and imaginary parts of
the identified complex wavenumbers 2 .

2 Note that, in [23], the acoustic phenomenon (c0/(2h)) coincides in frequency with the
resonance of the cells (half-wavelength π/k around the cell size (≈ 7 mm)
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the line y = 0.19 m (right).

A second effect can be observed at high wavenumbers. The cell structure has indeed
a second order effect on the velocity field that can be interpreted as a spatial modu-
lation of the vibration amplitude, at wavenumbers moduli and angles related to the
geometry of the cell. This modulation in the space domain is clearly visible in the
wavenumber domain as a replication of the natural wavenumber ellipse centred on
specific points of the k-space (see Figure 11), these points can be related to the spa-
tial periodicity and orientation of the honeycomb. The frequency evolution of the
replications of the natural wavenumber is described in the following youtube video:
https://www.youtube.com/watch?v=Z0uhGErDx4M, showing the mea-
sured velocity field and the K-space as function of frequency.
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Fig. 11. Spatial Fourier Transform applied on the measured transverse displacement field
of the honeycomb structure at 30 kHz (a) and 48 kHz (b).
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5 Conclusion

In this paper, the Hankel fitting approach is extended for the characterisation of el-
liptical orthotropic plates, using the equivalent thin plate theory. The Green’s func-
tion used in the theory is adapted to handle structures with elliptical orthotropic
stiffness properties. Three parameters, which correspond to the two flexural rigidi-
ties in the orthotropy axes and the main orthotropy angle, can be identified with
the method. To validate the proposed Hankel fitting approach, experiments are
performed on a honeycomb sandwich. The results of the method are compared
with the estimations of the IWC method and an analytical model assuming three
different plate characteristics (anisotropic, orthotropic and elliptical orthotropic).
Assuming elliptical orthotropic plate characteristics, the Hankel approach shows
more consistent results with the analytical model than the IWC method. Assuming
full anisotropic material characteristics, estimating five rigidities, the IWC method
gives noisier estimates, as a result of the fact that more parameters are estimated,
which makes the method more sensitive to measurement noise.

A perspective of this study could be to extend the theory of the Hankel fitting ap-
proach for fully orthotropic or anisotropic plates using a numerical computation
of the Green’s function of such structures. Note that the computation time of the
fitting procedure would be significant for orthotropic or anisotropic plates since the
number of unknown characteristics increases in these cases. Another interesting
research line could be to compare the proposed Hankel fitting approach with the
recent extension of the CFAT approach for anisotropic plates [24].

Acknowledgments

This work was performed within the framework of the Labex CeLyA of Univer-
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