
HAL Id: hal-03040047
https://hal.science/hal-03040047v4

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Assimilation. Inverse Problems, Assimilation,
Control, Learning.

Jerome Monnier

To cite this version:
Jerome Monnier. Data Assimilation. Inverse Problems, Assimilation, Control, Learning.. Master.
France. 2021. �hal-03040047v4�

https://hal.science/hal-03040047v4
https://hal.archives-ouvertes.fr

J. Monnier 1

INSA Toulouse

Department of Applied Mathematics

Data Assimilation

Inverse Problems, Assimilation, Control, Learning

by Jérôme Monnier

NB. This document is still in preparation. Consequently, it contains some personal annotations, and

there may be missing paragraphs which, however, are not part of the course program.

Goals: solve inverse problems, assimilate datasets into physically-based models, infer / identify
model parameters, calibrate models, learn model terms from rich datasets, compute gradients of
large dimensional model outputs

Keywords: inverse problems, best estimates, optimisation, gradient-based algorithms, model-
based feedback control, PDE-based models, adjoint method, Earth sciences.

Required knowledge: basic approximation methods, numerical optimisation, classical PDE mod-
els (skills in weak forms and basics of functional analysis are a plus), numerical schemes (Finite Differences, Finite Element is a

plus), Python programming.

Contents

I Inverse Problems: Basics Principles and Tools, Examples 3

1 Inverse problems 5
1.1 Direct - inverse? . 5
1.2 Examples . 6
1.3 General concepts . 8

1.3.1 Even the inversion of linear operators may not be trivial... 8
1.3.2 Well-posedness, ill-posedness . 8
1.3.3 Direct - inverse models: reverse frequencies 9

2 Basic tools 11
2.1 Least-square solutions of regression problems, SVD 11

2.1.1 Linear least-square problems . 12
2.1.2 Singular Value Decomposition analysis* 14
2.1.3 Non linear least-square problems . 17

2.2 Ill-posed inverse problems: regularization . 22
2.2.1 Linear cases in small dimension: SVD truncation* 22
2.2.2 General cases: Tikhonov’s regularization 22
2.2.3 L-curve for bi-objective optimization* . 25
2.2.4 Adaptative regularization & Morozov’s principle* 27

3 Real-world examples of inverse problems 31

II Data Assimilation (DA): Sketch of Methods 33

4 DA in a nutshell 35
4.1 Data Assimilation (DA): what is it and why is it important? 35
4.2 The different types of DA methods . 36

5 DA by sequential filters 39
5.1 The Best Linear Unbiased Estimator (BLUE) 39

5.1.1 A basic 1D example . 40
5.1.2 The BLUE in the general case . 43
5.1.3 Hessian, precision matrices . 46
5.1.4 Examples . 47

3

4 Course ”Variational Data Assimilation”

5.2 The Kalman Filter . 48
5.2.1 The linear dynamic model and observations 48
5.2.2 The KF algorithm . 49
5.2.3 Examples . 50
5.2.4 Pros and cons of KF . 52
5.2.5 Extension to non-linear models and/or large dimensional problems: En-

semble KF (EnKF) and hybrid approaches 53

6 DA by variational approach in simple cases 57
6.1 Introduction . 57
6.2 The VDA formulation . 59

6.2.1 The (direct) model and the parameter-to-state operator 59
6.2.2 The observation operator and the cost function 59
6.2.3 The optimization problem . 60

6.3 Linear model, finite dimensional case . 60
6.3.1 Problem statement . 61
6.3.2 On the numerical resolution of the VDA problem 61
6.3.3 Computing the cost function gradient ∇j(u) 62
6.3.4 A simple case: u in the RHS only . 63

6.4 Example . 65
6.5 A bit of history . 66

7 Bayesian inferences & equivalences in the Linear Gaussian case 69
7.1 Bayesian analysis . 69

7.1.1 Founding calculations . 70
7.1.2 The most probable parameter u . 72

7.2 Assuming Gaussian PDFs . 72
7.2.1 Scalar / univariate case . 73
7.2.2 Vectorial / multivariate case* . 74

7.3 The Maximum A-Posteriori (MAP) in Gaussian cases: equivalences with the
BLUE & the variational solution . 75
7.3.1 Computing the MAP . 75
7.3.2 Equivalences in the Linear Quadratic Gaussian (LQG) case 75

7.4 Numerical computations . 76
7.4.1 Algorithm . 76
7.4.2 Pros and cons . 77

7.5 Examples . 78

8 DA by artificial neural networks 81
8.1 Artificial Neural Networks (ANNs) . 81

8.1.1 Introduction . 81
8.1.2 ANNs structure . 82
8.1.3 ANNs training: the optimization problem 83
8.1.4 Trained ANNs: surrogate models . 84
8.1.5 Optimization strategies and ANNs internal technics 85

J. Monnier 5

8.2 ANNs to solve u-parametrized equations . 86
8.2.1 Fully-parametrized ANN . 86
8.2.2 Semi-parametrized ANN . 87

8.3 Physics-Informed Neural Networks (PINNs) . 88
8.3.1 Basic formalism . 88
8.3.2 PINNs for direct modeling . 90
8.3.3 PINNs for inverse modeling . 90

8.4 Examples . 91

III Variational Approaches 93

9 Optimal Control of ODEs 95
9.1 Example: dynamic control of a vehicle . 97

9.1.1 The model . 97
9.1.2 Inverse problems . 97

9.2 Introductory remarks . 99
9.2.1 Control theory in a nutshell . 99
9.2.2 ODE solution behaviors: simple examples 99
9.2.3 On the controllability of a system* . 101

9.3 The Linear-Quadratic (LQ) problem . 102
9.3.1 The general linear ODE-based model . 102
9.3.2 Quadratic cost functions . 104
9.3.3 Linear-Quadratic (LQ) optimal control problem 105

9.4 Numerical methods for optimal control problems 105
9.4.1 Two classes of numerical methods: direct, indirect 105
9.4.2 Direct methods . 106
9.4.3 Numerical solution of the optimal vehicle dynamic 107

9.5 Open-loop control: the Pontryagin principle & Hamiltonian 110
9.5.1 Existence and uniqueness of the solution in the LQ case * 110
9.5.2 The Pontryagin minimum principle . 113
9.5.3 The Hamiltonian . 116
9.5.4 Examples & exercises . 118

9.6 Closed-loop control: feedback law and the Riccati equation (LQ case) * 118
9.6.1 Feedback law in the LQ case . 119
9.6.2 The optimal control theory: a solid basis for other contemporary tech-

nologies . 120
9.6.3 Towards non-linear cases . 120

9.7 Indirect methods (based on the Pontryagin principle) * 121
9.7.1 The Boundary Value Problem . 121
9.7.2 Resulting numerical method . 121
9.7.3 Direct vs indirect methods . 122

9.8 The fundamental equations at a glance . 123

10 Optimal Control of Stationary PDEs: Adjoint Method, VDA 125

6 Course ”Variational Data Assimilation”

10.1 General non-linear case in infinite dimension . 128
10.1.1 The direct model . 128
10.1.2 Examples . 128
10.1.3 The objective and cost function terms (misfit to data) 130
10.1.4 Optimal control problem, VDA problem 132
10.1.5 On the numerical resolution in the general context 133

10.2 Back to mathematical foundations . 133
10.2.1 Differential calculus in infinite dimensions 133
10.2.2 Weak forms and dual space representation 134
10.2.3 Differential j′(u) vs gradient ∇j(u) . 134

10.3 Equations derivation from the Lagrangian . 135
10.3.1 The Lagrangian . 135
10.3.2 The optimality system . 136
10.3.3 Using weak forms . 137

10.4 Mathematical purposes * . 137
10.4.1 Differentiability of the cost function . 137
10.4.2 Existence and uniqueness of the optimal control in the LQ case 138

10.5 Gradient computation: methods for small dimension cases 142
10.5.1 Recall: why and how to compute the cost function gradient? 142
10.5.2 Computing the gradient without adjoint model 143
10.5.3 Gradient components: in the weak or the classical form? * 146

10.6 Cost gradient computation: the adjoint method 147
10.6.1 Deriving the gradient expression without the term wδu 147
10.6.2 The general key result . 149

10.7 The VDA algorithm (3D-var) . 152
10.7.1 Gauss-Newton vs Quasi-Newton . 152
10.7.2 The 3D-Var algorithm . 153

10.8 The fundamental equations at a glance . 155
10.8.1 General continuous formalism . 155
10.8.2 Discrete formalism . 156

10.9 Applications to classical PDEs and operators . 158
10.9.1 Classical PDEs . 158
10.9.2 Adjoint of classical operators . 158

10.10Practical aspects . 159
10.10.1 Validate your codes: computed gradients 159
10.10.2 Twin experiments . 161

10.11Regularization based on covariances operators* 163
10.11.1 Introduction . 163
10.11.2 Change of parameter variable, preconditioning 164
10.11.3 Equivalences between B−1-norms and regularization terms 165

11 VDA for Time-Dependent PDEs 167
11.1 The inverse formulation . 169

11.1.1 The general direct model . 169
11.1.2 Cost function terms: data misfit and regularizations 170

11.1.3 The optimization problem . 172
11.2 Optimality equations in finite dimension (discrete forms) 172
11.3 The optimality equations in infinite dimension (continuous forms) 174

11.3.1 The TLM-based gradient . 175
11.3.2 The adjoint-based gradient . 177

11.4 The 4D-Var algorithm . 180
11.5 The fundamental equations at a glance . 183
11.6 Complexity reduction & incremental 4D-Var algorithm* 184

11.6.1 Basic principles . 184
11.6.2 Incremental 4D-var algorithm . 184
11.6.3 On hybrid approaches . 187

11.7 Exercises . 189
11.7.1 Viscous Burgers’ equation . 189
11.7.2 Diffusion equation with non constant coefficients 189

Bibliography 190

1

1The sections indicated with a * are ”to go further sections”. These sections can be skipped as a first reading,
or if you are not interested in deeper mathematical basis, mathematical proofs.

J. Monnier 1

WhereTo & How

Language
At INSA Toulouse, this course is tough in GlobeEngliche (esperanto, in fact) excepted if all
attendants understand French sufficiently well.

Goals of this course
- To revise, deepen the fundamentals numerical methods to solve inverse problem,
- To learn the basics of the traditional Data Assimilation (sequential filters, variational) and
Bayesian analysis and their connections,
- To learn the connections between a piurely data-driven approach (based on Neural Networks)
and the traditionnal DA methods, - To learn the bases of a Physically Informed Neural Network
(PINNs) model,
- To study more into detail the Variation Data Assimilation (VDA) method,
- To design optimal control algorithms for systems governed by a PDE or an ODE,
- To compute gradients of large dimensional model outputs by elaborating the adjoint method,
- To learn to assess computational codes including the adjoint code and the resulting gradient,
- To address real-like inverse problems by ”optimally” combining the mathematical - physical
equations (PDE models mainly), databases containing measurements of the phenomena and
probabilistic priors,
- To perform model calibration, parameter identification, local sensitivity analysis by assimi-
lating the data into the model,
- To identify (learn) model terms from accurate datasets. (Model Learning part).

At the end, the students are supposed to be able :
- To set up and implement in Python a data assimilation formulation e.g. in (geophysical) fluid
mechanics, structural mechanics, biology etc, given databases.
- To compute large dimensional gradients by deriving the adjoint model and design the com-
plete optimisation process,
- To perform a model calibration, to estimate uncertain parameters by assimilating the data
into the physical-based model,
- To learn model terms (ODEs or PDEs) from (accurate) datasets. (Model Learning part).

Content Please consult the table of contents.

Numerous Python codes are provided to illustrate methods for solving inverse problems.

On the operation of this training program at INSA: please consult the INSA Moodle page of
the course.

2 Course ”Variational Data Assimilation”

Part I

Inverse Problems: Basics Principles
and Tools, Examples

3

Chapter 1

Inverse problems

The outline of this chapter is as follows.

Contents
1.1 Direct - inverse? . 5

1.2 Examples . 6

1.3 General concepts . 8

1.3.1 Even the inversion of linear operators may not be trivial... 8

1.3.2 Well-posedness, ill-posedness . 8

1.3.3 Direct - inverse models: reverse frequencies 9

1.1 Direct - inverse?

In the common sense, the term ”model” denotes a direct model (also called ”forward” model).

Figure 1.1: Representation of a direct model with its input variable (”parameter”) u (a-priori
vectorial) and its output variable y; and its inverse counterpart.

5

6

A direct problem based on the model operator M(.) consists to find (compute) a solution y
given the input parameter u: find y, y =M(u).

The inverse problem consists to find u, given y i.e. to compute u =M−1(y).

Numerous excellent books have been published on inverse problems, let us cite for example
[47, 43, 23, 29, 38, 3].

1.2 Examples

Many examples are presented e.g. in [17, 13, 29, 27].

Example 1) The historical Lagrange interpolation problem.
Find a polynomial p(x) of degree n, of coefficients (u0, · · · , un) that fit given values (y1, , ..., yn)
at some points (x1, ..., xn).
This Lagrange interpolation problem is actually the inverse problem of the following direct
problem: calculate the given polynomial p(x) at the points (x1, ..., xn).

This example is somehow a problem of parameters identification, given the ”model” p(u;x).

Example 2) A PDE-based identification problem.
Let us consider a diffusion phenomena in a material. The non homogeneous diffusivity of the
material (e.g. a conductivity of a biological tissue) is denoted by u(x).
The model is the following.
Given u(x) in the domain Ω, find the scalar quantity y(x, t) (e.g. an electrical field or wave
intensity) satisfying: 

∂ty(x, t)− div(u(x)∇y(x, t)) = 0 in Ω×]0, T [
y(x, 0) = y0(x) in Ω
y(x, t) = yd(x, t) in ∂Ω×]0, T [

(1.1)

The initial condition y0 and the value yd at boundary are given.
The direct problem consists to solve this classical Boundary Value Problem (BVP).
It is a well-posed problem (see later for exact meaning).

The inverse problem is as follows.
Given some boundary measurements of the field y(x, t) and the flux [u(x)∂ny(x, t)] on ∂Ω, de-
termine the unknown / uncertain diffusivity coefficient u(x) in the domain Ω.

7

The Electrical Impedance Tomography (EIT) problem This inverse problem described
above corresponds to the impedance tomography problem. A particular case is the Electrical
Impedance Tomography (EIT) problem.
” Electrical Impedance Tomography (EIT) is a noninvasive type of medical imaging in which the elec-
trical conductivity, permittivity, and impedance of a part of the body is inferred from surface electrode
measurements and used to form a tomographic image of that part” (from Wikipedia page). See eg.
Fig. 1.2.
In the context of Electrical Impedance Tomography (EIT), the inverse problem aims at recovering
conductivity (and permittivity) inside a body from surface measurements of electrical currents and
potentials.

It is potentially an ill-posed problem, depending on the assumptions, see e.g. [L. Borcea, Inv. Prob-
lems (2002)].

EIT problem is still an active research problem; it still poses challenging questions for mathematicians,
numericians and experimentalists. This problem is discussed in detail e.g. in [38].

Figure 1.2: Electrical Impedance Tomography (EIT) for cardio-pulmonary monitoring: voltage
measurements around the thorax using an EIT system with 16 electrodes. (R) Image extracted

from C. Putensen et al., J. Clinical Medecine (2019).

Similar inverse problem in other real-world context Inverse problems based on similar
diffusive equation arise in hydrology for example. The reader may consult e.g. [29, 38, 3] to read
other standard instructive inverse problems in various technological contexts. Mathematical models
are generally PDEs or integral equations.

Other complex examples and real-world are presented in next chapter, in particular the inverse prob-
lem in spatial hydrology which is analysed into detail throughout the manuscript.

8

1.3 General concepts

Basic formalism

In real-world problems, the measurements, denoted by zobs (zobs ≡ yobs if the observations are directly
the model outputs), are almost always incomplete, sparse or inaccurate.

Moreover since the direct model represented by the operatorM is un-perfect, measurements actually
satisfies:

yobs =M(u) + ε (1.2)

with ε a global error term incorporating both the observation errors and the structural model error:
ε = εobs + εmod.
ε is defined as a stochastic field following an a-priori distribution, actually Gaussian when no other
information is available.

We have assumed here that the observations are directly the model outputs: zobs = yobs.

1.3.1 Even the inversion of linear operators may not be trivial...

In the linear case, the direct model is represented by a matrix M .
Näıvely solving the inverse problem as u = (M−1yobs) may not work for few reasons. Two trivial ones
are:
- observations yobs can be not numerous enough therefore providing an undetermined problem,
- the error term ε can be unknown.

Moreover a third reason is due to the fact that the inverse operator M−1 can be ill-conditioned (small
variations of y implies large variations of u).
Note that M well-conditioned direct model implies that M−1 ill-conditioned (and conversely).

Indeed, the 2-norm condition number reads: κ2(M) = maxi |λ(M)|
mini |λi(M)| , λi the eigenvalues.

Moreover, λi(M
−1) = (λi(M))−1. Therefore the statement.

”Mathematically invertible” does not mean ”numerically easily invertible”...

In all the sequel, we define the control-to-state operator M (also called here the ”model operator”)
as follows:

M : u ∈ U 7→ y ∈ Y (1.3)

1.3.2 Well-posedness, ill-posedness

In the Hadamard sense1, a model is well-posed if the following conditions hold:
i) it admits an unique solution,
ii) the solution depends continuously on the data or input parameters.

9

The first condition i) (existence and uniqueness) is related to the functional space the solution is sough
in.
The second condition ii) is a stability condition. This property is crucial too. Indeed, if this condition
is not satisfied then any measurement or numerical error generates large errors in the model response
i.e. a highly perturbed solution.

In all the sequel, it will be assumed that the direct model is well-posed. This is a necessary condition
to go further !
Assumption ii) may be re-read as follows: the control-to-state operator M is continuous.

Even if the direct problem is well-posed, the inverse problem is often severely ill-posed !
In practice, an ill-posed inverse problem is extremely sensitive to any uncontrolled input perturbation
such as measurement errors, model error, discrepancy between data scale and model scale etc

Note that thanks to the open mapping theorem, see e.g. [10]:
If M is linear and continuous with U and Y Banach spaces, then the inverse model operator M−1 is
continuous.

Ill-posed inverse problems are somehow the opposite of well-posed direct problems.
Direct problems are usually the way that can be solved easily (compared to the inverse problem).
Actually, direct and inverse models are back-and-forth transmission of information between u and y.
Roughly, if the direct model operator maps causes to effects, the inverse operator maps the effects to
the causes.
In science and engineering, inverse problems often consist to determine properties of unmeasurable
quantities (in space and/or in time).
The observations (data, measurements) are generally far to be complete or even accurate. Poor ob-
servations, both in quantity and quality, is one of the source of difficulties to solve inverse problems.

Exercise. Propose a PDE-based model which is well-posed in the Hadamard sense.
An answer: linear elliptic BVPs, coercitive in a Hilbert space V , may be well-posed in vertu of the
Lax-Milgram theorem. �

1.3.3 Direct - inverse models: reverse frequencies

In real-world problems, the direct models generally represent the lowest frequencies of the modeled
phenomena: mini |λ(M)| is relatively large compared to noise frequencies, see e.g. Fig. 1.3.
The most energetic modes of the Fourier representation of a signal, here y(u) the direct model output,
are the lowest frequencies. Noises are high frequencies (therefore not energetic).
The highest frequencies of y(u) are the lowest frequencies of u(y)! As a consequence, separating noise
from the inverse model image is a difficult task.

In real-life modeling, inverse problems are as common as direct problems. The inverse problem classes
and techniques to solve them are extremely wide.

10

Figure 1.3: Direct models enerally represent the lowest frequencies of the modeled phenomena
(here a superimposition of Gaussians).

Inverse modeling is a fast growing topic, requiring both stochastic and deterministic skills.

The historical and common applications fields are in geosciences e.g. weather forecast, oil reservoirs,
hydrology, neutronic (nuclear power plants), inverse scattering (seismology) and imaging (medical
imaging, tomography, image restoration).

Data Assimilation (DA) methods aim at fusing data into mathematical models. DA may be viewed
as a class of method aiming at solving some particular inverse problems.

Chapter 2

Basic tools

The outline of this chapter is as follows.

Contents
2.1 Least-square solutions of regression problems, SVD 11

2.1.1 Linear least-square problems . 12

2.1.2 Singular Value Decomposition analysis* 14

2.1.3 Non linear least-square problems . 17

2.2 Ill-posed inverse problems: regularization 22

2.2.1 Linear cases in small dimension: SVD truncation* 22

2.2.2 General cases: Tikhonov’s regularization 22

2.2.3 L-curve for bi-objective optimization* 25

2.2.4 Adaptative regularization & Morozov’s principle* 27

2.1 Least-square solutions of regression problems, SVD

Numerous excellent books may be consulted on the topic, e.g. [A. Bjorck, Numerical Methods for
Least Squares Problems, SIAM, Philadelphia, 1996].
Linear Regression is likely the most employed approximation technique, dating (at least) from I.
Newton and J. Cassini in the 1700’s.... Today, it remains widely used to fit parametrized curves to
experimental data. Thus, it still may be qualified as the simplest form of the modern Machine Learn-
ing technique...

11

12

2.1.1 Linear least-square problems

Let assume that we have m measurements (zi)1≤i≤m we seek to describe by a ”model”.
To do so, we choose to consider the following linear model with n unknown parameters (ui)1≤i≤n:

a11u1 + ...+ a1nun = z1

... = ...
am1u1 + ...+ amnun = zm

4 We denote: A = (aij)1≤i≤m,1≤j≤n the chosen linear transformation (the linear model is given).
A is a m×n-matrix, z ∈ Rm the observation vector and u ∈ Rn the unknown input parameter vector.
This is a identification parameter problem. This problem reads as:{

Given A ∈ Rm×n and z ∈ Rm,
find u ∈ Rn such that: Au = z

(2.1)

In the case there is as much parameters ui as observations zk (yes, that sounds weird...), i.e. n = m,
the model is well-posed if and only if A is a full-rank matrix. In this case, it exists a unique set of
parameters u describing exactly the data.

Still in the case n = m but if the model is ill-posed in the sense rank(A) < n, then it exists solutions
but they are not unique.
In this case, the kernel of A, Ker(A), contains non zero vectors v such that: Av = 0. If u∗ is a solution
then (u∗ + v) with v ∈ Ker(A) is also solution.
In practice there is no reason to have n = m !...

In the case n > m i.e. in the unlikely case there is more input parameters than observations, the
system is under-determined. Generally, it exists solutions but they are non-unique.

In the case n < m i.e. in the usual case there is less input parameters than observations, the system
is over-determined. A-priori it does not exist any solution fitting all data.
Indeed, with m input parameters, it can exist a unique solution making fit the observations; but what
about the extra (n−m) ”constraint equations” ?

Figure 2.1: Linear least-square problem (with dense observations-measurements !). (L) The
most simple case: linear regression; two parameters to identify. (R) An other simple case
(polynomial, degree 3).

13

Least-square solution(s)

Instead of seeking a solution satisfying each equation above (i.e. a solution making fit exactly all the
observations), it is interesting to find a solution satisfying ”at best” the system; in other words, a
solution u minimizing the norm ‖Au− z‖.
Of course the choice of different norms will lead to different solutions...
An easy choice of norm is the Euclidian norm ‖.‖2 since it is associated to a scalar product on contrary
to the norms ‖.‖1 and ‖.‖∞ for example.
Then the problem becomes:

{
Find u∗ ∈ Rn such that:
j(u∗) = minRn j(u) with j(u) = 1

2‖Au− z‖
2
2,m

(2.2)

It is an unconstrained optimization problem in a convex set.

The functional j reads: j(u) =
1

2
(ATAu, u) − (Au, z) +

1

2
(z, z). j is quadratic, convex since ATA is

positive, hence j admits a minimum in Rn.
Furthermore, if ATA is definite (it means n ≤ m and A is full rank, dim(Im(A) = m) then the solution
is unique.
The gradient of j reads: ∇j(u) = ATAu − AT z. Then, the solution u has to satisfy the necessary
optimal condition:

ATAu = AT z (2.3)

This is the normal equations.

Examples

The reader can find numerous well documented examples with corresponding Python codes available
on the web, e.g. on the https://towardsdatascience.com web site 1.

A very basic example Below is presented a very basic simple. Data in (x,y) are generated (syn-
thetic dataset). The matrix A is assembled by stacking x and a column of ones. The least squares
solution is computed (linear algebra). The data points along with the fitted curve obtained from the
least squares solution are plotted.

1https://towardsdatascience.com/linear-regression-using-least-squares-a4c3456e8570

14

Basic example o f l e a s t −square s o l u t i o n approximating a s e t o f s c a l a r va lue s
import numpy as np
import matp lo t l i b . pyplot as p l t

Generate some s y n t h e t i c data : l i n e a r gene ra t i on ! To be complex i fy . . .
x = np . l i n s p a c e (0 , 1 , 101)
y = 1 + x + x ∗ np . random . random (l en (x))

Assemble matrix A
A = np . vstack ([x , np . ones (l en (x))]) . T

Perform l e a s t squares r e g r e s s i o n
alpha = np . dot (np . l i n a l g . inv (np . dot (A.T, A)) , np . dot (A.T, y [: , np . newaxis]))

Plot the data po in t s a long with the l e a s t squares r e g r e s s i o n
p l t . p l o t (x , y , ’ ro ’ , l a b e l =’Data ’)
p l t . p l o t (x , np . dot (A, alpha) , ’ k−−’, l a b e l =’Fit ’)
p l t . x l a b e l (’ x ’) ; p l t . y l a b e l (’ y ’) ; p l t . t i t l e (’ Least squares r e g r e s s i o n ’)
p l t . l egend (l o c =’upper l e f t ’)
p l t . show ()

Full rank case* This paragraph is a ”not compulsory” one.
In the case A full rank (i.e. dim(Im(A)) = m), then the solution is unique since ATA is
symmetric positive definite. Even if A sparse, then ATA is a-priori non sparse; also u2(ATA) =
(u2(A))2, hence the normal equations can be an ill-conditioned system. Then, a good algorithm
to solve the normal equations is a-priori not the Cholesky algorithm, especially if m large.
Remembering that the 2-norm is preserved under orthogonal transformations, a better option
is to solve the following equivalent system:

min
u∈Rn

1

2
‖QAu−Qz‖2

2,m

with Q an orthogonal matrix.
By performing QR-factorizations (Householder’s method), the resulting linear system to be
inverted is a triangular n× n system, with its original conditioning number K2(A) preserved.

2.1.2 Singular Value Decomposition analysis*

This section is a ”not compulsory” section.

The Singular Value Decomposition (SVD) is a widely employed and powerful technique used
in linear algebra and data analysis. It can be applied to solve inverse problems, such as image
reconstruction, noise reduction, system identification etc. SVD is an important tool to analyze
linear inverse problems. It is the central tool to build up reduced models by the Proper Or-
thogonal Decomposition (POD) method and computing PCA.

Let us recall what is the Singular Value Decomposition (SVD) of a matrix A.

15

Recalls on the SVD

Given a rectangular m× n-matrix A, rank(A) = r < m, the SVD of A reads, see e.g.[]:

A = V ΣuT =
r∑
i=1

σiviu
T
i

where:

. Σ is the r × r-diagonal matrix containing the singular values σi of A:

(σi)
2 = λi(A

TA) = λi(AA
T) for all λi 6= 0, 1 ≤ i ≤ r

0 < σr ≤ ... ≤ σ1

. V = (V1, ..., Vr), m × r-matrix, contains the unit orthogonal eigenvector basis of AAT :
(AAT)V = V Σ2 with V TV = Ir,

. W = (W1, ...,Wr), n × r-matrix, contains the unit orthogonal eigenvector basis of ATA:
(ATA)W = WΣ2 with uTW = Ir.

The vectors of V constitute an unit orthogonal basis of Im(A) ⊂ Rm, while the vectors of W
constitute an unit orthogonal basis of KerT (A) ⊂ Rn.

From the SVD, a pseudo-inverse (also called generalized inverse) of the rectangular matrix A
can be defined as follows:

A−1 = WΣ−1V T

The SVD provides optimal low-rank approximations to matrices. Indeed, we have:

Theorem 2.1. (Eckart-Young theorem). The r−rank SVD truncation of a m× n-matrix A is
the optimal rank approximation to A in the least- squares sense.
Indeed, the matrix Ak =

∑n
i=1 σiviw

T
i with k ≤ r is optimal in the following sense:

‖A− Ak‖F = min
B∈Rm×n, rank(B)≤k

‖A−B‖F =

 r∑
m=(k+1)

σ2
m

1/2

where ‖ · ‖F denotes the Frobenius norm.

Linear least-square & SVD

Let us go back the linear least-square problem. In (2.2), the residual to be minimized satis-
fies:

‖Au− z‖2
2,m = ‖V T (V ΣuTu− z)‖2

2,m = ‖ΣuTu− V T z‖2
2,m

since V is an orthogonal matrix.
Therefore the least-square solution formally reads:

u∗ = A−1z = WΣ−1V T z =
r∑
i=1

(σi)
−1vTi wi z (2.4)

16

with the singular values σi ordered in decreasing order (decreasing gradually to 0).

Let us point out a few consequences of this expression.

• Smaller singular values are, greater they amplify the errors contained in the given RHS
(the data) z. Vanishing singular values produce instabilities in the computation of the
inverse problem solution u∗ above.

• The more the number of singular values are taken into account (from 1 to r at maximum),
the more data errors (”noise” contained in data z) are amplified.

• The SVD provides a hierarchical approximation (potentially low-dimensional) to the in-
verse problem solution in the eigenvectors coordinate system.

A way to ”regularize” an ill-posed linear inverse problem, consists to ”stabilize” this estimation
by simply truncating the sum at a given order r0 < r. However, r0 has to be not too large, not
too small...

No universal criteria exist to quantify a good truncation rank r0. This has to be empirically
determined from expertise and potentially on error criteria such as ‖ur0 − u∗‖/‖u∗‖ in a given
norm (typically the 2-norm or the ∞-norm).

Examples

The reader can find numerous well documented examples with corresponding Python codes
available on the web, e.g. on the https://towardsdatascience.com web site 2.

A basic example Below is presented a very basic simple. A noisy signal (consisting of a
sinusoidal wave with added Gaussian noise) is first generated. We then perform a SVD on the
signal. By selecting a subset of singular values (the first k singular values), we can reconstruct
the signal. The original and reconstructed signals are plotted.

2hhttps://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-
science-388a54be95d

17

SVD to r e c o n s t r u c t a 1D s i g n a l
import numpy as np
import matp lo t l i b . pyplot as p l t

Generate a no i sy s i g n a l
t = np . l i n s p a c e (0 , 1 , 100)
s i g n a l = np . s i n (2 ∗ np . p i ∗ 5 ∗ t) + np . random . normal (0 , 0 . 1 , 100)

Perform SVD
U, S , V = np . l i n a l g . svd (s i g n a l)

Reconstruct the s i g n a l us ing a subset o f s i n g u l a r va lue s
k = 10
r e c o n s t r u c t e d s i g n a l = U[: , : k] @ np . diag (S [: k]) @ V [: k , :]

Plot the o r i g i n a l and r e cons t ruc t ed s i g n a l s
p l t . f i g u r e (f i g s i z e =(8 , 4))
p l t . p l o t (t , s i gna l , l a b e l =’ Or i g ina l S igna l ’)
p l t . p l o t (t , r e c o n s t r u c t e d s i g n a l , l a b e l =’ Reconstructed Signal ’)
p l t . x l a b e l (’ Time ’) ; p l t . y l a b e l (’ Amplitude ’) ; p l t . t i t l e (’SVD Applied to an Inve r s e Problem ’)
p l t . l egend ()
p l t . show ()

2.1.3 Non linear least-square problems

Let us consider the same problem as previously: set up a model describing ”at best” m available
data zi, 1 ≤ i ≤ m but based on a non-linear model. In this case, the corresponding least-square
formulation reads:

j(u∗) = min
Rn

j(u) with j(u) =
1

2
‖M(u)‖2

2,m (2.5)

with M defined from Rn into Rm, M non linear in u.

Again, it is an unconstrained optimization problem in a convex set.

In the previous linear case, M was equal to: M(u) = Au− z.

Note that neither the existence of a solution, nor its uniqueness is guaranteed without as-
sumptions on the non-linear operator M(·) and/or the space solutions.In a nutshell, non-linear
problems are much more difficult than linear ones. Below, and more generally in this course,
one consider heuristic computational algorithms only.

Examples

Below a very few examples of non linear least-square problems. Many other examples can be
found e.g. in [13] or e.g. on the https://towardsdatascience.com web site.

Example: standard fitting problem The goal is to fit at best a (dense) dataset; the re-
gression problem plotted in Fig. 2.2(L).
The chosen functional (”model”) is: j(u1, · · · , u4) = u1 exp(u2x) cos(u3x + u4) with the four

18

parameters ui, i = 1, . . . , 4, to identify.

Figure 2.2: Non-linear least square problems: examples. (L) A fitting problem (with dense
data); 4 parameters to identify. (R) The (differentiable) sigmoid function employed to solve
binary classification problems.

Example: classification problem A basic way to solve a binary classification problem is
to solve the non-linear least square problem defined by:

j(u1, · · · , up) =
m∑
i=1

(Φ(u1f1(xi) + · · ·+ upfp(xi))− di)2

where the functions fj(·) are given.

Φ(u) is he sigmoidal function; Φ(u) = exp(u)−exp(−u)
exp(u)+exp(−u)

. Φ is a differentiable function approximat-

ing the sign function, Fig. 2.2(R).

Example: The location problem by Global Navigation System Satellites (GPS,
Galileo etc). The location problem by Global Navigation System Satellites (GNSS) con-
sists to estimate x, x ∈ R3 (the location value).
The measurements are distances dobsi from given locations ai with i = 1, · · · ,m (the m satel-
lites):

dobsi = ‖ai − xexact‖2,R3 + εi i = 1, ..,m

where ε denotes a noise (the inacurracy of the measurements).

The least-square problem to be solved is:

min
x∈R3

j(x) (2.6)

with: j : R3 → R,

j(u) = ‖‖ai − u‖2,R3 − dobsi ‖2
2,Rm =

m∑
i=1

(
‖ai − u‖2,R3 − dobsi

)2

19

The functional j(·) is non convex, see Fig. 2.3.

Figure 2.3: Non-linear least square problems: the location problem.
(Image extracted from Vandenberghe’s UCLA course).

(L) The graph of j(u), non convex functional in u. (R) Iso-values of j(u), data, exact solution
and the least-square one.

Another example of approximation with the corresponding Python code Below is
presented a basic example. We consider a nonlinear model function model(x, params). The
data are generated as the ”true” model output plus some Gaussian noise. We then define an
objective function objective(params) that computes the difference between the observed data
and the model predictions for a given set of parameters. Finally, the nonlinear least squares fit
is obtained by using the least squares function from SciPy. The solutions are plotted.

20

A non l i n e a r square approximation problem
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import l e a s t s q u a r e s

Def ine the func t i on to be f i t t e d
de f model (x , params) :

r e turn params [0] ∗ np . exp (params [1] ∗ x)

Generate some no i sy data
x = np . l i n s p a c e (0 , 10 , 100)
true params = [0 . 1 , 0 . 3]
y t rue = model (x , true params)
y no i sy = y t rue + np . random . normal (0 , 0 . 1 , l en (x))

Def ine the o b j e c t i v e func t i on f o r l e a s t squares
de f o b j e c t i v e (params) :

r e turn y no i sy − model (x , params)

Perform the non l i n ea r l e a s t squares f i t
i n i t i a l p a r a m s = [0 . 2 , 0 . 2]
r e s u l t = l e a s t s q u a r e s (ob j e c t i v e , i n i t i a l p a r a m s)

Extract the f i t t e d parameters
f i t t ed pa rams = r e s u l t . x

Generate the f i t t e d curve
y f i t t e d = model (x , f i t t ed pa rams)

Plot the o r i g i n a l data and the f i t t e d curve
p l t . f i g u r e (f i g s i z e =(8 , 4))
p l t . p l o t (x , y noi sy , ’ bo ’ , l a b e l =’Noisy Data ’)
p l t . p l o t (x , y true , ’ g− ’ , l a b e l =’True Curve ’)
p l t . p l o t (x , y f i t t e d , ’ r − ’ , l a b e l =’ F i t t ed Curve ’)
p l t . x l a b e l (’ x ’) ; p l t . y l a b e l (’ y ’) ; p l t . t i t l e (’ Nonl inear Least Squares Fit ’)
p l t . l egend ()
p l t . show ()

Optimality condition: derivatives calculations

The necessary first order optimality condition for the general non-linear square problem (2.5)
reads:

∇j(u) = 0 (2.7)

We have: j(u) = 1
2
‖M(u)‖2

2,m. Let us denote the Jacobian of M as follows:

DM(u) =

(
∂Mi

∂uj
(u)

)
1≤i≤m,1≤j≤n

The Hessian for each model component Mi(u), 1 ≤ i ≤ m is denoted as follows:

D2Mi(u) =
(

∂2Mi

∂ul∂uj
(u)
)

1≤l≤m,1≤j≤n
.

Then, the gradient and the Hessian of j(u) read:

∇j(u) = DMT (u)M(u)

Hj(u) ≡ D2j(u) = DMT (u)DM(u) +
m∑
i=1

Mi(u)D2Mi(u)

21

Let us remark that in the linear case, the gradient read: ∇j(u) = ATM(u) = AT (Au− z) and
the Hessian reads: Hj(u) = ATA since the term D2Mi in the Hessian expression vanishes.

Exercise 2.2. Verify the expression of the gradient and the Hessian above.

Gauss-Newton method, Levenberg-Marquardt method

The Newton algorithm applied to the optimality condition ∇j(u) = 0 consists to solve at each
iteration:

Hj(u
n) · δu = −∇j(un) ; un+1 = un + δu

Newton’s algorithm requires the computation and the inversion of the Hessian of j.
For complex real-world models, the computation of Hj is often prohibitive because too complex
or too CPU-time consuming.

Exercise 2.3. Verify that the Newton algorithm applied to the equation (∇j(u) = 0) reads as
above.

The principle of the Gauss-Newton method is to consider in the Newton method by approxi-
mating the Hessian by omitting the second order term:

Hj(u) ≈ DMT (u)DM(u) ≡ H̃j(u) (2.8)

This gives at each iteration:

H̃j(u) · δu = −∇j(un) ; un+1 = un + δu (2.9)

with (recall) ∇j(un) = DMT (un)M(un).

Note that the linear system to be inverted is symmetric positive, and definite if DM(un) is full
rank.
The Gauss-Newton method is observed to be very efficient if DMT (un) is full rank and if
M(u) small when close to the solution. On the contrary it becomes inefficient if these two
conditions are not satisfied and/or if the model is locally ”far to be linear” i.e. if the term∑m

i=1 Mi(u)D2Mi(u) is non negligible (or even worse, dominant).

Finally, a good alternative method to solve non-linear least square problems is the Levenberg-
Marquardt algorithm, see e.g. [3].
This algorithm is somehow a damped version of the Gauss-Newton method. It can be seen as
the combination of a descent algorithm, next the Gauss-Newton algorithm as above.

22

2.2 Ill-posed inverse problems: regularization

In the simple least-square problem (2.1), if the matrix A is full rank that is dim(Im(A)) = m
then the least-square solution, solution of the normal equations (2.3), is unique.

However, even if A is full rank, the system may be ill-conditioned typically because the smallest
eigenvalue is extremely small3. This issue is frequent when tackling real-world problems.

Then, in order to better solve the inverse problem, to select a solution with desirable properties,
one ”regularizes” the inverse problem. This consists to seek a solution presenting some minimal
regularity (”smoothness”).

In a mathematical point of view, this implies to seek the solution in a smaller functional space.
For example, given a bounded geometry Ω, the function space C1(Ω) is strictly included into
the bounded function space L∞(Ω). C1(Ω) functions are smoother than L∞(Ω) ones.

2.2.1 Linear cases in small dimension: SVD truncation*

This is a ”to go further section”
In the case of a discrete linear problem, the SVD truncation is a good way to regularize the
computed solution u as already discussed in Section 2.1.2.

However, computing the SVD of a linear operator may be not affordable for large scale prob-
lems. Moreover, the SVD decomposition does not apply to non linear operators.
Regularizing non-linear or simply large scale problems is a wide and difficult topic. The reader
may consult excellent books e.g. [17, 26, 23, 29, 3] which adresses this topic in different manners.

2.2.2 General cases: Tikhonov’s regularization

A. Tikhonov, Russian mathematician, 1906-1993). Note this method may be due to Phillips
and Miller too.
The most classical method to regularize large dimensions optimization problems (u ∈ Rm with
m large) consists to add the so-called Tikhonov’s regularization term or variants.
This approach consists to compute u∗ ∈ Rn such that jα(u∗) = min

Rn
jα(u) with the following

enriched cost function:

jα(u) =
1

2
‖Au− z‖2

2,m + αreg
1

2
‖Cu‖2

2,n (2.10)

where αreg is a positive scalar (the weight) making the balance between the two terms.
C is a linear operator (a matrix).

3Recall that the conditonning number of a matrix A equals maxi σi(A)
mini σi(A) . For A normal, this ratio equals to

maxi |λi(A)|
mini |λi(A) |

23

The added regularization term is convex, differentiable.

The simplest choice for C is C = Id. In the present linear case (A is linear operator), this
provides the least-square solution with the minimal 2-norm.

The solution of the corresponding normal equations reads:

u∗alpha = (ATA+ α2
regC

TC)−1 · AT z

Tikhonov like regularization term helps prevent overfitting by penalizing large parameter values
and promoting solutions with smaller parameter magnitudes.
The larger the regularization parameter, the stronger the penalty on large parameter values.
By including the Tikhonov regularization term in the objective function, the optimization
algorithm seeks to find a balance between minimizing the error between the model predictions
and the observed data and minimizing the magnitude of the parameter vector.

Figure 2.4: Tikhonov regularization. (L) A typical ”poorly convex” functional jdata(·): ill-
conditioned minimisation problem. (M) Regularized functional to be minimized: jreg(.) =
(jdata(.) + αregjreg(.)) with jreg(u) = ‖u − u0‖, u0 a prior value. (R). Data fitting (in the LS
sense) without and with regularization (Image extracted from a MIT course).

Example (with the corresponding Python code)

Below is presented a basic example where a nonlinear model function model(x, params) is
defined. A regularization function regularization(params, alpha) that computes the Tikhonov
regularization term given a set of parameters and a regularization parameter alpha is also de-
fined. We generate some noisy data by adding Gaussian noise to the true model output. We
then define an objective function objective(params) that computes the difference between the
observed data and the model predictions for a given set of parameters. Finally, we use the
least squares function from SciPy to perform the nonlinear least squares fit with Tikhonov reg-
ularization by appending the regularization term to the objective function. The different fields
are plotted.

24

Minimizat ion by Levenberg−Marquardt o f a f u n c t i o n a l enr i ched with a Tikhonov r e g u l a r i z a t i o n term .
The weight parameter may be b e t t e r be tuned . . .
import numpy as np
import matp lo t l i b . pyplot as p l t
from sc ipy . opt imize import l e a s t s q u a r e s

Def ine the func t i on to be f i t t e d
de f model (x , params) :

r e turn params [0] ∗ np . exp (params [1] ∗ x)

Def ine the Tikhonov r e g u l a r i z a t i o n term
de f r e g u l a r i z a t i o n (params , alpha) :

r e turn alpha ∗ np . sum(params ∗∗ 2)

Generate some no i sy data
x = np . l i n s p a c e (0 , 10 , 100)
true params = [0 . 1 , 0 . 3]
y t rue = model (x , true params)
y no i sy = y t rue + np . random . normal (0 , 0 . 1 , l en (x))

Def ine the o b j e c t i v e func t i on f o r l e a s t squares with r e g u l a r i z a t i o n
de f o b j e c t i v e (params) :

r e turn y no i sy − model (x , params)

Perform the non l i n ea r l e a s t squares f i t with Tikhonov r e g u l a r i z a t i o n
i n i t i a l p a r a m s = [0 . 2 , 0 . 2]
alpha = 0.01 # Tikhonov r e g u l a r i z a t i o n parameter
r e s u l t = l e a s t s q u a r e s (lambda params : np . append (o b j e c t i v e (params) , r e g u l a r i z a t i o n (params , alpha)) , i n i t i a l p a r a m s)

Extract the f i t t e d parameters
f i t t ed pa rams = r e s u l t . x

Generate the f i t t e d curve
y f i t t e d = model (x , f i t t ed pa rams)

Plot the o r i g i n a l data and the f i t t e d curve
p l t . f i g u r e (f i g s i z e =(8 , 4))
p l t . p l o t (x , y noi sy , ’ bo ’ , l a b e l =’Noisy Data ’)
p l t . p l o t (x , y true , ’ g− ’ , l a b e l =’True Curve ’)
p l t . p l o t (x , y f i t t e d , ’ r − ’ , l a b e l =’ F i t t ed Curve ’)
p l t . x l a b e l (’ x ’) ; p l t . y l a b e l (’ y ’) ; p l t . t i t l e (’ Nonl inear Least Squares Fi t with Tikhonov Regu la r i za t i on ’)
p l t . l egend ()
p l t . show ()

A few comments

In statistics, the Tikhonov regularization is called the ridge regression method.
In Machine Learning (ML), it corresponds to the so-called weight decay method.
The Tikhonov’s regularization term can be easily added even in large-scale optimization prob-
lems.

In real-world modeling problems, the regularization operator C is often defined as a differential
operator (e.g. gradient operator) or as a Fourier operator e.g. aiming at filtering high frequen-
cies.

Indeed, it turns out that numerous real-world phenomena (therefore the models) have the effect
of low-pass filtering. As a consequence, the inverse operator acts as a high-pass filter....

Recall that the eigenvalues (or singular values) are the largest in the reverse mapping when

25

they are the smallest in the forward mapping.

Amplifying high frequency is not a desirable feature since it amplifies noise and uncertainties
e.g. noise in data measurements. As a consequence, regularization operators play a crucial role
in inverse problem formulations.

Remark 2.4. Other regularization terms can be considered in particular in Lq-norm with q = 1.
In this case, the regularization term is: αreg‖Cu‖1.
The case q = 1 is highly interesting because of the compress sensing property of 1-norm, see
e.g.[16].
The use of 1-norm provides a convex regularization but not differentiable therefore leading to
non-differential convex optimization problems. Obviously this is no longer least square problems.
In the simplest case αreg‖u‖1, this leads to the so-called LASSO problem.

Setting the weight coefficient αreg value: an empirical but crucial choice

The weight parameter value αreg tunes the balance between the misfit to data and the smooth-
ness of the solution. The solution of the inverse problem (highly) depends on this coefficient,
however its ”best value” is a-priori unknown...
Setting the value of αreg is a crucial step of the inverse problem solving.
Various methods exist in the literature to set up the value of αreg. Among them, let us mention:
the simple discrepancy principle (also called Morozov’s principle), generalized cross-validation
and the L-curve method.

For details the reader may consult e.g. [23] Chapter 5 or [P. C. Hansen, Ranu-Deficient and
Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 1998].

The L-curve concept is briefly described in next paragraph.

2.2.3 L-curve for bi-objective optimization*

This is a ”to go further section”

Let us consider the minimization problem u∗ = argminu j(u) with:

j(u) = jobs(u) + αregjreg(u)

The introduction of the regularization term jreg(u) leads to a bi-objective optimization.
As already mentioned, the weight parameter value αreg has to be a-priori set. Obviously the
computed optimal solution depends on αreg.
No magic criteria nor method exist to determine an optimal value of αreg.

26

The weight coefficient αreg has to respect a ”good” trade-off between the two terms jmisfit(·)
and jreg(·).

In the case of large dimensional problems, an expertise of the modeled phenomena likely re-
mains a good manner to determine an optimal value of αreg... The so-called L-curve enables to
visualize this trade-off.

Concept of L-curve

The L-curve is a concept in bi-objective optimization that helps visualize the trade-off between
two conflicting objectives, see Fig. 2.6.
It is a graphical representation of the Pareto front (which is, recall, the set of all non-dominated
solutions in a multi-objective optimization problem).

In bi-objective optimization, the goal is to find a set of solutions that are not dominated by
any other better solutions. The L-curve shows the relationship between the two objectives and
helps the modeler understand the trade-offs involved in satisfying the two objectives...

Figure 2.5: Bi-objective optimization: a typical L-curve (here in a clear pattern...). The optimal
computed optimal solution depends on the weight parameter αreg (here denoted by λ). The
L-curve: values of the two objective functions (misfit and regularization terms) for different
values of the weight parameter αreg ≡ λ.

Example of L-curve (with the corresponding Python code)

Let us consider the following basic optimization problem in R2:

min
x
f1(x) = 100(x2

1 + x2
2) and max

x
f2(x) = −(x1 − 1)2 − x2

2

such that:

g1(x) = 2(x1− 0.1)(x1− 0.9) ≤ 0 , g2(x) = 20(x1− 0.4)(x1− 0.6) ≥ 0

−2 ≤ x1 ≤ 2 , − 2 ≤ x2 ≤ 2

27

This optimization problem has two objectives functions which are subject to two inequality
constraints. The goal is to find the set of solutions that optimize both objectives while satis-
fying the constraints. To visualize the trade-off between the objectives, we can try to analyse
plot the L-curve.
This is what the Python code below does (using the pymoo library).

Bi−o b j e c t i v e opt imiza t i on problem : ana lyse o f the L−curve
import numpy as np
from pymoo . model . problem import Problem
from pymoo . a lgor i thms . nsga3 import NSGA3
from pymoo . f a c t o r y import get sampl ing , g e t c r o s s o v e r , get mutat ion
from pymoo . opt imize import minimize

c l a s s MyProblem(Problem) :
de f i n i t (s e l f) :

super () . i n i t (n var =2, n obj =2, n cons t r =0, x l=np . array ([−2 , −2]) , xu=np . array ([2 , 2]))

de f e v a l u a t e (s e l f , x , out , ∗ args , ∗∗kwargs) :
f 1 = 100 ∗ (x [: , 0] ∗∗ 2 + x [: , 1] ∗∗ 2)
f 2 = −(x [: , 0] − 1) ∗∗ 2 − x [: , 1] ∗∗ 2
out [”F”] = np . column stack ([f1 , f 2])

problem = MyProblem ()
a lgor i thm = NSGA3(

p o p s i z e =100 ,
sampling=get sampl ing (” real random ”) ,
c r o s s o v e r=g e t c r o s s o v e r (” r e a l s b x ” , prob =0.9 , eta =15) ,
mutation=get mutat ion (” real pm ” , eta =20) ,

)
r e s = minimize (problem , a lgor i thm)

Plo t t i ng the L−curve
import matp lo t l i b . pyplot as p l t

p l t . s c a t t e r (r e s .F [: , 0] , r e s .F [: , 1])
p l t . x l a b e l (” Object ive 1 ”) ; p l t . y l a b e l (” Object ive 2 ”) ; p l t . t i t l e (”L−curve ”)
p l t . show ()

2.2.4 Adaptative regularization & Morozov’s principle*

This is a ”to go further section”

Firstly let us note that the truncation order in the Truncated SVD, see (2.4), plays a similar
role to the regularization parameter αreg in Tikhonov’s regularization, see e.g. [23] Chapter 4
for further discussions. In particular , the regularization parameter αreg tending to 0 plays a
similar role to the truncation rank tending to the maximal value.
Moreover, Tikhonov’s regularization is convergent in the sense that ureg converges to solution
u∗ when αreg tending to 0 under certain conditions, see e.g. [17] Chapter 10 for details and
proofs.

Adaptive regularization strategy is an approach used in numerical optimization to improve
the performance of optimization algorithms. It involves adjusting the regularization parameter
during the optimization process to achieve better results. The success of this regularization ap-
proach heavily depends on the Tikhonov parameter tuning strategy but also on the dimension
of the projection subspace.

28

If defining the weight parameter α > 0 of the regularization term4 is set as a decreasing se-
quence as α(0) > · · · > α(n) > 0, n = 1, · · · , n∗, then the optimization procedure may be faster
and more accurate, see e.g. [17, 26] and references therein.

Let us consider the unperturbed (”perfect”) estimation problem: zobs = M(u).
Given a noise level ε, uε denotes the solution of:

zεobs = M(uε) + ε (2.11)

The stop iteration number n∗(ε) may be chosen through the Morozov’ discrepancy principle
which reads:

τ1ε ≤ ‖zεobs −M(uεn∗)‖ ≤ τ2ε (2.12)

with 1 ≤ τ1 < τ2.

Figure 2.6: Bi-objective optimization and functional values obtained with different weight
parameter values αreg: (L) the L-curve criteria; (R): The Morozov’s principle.

The weight parameter sequence α(n) may be defined for example as, see e.g. [26] Chapter 4 for
further discussions:

α(n) = α(0)q[n/n0], n = 1, · · · , n∗ (2.13)

where n0 > 1 is the number of iteration for each α(n), [m] returns the maximum integer smaller
than m, α(0) and q are given constants, α(0) > 0, 0 < q < 1.
The values of α(0), q, n0 are chosen experimentally e.g. as: q = 0.5, n0 = 5 and α0 = 1.

The stop iteration n∗ may be then chosen according to (2.12).

4The subscript reg is here skipped for sake of clarity

29

Example of application of the Morozov’s principle (with the corresponding Python
code)

Below a code example which apply the Morozov’s principle to a simple inverse problem with
noisy data. It iteratively adjusts the regularization parameter α until the discrepancy between
the forward model M(u) and the noisy data znoise falls within the desired bounds defined by τ1

and τ2.

Appl i ca t ion o f the Morozov ’ s p r i n c i p l e
import numpy as np
import matp lo t l i b . pyplot as p l t

Def ine the data and the operator
x t rue = np . l i n s p a c e (0 , 10 , 100)
u t rue = np . s i n (x t rue)

M = lambda x : np . s i n (x)

Add no i s e to the data
n o i s e l e v e l = 0 .1
z n o i s y = u true + n o i s e l e v e l ∗ np . random . randn (l en (u t rue))

Def ine the Tikhonov f u n c t i o n a l and the pena l ty term
alpha = 0 .1 # I n i t i a l guess f o r alpha
q = 2 # Power f o r the norm in the f u n c t i o n a l
Ps i = lambda x : np . l i n a l g . norm(x , ord=q)∗∗q

Apply the Morozov ’ s d i s c repancy p r i n c i p l e
tau1 = 0 .5 # Lower bound f o r the d i s c repancy
tau2 = 2 .0 # Upper bound f o r the d i s c repancy

whi l e True :
Solve the r e g u l a r i z e d problem
x alpha = np . l i n a l g . s o l v e (M(x t rue) .T @ F(x t rue) + alpha ∗ Psi (x t rue) , F(x t rue) .T @ z n o i s y)

Compute the d i s c repancy
d i sc repancy = np . l i n a l g . norm(M(x alpha) − z n o i s y)

i f tau1 ∗ n o i s e l e v e l <= disc repancy <= tau2 ∗ n o i s e l e v e l :
break

Update alpha us ing a b i s e c t i o n method
i f d i s c repancy < tau1 ∗ n o i s e l e v e l :

alpha ∗= 0.5
e l s e :

alpha ∗= 2.0

Plot the r e s u l t s
p l t . p l o t (x true , z no i sy , ’ bo ’ , l a b e l =’Noisy data ’)
p l t . p l o t (x true , M(x alpha) , ’ r − ’ , l a b e l =’ Regu lar i zed so lu t i on ’)
p l t . p l o t (x true , z t rue , ’ k−−’, l a b e l =’True so lu t i on ’)
p l t . l egend () ; p l t . x l a b e l (’ x ’) ; p l t . y l a b e l (’ u ’) ; p l t . t i t l e (’ Morozov \ ’ s Discrepancy Pr inc ip l e ’)
p l t . show ()

30

Chapter 3

Real-world examples of inverse
problems

Please consult the supplementary material

31

32

Part II

Data Assimilation (DA): Sketch of
Methods

33

Chapter 4

DA in a nutshell

The outline of this chapter is as follows.

Contents
4.1 Data Assimilation (DA): what is it and why is it important? . . . 35

4.2 The different types of DA methods 36

4.1 Data Assimilation (DA): what is it and why is it

important?

Data Assimilation (DA) is the science of optimally combining different knowledge sources that
we acquire about a phenomenon modeled by various mathematical tools. These knowledge
sources include:

• A mathematical model representing the physical phenomena (in the broad sense).

• Observations, also referred to as measurements or data.

• Statistics on the observations and/or prior probability density functions (pdf) on the
modeled phenomena.

The goal of DA is to estimate the state of a system as it evolves in time by combining these
different knowledge sources in an optimal way. In real-world problems, particularly in envi-
ronmental sciences (meteorology, oceanography, hydrology, seismology, etc.), data are hetero-
geneous, multi-scale, and sparse both in space and time. As a consequence, they only partially
represent the modeled phenomena.

The mathematical model is generally a Partial Differential Equations (PDE) system. It may
also be a Stochastic Differential Equation (SDE), but SDEs are not considered in the present
course. Data are generally heterogeneous (in-situ measurements, satellite images, drone videos,

35

36

etc.) and of a large amount (large datasets). In this textbook, datasets are assumed to have
been analyzed, pre-treated (cleaned, filtered, potentially reduced) before their assimilation into
the mathematical models.

DA may be perceived as a process to solve physics-based inverse problems containing uncer-
tainties of different natures (modeling ones, measurement ones, priors ones).

DA: what for?

Setting up and performing a Data Assimilation (DA) process can be motivated by different
goals, including:

• Correcting a model output (given datasets).

• Calibrating the model to improve its prediction accuracy.Calibration may rely on identi-
fying a parameter of the model, a boundary condition value (e.g., at open boundaries), or
the system Initial Condition (IC) e.g., in atmospheric dynamics for weather prediction.

• Identifying a physical parameter of the model. This can be for example an effective
fluid viscosity, an organ conductivity in the Electrical Impedance Tomography problem
mentioned in Section 1.2, or river bathymetry as in the inverse problem detailed in Section
??.

Once calibrated, the model may be used as a physically-based interpolator between sparse
(space-time) data. In the case of a dynamics system (a time-dependent model), once the model
has been calibrated from past observations (uncertain parameters, B.C. or IC have been esti-
mated), the model may be assumed to be more accurate for prediction, as shown in Figure 4.1.
The “traditional” DA methods mentioned above differ from purely ML approaches (e.g., Arti-
ficial Neural Networks) since they rely on a model (typically a PDE).
However, Physically-Informed Neural Networks (PINNs) aim at combining Neural Networks
(a purely Machine Learning technique) with physical models. Distinctions and common goals
between these two wide classes of methods are briefly presented in Section ??.

4.2 The different types of DA methods

Up to the years 2020’s, DA mainly relied on two different classes of methods (so-called here
tradiational methods): sequential and variational ones. The choice may be driven either of the
unknown parameters of the inverse problem is of large dimension or not.

1) Sequential approaches (filters) dedicated to the estimation, given series of observations.
The fundamental filter is the Kalman Filter (KF) which is optimal in the linear Gaussian case.
In non-linear cases, one may consider the Extended Kamal Filter (ExKF) or the Ensemble

37

Kalman Filters (EnKF).

2) The variational approach (VDA for Variational Data Assimilation) relies on the optimal
control of the model, with respect to the unknown/uncertain parameter.
It consists to minimize a cost function j(u) measuring misfits between model outputs and mea-
surements, while respecting the physics-based model as a constraint.

VDA can be developed to estimate the state of a dynamical system like filters do, but also
to estimate/identify models uncertain parameters, indifferently for time-independent or time-
dependent models, linear or not.
The variational approach is particularly well-suited for large dimension non-linear problems.

Figure 4.1: (Left) Goals of DA. 1) DA to identify an uncertain input parameter (it can be for
a steady-state model). The resulting calibrated model is more accurate. It can be used as a
physically-consistent interpolator between data. 2) DA to build up a predictive model (here for
a time-dependent model). The model is first calibrated from past observations. Second, it is
performed for prediction. (Right) The different DA methods and their connections (see later).
Image source: [7]

In the 2010s, combinations of Variational Data Assimilation (VDA) and Ensemble methods
have been widely adopted for large-dimensional, highly non-linear systems, such as atmo-
spheric dynamics. These approaches were developed at institutions like the European Centre
for Medium-Range Weather Forecasts (ECMWF) and the National Oceanic and Atmospheric
Administration (NOAA) in the USA.

Another potential approach relies on Particle Filters, which won’t be addressed in this discus-
sion. For a comprehensive overview of Data Assimilation (DA) methods, readers may refer to
sources like [1] and [12].

More recently, particularly since the 2020s, DA algorithms based on ”Physics-Informed” Neural
Networks have emerged. See, for example, [7] and the recent review [14].
To model real-world problems, Data Assimilation (DA) must incorporate both deterministic el-
ements (based on known physics) and stochastic elements (to account for uncertainties). These

38

uncertainties can originate from various sources: the physics model (e.g., partial differential
equations) is inherently incomplete, measurements contain errors, and so on.

Each approach (sequential or variational) possesses its own strengths, advantages, and draw-
backs.

In idealistic Linear Quadratic (LQ) cases (where the model is linear and the cost function to
minimize is quadratic), both the VDA approach and the reference sequential method, namely
the Kalman Filter (KF), are equivalent (assuming the appropriate norms are considered).

Furthermore, in the Linear Quadratic Gaussian (LQG) case i.e. with Gaussian fields, VDA and
the KF can be elegantly interpreted within a Bayesian framework. These results are presented
in a dedicated chapter.
Additionally, some connections between VDA and NN-based methods are exposed.

However, for non-linear problems (which are representative of real-world scenarios), the math-
ematical equivalences no longer hold. Thus, for non-linear and large-dimensional problems, the
VDA formulation represents a numerically efficient (and mathematically elegant) approach.

This textbook first introduces a few traditional methods (KF, EnKF, and VDA), then focuses
on the VDA approach. It also establishes a connection with NN-based models and PINNs.
As VDA relies on the optimal control of the physical system, this provides an opportunity to
cover important aspects of optimal control (Part II of the textbook).

Chapter 5

DA by sequential filters

The outline of this chapter is as follows.

Contents
5.1 The Best Linear Unbiased Estimator (BLUE) 39

5.1.1 A basic 1D example . 40

5.1.2 The BLUE in the general case . 43

5.1.3 Hessian, precision matrices . 46

5.1.4 Examples . 47

5.2 The Kalman Filter . 48

5.2.1 The linear dynamic model and observations 48

5.2.2 The KF algorithm . 49

5.2.3 Examples . 50

5.2.4 Pros and cons of KF . 52

5.2.5 Extension to non-linear models and/or large dimensional problems:
Ensemble KF (EnKF) and hybrid approaches 53

5.1 The Best Linear Unbiased Estimator (BLUE)

The Best Linear Unbiased Estimator (BLUE) is the simplest statistical estimator. It may be
used when the underlying PDF of the measured process is unknown. It restricts the estimator
to be linear in data. More precisely, it aims to find a linear estimator that is unbiased and has
minimum variance. As a consequence, the BLUE estimator requires only the first two moments
(mean and variance) of the PDF to be known.

39

40

5.1.1 A basic 1D example

Let us consider two measurements of a scalar quantity u: z1 = 1 and z2 = 2.
Naturally, one seeks u minimizing the following cost function: j(u) = (u− z1)2 + (u− z2)2. The
function j(u) simply measures the misfit in the Euclidian norm (the 2-norm). This a standard
least-square problem since u does not have to satisfy an underlying model. The solution is:
u∗ = 3

2
.

Now, let us assume that the second data represents the quantity 2u and not u (difference of
instrument).
Then, the two measurements are: z1 = 1 and z2 = 4. We here seek u minimizing the cost
function: g(u) = (u− z1)2 + (2u− z2)2.
In this case, the solution is u∗ = 9

5
. This solution differs from the previous one!

This very simple example illustrates that the least-square solution depends on the norm con-
sidered in the cost function (here the ”natural” 2-norm): the standard least-square solution
depends on the measurement norm (and on the data accuracy of course too).
In presence of errors, which is always the case in real-world problems, the considered norms
have to take into account the measurement accuracies.

Informal definition of the BLUE

Considering the aleatory variable û defined from the data zobs, the BLUE u∗ is defined from
the three following properties:

a) u∗ is a linear function of zobs.

b) u∗ is unbiased (means are unchanged): E(u∗) = u.

c) u∗ is optimal in the sense it has the smallest variance among all unbiased linear
estimations.

Calculation of the BLUE for the 1D basic example

Here the observation operator is the identity, however the two measurements are assumed to
contain errors. Using simple notations, we have:

zi = u+ εi, i = 1, 2

The errors of measurements εi are supposed to be:
- unbiased: E(εi) = 0. (Sensors are unbiased).
- with a known variance: V ar(εi) = σi, i = 1, 2. (The sensor accuracies are known).
- uncorrelated : E(ε1ε2) = 0. (Measurements are independent hence the covariance vanishes; in

addition, means vanish therefore this relation).

41

Note that these assumptions are generally not satisfied in real-world problems.

By construction (Property a)), the BLUE satisfies: u∗ = a1z1 + a2z2 (linear model). The
coefficients ai have to be determined. We have: u∗ = (a1 + a2)u+ a1ε1 + a2ε2.
By linearity of E(·),

E(u∗) = (a1 + a2)u+ a1E(ε1) + a2E(ε2) = (a1 + a2)u

Property b) of the BLUE (unbiased estimator) implies that (a1 + a2) = 1 (equivalently a2 =
(1− a1)).

Recall that by definition, V ar(u∗) = E[(u∗ − E(u∗))2] = E[(u∗ − u)2]. Therefore:

V ar(u∗) = E[(a1ε1 + a2ε2)2]

= a2
1E(ε2

1) + 2a1a2E(ε1ε2) + a2
2E(ε2

2)

= a2
1σ

2
1 + (1− a1)2σ2

2

By definition, u∗ minimizes the variance (Property c)). The latter is minimal if its derivative

with respect to a1 vanishes. Therefore: a1 =
σ2

2

σ2
1+σ2

2
.

Therefore, the BLUE reads:

u∗ =
1

(1
σ2

1
+ 1

σ2
2
)
(

1

σ2
1

z1 +
1

σ2
2

z2) (5.1)

Note that: V ar(u∗) =
σ2

1σ
2
2

(σ2
1+σ2

2)
. Therefore: 1

V ar(u∗)
=
(

1
σ2

1
+ 1

σ2
2

)
.

In statistics, the inverse of a variance is called precision.

Equivalence with an optimization problem

It is easy to verify that the BLUE u∗ defined by (5.1) is the unique minimum of the following
quadratic cost function:

j(u) =
1

2

1

σ2
1

(u− z1)2 +
1

2

1

σ2
2

(u− z2)2 (5.2)

Indeed, we have: j′′(u) = 1
σ2

1
+ 1

σ2
2

= 1
V ar(u∗)

.

The Hessian of the cost function j(u) (the ”convexity rate” of j) equals the estimation accuracy,
see Fig. 5.1.

42

Figure 5.1: 1D case. (Up) the cost fucntiuon. (Down) The second derivative (= here, the
precision).
The Hessian = the second derivative j”(u) in the present 1D case.
j”(x) measures the ”convexity rate” of j(u), therefore the estimation accuracy of the statistical
estimation.

It can be quite easily shown that the BLUE calculated above (assuming unbiased measurements)
minimizes the following cost function too:

j(u) =
1

2
(u− z1, u− z2)

(
σ2

1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)−1(
u− z1

u− z2

)
=

1

2
‖u− zobs‖2

N (5.3)

In this cost function expression, the norm N takes into account correlations of the measure-
ments errors. As a consequence, the extra diagonal terms are non vanishing.

Recall that: ‖ · ‖2
� =< �·, · >.

With m observations

The extension of the calculation above (the BLUE in the 1d case) is straightforward. Under
the same assumption on each observation zi, the BLUE reads:

u∗ =
1

V ar(u∗)
(
m∑
i=1

1

σ2
i

zi) with
1

V ar(u∗)
=

m∑
i=1

1

σ2
i

(5.4)

Therefore the BLUE u∗ minimizes the following cost function: j(u) =
1

2

m∑
i=1

1

σ2
i

(u− zi)2 .

As previously, the Hessian (here a simple scalar second derivative) defines the ”convexity rate”;

43

it measures the analysis accuracy: j′′(u) = 1
V ar(u∗)

.

With correlated errors, the extended expression j(u) = 1
2
‖u1 − z‖2

N holds with N defined as
above.

The BLUE formulated as a sequential filter in the basic 1D case

Filters are stochastic algorithms which operate recursively on streams of (uncertain) input data
to produce a statistically optimal estimation of the underlying state.
Sequential filters are the most employed DA algorithms. The historical filter is the Kalman
Filter (KF); it is presented in next section.
Let us here re-read the BLUE as a sequential filter in the basic 1d case with two observations.
In this case, the BLUE expression can be re-written as:

u∗ =
σ2

2z1 + σ2
1z2

σ2
1 + σ2

2

= z1 +

(
σ2

1

σ2
1 + σ2

2

)
(z2 − z1)

Let us consider that:
a) z1 is a first estimation. It is then called the background or the first guess value.
We denote this first-guess value by ub : ub ≡ z1.
b) z2 is an independent observation. We denote this newly obtained observation by z : z ≡ z2.

Following this point of view, the BLUE u∗ reads :

u∗ = ub + (
σ2
b

σ2
b + σ2

0

)(z − ub) (5.5)

The term (z − ub) is called the innovation and denoted by d: d = (z − ub).

Using the terminology of sequential data assimilation, the equation reads as follows:
”The best estimation u∗ equals the first guess + the gain times the innovation”.

In the 1D case, the gain is a scalar factor, equal to (
σ2
b

σ2
b+σ2

0
).

In vectorial cases, the gain is a matrix. In filter methods, defining the gain matrix is the key
point. The vectorial case id developed in next section.

5.1.2 The BLUE in the general case

The linear estimation problem

All the previous calculations can be extended to the vectorial case: the system state u has n
variables and one has m measurements.
Here, we seek to estimate u = (u1...un)T ∈ Rn given the measurements (observations) zobs =

44

(zobs,1, . . . , zobs,m)T ∈ Rm. We denote by εobs the observation errors.
We have the following linear estimation problem:

zobs = Zu+ εobs u ∈ Rn, z ∈ Rm (5.6)

with Z a linear operator, Z ∈Mn×m.

The error term εobs is assumed to be such that:
1) errors are unbiased: E(εobs) = 0.
2) covariances are known: cov(εobs) = E(εobsε

T
obs) is given.

We set:

R = cov(εobs) (5.7)

The covariance matrix cov(εobs) is supposed to be definite therefore invertible. R−1 is symmet-
ric positive definite therefore defining a norm.

In real-world problems, R is often assumed to be simply diagonal. ThusR−1 = diag(ρobs,1, . . . , ρobs,m)
with ρobs,i being (a-priori) precisions on the observations.

Definition

A formal definition of the BLUE can be stated as follows.

Definition 5.1. Considering the linear relation (5.6), the BLUE for u is the vector u∗ such
that:

u∗ = argminv∈Rn
(
E[(v − u)2]

)
subject to E(v) = u (unbiasedness) and the constraint (5.6) of course.

Given ub a first estimate (also called background), the error of background reads εb = (ub− ut)
where ut denotes the ”true” solution i.e. the exact solution satisfying zt = Zut.
The covariance matrix cov(εb) is assumed to be definite therefore invertible. We set:

B = cov(εb) (5.8)

B−1 is symmetric positive definite therefore defining a norm.
In practice, of course that ut and cov(εb) are unknown. However, the following results provide
useful insights.

The central result

We have:

45

Proposition 5.2. Under the assumptions on the error terms εobs and εb above, the two
statements below hold.

1) The expression of the BLUE u∗ can be explicitly derived and reads:

u∗ = ub +K (zobs − Zub) (5.9)

with ub the first estimate (background value) and the gain matrix K defined by:

K = BZT (R + ZBZT)−1 (5.10)

with R and B defined by (5.7) and (5.8) respectively.

2) This expression of u∗ above is also the unique minimum of a quadratic cost function j(u):

u∗ = argminu∈Rnj(u) with j(u) =
(
‖zobs − Zu‖2

R−1 + ‖u− ub‖2
B−1

)
(5.11)

The general expression (5.10) ofK of course simplifies in the scalar case as in (5.5): K = (
σ2
b

σ2
b+σ2

0
).

Proof. The proof of 1) can be found in the detailed online course [7], see also e.g. [19] Chapter
4.
Let us show that the first expression of K above is optimal. ToDo: will be written ...

The proof of 2) is much shorter. Since Z is a linear operator, the functional j : u ∈ Rn 7→
j(u) ∈ R is quadratic. It admits an unique minimum. This minimum is characterized by the
condition: ∇j(u) = 0, equivalently j′(u) · δu = 0 for all δu ∈ Rn.
We have:

j′(u) · δu = 2 < R−1(zobs − Zu), Zδu > +2 < B−1(u− ub), δu >

Therefore the optimality condition j′(u)·δu = 0 reads: ZTR−1(zobs−Zu)+B−1(u−ub) = 0

u = ub +BZTR−1(Zu− zobs)

ToDo: reprendre ce calcul ...
�

Remark 5.3. The expression of the functional j(u) above is the starting point of the variational
approach including for non linear estimation problems. The variational approach is presented
in a next chapter.

46

Exercice 5.4. Considering a state u of dimension 2 only, with the 2nd component measured
only, retrieve the simple BLUE expression from the general expression (5.9).

ToDo: Ecrire correction

On the norms expression

The natural norms in the present estimations problems are the ones defined from B and R
(here denoted by �) as:

‖v − v0‖�−1 =
(
< �−1(v − v0), (v − v0) >

)1/2
(5.12)

This expression of norm is called the Mahalanobis distance, defined as:

dM(v; v0, N) = ‖v − v0‖N−1 =
(
< N−1(v − v0), (v − v0) >

)1/2
(5.13)

It is the natural measure in multivariate analysis. In particular, for a normal distribution
N (µ,B), the Gaussian PDF is determined by the Mahalanobis distance as:

p(u) =
1

(2πdet(B))1/2
exp

(
−dM(u;µ,B)

2

)
(5.14)

5.1.3 Hessian, precision matrices

The Hessian Hj(u) of the cost function j(u) defined by (5.11), Hj(u) ∈Mn×n, reads:

Hj(u) = ZTR−1Z +B−1 for all u ∈ Rn (5.15)

Let us define the estimation error as εu = (u∗ − utrue) and the related covariance matrix
Pu ≡ cov(εu) = E(εuε

T
u).

P−1
u represents the precision matrix.

Following the expression (5.9), we have: εu = εb +K(εobs − Zεb).

Next, following quite long calculations, a few explicit expressions of Pu can be obtained. We
refer e.g. to [7, 1]. In particular, we can show that:

P−1
u = ZTR−1Z +B−1 (5.16)

That is:
- the precision of the estimation equals the model precision plus the background precision.
- as already noticed in the simple scalar 1D case, the Hessian Hj(u) which measures the con-
vexity rate of the quadratic cost function j(u), also measures the estimation precision, see Fig.
5.1.

47

5.1.4 Examples

The reader may consult one of the numerous well documented Python codes available on the
web, e.g. the https://towardsdatascience.com webpage 1, or e.g. on https://github.com/jolange/BLUE-
py.

A detailed simple example Suppose we have a data set with a parameterized PDF that
depends on an unknown parameter. The BLUE estimator restricts the estimate of the param-
eter to be a linear combination of data samples with some weights. The goal is to find the
vector that provides estimates that are unbiased and have minimum variance. The estimation
problem can be solved by finding the vector that satisfies two constraints only: linearity and
unbiasedness.

Below a basic Python code implementing the BLUE to estimate a parameter based on a 1D
dataset. This code first defines a (tiny) 1D dataset. It then calculates the BLUE using linear
algebra. It finally plots the regression line along with the data points.

BLUE of a 1D datase t
import numpy as np
import matp lo t l i b . pyplot as p l t

The 1D s i g n a l (datase t)
x = np . array ([1 , 2 , 3 , 4 , 5])
y = np . array ([2 . 1 , 3 . 9 , 6 . 2 , 8 . 1 , 1 0 . 1])

Ca lcu la te the BLUE est imator (l i n e a r a lgebra)
X = np . vstack ([np . ones (l en (x)) , x]) . T
D = np . diag ([0 . 1 ∗∗ 2] ∗ l en (x))
beta hat = np . l i n a l g . inv (X.T @ np . l i n a l g . inv (D) @ X) @ X.T @ np . l i n a l g . inv (D) @ y

Calcu la te the p r e c i s i o n matrix
P = np . l i n a l g . inv (X.T @ np . l i n a l g . inv (P) @ X)

Plot the data and r e g r e s s i o n l i n e
p l t . s c a t t e r (x , y)
p l t . p l o t (x , beta hat [0] + beta hat [1] ∗ x)
p l t . t i t l e (”BLUE Estimator ”) ; p l t . x l a b e l (” x ”) ; p l t . y l a b e l (” y ”)
p l t . show ()

What happens if the model or the observation operator is non linear?

The central result previously shown holds for a linear observation operator Z only. In real-
world problems, the estimation problem is rarely linear. Moreover cov(εobs) and cov(εb) are
a-priori unknown...
However for non linear estimation problems, the equivalency between the BLUE expression
and the optimization problem (??) provide good insights to define ”optimal” R−1-norm in the
functional j to be minimized, see (??). This point is addressed later in the variational approach

1https://towardsdatascience.com/linear-regression-with-ols-unbiased-consistent-blue-best-efficient-
estimator-359a859f757e

48

(VDA sections).

5.2 The Kalman Filter

Filters are stochastic algorithms which operate recursively on streams of uncertain input data
to produce a statistically optimal estimation of the underlying state. Kalman Filter (KF) has

been named in honor to R.E. Kalman who has employed KF to control trajectories of the NASA Apollo

program vehicles in the 60s. The KF seems to have been developed by a few different authors (Swerling

(1958), Kalman (1960) and Kalman-Bucy (1961), source: Wikipedia page).

Note that filters aim at estimating the state of the system (the model output) and not input
parameters of the model as it is done while employing a variational approach (see next Chap-
ter). KF enables to improve estimation as new data is available, without recomputing from
beginning. It is applied in numerous engineering domains (e.g. in the area of autonomous
navigation).
KF is also called Linear Quadratic Estimator (LQE) since it optimally solves Linear Quadratic
Gaussian (LQG) problems.

On sequential DA methods and KF in particular, the reader may consult e.g. the very complete
book [19].

5.2.1 The linear dynamic model and observations

Filters naturally apply to dynamical systems since they provide a sequence of states (time
series). Let us consider here a scalar linear dynamic model aiming at computing the system
state uk for all k ≥ 0, uk ∈ Rn. The iteration k denotes here the time index. We have:

uk = Muk−1 + εk−1
mod (5.17)

where M is the transition operator which is here linear: M is a n×n matrix. εmod denotes the
model error.
We assume that at the same time instants, observations zk, zk ∈ Rm, are available, with:

zkobs = Zuk + εkobs (5.18)

The observation operator Z is supposed to be linear too: Z denotes a m× n matrix.
Both the model errors εmod and the observation errors εobs are supposed to be Gaussian, given
in Rn and Rm respectively. They are supposed to satisfy:

εkmod ∼ N (0, Qk) and εkobs ∼ N (0, Rk)

where Q and R are the covariance matrices of the model and observation errors respectively.

49

5.2.2 The KF algorithm

Basic principles

At each iteration k, KF works in two steps:

Step 1): the forecast (prediction) step.
A first estimation ukf is computed as the solution of the dynamic model (5.17).

Step 2): the analysis (correction) step.
Given the newly acquired data zkobs, a corrected estimation of uk, denoted by uka, is com-
puted. ukf plays here the role of a background value.
Because of the linearity of M and Z plus the assumptions on the errors previously men-
tioned, uka is defined as the BLUE.

Then, the central KF scheme equation reads as follows: for k ≥ 1,

uka = ukf +Kk(zkobs − Zukf) (5.19)

with the gain matrix Kk acts as the weight of the innovation term (zkobs − Zukf), as in the
BLUE.
However, here in the expression of Kk, B is replaced (see (5.10) in the BLUE case) by the
forecast covariance errors matrix P k

f :

P k
f = cov(εkf) with εkf = (ukf − ukt)

Thus,

Kk = P k
f Z

T
(
R + ZP k

f Z
T
)−1

(5.20)

The analysis error is defined as εka = (uka − ukt). The related covariance errors matrix reads:
P k
a = cov(εka). One can show that P k

a satisfies, see e.g. [7] Chapter 2:

P k
a = (I −KkZ)P k

f (5.21)

Extreme cases: perfectly observed system / perfect model

• Perfect model. If the forecast errors tends to 0, that is ‖P k
a ‖ → 0 then Kk → 0 for all k.

• Perfect data. If the observations errors tends to 0, that is ‖R‖ → 0 then Kk → Z−1 for
all k.

The weighting of the innovation by the gain K may be read as follows.
As the measurement error covariances tend to 0, the observation zobs is trusted more and more
while the model response uf is trusted less and less.
On the opposite, as the forecast error covariances tend to 0, the model response uf is trusted
more and more while the observation zobs is trusted less and less.

50

Basic extreme cases In the simple case where:

• Z = Id,

• the covariance observation errors matrix is diagonal such thatR ≡ ∆obs
R = diag((σobs1)2, . . . , (σobsm)2),

(σobsi)−2 the precision of the i-th data,

then the gain matrix simplifies as: Kk = P k
f

(
∆obs
R + P k

f

)−1
.

Moreover, if the forecast covariance errors matrix P k
f is diagonal (and constant along the iter-

ations) as P k
f = (σf)

2Id, (σf)
−2 the forecast precision, the gain matrix simplifies as in the 1D

simple case:

K = diag

(
σ2
f

((σobs1)2 + σ2
f)
, . . . ,

σ2
f

((σobsm)2 + σ2
f)

)

The KF algorithm

Initialization. The I.C. of the system state u0 is given. We set: ε0 = (u0 − ut) and
P 0
f = cov(ε0) = E(ε0(ε0)T).

The error covariance matrix P 0
f is supposed to be given too (...).

From iteration (k − 1) to iteration k,
1) Analysis step.

- Compute the Kalman gain matrix Kk as in (5.20).
- Deduce the analysis value uka as: uka = ukf +Kk(zkobs − Zukf).
- Compute the covariance matrix P k

a as in (5.21).
2) Forecast step.

- Solve the model to obtain the forecast value uk+1
f : uk+1

f = Muka.

- Compute the covariance matrix of forecast errors P k+1
f as:

P k+1
f = MP k

aM
T +Qk+1.

If the linear operators M and Z depend on the iteration k, the results hold and the algorithm
naturally extends.

5.2.3 Examples

See one of the numerous well documented Python codes available on the web, e.g.:

• https://machinelearningspace.com/object-tracking-python/

• https://thekalmanfilter.com/kalman-filter-python-example

• https://github.com/Garima13a/Kalman-Filters

51

• https://arxiv.org/ftp/arxiv/papers/1204/1204.0375.pdf

A detailed simple example A nice simple example is proposed e.g. on towardsdata-
science.com website 2. The considered example aims at better estimating the level of a water
tank given noisy sensor data.

Below an illustrative Python code based on the Pykalman library. The code first generates a
time series of the water level in a reservoir (which increases linearly from 0 to 10). It then
adds Gaussian noise to the water level measurements to simulate noisy measurements: this is
synthetic data, randomly perturbed.
Next, one uses a basic KF to estimate the true water level from the noisy measurements.

2https://towardsdatascience.com/a-simple-kalman-filter-implementation-e13f75987195

52

Example o f the use o f the Kalman F i l t e r (KF) in a very s imple 1D problem
Goal : c o r r e c t i o n o f no i sy measurements o f a 1D s i g n a l (= e . g . water l e v e l measurements o f a tank)
T r i v i a l l i n e a r e s t imat i on problem : z = u + eps i l on mode l
import numpy as np
import matp lo t l i b . pyplot as p l t

p r i n t (”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗”)
p r i n t (”∗∗∗ main . py ∗∗∗”)
Generate data (s y n t h e t i c data)
T =1; L = 10 ; npts = 100 ;
time = np . l i n s p a c e (0 , T, npts) # in IS un i t s = seconds
data = np . l i n s p a c e (0 , L , npts) # + np . s i n (2∗np . p i /L) # the measurements (in IS un i t s)

obse rvat i on e r r o r s : Gaussian no i s e
s igma obs = 0 .5
p r i n t (’ standard dev i a t i on o f the obs e rva t i on s e r r o r s s igma obs = ’ , s igma obs)
no i s e = np . random . normal (0 , sigma obs , npts) # to be tuned i f nece s sa ry
no i sy data = data + no i s e # perturbed obse rva t i on s = the s y n t h e t i c data

Estimation by KF
es t imated va lue = np . z e r o s l i k e (data) ; p r e d i c t i o n p e r f e c t = np . z e r o s l i k e (data) # tab c r e a t i o n
e s t imated va lue [0] = no i sy data [0] # 1 s t va lue o f e s t imat i on = the measurement

model e r r o r : Gaussian
s igma f = 0 .2
p r i n t (’ standard dev i a t i on o f the model e r r o r s i gma f = ’ , s i gma f)

KF gain (r e f va lue and/ or assumed to be constant)
KF gain= s igma f / (s i gma f + sigma obs)
p r i n t (’ ga in c o e f f i c i e n t KF gain = ’ , KF gain)

r e f e r e n c e s (’” i d e a l i s t i c ”) e s t imat i on s
p r e d i c t i o n model : z = u
p e r f e c t v a l u e s = data # p e r f e c t model va lue s from p e r f e c t data
p r e d i c t i o n p e r f e c t m o d e l = no i sy data # p e r f e c t model va lue s from no i sy data

es t imat ion by KF
f o r i in range (1 , l en (time)) :

p r e d i c t i o n model : z = (I d e n t i t y + eps model) (u)
p r e d i c t e d v a l u e = es t imated va lue [i − 1] + np . random . normal (0 , s i gma f)

a n a l y s i s s tep
gain = KF gain # constant gain (here a s c a l a r va lue)
innovat ion = no i sy data [i] − p r e d i c t e d v a l u e
e s t imated va lue [i] = p r e d i c t e d v a l u e + gain ∗ innovat ion # the a n a l y s i s va lue

Plot s
p l t . p l o t (time , no i sy data , ’ o ’ , l a b e l =’measurements (= the data) ’)
p l t . p l o t (time , e s t imated va lue , ’ k ’ , l a b e l =’ e s t imat i on by KF’)
p l t . p l o t (time , p r e d i c t i o n p e r f e c t m o d e l , ’ c ’ , l a b e l =’ p r e d i c t i o n based on the p e r f e c t model from no i sy data ’)
p l t . p l o t (time , p e r f e c t v a l u e s , ’−−r ’ , l a b e l =’ p e r f e c t values ’)
p l t . x l a b e l (’ time ’) ; p l t . y l a b e l (’ va lues ’)
p l t . l egend () ; p l t . show ()

5.2.4 Pros and cons of KF

⊕ Considering a linear model M and a linear observations operator Z, assuming that the
covariances cov(εmod) and cov(εobs) are Gaussian, KF is the optimal sequential method,
see e.g. [12].

⊕ At each iteration k, the new estimation uka depends on the previous time step state uk−1

and the current measurement zk only: no additional past information is required, see Fig.

53

5.2.

Figure 5.2: (Up) VDA algorithm (Down) KF algorithm. Figure extracted from [?].

	 The KF scheme (5.19) is bearly affordable for large dimension models (dim(u) >>).
Indeed, to compute the gain matrix K, see (5.10), one needs to invert the matrix (R +
ZBZT). Without specific properties of the matrix, in the case of n and/or m large, this
requires high computational ressources.

	 The basic version of the KF does not apply to non-linear models.
In non-linear cases, KF can be extended by linearizing the ”transition” operator M at
each time step: this is the idea of the Extended Kalman Filter (ExKF).
However, the ExKF is not optimal anymore. Moreover, its use is limited too by its high
computational requirements as the KF.

5.2.5 Extension to non-linear models and/or large dimensional prob-
lems: Ensemble KF (EnKF) and hybrid approaches

For non-linear large dimensional cases, one uses variants of KF such as for example the SEEK
filter, [?].
Also, one classically uses the Ensemble Kalman Filter (EnKF). In a nutshell, EnKF consists
to perform a Monte-Carlo algorithm to estimate the covariance errors matrices. EnKF have
shown excellent results even for high-dimensional problems (O(108) and more), see e.g. [19, 11].
In short, the Ensemble Kalman Filter (EnKF) is a recursive filter that is used to estimate the
state of a system as the basic KF. However it is suitable for large dimensional problems. The
EnKF is a Monte Carlo implementation of the Bayesian update problem, which involves up-
dating the probability density function (PDF) of the state of the modeled system after taking
into account the data likelihood.

54

One advantage of EnKF is that advancing the PDF in time is achieved by simply advancing
each member of the ensemble.

It is worth noticing that the EnKF makes the assumption that all PDF involved are Gaussian.
As already mentioned, this assumption is a-priori not true for non-linear problems...

In summary,

KF The KF is an algorithm that estimates the state of a linear dynamic
system based on noisy measurements. It uses a recursive process to
update the state estimate as new measurements become available. At
each iterate, the estimator relies on the BLUE. The KF is widely used
in various fields, including engineering, economics, and computer sci-
ence. However, it is restricted to linear estimation problems of rela-
tively small dimensions.

EnKF The EnKF is an extension of the KF that addresses the limitations of
the KF for large dimensional and/or non linear systems. It uses an
ensemble of state vectors to represent the probability distribution of
the system state. The EnKF updates the ensemble members based on
observations and propagates them forward in time using a numerical
model. It is widely employed in geosciences but not only.

VDA As it will studied now, the variational method is based on another
approach: it aims to find the optimal estimate of the system state by
minimizing the cost function j(u).
It then relies on an optimization algorithm which iteratively adjusts
the state (model prediction) y(u) based on the observations zobs.
The variational approach is a good option to address large dimensional
problems (m=dim(u) >>) and non linear problems (M and/or Z non
linear). It is widely employed in geosciences but not only.

Note that the current state-the-art for operational large dimensional and complex multi-physics
non-linear models consists to combine VDA with EnKF. Such hybrid approaches have been
developed in particular in operational weather forecast centers like ECMWF or NOAA for ex-
ample.

In the linear Gaussian case (this has to be clarified), each of these methods can be nicely related
to a Bayesian analysis.

To study the non-VDA DA methods in details, the reader may consult e.g. [19, 1, 12] and one
of the excellent material available online e.g. http://www.cs.unc.edu/ welch/kalman, [8] etc.

55

Figure 5.3: The classical DA methods. Image extracted from [7]

56

Chapter 6

DA by variational approach in simple
cases

The outline of this chapter is as follows.

Contents
6.1 Introduction . 57

6.2 The VDA formulation . 59

6.2.1 The (direct) model and the parameter-to-state operator 59

6.2.2 The observation operator and the cost function 59

6.2.3 The optimization problem . 60

6.3 Linear model, finite dimensional case 60

6.3.1 Problem statement . 61

6.3.2 On the numerical resolution of the VDA problem 61

6.3.3 Computing the cost function gradient ∇j(u) 62

6.3.4 A simple case: u in the RHS only . 63

6.4 Example . 65

6.5 A bit of history . 66

6.1 Introduction

The previous estimation problems aimed at estimating u satisfying the linear equationM(u) =
zobs + ε, with u ∈ Rn, zobs ∈ Rm, with M observations given, zobs = (zobs,1, . . . , zobs,M).
The VDA approach consists to minimize the cost function j(u) defined as in (7.17).

57

58

In the LQG case (in particularM is a linear operator), u∗ = argminu j(u) is the same solution
as the BLUE, see Prop. 5.2, and the MAP, see (7.16).

The variational approach is primarily targeted at large dimensional and/or non-linear problems
since the formulation naturally extends to such contexts. Indeed, the resulting VDA algorithms
(3D-Var, 4D-Var and so on, as detailed later) remain performant for large dimensional non lin-
ear problems.

In what follows, the inverse problem is as follows.


Estimate u(x) such that:
A(u(x); y(x)) = B(u(x)) in Ω accompanied with B.C. on ∂Ω
with some observations of the system state available : zobs(x) = Z(y(x)).

(6.1)

A(u; y) denotes a PDE-based operator.

Example. The physical-based model is defined by: A(u; y) = −div(λ(u)∇y) + y3, with λ(·)
a given function, and the RHS B(u) = g(‖∇u‖) with g(·) a given function. The observation
operator is defined by zobs = ∂ny on a piece of the boundary Γ, Γ ⊂ ∂Ω.

Contrary to the classical ”explicit” least square problems, see (2.1), the unknown u is related
to the measurements zobs through the mathematical modelM,M : u 7→ y(u) (y(u) solution of
(6.1) with u given).
As a consequence, even in the linear case, that is M(u) linear, the optimal solution u∗ =
argminu j(u) is not obtained by simply solving a linear system as the normal equations, see
Section 2.1.1.

VDA aims at estimating u(x) by employing an optimal control approach of the physically-based
model.

However in the particular case where the parameter u is the RHS of the equation, the optimal
estimate u∗ can be derived without introducing optimal control concepts. This is what is done
in a next section: we mathematically solve by VDA the identification problem for linear oper-
ators A(u; ·) where the parameter u equal the RHS (B(u) = u).

This allows us to illustrate the basic principle of VDA methods while employing only simple
algebraic tools.

The general case which requires more complex mathematical tools and concepts is addressed
in Part II of this manuscript, see e.g. Chapter 10, after a presentation of the optimal control
methods for ODEs (Chapter 9).

59

6.2 The VDA formulation

Let us present a typical VDA formulation for a general non linear however stationary PDE-
based model.

6.2.1 The (direct) model and the parameter-to-state operator

The considered PDE-based model reads as follows.Given the unknown/uncertain parameter u,
find y which satisfies the Boundary Value Problem (BVP):

A(u(x)); y(x)) = B(u(x)) with x ∈ Ω ⊂ Rd (6.2)

accompanied by Boundary Conditions (BC).

The PDE-based operator A(·; ·) is a-priori non-linear both in u and y that is the maps u 7→
A(u; ·) and y 7→ A(·; y) are non-linear.

Given the parameter u, the direct model (6.2) is supposed to have a unique solution y which is
then denoted by yu or y(u).

The parameter-to-state map (also previously called the model operator)M is defined as:

M : u(x) 7→ y(u)(x)

with y(u) solution of (6.2) given u.

6.2.2 The observation operator and the cost function

Data (also called observations or measurements) are denoted by zobs. Data are not necessarily
of same nature than the state of the system y.
For example, zobs denotes measured wavelength electromagnetism signals which have to be next
compared to a temperature y, the model output (state of the system).
Then, one needs to introduce an observation operator Z which maps the state of the system y
onto the observations space as:

z(x) = Z(y(x)) (6.3)

The observation operator Z(·) can be a linear or not.
In real-world problems, Z can be more or less complex e.g. a multi-scale non linear model or
simply the Identity if measuring directly the state of the system.
Given observations zobs, one naturally wants to minimize the misfit term ‖Z(y(u)(x))−zobs(x)‖2

R−1 .
As already mentioned, in real-world problems and because of lack of information, the obser-
vation norm R−1 is often assumed to be diagonal: R−1 = diag(ρobs,1, . . . , ρobs,m). Then, the
coefficients ρobs,m simply represent the confidence one has on each observation.

Moreover, as discussed in Section 2.2, it is often necessary to introduce a regularization term
in the minimized cost function.

60

Let us introduce the so-called observation function J(u; y) defined as:

J(u; y) = Jobs(y) + αregJreg(u) (6.4)

with

Jobs(y) = ‖Z(y)− zobs‖2
R−1 and potentially Jreg(u) = ‖u− ub‖2

B−1 (6.5)

Then the cost function j(u) is defined from the observation function J(u; yu) as:

j(u) = J(u ; yu) where yu is solution of (6.8). (6.6)

The cost function j(u) depends on the control u through the state of the system yu =M(u).
The term Jreg(u) is a regularization Tykhonov-type term, see Section ?? for further discussions.
The present expression penalizes the discrepancy with the prior ub in norm B−1 whose the def-
inition B−1 can be important too. 1. It has been shown in the previous chapters that in the
LQ case, the optimal estimation relies on the covariance errors matrices.

ub is ”background” value of u therefore a prior of the inverse problem. Other regularization
terms such as e.g. ‖∇u‖2

2 can be considered.

The scalar parameter αreg is the weight parameter to balance the two terms. Its definition may
be tricky. We refer the reader to Chapter 1 for these concepts.

6.2.3 The optimization problem

Solving the VDA problem consists to find:

u∗(x) = arg min
u(x)∈U

j(u(x)) (6.7)

This is an optimal control problem.
The solution u∗ (if existing) is an optimal control of the system. This is the estimate we are
looking for. This is the VDA solution.
In others words, the VDA approach consists to solve a non-linear least-square problem with an
underlying physical model. The latter constitutes a constraint of the optimization problem.

6.3 Linear model, finite dimensional case

In this section, the VDA solution is derived in the case the model is linear and finite dimen-
sional.

1The notations R−1 and B−1 are the classical notations in the DA community, [24].

61

We develop here the calculations in finite dimension since more simple than in infinite dimen-
sions. Indeed, in infinite dimensions, e.g. in Banach and Hilbert spaces, the calculations require
some extra knowledge in differential calculus, in particular for non-linear problems. Calcula-
tions in infinite dimensions for general non linear problems are addressed in Part II.

6.3.1 Problem statement

Let u be the control variable, u ∈ Rm. Let the model be linear and represented by A(u),
A(u) ∈Mn×n a non singular real matrix. The (direct) model reads:{

Given u ∈ Rm, find y ∈ Rn such that:
A(u) y = Fu

(6.8)

with F a rectangular matrix, F ∈Mn×m, m < n, of maximal rank m.

Given u, the solution of the direct model is denoted by yu. It is called the state of the system.

Let J(u; y) be the objective function measuring the misfit between the state y and the obser-
vations defined as in (6.4) (6.5).
However, here the observation operator Z is linear: Z ∈Mn×n. Therefore:

J(u; y) = ‖Zy − zobs‖2
R−1 + αreg‖u− ub‖2

B−1 (6.9)

with R−1 and B−1 symmetric positive semi-definite matrices of dimension n× n.

Recall that the cost function j(u) to be minimized is defined from the observation function J
as: j(u) = J(u ; yu) with yu ≡ y(u) is solution of (6.8).

The estimation problem consists to find u∗ ∈ Rm such that: j(u∗) = min
Uh

j(u) .

The set Uh denotes here a subset of Rm which may include inequality constraints or equality
constraints on u (thus defining an optimization problem with additional constraints).

6.3.2 On the numerical resolution of the VDA problem

The VDA problem consists to solve the optimization problem argminUh j(u) above. Few ap-
proaches are a-priori possible: roughly, global optimization methods or local minimization
methods. The choice mainly depends on the CPU time required to evaluate the cost function
j(u) and on the control variable dimension m, therefore the dimension of the gradient ∇j(u).

If the CPU time required to evaluate the cost function j(u) is negligible (let say in fractions of
seconds using your laptop or a super-computer, whatever), then one can adopt a global opti-
mization approach based on stochastic algorithms e.g. Monte-Carlo type algorithms, heuristic

62

methods (e.g. genetic algorithms) or surface response approximation.

On contrary, if the dimension of the parameter u is large (m = dim(Uh) = O(10) and more),
moreover if the computation of the cost function j(u) is CPU-time consuming (this the case
e.g. if considering a 3d PDE model), then global optimization is not worth considering. Then,
one has to adopt local minimization approaches based on algorithms of descent.
Then the computation of the cost function gradient ∇j(u) is required, see any good book or
course on numerical optimization, see also Appendix.
The computation of the gradient ∇j(u) in the large dimensional case (m >>) is tricky. This
is the point presented in the present simple case in next section.

6.3.3 Computing the cost function gradient ∇j(u)

A brute force approach: approximation by Finite Differences

A basic approach consists to approximate the gradient using Finite Differences (FD) such
as:

∇j(u) · δu ≈ j(u+ εδu)− j(u)

ε
(6.10)

with δu a given direction, δu ∈ Rm.

This numerical approach requires (m + 1) evaluations of j(u) therefore (m + 1) resolutions of
the direct model. This is generally not possible for m large!...
Moreover, the descent algorithms can be sensitive to the gradient accuracy. Here, the obtained
accuracy of ∇j(u) is not controlled since depending on an ”optimal” choice of ε which cannot
be a-priori known.

The few differentials

Recall that j : Rm → R, j(u) = J(u; y(u)), with J(u; y) defined by (6.5).

We have the gradients ∇j(u) ∈ Rm, ∇uJ(u; y) ∈ Rm and ∇yJ(u; y) ∈ Rn.

We have the map (model operator) M : u ∈ Rm 7→ y(u) ∈ Rn.

We denote by Duy(u) the differential of y with respect to u, it is a n×m-Jacobian matrix.
Duy(u) represents the derivative of the state y(u) with respect to the parameter u.
Example. Duy(u) represents the derivative of a temperature field y(x) with respect to the
spatially-distributed source term u(x).

63

A first expression of ∇j(u)

Formally, the state of the system satisfies the relation: y(u) = (A(u))−1Fu.
Of course, in practice, one never compute A−1, instead the linear system is solved by a linear
algebra method (e.g. a Gauss-type algorithm).
However, the cost j(u) reads explicitly in function of u as:

j(u) = J(u; y(u)) = ‖Z(A(u))−1Fu− zobs‖2
R−1 + αreg‖u− ub‖2

B−1 (6.11)

From the relation j(u) = J(u; y(u)), we get for all v ∈ Rm,

< ∇j(u), v >=< ∇uJ(u; y(u)), v) > + < ∇yJ(u; y(u)), Duy(u) · v > (6.12)

where < ·, · > denotes here the Euclidian scalar products (either in Rm or in Rn) with
y(u) = (A(u))−1Fu.

We have:

Duy(u) = Du

(
(A(u))−1

)
Fu+ (A(u))−1F (6.13)

with D((A(u))−1) the differential of the inverse of the direct model operator.

However, the expression (6.13) of Duy(u) is not tractable. This point is partly addressed below
in a simple case; it will be addressed in general cases in subsequent chapters.

6.3.4 A simple case: u in the RHS only

For sake of simplicity, let us consider from now a simplified u-parametrized model: the param-
eter u appears in the RHS of the model only, and not in the differential operator A.
In this case, the inverse problem solution is much easier to characterize. Indeed, in this case,
explicit calculations can be derived and we can easily introduce the concept of adjoint equations.

The simplified model equation

The u-parametrized direct model equation reads:

Ay = Fu (6.14)

In this case, we simply have: Duy(u) = A−1F , expression to be compared to (6.13).

Then, for all v ∈ Rm,

< ∇j(u), v >=< ∇uJ(u; y(u)), v) > + < F TA−T∇yJ(u; y(u)), v >

64

From the expression of J(u; y), see (6.9), we get:

∇uJ(u; y(u)) = 2αregB
−1(u− ub) and ∇yJ(u; y(u)) = 2ZTR−1(Zy(u)− zobs)

Therefore the gradient expression:

∇j(u) = F TA−T∇yJ(u; y(u)) + 2αregB
−1(u− ub) (6.15)

with ∇yJ(u; y(u)) = 2ZTR−1(Zy(u)− zobs).

Why an adjoint equation? Because it is not tractable to compute A−T .
To avoid the computation of A−T , we naturally solve the following (linear) equation:

ATp = ∇yJ(u; y(u)) (6.16)

This is the so-called adjoint equation. p denotes an additional field, p ∈ Rn. It is the adjoint
state.

If A is non-singular therefore its ”adjoint” AT too. Since the unique solution p depends on u,
we denote it by p(u) too. Note that p depends on y(u) too.

Then, the gradient expression not explicitly dependent on A−T reads as:

∇j(u) = F Tp(u) + 2αregB
−1(u− ub) (6.17)

with p(u) the unique solution of the (6.16).

This additional field p enabling to obtain the gradient expression above is called the adjoint
state of the system. It is by definition the solution of the adjoint equation (6.16).
The adjoint equation is the one which enable to derive an expression of ∇j(u) not explicitly in
function of A−T .

Optimality condition

The 1st order necessary condition of optimality reads: ∇j(u) = 0.
Since the expression of ∇j(u) depends on p(u), it depends on on y(u) too: we obtain the so-
called optimality system which gather the set of the three equation characterizing the minimum.
These three equations read:

The direct equation: Ay = Fu
The adjoint equation: ATp = ∇yJ(u; y(u))
The 1st order necessary condition: ∇j(u) = F Tp(u) + 2αreg B(u− ub) = 0

with here: ∇yJ(u; y(u)) = 2ZTR−1(Zy(u)− zobs).

65

The calculation of the cost function gradient ∇j(u) can be done for general non-linear models
(under assumptions of differentiability of y(u) of course).
This calculation is done for general non linear problems in infinite dimensions in next chapters.
Calculations in infinite dimensions require higher mathematical backgrounds, however, they
enable to rigorously derive the expressions.

6.4 Example

Let us consider a simplified version of the model equation arising in the spatial hydrology
problem, see Section ??. In the present section, the considered equation simply reads as:

− Λref (x)∂2
xxH(x) + ∂xH(x) = ∂xb(x) in (0, L) (6.18)

with Λref =
(Href−bref)

|∂xHref |
. (Href , bref) are given functions such that href (x) = (Href − bref)(x) ≥

hmin > 0 a.e.
The equation is closed with non-homogeneous Dirichlet boundary conditions.

The inverse problem as those presented in Section ?? is considered: infer b(x) given somme
measurements Hobs(x).

The unknown parameter b(x) appears in the RHS of the equation only (through its derivative):
this case fits the general basic case addressed in Section 6.3.4.

Let us solve this inverse problem by a variational approach. This consists to solve the following
optimization problem:

b∗(x) = arg min
b(x)∈B

j(b(x)),

with j(b) = J(b ;Hb), Hb the (unique) solution of (6.18) given b. The observation function
J ≡ Jαregmay be defined as follows:

Jαreg(b;H) = ‖H −Hobs‖2
2 + αreg‖b− bb‖2

2,

with bb a background value (first guess).

Exercise 6.1. 1) Detail the direct model equations by employing either a Finite Differences or
a Finite Element method.
(It will be noticed that if considering real-like data, the numerical Peclet number of the equation
is very low, therefore a centered scheme is here suitable).
Formulate the obtained numerical scheme in matrix form as: AH = Fb.
2) Write the optimality system which characterizes the solution b∗ of the optimal control prob-
lem.
3) Propose an algorithm to numerically solve this inverse problem.

66

4) Employ the Python code provided on the course Moodle page to perform numerical solutions.

6.5 A bit of history

Firstly, let us recall that PDE-based models represent an extremely wide range of systems
encountered in engineering, R&D, and academic research. Examples include fluid mechanics
(geophysical or not), structural mechanics, nanotechnologies, biological systems, geophysics,
coupled multi-physic systems, etc.

The least-square method is a standard method used to approximate a solution for over-determined
systems. It was historically developed by J.C. Gauss (1777-1855) and A.-M. Legendre (1752-
1833). At the age of 24, J.C. Gauss made a correct prediction of an asteroid trajectory based
on past observations.

Optimal control of ODEs, and subsequently PDEs, emerged after the second world war with
applications in aeronautics (missile guidance). A key point of optimal control is the Pontryagin
minimum principle2, a necessary condition of optimality for an ODE system.
Optimal control theory is an extension of the calculus of variations: it involves mathemati-
cal optimization problems with an underlying model (the differential equation). The calculus
of variations (first developed by J. Bernouilli in 1696 with the Brachistochrone problem from
the greek words ”brakhisto” (shorter) and ”chronos” (time)) deals with the minimization of
functionals (mappings from a set of functions to R). Functionals are often definite integrals
involving functions and their derivatives. The functions that minimize functionals may be ob-
tained by using the Euler–Lagrange equation, which was stated in the 1750s.

The Kalman Filter was co-developed in the 1960s by R. Kalman, a Hungarian-born American
electrical engineer and mathematician. It was used in the context of NASA’s Apollo program
to better estimate trajectories.

The historical application of Data Assimilation (DA), and more particularly the variational
approach (VDA), is weather forecasting (atmosphere dynamics) starting in the 80s. The most
important parameter to estimate is the Initial Condition, i.e., the atmosphere state at present
time.
Pioneer works of VDA include Y. Sasaki in the 60-70s [40, 41], F.X. Le Dimet - O. Talagrand
[31], O. Talagrand - P. Courtier [42], also [22, 15, 36] and others.

Nowadays, operational DA systems in Weather Forecast Centers are hybrid in nature, mixing
VDA and (non-linear) filters (EnKF in particular). DA methods are now widely employed in
many other environmental and geophysics sciences due to the presence of large uncertainties

2L. Pontryagin, a blind Russian mathematician (1908-1988)

67

in model parameters and multi-scale features of environmental phenomena. However, DA is
useful in many other application domains where PDEs are good basic models and uncertain
Initial Conditions or Boundary Conditions or model parameters need to be better estimated.

68

Chapter 7

Bayesian inferences & equivalences in
the Linear Gaussian case

The outline of this chapter is as follows.

Contents
7.1 Bayesian analysis . 69

7.1.1 Founding calculations . 70

7.1.2 The most probable parameter u . 72

7.2 Assuming Gaussian PDFs . 72

7.2.1 Scalar / univariate case . 73

7.2.2 Vectorial / multivariate case* . 74

7.3 The Maximum A-Posteriori (MAP) in Gaussian cases: equiva-
lences with the BLUE & the variational solution 75

7.3.1 Computing the MAP . 75

7.3.2 Equivalences in the Linear Quadratic Gaussian (LQG) case 75

7.4 Numerical computations . 76

7.4.1 Algorithm . 76

7.4.2 Pros and cons . 77

7.5 Examples . 78

7.1 Bayesian analysis

Rev. Thomas Bayes (1702-1761), English statistician and philosopher. The Bayes’s law, also
called Bayes’s theorem, and the Bayesian interpretation of probability was independently devel-
oped by P.-S. Laplace (1749-1827).

69

70

Bayesian analysis is a method of statistical inference that allows one to combine prior infor-
mation about a parameter with evidence1 from information contained in a dataset (a sample).
The method involves specifying a prior probability distribution for the parameter of interest,
obtaining evidence. By combining the prior distribution with the evidence and using the Bayes
theorem, a posterior probability distribution for the parameter is obtained.
Then, Bayesian inference provides an approach to tackle inverse problems into a probabilistic
framework. The resulting posterior provides rich information on the sought parameter(s), that
is the solution of the inverse problem. However, Bayesian inference is not suitable to large
dimensional problems due to the so-called “curse of dimensionality”.
For a complete study on Bayesian analysis, the reader may consult the phenomenal book [20, 25].

7.1.1 Founding calculations

Problem statement

Let u be the parameter to be estimated givenM observations zobs = (zobs,1, . . . , zobs,M), with:

zobs =M(u) + ε (7.1)

with M denoting a non linear operator and ε the error term, ε = (εobs + εmod).
εobs represents the observation error and εmod represents structural model errors. On contrary
to the observation error, the model error has to be inferred during the model estimation, to-
gether with the model parameter u.
For a sake of simplicity, it is assumed here that: εmod = 0.

The Bayes law

Let p(u) be the prior distribution of u. Let p(zobs|u) be the probability of zobs given u: it is the
likelihood resulting from the (direct) model M.
The joint probability density of u and zobs reads in terms of the conditional densities as:

p(u, zobs) = p(u|zobs)p(zobs) = p(zobs|u)p(u)

This provides the Bayes’s law:

p(u|zobs) =
p(zobs|u)

p(zobs)
p(u) (7.2)

This relation can read as:

Posterior ∝ (Likelihood × Prior)

1evidence: something that increases the probability of a supported hypothesis

71

The denominator p(zobs) is simply a normalizing constant. (It is sometimes called the evi-
dence). Its value may be obtained by integrating over all u: p(zobs) =

∫
p(y|u) p(u)du. This

value may be chosen such that the total mass of the posterior distribution p(u|zobs) equals 1 too.

p(u|zobs) is the posterior distribution (a-posteriori density).

In the present inverse problem context, the posterior p(u|zobs) contain all information on the
sough quantity u (given zobs).
In practice, values of interest may be: the most probable value u∗ = argmaxu p(u|zobs), i.e.
the Maximum A-Posteriori (MAP), or the posterior mean ū = mean(p(u|zobs)), or quantiles of
p(u|zobs).

Figure 7.1: The distributions in a trivial scalar/univariate Gaussian case: prior (dotted), likeli-
hood (dashed) and the resulting posterior (solid) Gaussian distributions. Bayes’ law: Posterior
∝ Prior × Likelihood. Figure extracted from [1].

Remark 7.1. • The prior distribution p(zobs|u) can be numerically approximated by a Monte-
Carlo method by performing the direct model M a very large number of times (let us say
O(104) and more). This implies to tackle a low CPU-time consuming model M(u).

• If a lot of data are available, the choice of the prior doesn’t matter so much.
On the contrary, if not so much data are available, the choice of a relevant prior (the
background information) becomes crucial since the result (the posterior) highly depends
on the prior...

• For large scale real-world problems, the priors may be quite subjective, as a consequence
the resulting posteriors become subjective too...

• Since the posterior p(u|zobs) results from the data zobs, it is expected that it is less variable
than the prior p(u)....

For an arbitrary prior distribution, generally no analytical solution of the posterior distribution
is known, only approximations may be obtained.

72

On the contrary, in the Linear Gaussian case i.e. the prior p(u) is Gaussian and the model
operatorM is linear, the likelihood p(zobs|u) is Gaussian and the posterior distribution p(u|zobs)
is Gaussian too.
In this case, the expression of p(u|zobs) can be calculated. This expression is presented in a
next paragraph.

7.1.2 The most probable parameter u

As estimator let us consider the most probable parameter value u.
Given the observations zobs, given the background value ub, the most probable parameter sat-
isfies:

u∗ = argmax
u

(p(u|zobs and ub)) (7.3)

Since the function (− log)(·) is monotonic decreasing therefore convex, the optimization problem
above can be equivalently written by minimizing the following functional:

j(u) = − log(p(u|zobs) + c (7.4)

with c denoting any constant value. Then the most probable parameter u satisfies:

u∗ = argmin
u
j(u)

Assuming that the observation errors and the background errors are uncorrelated (this is a very
reasonable assumption), we get:

p(zobs and ub|u) = p(zobs and ub)p(u)

Using the Bayes law (7.2), it follows:

j(u) = − log p(zobs|u)− log p(u) + c (7.5)

for any constant c.

The calculations above are valid for any distributions p(u) and p(zobs|u).
From now, if considering Gaussian PDFs, the choice of the log function in the definition of j(u)
turns out to be judicious...

7.2 Assuming Gaussian PDFs

Let us assume from now that εobs ∼ N (0, σobs).

73

7.2.1 Scalar / univariate case

For sake of simplicity, we here consider the scalar / univariate case: the parameter u is a scalar
function.

The prior distributions

Let us assume the prior distribution p(u) is Gaussian: p(u) ∼ N (ub, σ
2
u), that is

p(u) =
1

(2π)1/2σu
exp

(
− 1

2σ2
u

(u− ub)2

)
(7.6)

We get M observations: zobs = (zobs,1, . . . , zobs,M).
Assuming p(zobs|u) ∼ N (zobs, σ

2
obs) and that the M data are all independent, we get:

p(zobs|u) = ΠM
m=1

1

(2π)1/2σobs
exp

(
− 1

2σ2
obs

(zobs,m − zobs)2

)
that is:

p(zobs|u) ∝ exp

(
− 1

2σ2
obs

M∑
m=1

(zobs,m − zobs)2

)
(7.7)

Recall that given a Gaussian prior p(u), if the model operator M is linear then the likelihood
p(zobs|u) is Gaussian.
On the contrary if M is non linear then the likelihood p(zobs|u) is non Gaussian.

Resulting posterior expression

If both p(u) and p(zobs|u) are Gaussian then the posterior p(u|zobs) is Gaussian too, as the
product of two Gaussians.
Indeed, by applying the Bayes law (7.2), the posterior reads as:

p(u|zobs) ∝ exp

(
− 1

2σ2
u

(u− ub)2 − 1

2σ2
obs

M∑
m=1

(zobs,m − zobs)2

)
(7.8)

which is equivalent too (see e.g. [2] Chap. 3 for detailed calculations):

p(u|zobs) ∝ exp

(
− 1

2σ2
p

(u− up)2

)
(7.9)

with up = σ2
p

(
ub
σ2
u

+
M∑
m=1

zobs,m
σ2
obs

)
and σ2

p =

(
1

σ2
u

+
M

σ2
obs

)−1

(7.10)

74

7.2.2 Vectorial / multivariate case*

This is a ”to go further” section.

In the vectorial / multivariate case, u is a vectorial function. A Gaussian distribution is de-
scribed by a mean which is vectorial and a covariance matrix. The calculation principles remain
the same but a bit more complex.
The Gaussian prior p(u) reads as p(u) ∼ N (ub, B

−1) with B a given invertible covariance ma-
trix2, thus:

p(u) =
1

(2π)n/2σu
exp

(
−1

2
‖u− ub‖2

B−1

)
(7.11)

with σ2
u = det(B).

The likelihood is supposed to be Gaussian: p(zobs|u) ∼ N (zobs, R
−1), with R an invertible

covariance matrix. The M observations are supposed to all independent, therefore:

p(zobs|u) ∝ exp

(
M∑
m=1

‖zobs,m − zobs‖2
R−1

)
(7.12)

Like in the scalar case, by applying the Bayes law (7.2) the posterior distribution p(u|zobs)
is Gaussian as the product of two Gaussians whose expression satisfies (see e.g. [2] for more
details on the calculations):

p(u|zobs) ∝ exp

(
−1

2
‖u− up‖2

P−1

)
(7.13)

with the (vectorial) mean value up which satisfies:

up = P−1
(
B−1ub + ZTR−1zobs

)
(7.14)

The posterior covariance matrix P satisfies, see e.g. [2]:

P−1 = (B−1 + ZTR−1Z) (7.15)

One can show that P−1 = (I−KZ)B with K the gain matrix which can be calculated, see e.g.
[2].

2The inverse of a covariance matrix (if existing) is a so-called precision matrix.

75

7.3 The Maximum A-Posteriori (MAP) in Gaussian cases:

equivalences with the BLUE & the variational solu-

tion

7.3.1 Computing the MAP

Recall (7.3)-(7.5): the most probable estimation (=the MAP) satisfies:

u∗ = argmax
u

p(u|zobs) = argmin
u
j(u) (7.16)

by setting adequate constant values.

By using the Gaussian forms distributions, see (7.6)(7.7) in the scalar case, it follows that:

u∗ = argmin
u
j(u) with j(u) =

1

2
‖M(u)− zobs‖2

σ−1
obs

+
1

2
‖u− ub‖2

σ−1
u

(7.17)

In summary, computing the most probable posterior value (= the MAP) involves maximizing
a product. Next, by considering the log-likelihood function and under Gaussian assumptions
leads to the minimization of the quadratic cost function j(u) defined in (7.17).

Remark 7.2. The term ‖u−ub‖2
� in the definition of j(u), see (7.17) can be read as a Tikhonov

regularization term, see Section 2.2.2. In the present probabilistic point of view, this ”regular-
ization” term corresponds to the prior p(u) whose is assumed to be Gaussian.

7.3.2 Equivalences in the Linear Quadratic Gaussian (LQG) case

Let us recall the linear estimation problem considered in this chapter: estimate u satisfying
zobs = (M(u) + ε), withM denoting a non linear operator, ε the errors term, ε = (εobs + εmod).
For a sake of simplicity, it is assumed here that εmod = 0.

Let us assume that:

• the model M is linear and Z ≡M, (therefore Z ∈Mn×m),

• the error model is Gaussian with εobs ∼ N (0, R−1).

We then solve:
zobs = Zu+ εobs (7.18)

Then it has been demonstrated that:

• the Best Linear Unbiased Estimator (BLUE), which is the simplest statistic estimator, is
equivalent to minimize the following quadratic functional (see Prop. 5.2):

j(u) =
(
‖zobs − Zu‖2

R−1 + ‖u− ub‖2
B−1

)
(7.19)

76

where the norms R−1 and B−1 are defined as R = (cov(εobs)) and B = (cov(εb)) respec-
tively.

• if the prior distribution p(u) is Gaussian, then the most probable solution u∗ (= the MAP)
coincides with the BLUE, provided we use the same B−1 and R−1 norms as above.
The MAP is nothing else than the (unique) optimum of the Quadratic function j(u) de-
fined by (7.19), considering the appropriate covariances matrices R and B3.

Recall that the VDA method aims at minimizing the functional j(u) above.

Finally, in the LQG case, both the VDA solution and the sequential KF estimation are fully
interpretable through Bayesian analysis since the three approaches (deterministic VDA, statis-
tic BLUE / sequential KF, Bayesian estimation) mathematically yield the same estimation u∗.
However, each approach lead to different algorithm to compute u∗, thus coming with distinct
advantages and drawbacks.
It is important to note that this mathematical equivalence holds true only in the LQG case,
which is a-priori not the case in real-world problems. Furthermore in practice, the error covari-
ances matrices or the likelihood are often unknown.
This result in the LQG case, however, provides a strong guideline to interpretate the results in
the LQG cases but also to address non linear problems.

Note that the KF can be derived from the Bayesian analysis too, see e.g. [1] Chapter 3.

7.4 Numerical computations

7.4.1 Algorithm

In the computational point of view, given a Gaussian prior p(u) and assuming a Gaussian like-
lihood p(zobs|u), the posterior p(u|zobs) is numerically approximated as follows.

3In the LQ case, the cost function j(u) is strictly convex therefore admitting a unique minimum. This point
is mathematically shown in a subsequent chapter.

77

• Define a sufficiently fine grid (sampling) of the parameter space U ,
U ⊂ Rn.

• Compute an approximation of the prior p(u) by evaluating Nu values
p(un), n = 1, . . . , Nu. We have: Nu = O(nn0) with n0 large enough
(that is n0 = O(10) at least ?).

• Compute an approximation of the likelihood distribution p(zobs|u) as
follows.
- Perform the Nu model outputs M(un), n = 1, . . . , Nu,
- Given a fixed Gaussian likelihood form as N (zobs, σobs), evaluate the
probability p(zobs|un) as:

p(zobs|un) =
1

(2π)1/2σobs
exp

(
− 1

2σ2
obs

(zobs −M(un))2

)
for n = 1, . . . , Nu,

- Evaluate the approximation of the likelihood p(zobs|u) as:

p(zobs|u) ≈ ΠNu
n=1p(zobs|un)

• Deduce the approximation of the posterior distribution p(u|zobs) as:

p(u|zobs) ∝ Prior p(u)× Likelihood p(zobs|u)

An alternative to explore the parameter space U is to employ a Markov Chain Monte Carlo
(MCMC) method (use of Markov Chains to perform Monte Carlo estimations) like the Metropolis-
Hastings algorithm. However, MCMC algorithms still require huge number of model output
evaluations (let us say O(104) and more).

7.4.2 Pros and cons

⊕ The Bayesian analysis provides the richest information one can expect on the tackled
inverse problem: the complete posterior distribution p(u|zobs) from which one can next
deduce the most probable value (= the MAP), the posterior mean and quantiles.

⊕ The algorithm can be applied by performing the modelM(·) as a black box only. In this
sense, it is a non-intrusive method.

	 The approach is not tractable neither for CPU-time consuming modelsM(·) nor for non
tiny parameter dimension n.

	 The posterior directly results from both the prior and the likelihood; and the latter can
be very badly known...
Moreover, even if the prior distribution of u is supposed to be Gaussian (which may be a
reasonable assumption), the resulting likelihood p(zobs|u) is not Gaussian in the case of a
non linear operator M.

78

7.5 Examples

The reader can find numerous well documented examples with corresponding Python codes
available on the web, e.g. on the https://towardsdatascience.com web site 4, 5.

A detailed simple example Below is presented a Python code computing a simple Bayesian
analysis to estimate a scalar parameter u.
First, synthetic data are generated with a given value of u (0.6 in this case).
The prior distribution for u is defined: a Beta distribution with α = β = 1.
The likelihood of the observed data zobs given u is specified: it is supposed to be a Bernoulli
distribution.
Finally, a Markov chain Monte Carlo (MCMC) sampling is employed to obtain samples from
the posterior distribution of u.
The prior, likelihood and the resulting estimated posterior are plotted, as well as the trace of
the MCMC algorithm.

4https://towardsdatascience.com/how-to-use-bayesian-inference-for-predictions-in-python-4de5d0bc84f3
5https://towardsdatascience.com/estimating-probabilities-with-bayesian-modeling-in-python-7144be007815

79

Example o f a 1D (s c a l a r func t i on) Bayesian a n a l y s i s
import numpy as np
import matp lo t l i b . pyplot as p l t
import seaborn as sns # p l o t s
import pymc3 as pm # Bayesian modeling and P r o b a b i l i s t i c ML r e l y i n g on MCMC

Generate s y n t h e t i c data : b inomial
np . random . seed (0)
data = np . random . binomial (n=1, p=0.6 , s i z e =100)

Def ine the p r o b a b i l i s t i c ”model”
with pm. Model () as f i r s t m o d e l :

u = pm. Beta (’ u ’ , alpha =1. , beta =1.) # the p r i o r = beta d i s t r i b u t i o n
z = pm. B e r n o u l l i (’ z ’ , p=u , observed=data) # the l i k e l i h o o d = B e r n o u l l i d i s t r i b u t i o n

to draw samples o f the p o s t e r i o r (t r a c e o f the MCMC algor i thm)
t r a c e = pm. sample (1000 , random seed =123)
#be f o r e drawing these ’ r ea l ’ samples , PyMC3 l e t s the chain converge to the d i s t r i b u t i o n o f your model f o r a c e r t a i n number o f i t e r a t i o n s (the tuning phase) .
#once t h i s phase i s complete , i t s t a r t s drawing from the d i s t r i b u t i o n . The number o f tuning i t e r a t i o n s = 1000 .

Plot s
p o s t e r i o r d i s t r i b u t i o n
pm. p l o t p o s t e r i o r (t race , var names =[’u ’] , c r e d i b l e i n t e r v a l =0.95 , l a b e l =’ p o s t e r i o r ’)
p r i o r d i s t r i b u t i o n
sns . d i s t p l o t (np . random . beta (1 , 1 , 1000) , h i s t=False , kde=True ,

b ins=i n t (180/5) , c o l o r = ’ darkblue ’ ,
h i s t kws ={ ’ edgeco lor ’ : ’ black ’} ,
kde kws={ ’ l inewidth ’ : 4} , l a b e l =’ pr io r ’)

l i k e l i h o o d d i s t r i b u t i o n
sns . d i s t p l o t (np . random . binomial (n=1, p=np . mean(data) , s i z e =1000) , h i s t=False , kde=True ,

b ins=i n t (180/5) , c o l o r = ’ darkgreen ’ ,
h i s t kws ={ ’ edgeco lor ’ : ’ black ’} ,
kde kws={ ’ l inewidth ’ : 4} , l a b e l =’ l i k e l i h o o d ’)

p l t . x l a b e l (’ u ’) ; p l t . y l a b e l (’ Density ’) ; p l t . t i t l e (’ D i s t r i bu t i o n s ’)
p l t . show ()

Plot o f the MCMC sampling proce s s
pm. t r a c e p l o t (t r a c e)
p l t . show ()

Summary o f the MCMC output in fo rmat ion
%pm. summary(t r a c e) . round (2)

Towards large dimensional problems

In the case of large dimensional problems, i.e. with m =dim(u) >>, the Bayesian analyses and
the KF-based filters are barely tractable since too highly CPU-time and memory consuming.
On the contrary, the VDA method ”naturally” extends to large dimension cases and to non
linear models too. Indeed, the corresponding algorithms (3D-Var, 4D-Var and so on, see sub-
sequent chapters) are well-suited for large dimensional (and non linear) problems since based
on local gradient-based optimisation algorithms. However, uncertainties are not provided by
the VDA method.

80

Chapter 8

DA by artificial neural networks

DA and ML share similarities: they both enable the solution of inverse problems such as pa-
rameter identification and model calibration from data.
This is particularly true between Variational Data Assimilation (VDA) and Artificial Neural
Networks (ANN) since both imply to solve large dimensional optimization problems of the form:
minparam J(param).

The function J is called the cost in VDA and the loss in ML.

Both method classes employ the gradient descent algorithm to minimize J . The adjoint method
used to compute the gradient in VDA is equivalent to the back-propagation algorithm employed
in ANNs.
In this chapter, we highlight the similarities between VDA and ANNs when used to solve
identification problems from observations or model output data. Moreover we present ANN
architectures enabling to perform ”Physics Informed” machine learning.

8.1 Artificial Neural Networks (ANNs)

8.1.1 Introduction

A bit of history ANNs date back to the 1940s, initially inspired by the structure of the
human brain. In the 1960s and 1970s, the development of the Perceptron algorithm and the
backpropagation algorithm marked significant progress. However, in the 1980s, limitations
were discovered, leading to a period known as the ”AI Winter.” The resurgence of interest in
ANNs came in the 2000s, driven by advances in computing power and the availability of large-
scale datasets. This resurgence, combined with novel architectures like Convolutional Neural
Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for sequen-
tial data, led to breakthroughs in various fields, including computer vision, natural language
processing, and reinforcement learning. Today, ANNs are a cornerstone of modern machine

81

82

learning and find applications in all scientific areas inclmudeing modelling real-world physical
phenomena.

The here considered ANNs are simply fully connected Neural Networks. They are also referred
to as Feed-Forward Neural Networks or multi-layer perceptrons.
ANNs are defined by their architecture (number of internal layers, number of perceptrons per
layer) and their activation functions (e.g., the differentiable tanh and sigmoid functions or the
ReLU - rectified linear unit - function).
After training (this will be clarified later), ANNs can represent multi-scale and non-linear fea-
tures of underlying, unknown operators that represent the data.

ANNs, along with their various versions (CNN, LSTM, Generative NN, etc.), enable remarkably
accurate identification of nonlinear trends in data, provided they are trained on a sufficiently
large dataset. It’s worth mentioning that predictions may need to be made sufficiently close to
the learned data.

In essence, well-trained ANNs can be seen as highly effective multi-scale interpolators.
Additionally, supervised learning applied to physically-based data provides an alternative ap-
proach for building effective models and solving inverse/identification problems.

Figure 8.1: A small ANN with 2 hidden layer (L = 2). For each connection correspond a weight
parameter value and a bias value. Image extracted from [.].

8.1.2 ANNs structure

Let us briefly describe how an ANN can be built up and trained from (large) datasets. The
first crucial step is to hold a large training (reliable) dataset describing the targeted phenomena.

Let us consider a dataset D containing the pairs (Xobs
s , Y obs

s), s = 1, · · · , Ns,

83

(called examples or samples in the ML jargon) with Xs the s-th input variable (called ’feature’
in the ML jargon) and Ys the corresponding output (called ’label’ in the ML jargon).

Let us denote by Nθ an ANN composed of L hidden layers with θ = (W, b) ∈ RNθ as its
parameters (W the set of weight matrices, b the set of bias vectors). We denote by Nl the
neurones number in the l-th layer. l = 0 denotes the input layer and (L+ 1) the output layer.
The input and output layers generally have only a few perceptrons.
Let us denote: by fl the l-th layer function, fl : xl−1 ∈ RNl−1 → xl ∈ RNl . An ANN can be
read as the composition of the (L+ 1) elementary vectorial functions fl as follows.
For x an input in Rn and y the output, y ∈ Rp,

Nθ : x ∈ Rn 7→ y(θ)(x) ∈ Rp

with Nθ(x) = (fL+1 ◦ . . . ◦ f1) (x)
(8.1)

Given the l-th layer function fl, we denote by σl its activation function and by θl = (Wl, bl) its
parameters.

We have σl : RNl → RNl , the weight matrix W
(Nl−1,Nl)
l ∈ MNl,Nl−1

(R) and the bias vector
bl ∈ RNl .
Thus,

xl = fl(xl−1) = σl

(
W

(Nl−1,Nl)
l · xl−1 + bl

)
, xl ∈ RNl (8.2)

The dimension input variable space n may be small or large, therefore defining a small or large
dimensional problem.
The output field y is often large dimensional, particularly in regression problems. However, the
final output often measures a quantity through its norm, therefore ”gathering” the (numerous)
output components onto a one-dimensional quantity only.

8.1.3 ANNs training: the optimization problem

Let us consider a dataset D containing data pairs (Xobs
s , Y obs

s), s = 1, · · · , Ns.
A misfit functional measuring (here simply in 2-norm) the discrepancy between the NN output
and the given target value Y obs is defined as:

Jobs(D) = ‖Y obs −Nθ(Xobs)‖2
2,Ns =

1

Ns

Ns∑
s=1

(
Y obs
s −Nθ(Xobs

s)
)2

(8.3)

Training an ANN consists to minimize this misfit functional J(D)obs with respect to the NN
parameters θ. Then we define the functional to be minimized as:

jD,obs(θ) = Jobs(D) (8.4)

Thus, training the ANN consists to solve the following differentiable optimization problem:

θ∗ = min
θ
jD,obs(θ) (8.5)

84

For deep ANNs, θ is extremely high dimensional e.g. O(10q) with q = 6 and more.
Problem (8.5) is therefore a very large dimensional optimization problem requiring advanced
(and still under investigations) efficient minimization algorithms, see next section for a few
details.

After training, the ANN Nθ, determined by its architecture and its optimized parameters
θ∗ = (θ∗0, · · · , θ∗L+1), is supposed to accurately represent the underlying unknown operator
mapping the input data onto the output data, that is:

Nθ∗ ≈ F where F : Xobs 7→ Y obs (8.6)

It is an approximation: even after training we do not have: Nθ∗(Xobs) ≈ Y obs only.

8.1.4 Trained ANNs: surrogate models

After training, ANNs enable to remarkably find nonlinear trends between data therefore pro-
viding excellent estimators. If sufficiently well trained, Nθ∗ is supposed to approximate the
underlying unknown operator F : Xobs 7→ Y obs, even if the latter is multi-scale and highly non
linear.
However, to be ”accurate”, the predictions given new input data may need to be sufficiently
close to the learned data.

Moreover, given a new value of the input parameter, a forward run of an ANN is extremely
fast. indeed, it is a simple evaluation of a composition of (numerous) basic functions.
Thus in a modeling context, a (well) trained ANN constitues a surrogate model.

Then, if defined from the parameter space U onto a physics-based model output space Y , or
observations space Z, Nθ∗(u) constitutes a surrogate of the (corresponding) direct model.

Conversely, if defined from the state space Y , or observations space Z, onto the parameter
space U , Nθ∗(u) constitutes a surrogate of the inverse model.
Moreover, nowadays, a few progresses remain to be done in particular for large dimensional
problems, see e.g. [14] for a review. Also the resulting surrogate model may be not as accurate
as good physical-based models (when existing).

Case of an output functional

In a modeling context, the user is often interested in a particular quantity of interest g(y),
g : Rp → R, with y deriving from the ANN output, y = Nθ(x).
Let us cite an example: y(x) be a temperature depending on a material property x, g(y) the
total energy in a given subdomain.
Then, by introducing the following operator Jθ,

Jθ(x) = g ◦ Nθ(x), Jθ : Rn → R (8.7)

85

Learning this functional Jθ consists to solve the following optimization problem:

θ∗ = argmin
θ

(
‖g(Y obs)− Jθ(Xobs)‖2

2,Ns

)
(8.8)

by employing the same strategies as for Nθ(x).

8.1.5 Optimization strategies and ANNs internal technics

Optimization strategies

The choice activation function σ of the perceptrons depend on the required properties:
- the sigmoid or tanh function provide a differentiable NN (therefore’s omehow regular, smooth),
- the rectified linear unit (ReLU) function is the prefered choice for information reduction or
extraction.

To numerically minimize jD(θ), first-order gradient-based optimization algorithms are em-
ployed.
For relatively small dimensional problem up to large dimensional problem (say up to dim(x) =
O(106)), the deterministic L-BFGS descent algorithm is a good choice as it is quite accurate.

For larger dimensional problems, a stochastic descent algorithm is required: the ADAM algo-
rithm [28] is nowadays considered the reference algorithm.

Note that for moderately large problems (say dim(x) ≈ O(106)), a good strategy consists to
first performing the ADAM algorithm, and then applying the L-BFGS algorithm. This enables
a good balance between convergence speed and final accuracy.

ANNs hyper parameters

The so-called hyper-parameters of the NN are the learning rate, decay rate, dropout probability,
see e.g. [?] for details. These so-called ”hyper-parameters” are mainly experimentally chosen.
The selected values are those providing the minimal value of jD(·).
In a modelling context, these hyper-parameters can be seen as ”priors” of the model and it
can be an issue to be tune them (similarly to a regularization term weight α in bi-objective
optimization).

Gradient computation by automatic differentiation

First-order descent algorithms require the computation of the large dimensional cost gradi-
ent ∇J(θ). Computing efficiently such large dimensional gradients, dim(∇J(θ) ∼ dim (θ) ≈
O(106 − 109), may be a challenge. However, ANNs presents a very simple particular form: it
is a composition (of numerous however) elementary functions, see (8.1).

86

As a consequence, the cost function gradient ∇J(θ) can be computed by applying the differen-
tial chain rule to this composition form.
This is what is done by the so-called ”back-propagation” procedure. This step is performed us-
ing Automatic Differentiation. The basic principles of Automatic Differentiation can be found
in Section ??; also for details the reader may refer e.g. to [5] and references therein.

Nowadays, ANNs can be easily coded in Python using one of the libraries available online such
as PyTorch - Mpi4Py, TensorFlow, Scikit-NN etc.

8.2 ANNs to solve u-parametrized equations

This section has been conceptualised with Hugo Boulenc during his PhD investigations (INSA-
IMT, 2022-25). The figures have been produced by H. Boulenc.
Let us consider the same general u-parametrised PDE-based model as in (6.2):

A(u; y)(x) = B(u)(x) for x ∈ Ω (8.9)

with Ω an open subset of Rd.
The physical-based model A(·; ·) is a-priori non-linear both in u and y.

8.2.1 Fully-parametrized ANN

Let us consider the pair (x;u) as the input variable of the ANN: x the space variable, u the
PDE parameter.
Note that u may be a spatially distributed parameter. In this case, we have u(x).

Given an output quantity of interest g(y), y the model output (= the state of the system), the
ANN can be schematized as on Fig. 8.2.

After learning, the trained ANN Nθ∗ is expected to be an approximation of the model operator
M defined as:

Nθ∗ ≈M with M : (u;x) 7→ y(u;x) (8.10)

with y(u;x) satisfying the model equation (8.9).

If the model parameter u is large dimensional, the training is not feasible due to the too nu-
merous samples required.

After learning one should be able to both perform as a predictor Nθ∗(u;x) given non-learned
values of (u;x).
Moreover, under the assumption that u is very low dimensional, dim(u) = O(1), one should be
able to infer values of u given data yobs(x).

87

Figure 8.2: ANN to approximate the output of a u-parametrized model : the fully-parametrized
ANN version.
(For a sake of clarity, the biases bl are not indicated on the figures).

Indeed, in this last case, a basic optimization procedure enables to infer u from yobs, that is to
solve the inverse problem consisting to identify u given y(x).
An example for a simple model with low dimensional parameter u is presented in Section 8.4.

8.2.2 Semi-parametrized ANN

For larger dimensional parameter u, say up to dim(u) = O(10q) q ≈ 2, a so-called semi-
parametrized version of NN can be a good approach. This consists to build an ANN as indi-
cated on Fig. 8.3. An example for a simple model with quite low dimensional parameter u is
presented in Section 8.4.

On the gradient computations

As already mentioned, a key point of the efficiency of ANNs is the possibility to easily compute
the output functional gradient with respect to the input parameter. This is done by applying
the chain rule to the large composition of the elementary functions fl(x), see (8.1) by automatic
algorithmic (Automatic Differentiation process).
Obviously, the computation complexity (in terms of operations numbers therefore CPU-time)
is very different if considering large dimensional problem (with a large dimension of the model
parameter) or small dimensional ones. Moreover, the gradient expression is not the same for

88

Figure 8.3: ANN to approximate a parametrized PDE-based model : the semi-parametrized
version.

the fully-parametrized NN than for the semi-parametrized one. The mathematical expression
of the gradients are detailed later in both cases in Section .

8.3 Physics-Informed Neural Networks (PINNs)

An important drawback of ANNs is their lack of explainability and reliability.
PINNs consist to minimize both the misfit to the observations (the usual term Jobs) and an
additional term: the residual of a given physical model (term denoted by Jres).
In context of modeling physical phenomena, a way to address this issue consists to introduce the
physical equation as a constraint in the minimization procedure. This can be simply done by
adding the residual of the model into the loss function. This principle is those of the so-called
PINNs introduced in [30, 39].

8.3.1 Basic formalism

The residual of the model reads here:

r(u; y) = A(u; y)− L(u) (8.11)

The loss function J to be minimized is then constituted by the standard misfit term Jobs as in
(8.3), plus the residual functional Jres(u; y) defined by:

Jres(u; y) = ‖r(u; y)‖2,Xcol (8.12)

where Xcol denotes a set of points within the domain Ω. It is may be perceived as collocation
points where the residual is evaluated.

89

The total loss function J , J : U × Y → R, then reads:

Jα(u; y) = JD,obs(y) + αJres(u; y) (8.13)

Training a PINNs as proposed in [39] consists to solve the optimization problem (8.5), that
is

θ∗ = min
θ
jD,obs(θ),

with the loss function defined by jD,obs(θ) = Jα(u; y(θ)), Jα(u; y) defined by (8.13), and with a
semi-parametrized architecture as those indicated on Fig. 8.4 or 8.4.
The same minimization strategies as for standard NNs Nθ(x) are employed.

PINNs rely on Automatic Differentiation Finally, the most important remark relies on
the way to compute the residual r(u; y) = A(u; y)− L(u).
Residual of PDEs involves partial derivatives as ∂x1y(x), ∂2

x2x2
y(x) etc, depending on the PDE

order and expression. The space variable x = (x1, . . . , xd) is an input of the ANN. Therefore
Automatic Differentiation of the ANN can provide any partial derivative ∂qxj ...xly therefore sim-
ply evaluating the residual (8.11). This is very likely the most important trick of the PINNs
concept, [39, 35].

Minimizing the residual vs the error

Let us recall that PINNs consist to minimize both the misfit to the observations (the term
Jobs) and the residual (the term Jres). In this paragraph, we wonder if the minimization of the
residual implies the minimization of the error.

Given u, we have an unique (exact) solution y∗ satisfying: r(u; y∗) = A(u; y∗)− L(u) = 0.
Given an approximation ỹ of y∗, we have of course: r(u; ỹ) = A(u; ỹ)− L(u) 6= 0.
We denote the error by ε(y): ε(y) = (y∗ − ỹ).

Let us assume that A(·; y) is linear in y. In this case, we have:

r(u; ỹ) = A(u)ỹ − A(u)ỹ = A(u)ε(y)

Therefore

ε(y) = A−1(u) r(u; ỹ)

‖ε(y)‖2 ≤ ‖A−1(u)‖2‖r(u; ỹ))‖2

This estimation shows that if the residual vanishes then the error vanishes too. However, a
small residual value does not necessarily implies a ”small” error value... This depends on the
spectrum of A−1, equivalently on the spectrum of A.

90

Moreover, in finite dimension, we have, see e.g. [?]: ‖A−1(u)‖2 ≤ mini |λi(A−1)|. Therefore in
finite dimension, we obtain:

‖ε(y)‖2 ≤
1

maxi |λi(A)|
‖r(u; ỹ))‖2 (8.14)

8.3.2 PINNs for direct modeling

The architecture indicated on Fig. 8.4 relies on the direct-model without considering its
parametrisation: u is here given, fixed. Here, we seek to solve the (formal) equation A(y) = L
in Ω by employing a PINNs.

After training, the PINNs is supposed to provide a surrogate model, such that:

Nθ∗(x) ≡ ỹ(θ∗)(x) ≈ y∗(x) (8.15)

with y∗(x) the (unique) solution of the model, see Fig. 8.4.

The architecture of the PINNs for direct modeling is indicated on Fig. 8.4.

x

σ1

σ1

..
.

. . .

. . .

Feed-forward Neural Network (θ)

σd

σd

..
.

ỹ(θ)(x) ∂·
∂x

Automatic
differentiation

Jres(ỹ(θ))

model residual
(u is fixed)

J(ỹ(θ))
Gradient Descent

on θ

∂J
∂θ

Figure 8.4: PINNs-like architecture to build a surrogate direct model. After training, the NN
output approximates the observations while minimizing the residual of a physical model.

8.3.3 PINNs for inverse modeling

Here, we seek to solve the (formal) u-parametrized equation A(u; y) = L in Ω by employing a
PINNs and to estimate the parameter u∗ corresponding to the given observations set.

91

The architecture indicated on Fig. 8.4 relies on the direct-model without considering the
parametrisation with respect to u; however u appears in the term Jres.

After training, the PINNs is supposed to provide a surrogate model, such that:

Nθ∗(u;x) ≡ ỹ(θ∗)(u;x) ≈ y∗(u∗;x) (8.16)

with (u∗, y∗)(x) the solution of the inverse problem.

The architecture of the PINNs to solve this inverse problem is indicated on Fig. 8.4.

In both cases (direct and inverse model surrogates), the loss gradient is computed by AD. We
refer e.g. to [35] and references therein for more details on PINNs.

Note that the mathematical expressions of the loss gradient can be calculated. This is what
is done in a next section. These ”gradient” expressions enables a better understanding of the
ANN features.

x

σ1

σ1

..
.

. . .

. . .

Feed-forward Neural Network (θ)

σd

σd

..
.

ỹ(θ)(x) ∂·
∂x

Automatic
differentiation

Jres(u; ỹ(θ))

model residual (u)

J(u; ỹ(θ))

Jobs(ỹ(θ))

zobs

Gradient Descent

on (θ,u)

∂J
∂θ

∂J
∂u

Figure 8.5: PINNs-like architecture to solve a parameter identification problem. After training,
both u∗ and y(u∗) are estimated.

8.4 Examples

A reference library addressing PINNs-like architecture is the DeepXDE library 1. Various ex-
amples of direct and inverse problems solved by PINNs-like architectures are proposed.

1https://deepxde.readthedocs.io/en/latest

92

For examples locally developed at IMT-INSA Toulouse, please consult the supplementary ma-
terial.

Part III

Variational Approaches

93

Chapter 9

Optimal Control of ODEs

Optimal control is the foundation of automation, which is widely developed in fields such as
aeronautics, robotics, etc. Optimal control fundamentally relies on (differentiable) optimiza-
tion. In this chapter, the optimal control of systems governed by an Ordinary Differential
Equation is briefly studied. The mathematical material presented in this chapter closely fol-
lows the presentation done in [44].
In the case of a Linear ODE model and a Quadratic cost function, that the so-called LQ case,
a proof of existence and uniqueness of the optimal solution is given.
Necessary conditions of optimality follows from the Pontryagin’s minimum principle, which is
closely related to the critical points of the so-called Hamiltonian. The two classes of numerical
approach to solve optimal control problems are presented, namely the direct approach and the
indirect one. The latter relies on the two-point value problem deriving from the Pontryagin’s
principle.
The main goal of the textbook is Variational Data Assimilation. As a consequence, we mainly
focus on open-loop controls and not so much on closed-loop controls (based on the Riccati
equations) despite closed-loop controls are the key concept for systems’ control. For the same
reason, the notion of controllability (and observability) are very briefly presented only too. We
refer for example to [18, 44, 6] for a full course on the subject.

Optimal control also at the basis of more contemporary methods such as Reinforcement Learn-
ing (RL), one of the most promising method in Artificial Intelligence. While optimal control
relies on a well-determined, physics-based model, RL can be used in situations where the sys-
tem model is not fully known. Moreover, RL relies on stochastic processes, more precisely on
Markov Decision Processes, which are discrete-time optimal stochastic control problems.

95

96

The outline of this chapter is as follows1

Contents
9.1 Example: dynamic control of a vehicle 97

9.1.1 The model . 97

9.1.2 Inverse problems . 97

9.2 Introductory remarks . 99

9.2.1 Control theory in a nutshell . 99

9.2.2 ODE solution behaviors: simple examples 99

9.2.3 On the controllability of a system* . 101

9.3 The Linear-Quadratic (LQ) problem 102

9.3.1 The general linear ODE-based model 102

9.3.2 Quadratic cost functions . 104

9.3.3 Linear-Quadratic (LQ) optimal control problem 105

9.4 Numerical methods for optimal control problems 105

9.4.1 Two classes of numerical methods: direct, indirect 105

9.4.2 Direct methods . 106

9.4.3 Numerical solution of the optimal vehicle dynamic 107

9.5 Open-loop control: the Pontryagin principle & Hamiltonian . . . 110

9.5.1 Existence and uniqueness of the solution in the LQ case * 110

9.5.2 The Pontryagin minimum principle . 113

9.5.3 The Hamiltonian . 116

9.5.4 Examples & exercises . 118

9.6 Closed-loop control: feedback law and the Riccati equation (LQ
case) * . 118

9.6.1 Feedback law in the LQ case . 119

9.6.2 The optimal control theory: a solid basis for other contemporary tech-
nologies . 120

9.6.3 Towards non-linear cases . 120

9.7 Indirect methods (based on the Pontryagin principle) * 121

9.7.1 The Boundary Value Problem . 121

9.7.2 Resulting numerical method . 121

9.7.3 Direct vs indirect methods . 122

9.8 The fundamental equations at a glance 123

1Recall that the sections indicated with a * are ”to go further sections”. They can be skipped in a first
reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.

97

9.1 Example: dynamic control of a vehicle

We here consider the example of a vehicle dynamic following a basic 1D trajectory. (The
vehicle could be a robot, a space vehicle or a drone). The reader can find other examples e.g.
in [46].

This problem is numerically solved by the code provided on the INSA Moodle page of the
course.

9.1.1 The model

Model equation in the original position variable x(t)

The problem here considered is as follows. At instant t, the vehicle position is represented by
x(t)(m), its velocity by x′(t)(ms−1).
The goal is to control the vehicle trajectory by acting on a command u(t) e.g. the engine power.
We have x : [0, T]→ R and u : [0, T]→ R.
Let m (kg) be the vehicle mass, u be the pedal position (in %).
The dynamic trajectory model may simply reads as:

mx”(t) = −K x′(t) +G u(t) in (0, T) (9.1)

with K a friction coefficient (Ns/m) and G a gain parameter (ms−1(%pedal)−1).
The equation is closed with I.C.: (x′, x)(0) is given e.g. equal to (0, 0).

Model equation in variable y(t) = x′(t) (velocity variable)

By making the change of variable y(t) = x′(t), the state equation simply reads:

y′(t) = −k1y(t)− k2 u(t) in (0, T) (9.2)

with k� constant parameters of the model. The direct model is then a simple 1st order linear
ODE in the velocity variable y. The equation is closed with the I.C. y(0) = 0. Given u(t), the
equation has an unique solution y(t).

The original variable of position x can be next recovered as: x(t) =
∫ t

0
y(s)ds + c with c s.t.

x(0) = 0.

9.1.2 Inverse problems

A few interesting questions are the following ones. All of them can be formulated as inverse
problems, which are here optimal control problems.

• Given a target velocity ztarget, identify a value of u(t) such that the vehicle reaches this
velocity value ztarget at time T given, by consuming a minimum of energy (minimal value
of u).

98

• A more dynamic version of the problem would be as follows. Given a target veloc-
ity ztarget(t), identify a value of u(t) such that the vehicle sticks as close as possible to
ztarget(t), moreover by consuming a minimum of power, moreover by considering bounded
accelerations, etc.

One can mathematically translate the inverse problem above by minimizing the following func-
tional (called cost function):

jα(u) =
1

2

∫ T

0

|yu(t)− ztarget(t)|2dt+ α
1

2

∫ T

0

‖u(t)‖2
Ndt (9.3)

with yu the unique solution of the model equation, given u.

N denotes a symmetric positive matrix therefore defining a semi-norm. If moreover definite,
N defines a norm.

The optimal control problem reads:

min
u(t)∈U

jα(u) (9.4)

where U is a (semi-)interval of R, representing potential inequality constraints on u.
In higher-dimensions, m > 1, U has to be a convex closed subset of Rm.
The optimization problem (9.4) is bi-objective: a trade-off between the two terms have to found.
The two cost function terms are balanced through the weight parameter α, α > 0.

In the case the objective is to do not accelerate excessively, then we may define the term in u
in (9.3) as: 1

2

∫ T
0
|u′(t)|2dt. In this case N is defined as: ‖v‖N = | dl

dtl
v|2 with l = 0, 1 or even 2.

This optimal control problem will be solved in Section 9.4.3 by employing a simple numerical
direct method.

Remarks

• The cost function j(u) depends on u explicitly through its second term, but also through
yu(t) in its first term: this is why it is a optimal control problem and not simply a stan-
dard optimization problem.

• If considering the regularization term |u|2 in j(u) and since the model is linear, then the
cost function j(u) is strongly convex.
In this case, the problem is what we call a Linear-Quadratic (LQ) optimal control problem.
It will be shown later that LQ problems admits an unique solution u∗ (under assumptions
on U).

99

Figure 9.1: Optimal control of a vehicle: given a velocity target ztarget(t), what is the optimal
control value u(t) while imposing ”reasonable” accelerations ? Figure plotted by the ocmputational code provided

on the webpage of the course.

9.2 Introductory remarks

9.2.1 Control theory in a nutshell

The control theory aims at analyzing dynamical systems modified by a command (the control).
Control theory refers to two classes of objectives.
A) Controllability problems aims at acting on the control in order to bring the system state to a
final state given (if possible). The goal is generally to stabilize the system by feedback in order
to make it insensitive to perturbation. Controllability is a central (hot) topic in automatic. It
is however not a shared goal with Data Assimilation (DA). As a consequence, controllability of
systems is not discussed in this textbook.
B) Optimal control problems aim at defining a control u such that a criteria (the cost function)
j(·) is minimal. The cost function j(·) depends on the control but also on the state of the
system. This is what is needed to set up a Variational DA process. Bases of optimal control
are developed in chapters 9 and 10.

Optimal control is a science between the automatic science and applied mathematics. For
extended presentations to optimal control theories, the reader may consult e.g. the excellent
books [18, 44].

9.2.2 ODE solution behaviors: simple examples

The aim of this section is simply to illustrate how the response of an apparently gentle scalar
second order ODE equation can widely change if simply changing the source term expression.
The source term can be seen as the command of the system.

100

The simple ODE-based model: spring - mass system

Let us consider here a similar basic example: the dynamics of a spring - mass system, see Fig.
9.2.
The mass m is submitted to a force f(y), which is supposed here to be equal to:−[k1(y − L) +
k2(y − L)3].
L is the spring length at rest, k� are the spring stiffness parameters.
An external force (depending on time t) is applied: u(t)~i.

Given the external force u(t), the spring position y(t) is described by the differential equa-
tion:

my′′(t) + k1(y(t)− L) + k2(y(t)− L)3 = u(t) for t ≥ 0

This 2nd order ODE is closed with the I.C. (y, y′)(0) = (y0, y
′
0) given.

It is a linear ODE if k2 = 0, non-linear if not.
u(t) can be perceived as a control of the system.

For sake of simplicity, without changing the nature of the problem, we set: m = 1, k1 = 1, L =
0.

Different states of the system according to different control values

Case u(t) = 0 i.e. without any external action.
In this case the equations reads:

y′′(t) + y(t) + 2y(t)3 = 0

It is a particular case of the Duffing equation.
Its solutions y(t) satisfy: y(t)2 + y(t)4 + y′(t)2 = c, c a constant.
All solutions are periodic and can be represented by an algebraic curve. The phase diagram
and the trajectory are plotted on Fig. 9.2.

Case u(t) = −y′(t). In this case, the applied external force aims at damping the spring. The
equation reads:

y′′(t) + y(t) + 2y(t)3 + y′(t) = 0

The numerical solution is computed, then the phase diagram and trajectory are obtained, see
Fig. 9.2.

Using the Lyapunov theory, it can be shown that the origin is asymptotically stable. The spring
position and the velocity reach the equilibrium position in infinite time, not in finite time.

Case u(t) = −(y(t)2− 1)y′(t). With this control expression, the model is a particular case of
the classical Van der Pol equation:

y′′(t) + y(t) + 2y(t)3 + (y(t)2 − 1)y′(t) = 0

101

Two different solutions are computed and plotted on Fig. 9.2 (phase diagram and trajectories).
Using the Lyapunov theory, it can be proved that it exists a periodic solution which is attractive
(plotted on Figure 9.2).

This very classical example is treated in detail in [44], we refer to this book for more de-
tails.

Figure 9.2: The spring-mass system example from [44]. (Up)(L) The spring-mass system.
(Up)(R) The solution (state of the system) without control. (Down) The solution: (L) with
damp control, (R) with another control value leading to the Van der Pol equation.

These three examples simply illustrate the wide range of behaviours which can be obtained by
simply changing the control expression, even in the case of a gentle scalar equation.

9.2.3 On the controllability of a system*

This section is a ”to go further section”.

When addressing an optimal control problem, a natural question is: whether or not the control
can make the system reach the target ?
This question of controllability is important in a context of automatic of course. It is not in
the present context of Data Assimilation. However, we here very briefly present the concept of
controllability for a linear dynamical system where Kalman’s conditions provide an answer.
The reader may refer e.g. to [44] for more information on the topic.

102

Basic concept of reachable set

Let yu(t) be the solution of the ODE system corresponding to a given control u(t) yu is supposed
to exist and to be unique. The set of reachable states from the initial state y0 in time T > 0,
can be defined as, [44]:

Acc(y0, T) = {yu(T), with u ∈ L∞([0, T],Ω)}

with Ω a compact subset of Rm.
We set: Acc(y0, 0) = y0.

Let us provide a result for the very simple linear system y′(t) = A(t)y(t) +B(t)u(t), y(t) ∈ Rn

with I.C. y(0) = y0.
This system solution reads: y(t) = M(t)

∫ t
0
M(s)−1B(s)u(s)ds. Here, y is linear in u.

Then it can shown (see [44]) that for all t > 0, the reachable set Acc(0, t) is a vectorial subspace
of Rn. Moreover if B is constant in t then for any 0 < t1 < t2, Acc(0, t1) ⊂ Acc(0, t2).

Controllability of autonomous linear systems: Kalman’s condition

Let us consider the following first order linear autonomous ODE system in Rn: y′(t) =
Ay(t) + Bu(t) + r(t), with A and B independent of t. The control variable u ∈ Rm (the
control is not constraint).

We say that the system is controllable at any time T if Acc(y0, T) = Rn.
This means that for any y0 and y1 in Rn, there exists a control u such that y(0) = y0 and
y(T) = y1.

The Kalman’s condition theorem states that the first order linear autonomous ODE system
above is controllable at any time T if and only if the rank of matrix C = (B,AB, ..., An−1B)
equals n.
This matrix C is called the Kalman matrix. The condition rank(C) = n is called the Kalman
controllability condition.

Since the Kalman’s condition does not depend neither on T nor on y0, then the first order linear
autonomous system above is controllable at any time from any I.C.
Of course, this results does not hold for general systems, in particular non linear ones.

9.3 The Linear-Quadratic (LQ) problem

This section addresses a basic, reference, optimal control problem class: the Linear-Quadratic
(LQ) problem.

103

9.3.1 The general linear ODE-based model

Let A,B and S be three mappings defined from I =]0, T [into Mn,n(R), Mn,m(R) and Rn re-
spectively. The three mappings are assumed to be bounded i.e. L∞(I) (this assumption could
be relaxed since locally integrable would be sufficient). We consider the following linear first
order ODE. 

Given u(t), find y(t) such that:
y′(t) = A(t)y(t) +B(t)u(t) + S(t) for t ∈ I = [0, T]
with the initial condition y(0) = y0.

(9.5)

In other words, we consider a phenomena which can be modelled by this linear ODE. (9.5) is
the direct model, y(t) is the the state of the system, and u(t) is the control of the system.
The function u(t) is assumed to be in L∞(I).

Explicit expression of the solution

A classical result states that (9.5) has one and only one solution y(t), y(t) continuous from I
into Rn. Moreover an explicit expression of y in integral form holds.

Let us consider for sake of simplicity the case S = 0. In this case, we have:

y(t) = M(t)y0 +M(t)

∫ t

0

M(s)−1B(s)u(s)ds (9.6)

with M(t) ∈Mn,n(R) such that: M ′(t) = A(t)M(t), M(0) = Id.
Note that if A(t) = A constant then M(t) = exp (tA).

The control-to-state map M(u)

The general optimal control problem will consist to find a control u(t) minimizing a given criteria
(cost function) j(u).

Let us introduce the control-to-state map (model operator) M(u):

M : u(t) 7→ yu(t) ≡ y(u(t))

with U ⊂ L∞(I,Rm) and Y ⊂ C0(I,Rn).

The following central property holds.

Proposition 9.1. In the linear case, the control-to-state operator M(u(t)) is affine for all
t in [0, T].

104

Proof. Let y(t) be the (unique) solution associated to u(t): y(t) =M(u(t)). The result follows
straightforwardly from the explicit expression (9.6) of the solution y(t), here in the case S = 0.
In the general case with S 6= 0, the expression is more complex but the argument remains the
same. �

9.3.2 Quadratic cost functions

The choice of the cost function to be minimized is part of the problem definition. Since it will
be minimized, convexity properties are expected.
Moreover if using computational gradient-based methods, differentiability properties are ex-
pected too. Recall that ”quadratic ⇒ differentiable and strictly convex”.

In the present dynamical system context, the typical objective function reads as:

J(u; y) =
1

2

∫ T

0

‖y(t)‖2
Wdt+

1

2

∫ T

0

‖u(t)‖2
Udt+

1

2
‖y(T)‖2

Q (9.7)

(Each terms weights are here set to 1 for sake of simplicity).

The cost function j(u) is next defined from the objective function J(u; y) by:

j(u) = J(u ; yu) (9.8)

with yu the unique solution of the (linear) model, given u.

The three terms are the time averaged cost of the state, the control and the final state, in the
semi-norms W , U and Q respectively.
This functional j is a multi-objective cost functional.

Note that by definition the objective function J(u; y) is here quadratic in its primal variables
(u; y). On the contrary, j(u) is not quadratic in u!
However, it will be demonstrated that since the model operatorM is affine, see Prop. 9.1, j(u)
is strictly convex.

Mathematical considerations. The operators Q, W and U are symmetric positive matrices in
Mn,n(R), Mn,n(R) and Mm,m(R) respectively, therefore defining semi-norms. Moreover U is
supposed to be definite. Thus, the penality term in u is minimal for u vanishing.

Let us recall that for a matrix M symmetric positive definite, in vertu of Courant-Fischer’s the-
orem (Rayleigh’s quotient), there exists a constant c > 0 such that: ∀v ∈ Rm, ‖v‖2

M ≥ c‖v‖2.
In other words, such linear operator M is coercive, uniformly in time.

Since the observation functional is quadratic and the model is linear, the natural functional
space for control variable is M = L2([0, T],Rm).

105

Let us point out that the a-priori natural space C0([0, T],Rm) is not a Hilbert space...

In practice, W , U and Q are often diagonal positive matrices whose the diagonal coefficients
are tuned to define the relative importance of the terms.

9.3.3 Linear-Quadratic (LQ) optimal control problem

The optimal control problem defined by (9.5)-9.7) reads as follows.
Given y0 and T , find u∗(t) such that

u∗ = argmin
u
j(u) (9.9)

with j(u) = J(u ; yu), yu(t) the solution of the linear ODE (9.5).

It is a Linear-Quadratic (LQ) optimal control problem.

The LQ problem is quite idealistic. However, many instructive properties of the system can
be written, both in a mathematical and numerical point of view. To better understand more
complex non-linear problems or non quadratic observation function J(u; y), a complete analysis
of the LQ problem provides good insights.

It will be shown latter that (under gentle assumptions on the variable spaces) it exists an unique
solution u∗ to the problem.
This is in particular due to the fact the term

∫ T
0
‖y(t)‖2

Wdt in the objective function definition
is strictly convex.
This relies on the statement that the composition of a linear map with a quadratic map is
strictly convex.

9.4 Numerical methods for optimal control problems

9.4.1 Two classes of numerical methods: direct, indirect

Basically, it exists two classes of numerical methods to solve an optimal control problem (what-
ever if linear or not): the direct methods and the indirect methods.

• Direct methods simply consist in discretizing the state y and the control u, to reduce the
problem to a standard discrete optimization problem.
Next, the minimization relies on nonlinear programming algorithms such as e.g. the
classical Sequential Quadratic Programming (SQP) algorithm.

• Indirect methods consist in numerically solving a problem resulting from the so-called
maximum principle.

106

The latter relies on the necessary first-order optimality conditions and on the Hamilto-
nian. These concepts are presented in next sections.

Methods mixing the two approaches are frequently employed too.

In short, pros and cons of each approach are as follows.

o Direct methods are easy to implement. They do not require to introduce the Hamitonian
and the adjoint equation (which are introduced in the next sections). They are tractable
in small dimensions only, not in large dimensions.

o Indirect methods require to derive the optimality system relying on the Hamiltonian and
the adjoint equations (see next sections). They are efficient in all dimensions, large ones
included.

Indirect methods are presented after having introduced the Pontryagin principle and derived
the optimality system which is based on the Hamiltonian concept.

9.4.2 Direct methods

Direct methods consist to:

• write the optimal control problem equations in a discrete form,

• solve the optimization problem by a standard differentiable optimization algorithm e.g.
the classical Sequential Linear Quadratic (SQL) algorithm.

Let us write in a discrete form the general LQ problem (9.5)(9.7). A regular time grid
(t0, · · · , tN) is considered (constant time step h). The discrete state yh, yh = (y1, . . . , yN),
is obtained by performing a numerical scheme e.g. Runge-Kutta 4 (or Euler scheme).
In discrete form, the problem to be solved reads:

argmin (u1,··· ,uM)j(u1, · · · , uM) (9.10)

with uh = (u1, . . . , uM), j(uh) = J(uh; yh(uh)).

For a sake of simplicity, let us consider the basic explicit Euler scheme to solve the equation
y′(t) = A(t)y(t) +B(t)u(t).
The discrete system reads:

yn+1 = (1 + hA(tn))yn + hB(tn)un for n = 0 · · · (N − 1); y0 = y0 (9.11)

107

The finite dimensional optimization problem reads:
minuh=(u1,··· ,uM) j(uh)

under the N constraints (9.11) on yh = (y1, . . . , yN)
(= the numerical scheme equations)

⊕ potential equality-inequality constraints on uh.

(9.12)

Such (finite dimensional) optimization problem, with (equality-inequality) constraints, can be
solved by the Sequential Quadratic Programming (SQP) algorithm.
Other variants of formulations can be considered.

Recalls on the SQP algorithm Sequential Quadratic Programming (SQP) algorithms de-
note iterative methods for constrained nonlinear optimization problems. The objective function
and the constraints are supposed to be C2.
The SQP algorithms principle is as follows. One solves a sequence of optimization subprob-
lems; each of them optimizes a quadratic representation of the objective function, under the
constraints which are linearized.

- If the problem is unconstrained, then the method reduces to the Newton method: the opti-
mum is such that it makes vanish the gradient.

- If the problem has equality constraints and no inequality constraints, then the method is
equivalent to apply Newton’s method to the first-order optimality conditions (KKT condition).

Pros and cons are as follows.

⊕ The algorithm is available on any well built optimization library or computational system.

	
- Each iteration may demand a lot of computational time.
- The algorithm requires cost functions twice differentiable.
- The algorithm may converge to local minima only.

9.4.3 Numerical solution of the optimal vehicle dynamic

A Python code numerically solving the 1D example presented in Section 9.1 is available on the
course webpage.

108

Figure 9.3: The SQP algorithm for an example. Image extracted from [].

Since the problem is of tiny dimension (it is 1D only), and the model is very low CPU-time
consuming (a 1D scalar ODE), a basic direct method is well adapted.

Exercise 9.2. 1) Detail the equations to solve by a direct method the vehicle dynamic problem
described in Section 9.1.
2) Detail the numerical algorithm implemented into the Python code provided on the Moodle
course page. Follow the instructions (supplementary material).

A correction is presented in the next two paragraphs.

1) The discrete equations

A good choice of time scheme is the Runge-Kutta RK4 scheme. However, for a sake of simplicity,
let us consider here the explicit (forward) Euler time scheme.
The time interval [0, T] is digitalized using a constant time step: h = T/N , ti = ih, i = 0, . . . , N .
Given the I.C. y0, we have for n = 0 · · · (N − 1),

yn+1 = yn − h (k1y
n + k2u

n) (9.13)

Given the target velocity ztarget and considering minimal variations of the command, we set:

jα(u) =
1

N

∑
n

|yn − ztarget(tn)|2 + α
1

N

∑
n

(u′(tn))2

And we solve the optimization problem:

argmin u=(u1,··· ,uN)j(u)

with the N equality constraints (9.13).

Additional inequality constraints on u, or even equality constraints on some values of un, also
inequality constraints on the state y.

109

2) The coded algorithm

The time grid described below is those of the command. The time grid to solve the model
equation is (much) smaller; it is not explicitly detailed. The current time step index is denoted
by i.
The control is performed on sub-intervals centred on i therefore considering fast and future
time intervals. The time interval length (the horizon) is denoted by M : IM = [i−M, i+M].
The model equation is then solved on a sub-interval centred on i of same length M or poten-
tially larger one of length P : IP = [i−P, i+P] with P ≥M . The ODE solver is the standard
RK4 scheme.

A possible algorithm version is as follows.
This is the algorithm which has been coded into the Python program available on the course
page.

• Initialization. The state y(0) is given (I.C.).

• For each time instant i (of the command time grid), i = 1, . . . , N ,

– Setup the current working sub-interval IP , IP = [max(0, i − P), i + P] (P the pre-
diction horizon),

– Given the values of control at time instant ti−1 and ti, solve the ODE in the time
step interval [ti−1, ti]. This provides the state at current time, yi ≈ y(ti).

– Evaluate the cost function in the prediction interval i.e. jα(ui+1, . . . , ui+P),

– Solve the (standard) optimization problem:

min
(ui,...,ui+M)

jα(ui, . . . , ui+P) (9.14)

Note. For the indices in {i + M + 1, . . . , i + P}, the control values are here set to the
value at index (i+M) i.e. u(i)(i+M).

This step provides the control value u(i) in the current working sub-intervall [ti, ti+P].

• Iterate

9.5 Open-loop control: the Pontryagin principle & Hamil-

tonian

In this section are presented the fundamental concepts of Pontryagin’s principle, Hamiltonian,
optimality system which include the adjoint equation.
The Pontryagin’s principle states a necessary optimality condition. This necessary condition is
sufficient in the LQ case.
Moreover, as previously shown, direct numerical methods do not require the use of any new
concept such as the Hamiltonian. However, the resulting algorithms are tractable in small

110

Figure 9.4: The optimal control policy is here simply imposed by using a basic direct method
since the problem is of small dimension (a scalar control variable) and the model is very low
CPU-time consuming.

dimensions only.

To address large dimensions systems, typically y(t) ∈ Rn with n = O(10p), p ≈ 4 and more),
indirect methods are more adapted or even required. However, indirect methods require to de-
rive the optimality system which relies on the Hamiltonian and the adjoint equation concepts.

Open-loop control vas closed-loop control. The Pontryagin’s principle states optimality
condition useful for open-loop control only, Fig. 9.5.
In automatic, the expected information is a closed-loop control law. Such feedback laws are
not required in the context of Data Assimilation. Therefore the section addressing the feedback
law required for closed-loop control, which relies on the the Riccati equation in the LQ case
(Section 9.6) can be skipped for readers interested in DA only.

Figure 9.5: Optimal control of a system: open loop control vs closed loop control.

111

9.5.1 Existence and uniqueness of the solution in the LQ case *

This section is a ”to go further section”.
First, let us prove the existence and uniqueness of the optimal control solution in the LQ case.
For a sake of simplicity, we do not consider the source term in the direct model: S(t) = 0.

Theorem 9.3. Let j(u) be defined by (9.7). It exists a unique u ∈M minimizing j(u) with
the ”constraint” y(t) solution of (9.5).
In other words, it exists a unique optimal control u(t) and a corresponding trajectory y(t)
to the LQ problem.

Proof derived from those presented e.g. in [44].
A) Existence.
It is based on the convergence of minimizing sequence (calcul of variations, D. Hilbert, 1900
approx.).
Step 1). The cost function is bounded by below: inf{j(u), u ∈M} > −∞ since j(u) ≥ 0. There
exists a minimizing sequence (un) defined for all t ∈ [0, T]; i.e. a sequence such that:

lim
n→+∞

j(un) = inf{j(u), u ∈M}

(As a matter of fact, ∀n ∈ N, ∃vn such that: m ≤ j(vn) < m+
1

n
).

Step 2) There exists α > 0 such that: j(u) ≥ α‖u‖2
M . Thus, the minimizing sequence (un) is

bounded in M . Hence there exists a sub-sequence (unk) which converges weakly to a control u
in M :

unk ⇁ u in L2(I)

Step 3) Let us denote by yn (resp. y) the state associated to un (resp. u). The system (9.5)
is a first order linear O.D. E. (and with S(t) = 0); we known an explicit expression of the
solution:

∀t, yn(t) = M(t)y0 +M(t)

∫ t

0

M(s)−1B(s)un(s)ds (9.15)

with M(t) ∈ Mn,n(R) such that: M ′(t) = A(t)M(t), M(0) = Id. (If A(t) = A constant then
M(t) = exp (tA)).
Similarly, we have: ∀t, y(t) = M(t)y0 + M(t)

∫ t
0
M(s)−1B(s)u(s)ds. Thus, we obtain that the

sequence (yn)n converge to y.
Passing to the limit in (9.15), we obtain the existence of yu, solution corresponding to u.

Step 4) It remains to prove that u minimizes j. Since un ⇁ u in L2, since j is continuous hence
lower semi-continuous, we have (by definition):

j(u) ≤ lim
n

inf j(un)

and necessarily j(u) = inf
v∈M

j(v).

112

Figure 9.6: A function j lower semi-continuous at u0: for u close to u0, j(u) is either close to
u0 or lower than u0.

In other words, u(t) minimizes j(u) (j(u) = min
v∈M

j(v)) and the corresponding state (trajectory)

yu is an optimal trajectory.

B) Uniqueness.
Recall that, see (9.7)(9.9):

j(u) =
1

2

∫ T

0

‖yu(t)‖2
Wdt+

1

2

∫ T

0

‖u(t)‖2
Udt+

1

2
‖yu(T)‖2

Q

We prove that j(u) is strictly convex that is ∀(u1, u2) ∈M2, ∀t ∈]0, 1[,

j(tu1 + (1− t)u2) < tj(u1) + (1− t)j(u2)

unless u1 = u2.

For all t, ‖u(t)‖U is a norm hence convex but not strictly convex... Proof of this assertion: the
triangle inequality.
However, in a Hilbert space, the square of a norm (eg ‖u(t)‖2

U) is strictly convex, see e.g. [4]
Chap. 10, p118.

Moreover, it has been previously proved that the control-to-state operatorM is affine therefore
convex, see Prop. 9.1.
In other respects ‖.‖W and ‖.‖Q are semi-norms therefore convex.

Finally the cost function j(u) is strictly convex and the uniqueness follows.
Indeed, let u1 and u2 be such that: j(uk) = inf

v∈M
j(v), k = 1, 2.

We have: j(tu1 + (1− t)u2) < tj(u1) + (1− t)j(u2).
Hence: j(tu1 + (1− t)u2) < inf

v∈M
j(v) unless u1 = u2, which must be the case. �

Note that the strict convexity of j(·) is due to the quadratic term ‖u(t)‖2
U .

This term represents a Tykhonov regularization term.

Remark 9.4. In the autonomous case (A and B constant), we have:

‖y′(t)‖ ≤ ‖A‖‖y(t)‖+ ‖B‖‖u(t)‖ ≤ cst(‖y(t)‖2 + ‖u(t)‖2)

113

Then, if all hypothesis are satisfied in I = [0,+∞ then y′(t) is in L1(I) and necessarily the
minimizing trajectory y(t) tends to 0 when t tends to +∞.

9.5.2 The Pontryagin minimum principle

L. Pontryagin, Russian mathematician, 1908-1988.

In the case of non-linear state equation, the cost function is non-convex and the Pontryagin
minimum principle (also called maximum principle) states a necessary condition of optimality.

In the LQ case, the Pontryagin minimum principle is a necessary and sufficient condition of
optimality. The Pontryagin minimum principle relies on the concepts of Hamiltonian2 and ad-
joint equation.

Let us recall the equations in the LQ case, see (9.5)(9.7). The model reads:{
Given u(t), find y(t) such that:
y′(t) = A(t)y(t) +B(t)u(t) + S(t) for t ∈ I = [0, T]

(9.16)

with I.C.: y(0) = y0. Next the cost function j satisfies j(u) = J(u; yu) where yu is the unique
solution of the model and J(·; ·) is the quadratic observation function defined by:

J(u; y) =
1

2

∫ T

0

‖y(t)‖2
Wdt+

1

2

∫ T

0

‖u(t)‖2
Udt+ g(y(T)) (9.17)

Note that we consider here the term in y(T) slightly more general than before with g(·) any
function defined from Rn into R, C1 and convex.

The goal is to characterize the optimal control satisfying: u∗ = argminu j(u) with j(u) =
J(u; yu).

Theorem 9.5. The trajectory y(t) associated with the control u(t), is optimal for the LQ
problem (9.16)(9.17) if there exists an adjoint field p(t) which satisfies:

− p′(t) = p(t)A(t)− yT (t)W for almost t ∈ [0, T] (9.18)

with the Final Condition: p(T) = −∇gT (y(T)).
By convention, p(t) is here a line vector, on the contrary to y(t).
Furthermore, the optimal control u satisfies:

Uu(t) = BT (t) pT (t) for almost t ∈ [0, T] (9.19)

2The so-called ”Hamiltonian” in control theory is a particular case of the Hamiltonian in mechanics; it is
inspired by the Lagrangian you have studied during your optimization course.

114

Remark 9.6.

• Note that Eq. (9.18) written in q ≡ pT , q a column vector as y, reads:

−q′(t) = AT (t)q(t)−Wy(t)

which better highlights the terminology ”adjoint equation”.

• This theorem provides an expression of the optimal control u∗ not explicitly depending on
the state y but in function of an auxiliary field p called the adjoint field.
The adjoint field p(t) is solution of a linear equation ”similar” to the model one with
−AT instead of A in particular. it is therefore reverse in time, therefore starting from a
condition at t = T . p depends on y through the adjoint equation.

• An explicit expression of the optimal control u∗ in function of y would provide a feedback
law which is required for closed-loop control. Such law is derived in the LQ case in a
subsequent section.

• In the case g(y(T)) = 1
2
‖y(T)‖2

Q, we have: pT (T) = −Qy(T).

• The model equation with the I.C. and the adjoint equation with the DF.C. form a ”two-
point boundary value problem”, which can be numerically solved to obtain the solution u∗

even in the non linear case. This is the basic principle of the indirect methods which are
presented in a next section.

Proof of the theorem. The proof of the theorem is based on calculus of variations.
The calculations are similar to those proving the general Theorem 10.15 tackling non-linear
stationary PDEs.
It has been proved that the cost function j(u) is strictly convex and the optimal control u∗

exists and is unique, see Theorem 9.3.

Let δu be a perturbation to u∗. We denote by uδ the perturbed optimal control, uδ = (u∗+δu),
and by yδ the corresponding perturbed solution.

*) yδ starts from the same I.C. y0 as y, that is: δu(0) = 0 = δy(0).

*) We denote by δy the difference (yδ − yu): yδ = yu + δy.
The perturbed solution satisfies: y′δ(t) = A(t)yδ(t) +B(t)uδ(t) + S(t).
By linearity of the equation, we obtain: δy′(t) = A(t)δy(t) +B(t)δu(t).
Therefore the expression of the solution perturbation:

δy(t) = M(t)

∫ t

0

M(s)−1B(s)δu(s)ds (9.20)

115

with M(t) ∈Mn,n(R) such that: M ′(t) = A(t)M(t), M(0) = Id.
Recall that if A(t) = A constant then M(t) = exp (tA).

*) Recall that: j(uδ) =
1

2

∫ T

0

‖yδ(t)‖2
Wdt+

1

2

∫ T

0

‖uδ(t)‖2
Udt+ g(yδ(T)).

The optimal control u∗ is uniquely determined by the Euler condition ∇j(u) = 0, with:

∇j(u) · δu =

∫ T

0

< Wy(t), δy(t) > dt+

∫ T

0

< Uu(t), δu(t) > dt+∇g(y(T)) δy(T) (9.21)

(Recall that W and U are symmetric).
The relation ∇j(u) · δu = 0 provides the following relation of u in function of y and δy: for all
δu(t),∫ T

0

< Uu(t)︸ ︷︷ ︸
sough term

, δu(t) > dt = −
∫ T

0

< Wδy(t), y(t) > dt︸ ︷︷ ︸
term in δy(t)...

− ∇g(y(T)), δy(T) >︸ ︷︷ ︸
final time term

(9.22)

*) Let us inject the expression of δy(t) in function of δu(t), see (9.20), in the term in δy(t)
above, see (9.22). We obtain:∫ T

0

< Wδy(t), y(t) > dt︸ ︷︷ ︸
term in δy(t)...

=

∫ T

0

< WM(t)

∫ t

0

M(s)−1B(s)δu(s)ds, y(t) > dt (9.23)

=

∫ T

0

< WM(r)

∫ T

0

M(s)−1B(s)δu(s)ds, y(r) > dr

−
∫ T

0

∫ t

0

yT (s)WM(s)ds M(t)−1B(t)δu(t)dt (9.24)

after integration by parts.

*) By construction, the expression of the adjoint p(t), solution of (9.18) with the F.C. pT (T) =
−∇g(y(T)), reads:

p(t) = Λ(T)M−1(t) +

(∫ t

0

yT (s)WM(s)ds

)
M−1(t)

with Λ(T) = − ∇Tg(y(T))M(T)−
∫ T

0
WM(s)y(s)ds,

with M(t) ∈Mn,n(R) such that: M ′(t) = A(t)M(t), M(0) = Id.
Recall that if A(t) = A constant then M(t) = exp (tA).
Note that in the expression of p(t) above, the F.C. pT (T) = −∇g(y(T)) is of course retrieved.

116

By injecting this expression of p(t) (and Λ(t)) in (9.24), we get:∫ T

0

< Wδy(t), y(t) > dt︸ ︷︷ ︸
term in δy(t)...

= etc (9.25)

*) Let us address now on the final time term in (9.22).
By construction of the F.C. of the adjoint field and using the expression of δy(t) in function of
δu(t), see (9.20), at time t = T , we get:

∇g(y(T)), δy(T) >︸ ︷︷ ︸
final time term

= etc

ToDo: terminer les calculs...

*) By combining the expressions above, we finally obtain the relation: for all δu(t),∫ T

0

< Uu(t)︸ ︷︷ ︸
sough term

, δu(t) > dt =

∫ T

0

< BT (t) pT (t), δu(t) > dt (9.26)

Therefore the expression:
u(t) = U−1(t)BT (t) pT (t)

�

Remark 9.7. In case of an infinite time interval (T = +∞), the final condition becomes:
lim
+∞

p(t) = 0.

9.5.3 The Hamiltonian

W. Hamilton, 1805- 1865, Irish physicist, astronomer and mathematician.
In this section, the central concept of Hamiltonian is introduced. In classical mechanics, the
state of a system is described by its generalized coordinates (say q) and their conjugate mo-
menta (say p). The Hamiltonian function H(q, p)(t) is defined as the total energy of the system,
that is the kinetic energy plus the potential energy, see e.g.the on-line course [18] on this topic.

Let us consider the linear direct model without source term for sake of simplicity (S = 0):
Given u(t), find y(t) such that:
y′(t) = A(t)y(t) +B(t)u(t) for t ∈ (0, T)
with the Initial Condition: y(0) = y0.

(9.27)

117

and the cost function expression:

j(u(t)) =
1

2

∫ T

0

(
‖y(t)‖2

W + ‖u(t)‖2
U

)
dt+ g(y(T)) (9.28)

In this optimal control context, the Hamiltonian H is the functional defined as:

H(y, p, u)(t) = (pT , (Ay +Bu))(t)− 1

2
(‖y(t)‖2

W + ‖u(t)‖2
U) (9.29)

with H : Rn × Rn × Rm → R.

The Hamiltonian combines the objective function and the state equation like the Lagrangian
in static optimization problems with constraints. Here the multipliers p(t) is a function of time
rather than a constant.
Note that the term g(y(T)) appears in the F.C. of the adjoint p(t) and not in the Hamiltonian.

Let us calculate the partial derivatives of H(y, p, u). We have:
∂yH(y, p, u)(t) · δy(t) = (pT , Aδy)(t)− (Wy, δy)(t)
∂pH(y, p, u)(t) · δp(t) = ((Ay +Bu), δpT)(t)
∂uH(y, p, u) · δu(t) = (pT , Bδu)(t)− (Uu, δu)(t),

(9.30)

where (·, ·) denotes the scalar product in the adequate Euclidian spaces.

Consequently, the necessary and sufficient conditions of the LQ problem solution stated in The-
orem 9.5 correspond to stationary conditions of the Hamiltonian in the following sense. For all t,


y′(t) = ∂pH(y, p, u)(t) = A(t)y(t) +B(t)u(t)
−p′(t) = ∂yH(y, p, u)(t) = p(t)A(t)− yT (t)W

0 = ∂uH(y, p, u)(t) ⇔ Uu(t) = BT (t)pT (t)
(9.31)

with the Final Condition (F.C.): p(T) = −∇gT (y(T)) .

(Recall that p is a line vector in Rn).

These three relations constitute the so-called optimality system.
The first two equations are the state equation and the adjoint state equations respectively (with
the F.C. depending on y(T)): they constitute the so-called Hamiltonian equations.
The Hamiltonian equations are accompanied by the last equation which is the optimality con-
dition on u, a necessary and sufficient condition in the present LQ case.
In general, these three equations are fully coupled.

118

The Hamiltonian: the conserved quantity in time

Exercise 9.8. Let (y∗, p∗, u∗) be the solution of the LQ problem (9.27).
Show that the mapping t 7→ H(y∗, p∗, u∗)(t) is constant.

Correction. For all t,

dtH(y, p, u)(t) = ∂yH(y, p, u)(t)y′(t) + ∂pH(y, p, u)(t)p′(t) + ∂uH(y, p, u)(t)u′(t)

= −p′(t)y′(t) + y′(t)p′(t) + 0 for any solution of the optimality system

= 0

Hence the result. �

In some contexts, the Hamiltonian denotes the energy of the system.

Remark 9.9. • The solution of the LQ problem exists and is unique, see Theorem 9.3.
Moreover, the stationary conditions of the Hamiltonian H(y, p, u) defined by (9.29) cor-
responds to the necessary and sufficient conditions of the LQ problem solution which is
unique, see Theorem 9.5 and Eq. (10.39).

If the model is non linear or if the objective function J(u; y) is not quadratic then Theo-
rem 9.5 does not hold anymore.
However, in this case, the stationary conditions of the Hamiltonian H(y, p, u) corresponds
to necessary conditions of solution(s). In this case, the corresponding triplet(s) (y, p, u)
represent optimal control policies for the dynamical system.

• Some links can be done between the Hamiltonian and the Lagrangian.
For the control of PDEs (see next chapter), to obtain the adjoint equation, a Lagrangian
will be introduced.

The reader may consult e.g. the on-line course [18] presenting the concepts of ”Hamiltonian
mechanics” and ”Lagrangian mechanics”.

9.5.4 Examples & exercises

Exercise 9.10. Write the Hamiltonian and the resulting optimality system for the optimal
control problem applied to the vehicle dynamics presented in Section 9.1.

For other exercices, please consult the supplementary material.

119

9.6 Closed-loop control: feedback law and the Riccati

equation (LQ case) *

This section is a ”to go further section”.
Riccati familly (father and son), Italian mathematicians, 18th century.

The optimality condition derived above gives an expression of the optimal control u(t) in func-
tion of the adjoint solution p(t). In very simple cases like in some exercises above, it is possible
to explicitly integrate the adjoint equation, resulting to an expression of u(t) depending on the
state y(t): this states the so-called feedback law or closed-loop control. This is the expected
information in automatic.
However, in general, the expression of u in function of y is far to be trivial... In the LQ case,
the feedback law is known: it is obtained by solving the Riccati equation presented below.
Such feedback laws are not required in a contact of Data Assimilation. Therefore the result
below may be skipped for readers interested in DA only.

9.6.1 Feedback law in the LQ case

In the LQ case we have the following result.

Theorem 9.11. Under the assumptions of the existence - uniqueness Theorem 9.3, the (unique)
optimal control u∗ writes as a feedback function (closed-loop control) as:

u∗(t) = K(t)y(t) with K(t) = U−1BT (t)E(t)

where the matrix E(t), E(t) ∈Mn(R), is solution of the Riccati equation:

E ′(t) = W − AT (t)E(t)− E(t)A(t)− E(t)B(t)U−1BT (t)E(t) ∀t ∈ (0, T)

with the Final Condition: E(T) = −Q.

For all t, the matrix E(t) is symmetric. Furthermore, since Q and W are positive definite,
E(t) is positive definite too.

We refer to [44] for the proof. �
This result provides a precious expression of the optimal control u in function of the state
y.

9.6.2 The optimal control theory: a solid basis for other contempo-
rary technologies

The aim of optimal control is to determine the best possible policy by minimizing a cost func-
tion over a period of time. It is the fundamental of automatic which is widely developed in
aeronautics, robotics etc.
RL is a mathematical framework for decision-making first introduced in the 1950s; it is now

120

Figure 9.7: (L) Optimal control of a system: closed loop. (R) Reinforcement Learning frame-
work. Image extracted from

greatly employed in Machine Learning (AI). There are links between RL and optimal control:
both theories lie in the common goal of learning an optimal action policy.
However, while optimal control requires complete knowledge of the system, while in RL, an
agent learns to make optimal decisions by interacting with its environment, maximizing the
sum of ”rewards” obtained over time. In case the agent makes a bad decision, it receives penal-
ties.
This is achieved by exploring the environment, taking actions, receiving rewards and learning
from these experiences.
RL can be used in situations where the system model is not fully known, on contrary to the
optimal control. Moreover, RL relies on stochastic processes, more precisely on Markov Deci-
sion Processes which are discrete-time optimal stochastic control problems.

9.6.3 Towards non-linear cases

In practice, optimal control problems are often non-linear. Therefore, the results presented for
the LQ problem do not apply directly, especially the analytic expression of the optimal con-
trol. Nevertheless, a good understanding of the LQ solution structure, particularly the strict
convexity of the resulting cost function, is useful for tackling non-linear or non-strictly convex
problems.

Non-linear cases: the Hamilton-Jacobi-Bellman equation

To numerically solve a non-linear optimal control problem in the sense of computing an open-
loop optimal control u (and the corresponding optimal trajectory yu), we can follow the same
approaches as in the LQ problem: either a direct method (for low dimensional problems) or an
indirect method based on the Pontryagin maximum principle.

To compute an optimal feedback law, we have to consider the so-called Hamilton-Jacobi-
Bellman approach, see e.g. [18, 44, 6] and references therein, on this wide and complex scientific
field.

121

Connection between the control of ODEs and PDEs

For PDE systems, the Pontryagin principle does not directly apply, and the feedback laws are
generally not known. These topics are covered in more detail in the following chapter. This
area is still an active field of mathematical research, with recent results including Riccati-like
equations for the Navier-Stokes fluid flow equations at low Reynolds numbers, among others.

Despite these challenges, it remains possible to write equations characterizing the optimal con-
trol solution for PDE systems. This is achieved through the optimality system based on the
adjoint equations, similar to the optimality system derived using the Hamiltonian. This ap-
proach is developed further in the next chapter for non-linear elliptic PDE systems.

9.7 Indirect methods (based on the Pontryagin princi-

ple) *

This section is a ”to go further section”.

The Pontryagin principle states that the unique optimal control u∗ satisfies the optimality sys-
tem, as (10.39) in the LQ case.
We present here the numerical approach based on the optimality system. This approach leads
to the so-called ”Two Points methods”. This consists to solve a Boundary Value Problem
(BVP) by e.g. the Newton-Raphson algorithm.

The basic principles of this approach are valid whatever if the optimal control is linear or
not.

9.7.1 The Boundary Value Problem

By setting z(t) = (y(t), p(t)), the two first equation of the optimality system (the state and the
adjoint equations) can be written as a first order dynamical system :

z′(t) = F (u(t); z(t))

with the I.C. z(0) = (y0, ·) and the Final Condition (F.C.) z(T) = (·, pT).
We write the IC and the FC as: R(z(0), z(T)) = 0. (For more details, see e.g. [44]).
Then, the problem to solve reads: {

z′(t) = F (u(t); z(t))
R(z(0), z(T)) = 0

(9.32)

This is a Boundary Value Problem (BVP) and not simply a Cauchy problem.

122

9.7.2 Resulting numerical method

Basic principle Let us denote by z(z0; t) the solution of the Cauchy problem: z′(t) =
F (u(t); z(t)), z(0) = z0.
We set: G(z0) = R(z0, z(z0;T)). Then, Problem (9.32) consists to solve:

G(z0) = 0 (9.33)

Computing the roots of G(·) or solving the BVP (9.32) is equivalent. This problem can be
numerically solved by the Newton-Raphson method (under C2 regularity conditions).

Note that solving 1D BVP like (9.32) by solving successive Cauchy problems is called ”shooting
methods”.

The multiple step version An efficient version of the ”shooting method” above consists
to split the time interval [0, T] into sub-intervalls [tp, tp+1] and compute the values z(tp) at the
start of each sub-intervall. Conditions of continuity at each sub-intervall boundary have to be
imposed.
The multiple shooting method is more stable than the basic version one.

The reader may refer to [44] and references therein for more details on shooting type meth-
ods.

9.7.3 Direct vs indirect methods

Let us briefly present the pros and cons of direct methods presented in Section 9.1 and indirect
methods. For details, the author may refer to e.g. [44] and references therein.

123

Figure 9.8: Pros and cons of direct methods vs indirects methods (shooting methods) to nu-
merically solve an optimal control problem. Extracted from [44]

9.8 The fundamental equations at a glance

The Linear model

The linear model (without source term s(t)) reads:
Given u(t), find y(t) such that:
y′(t) = A(t)y(t) +B(t)u(t) for t ∈ I = [0, T]
with the initial condition: y(0) = y0.

(9.34)

The model operator (control-to-state map) M(u) is defined as: M(u) = yu.
This operator M(u(t)) is here affine in u(t), for all t in [0, T].

The cost functional j(u) is defined from quadratic terms. First, the observation function is
defined:

j(u(t)) = J(u(t), yu(t)) =
1

2

∫ T

0

‖yu(t)‖2
Wdt+

1

2

∫ T

0

‖u(t)‖2
Udt+

1

2
‖yu(T)‖2

Q (9.35)

Given the observation” functional J(u; y), the cost function is defined as:

j(u) = J(u ; yu) (9.36)

with yu(t) the unique solution of (9.34), given u.

The LQ optimal control problem
Given the I.C. y0 and the final time T , find u∗(t) such that:

j(u∗) = min
u
j(u) (9.37)

124

The Hamiltonian is the conserved quantity in time. Its expressions is:

H(y, p, u) = p(Ay +Bu)− 1

2
(‖y‖2

W + ‖u‖2
U) (9.38)

with H : Rn×Rn×Rm → R, u(t) the control, y(t) the state of the system and p(t) the adjoint
state, solution of the adjoint model.

The adjoint model reads:

− p′(t) = p(t)A(t)− y(t)TW (t) for t ∈ [T, 0] (9.39)

with the final condition: pT (T) = −Qy(T). (p is a line vector).

The Pontryagin maximum principle states that if the control u(t) is defined as:

u(t) = U(t)−1B(t)Tp(t)T for almost t ∈ [0, T] (9.40)

then the state yu(t) associated to this control u(t), is optimal for the LQ problem.

The Pontryagin maximum principle can be read as follows: the equations below have to be
satisfied. 

y′(t) = ∂pH(y, p, u) = Ay(t) +Bu(t)
−p′(t) = ∂yH(y, p, u) = p(t)A− yT (t)W

0 = ∂uH(y, p, u) ⇐⇒ Uu(t) = BTpT (t)
(9.41)

with the final condition: p(T) = −∇Tg(y(T)) = −y(T)TQ. This is the optimality system.

Chapter 10

Optimal Control of Stationary PDEs:
Adjoint Method, VDA

This chapter presents optimal control basis for PDE systems. This leads to Variational Data
Assimilation (VDA) formulations. The final goal is the computational algorithms to estimate
control variable even if they are large dimension. The algorithms rely on the derivation of the
first order optimality system which is based on the adjoint equations.
The calculations are derived for a general non-linear elliptic PDE model (stationary) therefore
formerly valid for a large class of models.
Firstly, a brief presentation of the equations is provided in discrete dimension for readers who are
not confortable with infinite dimensions, functional analysis, and differential calculus. Secondly
the equations in infinite dimensions (in Hilbert spaces) are derived more rigorously. Theorem
10.36 states a general result which can be applied to any stationary PDE to obtain the adjoint
equation and the cost gradient of a particular problem.

The resulting computational control algorithm leading to VDA is highlighted. It is known as
the 3D-Var algorithm in the DA literature. This algorithm enables the fitting of model outputs
to data, allowing for the identification of uncertain input parameters and model calibration.
Examples are presented.

Some results and developments require relatively high mathematical skills; this is particularly
the case when addressing the differentiability of the PDE solution (with respect to the con-
trol variable) and when addressing the existence and uniqueness of the optimal control in
the LQ case. These mathematical developments are gathered in a dedicated section entitled
”mathematical purposes”. This section can be skipped by readers interested in practicals and
algorithms only.
Before reading this section, the reader may need to revise basic concepts in functional analysis.
Some of them are recalled in Appendix.

It is supposed here that the reader is aware of basic optimization concepts and gradient-based

125

126

minimization algorithms. A few of theses basic concepts are shortly recalled in Appendix as
well (including a few exercises extracted from the literature).

For a deeper exploration of the topic of optimal control of PDEs (not necessarily the LQ prob-
lem and without addressing VDA), the reader may refer to, e.g. [46].

The outline of this chapter is as follows1.

Contents
10.1 General non-linear case in infinite dimension 128

10.1.1 The direct model . 128

10.1.2 Examples . 128

10.1.3 The objective and cost function terms (misfit to data) 130

10.1.4 Optimal control problem, VDA problem 132

10.1.5 On the numerical resolution in the general context 133

10.2 Back to mathematical foundations 133

10.2.1 Differential calculus in infinite dimensions 133

10.2.2 Weak forms and dual space representation 134

10.2.3 Differential j′(u) vs gradient ∇j(u) . 134

10.3 Equations derivation from the Lagrangian 135

10.3.1 The Lagrangian . 135

10.3.2 The optimality system . 136

10.3.3 Using weak forms . 137

10.4 Mathematical purposes * . 137

10.4.1 Differentiability of the cost function 137

10.4.2 Existence and uniqueness of the optimal control in the LQ case 138

10.5 Gradient computation: methods for small dimension cases 142

10.5.1 Recall: why and how to compute the cost function gradient? 142

10.5.2 Computing the gradient without adjoint model 143

10.5.3 Gradient components: in the weak or the classical form? * 146

10.6 Cost gradient computation: the adjoint method 147

10.6.1 Deriving the gradient expression without the term wδu 147

10.6.2 The general key result . 149

10.7 The VDA algorithm (3D-var) . 152

10.7.1 Gauss-Newton vs Quasi-Newton . 152

10.7.2 The 3D-Var algorithm . 153

1Recall that the sections indicated with a * are ”to go further sections”. They can be skipped in a first
reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.

127

10.8 The fundamental equations at a glance 155

10.8.1 General continuous formalism . 155

10.8.2 Discrete formalism . 156

10.9 Applications to classical PDEs and operators 158

10.9.1 Classical PDEs . 158

10.9.2 Adjoint of classical operators . 158

10.10Practical aspects . 159

10.10.1 Validate your codes: computed gradients 159

10.10.2 Twin experiments . 161

10.11Regularization based on covariances operators* 163

10.11.1 Introduction . 163

10.11.2 Change of parameter variable, preconditioning 164

10.11.3 Equivalences between B−1-norms and regularization terms 165

128

10.1 General non-linear case in infinite dimension

Let us go back to infinite dimensional spaces and general non linear elliptic type BVP.

10.1.1 The direct model

Let Ω be a bounded domain (Ω Lipschitz). Let U be the controls space. U is supposed to be
a Hilbert space.
U Banach space only is potentially enough, however for simplicity it is here considered as a
Hilbert space.
Let V be the states space, V a Hilbert space.

We consider the following general direct model (the state equation):


Given u ∈ U, find y ∈ V such that:
A(u; y) = F (u) in Ω
with boundary conditions on ∂Ω

(10.1)

where A is an elliptic operator (with respect to the state y), defined from U × V into V ′ (dual
of V).
A(·; ·) is a-priori non-linear, both with respect to the parameter u and with respect to the state
y.
F is defined from U into V ′.

Assumption 10.1. The state equation (10.1) is well posed in the Hadamard sense: it has an
unique solution y ∈ V , moreover this solution is continuous with respect to the parameters (in
particular with respect to u).

In the linear case (A elliptic operator linear with respect to y) the Lax-Milgram theorem might
be the right framework to prove the existence-uniqueness, while the Mint-Browner theorem is
useful for a large class of non-linear cases, see e.g. [21].

Optimal control terminology: distributed control, boundary control

- If the control u appears in the ”bulk” (i.e. in Ω) then one says that it is a distributed control.
- If u appears on the boundary conditions only, then one says that it is a boundary control.

10.1.2 Examples

Two simple linear examples based on second order elliptic operators are as follows.

129

Example 1)

A(u; y) = −div(λ∇y) and F (u) = u

with mixed boundary conditions: y = 0 on Γ0 ; −λ∂ny = ϕ on ∂Ω/Γ0, with ϕ given.
λ ∈ L∞(Ω), λ > 0 a.e.
The corresponding functional spaces are : U = L2(Ω), V = H1

Γ0
(Ω).

The control u is spatially distributed; it constitutes the source term (the RHS).
The state equation models a diffusion phenomena e.g. heat diffusion in a structure, concen-
tration in a fluid, the elastic deformation of a membrane under external force f = u, the
electrostatic field in a conducting media, etc.
Here, u is a distributed control since defined in Ω; it represents an external force (since in the
RHS).

Exercice 10.2.
a) Write the state equation (and recall the adequate functional spaces).
Prove that it has one and only one (weak) solution in V .
b) Prove that the unique solution y is continuous with respect to u
i.e. the operator π : u ∈ U 7→ yu ∈ V is continuous.

Correction.

a) In vertu of Lax-Milgram theorem.

b) The inequalities of continuity and coercivity give the result. �

Example 2)

A non linear version of the previous example is as follows.

A(u; y) = −div(λ(y;u)∇y)

with mixed boundary conditions (independent of u).
In this still classical case, the PDE is non linear due to the term λ(y; ·).

Example 3)

Let us consider: A(u; y) = −div(λ∇y) and F (u) = f . A and F are here independent on the
control u, however the boundary conditions are, as:

y = 0 on Γ0 and − λ∂ny = u on ∂Ω/Γ0

(λ, f) are given in adequate functional spaces.
In this case u is a boundary control, it represents the flux at boundary.

The correct functional spaces are : U = L2(Ω), V = H1
Γ0

(Ω).
As previously, the corresponding state equation has one and only solution in V (in vertu of

130

Lax-Milgram theorem). The inequalities of continuity and coercivity show the continuity of y
with respect to u.

10.1.3 The objective and cost function terms (misfit to data)

The formalism is the same as previously presented.
One seek to make fit ”at best” (in the least-square sense here) the model outputs to data.
The observation operator Z mapping the state of the system y onto the observation space O
is introduced as : Z : y ∈ V 7→ z ∈ O with O here supposed to be a Hilbert space. The
observation operator Z is a-priori non-linear.

Z may represent a complex non-linear multi-scale model e.g. a map between sequences of 2D
optical images representing a 3D fluid dynamic flow to 3D velocity fields.

Next, a natural definition of the observation function is as already presented as:

Jobs(y) = ‖Z(y)− zobs‖2
R−1 (10.2)

The misfit is measured in the observation space Z, using the norm ‖ · ‖R. The operator R−1 is
symmetrical positive (semi-)definite therefore defining (semi-)norms.
Recall that in the Linear-Quadratic-Gaussian case, the optimal definition of R−1 relies on a
covariance matrix of the observation errors R (see Section ??).
In practice, because of lack of information, R is often simply diagonal, the diagonal coefficients
represent the a-priori confidence we have on each observation.
If enriched by a regularization term, the objective function reads as:

J(u ; y) = Jobs(y) + αreg Jreg(u) (10.3)

with Jreg the regularization term.
Note that J : U × V → R with Jobs : V → R and Jreg : U → R.

The cost function j(u) is finally defined as:

j(u) = J(u ; y(u))
where y(u) (also denoted yu) is the (unique) solution of the direct model (10.1).

(10.4)

We have: j : U → R.

Classical regularization terms

Classical regularization terms are as follows.
a) If a ”first guess”/ ”background” value ub is provided (value which is supposed to a good first

131

estimation of the unknown parameter u), then one may consider the term:

Jreg(u) =
∥∥∥u− ub∥∥∥2

B−1
(10.5)

with B−1 symmetrical positive (semi-)definite, defined as discussed in Section ??.

This additional term Jreg(u) is quadratic (in u) therefore strictly convex...

b) If one seeks to impose higher regularity on the parameter u, one may set:

Jreg(u) =
∥∥∥∇u∥∥∥2

2
or even

∥∥∥∆u
∥∥∥2

2
(10.6)

This term enforces to find the optimal solution u with higher regularity therefore in a smaller
sub-space.

Recall that
∫
‖∇u‖2dx corresponds to the energy of the Laplace operator ∆u (isotropic linear

elastic model solution).
∫
‖∆u‖2dx corresponds to the energy of the bi-Laplacian operator ∆2u

(plate model solution).

Note that Jreg(u) is here not quadratic in u anymore...

More sophisticated regularization term expressions may be derived from physical or probabilis-
tic analyses. This point is discussed in a next chapter.

LQ problems vs real-world problems Most of the control problems are not LQ problems
for one of at least one of the following reason:

• The model is not linear.

• The regularization term ‖Jreg(u)‖ is higher order only (e.g. of the form ‖∇u‖2) therefore
not strictly convex in u (but in ‖∇u‖ only).

• Even if the direct model is linear then we generally do not have measurements everywhere
in Ω, that is at each numerical grid points/nodes!

In real-world problems, data zobs are generally available at some locations only or densely but
at larger scale compared to the model resolution scale. For example, satellite observations
are generally too large scale (therefore averaged observations) to measure small scale dynam-
ics. Another example are camera measurements of a material presenting complex multi-scale
structures. As a consequence, the actual misfit term may have one of the following form:∫

ω

(Z(y)− zobs)2 dx or
M∑
m=1

(Z(y)(xm)− zobs(xm))2 or

∫
Ω

(Z(y)−F(zobs))2 dx

132

where ω is a non-convex subset of the complete domain Ω, M is the total number of point-wise
data and F denotes e.g. an uncertain low-pass band filter.

In one of these cases, the cost function is not strictly convex anymore and the uniqueness of a
minimum u∗ is not guaranteed anymore.

The minimization problem is often ill-conditioned: in the vicinity of a minimum (potentially
local only), the cost function presents ”nearly flat valleys”, Fig. 10.1.

Figure 10.1: Tikhonov regularization. (L) A typical ”poorly” convex functional jmisfit(·): ill-
conditioned minimisation problem. (R) Regularized functional j(.) = (jmisfit(.) + αregjreg(.)),
with jreg is here strictly convex in u and defined from a prior value u0.

10.1.4 Optimal control problem, VDA problem

Variational Data Assimilation (VDA) simply relies on the optimal control of the model (here a
PDE) with the cost function j(u) measuring the discrepancy between data and model outputs.

As previously, the control-to-state mapping (the ”model operator”) reads as: M : u ∈ U 7→
yu ∈ V with yu the (unique) solution of the direct model (10.1).

Let Uad, subset of U , be the admissible control set.The optimal control problem reads:
Find u∗ ∈ Uad such that:
j(u∗) = min

Uad
j(u)

with the cost function j defined by (10.4) .

(10.7)

Problem (10.7) can be re-read as:{
Minimize j(u) = J(u; yu) in Uad
under the ”model constraint” (10.1)

(10.8)

133

In other words, the problem is an optimization problem under the constraint ”the model is
satisfied”. This point of view naturally leads to introduce the Lagrangian of this optimization
problem. This is the approach followed in next section.

From	direct	modeling	to	model	calibration,	parameter	identification,	….

Model	output:
The	computed	solution	

or	a	resuting quantity	(eg a	
local	by-product	value)

Inputs	parameters:
• e.g.	material	properties,	empirical	laws	coeffs
• Boundary	conditions,	Initial	conditions	

Model (ODE, PDE)
-

Computational Code
(FD, FV, FE methods)

Observations,		
measurements	

(Dataset)

Feedback	to	the
uncertain
input		parameters
of	the	model		…

Discrepancy:
Cost function

Figure 10.2: Principle of VDA: control some uncertain input model parameters u to make fit
the model output y with data.

10.1.5 On the numerical resolution in the general context

Let us recall the following points. The VDA problem consists to solve the optimization problem
(10.8).
If the dimension of the (discrete) parameter u is large, moreover if the computation of the cost
function j(u) is CPU-time consuming (this the case e.g. if considering a 3d PDE model), then
this optimization problem cannot be solved by a global optimization algorithm such as e.g.
MCMC / Monte-Carlo type method. In this case, it has to be solved by descent algorithm
aiming at computing a local minimum only. Descent algorithms require the information of the
gradient ∇j(u), see some details in Appendix.

The computation of the gradient ∇j(u) in the large dimensional case (u is of large dimension),
is tricky.
Different ways to compute the gradient ∇j(u) are discussed in next sections, including those
by introducing the adjoint model.

10.2 Back to mathematical foundations

10.2.1 Differential calculus in infinite dimensions

Please consult the Appendices and the supplementary material.

134

10.2.2 Weak forms and dual space representation

Considering weak forms of the equations is interesting in mathematical analysis e.g. aiming
at characterizing ”weak” solutions that is solutions in larger functional spaces thus enabling
to represent observed/real-world singularities (discontinuities). Moreover, weak formulations
constitute the first key stage to derive a Finite Element numerical scheme. Here, considering
the weak form of the equations enables to naturally and rigorously derive the adjoint equations
including in the presence of non trivial boundary conditions (which is often the case in real-
world problems).
Then, let us write the weak (variational) form of the direct model. To do so, let us set the
forms:

a(u; y, z) : U × V × V → R ; a(u; y, z) =< A(u; y), z >V ′×V

b(u; z) : U × V → R ; b(u; z) =< F (u), z >V ′×V

Let us point out that both z 7→ a(.; ., z) and z 7→ b(.; z) are necessarily linear (linearity of the
forms with respect to test functions z). Furthermore, if the direct model is linear (i.e. with
respect to its unknown y) then the form a(.; y, z) is bilinear. If not, it is not.

The weak formulation of the direct model (the state equation) reads:{
Given u ∈ U, find y ∈ V such that:
a(u; y, z) = b(u; z) for all z ∈ V (10.9)

By using the Riez-Frechet representation theorem (see Section ?? in Appendix), (10.9) is equiv-
alent to:

A(u; y) = F (u) in V ′ (10.10)

Exercice 10.3. Apply this general presentation to the toy BVP.

10.2.3 Differential j′(u) vs gradient ∇j(u)

As previously discussed, to numerically solve the optimal control problem with large dimension
(discrete) control variable, one needs to employ descent algorithms which are based on the
gradient information ∇j(u).

To compute the gradient one first needs to clarify what is the link between the differential j′(·)
and the gradient ∇j(·).
To perform computations, the state equation (direct model) has to be discretized using an
adequate numerical method e.g. finite differences, finite elements, finite volumes.
Recall that j : U → R, then j′(u) ∈ L(U ;R).
Let us denote Uh the discrete control space with dim(Uh) = m (there is m discrete control
variables). We assume that Uh ⊂ U .

135

The gradient ∇j(u) to be computed, ∇j(u) ∈ Rm, is related to the differential j′(u) by the
relation:

< ∇j(u), δu >Rm= j′(u) · δu for all δu ∈ Uh ⊂ Rm (10.11)

Of course, the functional j(·) is here assumed to be differentiable. In the sequel sufficient con-
ditions are presented to have j(·) continuously differentiable that is of class C1.

Note that a few exercises on differential calculus is proposed in the supplementary material of
this course. Also one may do the following exercise.

Exercice 10.4. Let j be the cost function defined by j(u) = J(u; yu) with J defined by (10.3).
a) Write a sufficient condition to have j of class C1.
b) Write an expression of the differential j′(u).δu, for all δu
c) Is the cost function j(u) strictly convex ?
Discuss the answer depending on the observation operator Z and the regularization term form.
Recall: linear + quadratic implies strictly convex.

10.3 Equations derivation from the Lagrangian

As already mentioned, the optimization problem (10.8) may be read as a standard differentiable
optimization problem with the model (10.1) viewed as an equality constraint.

10.3.1 The Lagrangian

All calculations below are formal: we do not pay attention to functionals spaces. The equations
may be read as being discrete systems too.

The optimization problem (10.8) may be viewed as a (differentiable) optimization problem with
the model (10.1) being an equality constraint. Then, it is natural to write the corresponding
Lagrangian L:

L(u; y, p) = J(u; y)− < A(u; y)− F (u), p > (10.12)

with p the Lagrangian multiplier.

• If considering that A(u; y) and F (u) denote the PDE terms in finite dimension, e.g.
A(u; y) the rigidity matrix in FEM and F (u) the RHS vector, then < ·, · > simply de-
notes the Euclidian scalar product.

• If considering that A(u; y) and F (u) represent the operators of the PDE, e.g. A(u; y) =
−div(u∇y), then < ·, · > denotes the dual product < ·, · >V ′×V with V the state y be-
longs to, V a Hilbert space.

136

In this case, p is a dual variable belonging to V too.

No constraint are here imposed to the control u (neither equality nor inequality ones).

10.3.2 The optimality system

The stationary point(s) of the Lagrangian provide the necessary optimality condition. These
points are determined by the relation: ∇L(u; y, p) = 0. This reads:

∂uL(u; y, p) · δu = 0 ∀δu
∂yL(u; y, p) · δy = 0 ∀δy
∂pL(u; y, p) · δp = 0 ∀δp

(10.13)

The last equation of (10.13) provides the direct model: A(u; y) = F (u).

The second equation of (10.13) provides the following linearized equation:

∂yJ(u; y) · δy− < ∂yA(u; y) · δy, p >= 0 ∀δy

Therefore: < ∂yJ(u; y)− [∂yA(u; y)]∗ · p, δy >= 0 ∀δy.
Therefore:

[∂yA(u; y)]∗ · p = ∂yJ(u, y)

This is the so-called adjoint equation.

The first equation of (10.13) reads: ∂uJ(u; y) · δu− < (∂uA(u; y)− F ′(u)) · δu, p >= 0 ∀δu.

It will be shown later that this equation is the necessary condition which reads: ”the gradient
equals 0”.

Using the particular decomposition of J(u; y) introduced in (10.3), we have:

∂yJ(u, y) · δy = J ′obs(y) · δy and ∂uJ(u; y) · δu = J ′reg(u) · δu (10.14)

In summary, we have the set of equations:
Given u, find y s.t. : A(u; y) = F (u) (Direct model)
Given (u, y), find p s.t. : [∂yA(u; y)]∗ · p = J ′obs(y) (Adjoint model)
Given (y, p), find u s.t. : [∂uA(u; y)− F ′(u)]∗ · p = J ′reg(u) (1st order condition)

(10.15)

This set of equations constitutes the so-called optimality system.

137

10.3.3 Using weak forms

Let V be the state space (y ∈ V), V a Hilbert space. Let < ·, · >V ′×V be the dual product.
Then, the Lagrangian reads:

L(u; y, p) = J(u; y)− [a(u; y, p)− b(u; p)]

L : U × V × V → R

Next, the last equation of (10.13) provides the state equation (the direct model in weak
form):

a(u; y, δp) = b(u; δp) ∀δp ∈ V

The second equation of (10.13) provides the following linearized equation:

∂ya(u; y, p).δy = ∂yJ(u, y).δy ∀δy ∈ V

It is the adjoint equation.

The first equation of (10.13) reads:

∂uJ(u; y) · δu− [∂ua(u; y, p)− ∂ub(u; p)] · δu = 0 ∀δu ∈ U

It will be shown that: j′(u) · δu = ∂uJ(u; y) · δu− [∂ua(u; y, p)− ∂ub(u; p)] · δu.
Therefore this last equation reads: j′(u) = 0.

These three equations summarizes as:
a(u; y, z) = b(u; z) ∀z ∈ V

∂ya(u; y, p) · z = ∂yJ(u, y) · z ∀z ∈ V
∂uJ(u; y) · δu− [∂ua(u; y, p)− ∂ub(u; p)] · δu = 0 ∀δu ∈ U

(10.16)

Exercice 10.5. Apply the general expressions above to the equations of the programming prac-
tical.

10.4 Mathematical purposes *

This is a ”to go further section”.

10.4.1 Differentiability of the cost function

In the following, we will need to differentiate the cost function j (with respect to its unique
variable u). Thus, the following question is of main interest in order to address the optimal
control problem:

138

Is the cost function (continuously) differentiable ?

This question of differentiability is potentially difficult to answer for non-linear systems. For
non-linear hyperbolic system in particular, the solution may be even not continuous with re-
spect to the control variable u...

A useful result to address this question of differentiability is the implicit function theorem.

Theorem 10.6. (Implicit function theorem) Let us assume that:
i) the operator A and F in the state equation (10.1) are C1 (i.e. A ∈ C1(U × V) and
F ∈ C1(U)),
ii) the linearized problem is well-posed (i.e. given (u0, y0) the linearized operator ∂uA(u0; y0)
is an isomorphism from V into V ′).

Then, the operator (the ”implicit function”) M : u 7→ yu, with yu is the (unique) solution
of the state equation, is locally C1 (locally means it exists a neighborhood of u0 such that).

In short, in view to apply the implicit function theorem we need to verify that the state oper-
ators are C1 and the linearized problem is well-posed.

Here the ”implicit function” is the ”model operator” M(u) defined by (??).

Example 3) We set: A(u; y) = −u4y, F (u) = f , with mixed boundary conditions: y = 0 on
Γ0 ; −u∂ny = ϕ on ∂Ω/Γ0, with ϕ given.
Here, u is a distributed control, it is the diffusivity coefficient of the material.

Exercice 10.7.
a) Write the corresponding state equation, and prove that it has we and only (weak) solution in
V for u given in L∞(Ω̄), u > 0 a.e..
b) Prove that the unique solution y is continuous and differentiable with respect to u (in the
right functional space).

10.4.2 Existence and uniqueness of the optimal control in the LQ
case

Warm up with a basic linear finite dimensional problem

Let us consider a problem such that M , the control-to-state map, is defined from Rm onto Rn

as M : u 7→ yu, with yu the unique solution of the state equation given u.
Moreover, we assume that M is linear.

139

An example is as follows. The control appears in the RHS of the (finite dimensional) state
equation as:

Ay = Fu in Rn (10.17)

with A ∈ Mn×n a non singular real matrix, F a rectangular matrix, F ∈ Mn×m, m < n, of
maximal rank m.

We consider the usual quadratic observation function J(u; y) = ‖Zy− zobs‖2
2, with the observa-

tion operator Z a non-singular linear matrix Z of Mn×n.
For a sake of simplicity, we set here zobs = 0.

The cost function is defined as usual as: j(u) = J(u; yu).

The optimal control problem aims at solving u∗ = arg min
u∈Rm

j(u) .

Exercise 10.8. Show that this optimal control problem admits an unique solution u∗, even
without regularization term in J(u; y).

Correction. In this particular linear case, we have: yu = A−1Fu ≡Mu . The control-to-state
map M is linear.

Let us set N = (Z ◦M), N non-singular matrix of Mn×n. We have:

j(u) =< Nu,Nu >2=< NTNu, u >2= ‖u‖2
NTN

Indeed, the matrix NTN is symmetric positive definite (since Z and M invertible), therefore
defining a norm.
As a consequence j(u) is strictly convex: it admits an unique minimum u∗. �

Back to the general continuous case

In the general case (moreover in infinite dimension), the idea remains the same as the previous
basic linear case.
Calculations are a bit heavier due to the non vanishing dataset zobs, also due to the more general
observation operator Z (however still linear).

Recall that the state equation reads:

A(u; y) = F (u) in V ′

with V ′ the dual space of the Hilbert space V .
Next, the cost function j(u) is defined from the observation function J(u; y), see (10.4), which
is defined as the sum of the data misfit term Jobs(y) and a regularization term Jreg(u), see (10.3).

140

The state equation operator is said to be coercive in V if for all y ∈ V , for all u ∈ U , there
exists α > 0 such that:

< A(u; y), y >V ′×V = a(u; y, y) ≥ α‖y‖2

The regularization term may have different forms. If Jreg(u) is quadratic, therefore strictly
convex, as defined by (10.5), this defines a LQ problem.

In the LQ case, the existence and uniqueness of the optimal control u∗ hold.

Theorem 10.9. Let us assume that the state equation operator A(·; y) is linear and coercive.
Let us consider the observation function J(u; y) defined as (10.3) with the regularization
term (10.5). Assume moreover that Uad is a closed convex subset of U .
Then, it exists a unique solution u∗ at the optimal control problem (10.7).

Proof derived from those presented in [33, 32] Chapter 1.
Past Step 0) below, the proof is very similar to those of Theorem 9.3.

Let us consider the expression of J(u; y) as in (10.3)-(10.5) with ub = 0. The cost function
satisfies j(u) = J(u; yu).

Step 0) We first reformulate the cost function expression as follows:

j(u) = ‖Z(yu − y0) + Zy0 − zobs‖2 + ‖u‖2
B−1

with y0 given in V . We set:

π(u, v) = (Z(yu − y0), Z(yv − y0))Z + (Bu, v) and D(v) = (zobs − Zy0, Z(yv − y0))Z

Then, the cost function reads:

j(u) = π(u, u)− 2D(u) + ‖zobs − Zy0‖2
Z

Since the model operator M is affine and continuous, the form π is bilinear symmetric in U .
Moreover it is coercive in the sense:

π(u, u) ≥ c0‖u‖2 , c0 > 0, ∀u ∈ U

The form D(u) is linear continuous in U .
Therefore j(u) is continuous and satisfies:

j(u) ≥ c0‖u‖2 − c1‖u‖ (10.18)

for a given c1 > 0.

141

From now, the proof is very similar to those for ODEs, see Theorem 9.3.

A) Proof of existence. It is based on the convergence of minimizing sequence (calculus of vari-
ations, D. Hilbert, 1900 a.c. approx.).

Step 1). Let (un) be a minimizing sequence:

j(un)→n inf{j(u), u ∈ Uad} (10.19)

From (10.18)(10.19), we obtain:

‖un‖ ≤ constant

Hence there exists a sub-sequence (unk) which converges weakly to a control u in Uad:

unk ⇁ u in Uad

Step 2). Uad is a closed convex subset hence weakly closed. Hence u ∈ Uad.

Step 3). Since the cost function j(u) is continuous (lower semi-continuous would be enough),
we have: j(u) = min

v∈Uad
j(v). In other words, u is solution of the optimal control problem.

B) Uniqueness. The bilinear form v 7→ π(v, v) is coercitive hence the cost function is strictly
convex.
Then, the uniqueness is a straightforward consequence of the strict convexity of j(u). �

Exercice 10.10. Detail the proof of uniqueness.

Correction.
Hint: It is very similar to the proof in the ODE case. �

Cases with higher-order regularization terms Jreg(u) In the case J(u; y) is still decom-
posed as (10.3) but with a higher-order regularization term such as e.g. (10.6), then Jreg(u) may
be not strictly convex anymore, without additional assumption... In such a case, the existence
holds but the uniqueness may not.
However, if e.g. U = H1

Γ(Ω0), H1
Γ(Ω0) = {v ∈ H1(Ω), v|Γ0 = 0}, then in vertu of the Poincaré’s

inequality, the estimation (10.18) still holds and the proof remains the same.
In this case, the control variable u is controlled by its gradient (the regularization term) plus a
given value at some locations (on Γ0).

142

10.5 Gradient computation: methods for small dimen-

sion cases

10.5.1 Recall: why and how to compute the cost function gradi-
ent?

To solve the optimization problem (10.8) few approaches are a-priori possible, global optimiza-
tion methods or local minimization methods. The choice mainly depends on the CPU time
(denoted by T jcpu) required to evaluate the cost function j(u) and on the control variable di-
mension m (therefore the dimension of the gradient ∇j(u)).

If T jcpu is small (let say in fractions of seconds using your laptop or a super-computer, what-
ever), then one can adopt a global optimization approach based on stochastic algorithms e.g.
Monte-Carlo type algorithms, heuristic methods (e.g. genetic algorithms) or surface response
approximation.

When the state equation is a PDE system, T jcpu is generally not small enough to do so. In this
case, global optimization is not worth considering. Then, one has to adopt local minimization
approaches based on algorithms of descent. Then the computation of the cost function gradient
is required.

If the m is large then one very likely needs to employ descent algorithms, therefore to compute
the cost function gradient ∇j(uh).

Before going further, let us recall the relation ship between differential j′(u) in a given direction
δu and the gradient value in this direction, see 10.11: < ∇j(u), δu >Rm= j′(u) · δu for all δu ∈
Uh ⊂ Rm.

Problem statement

In the discrete context, the dimension of the gradient ∇j(u) equals m, m the dimension of the
discrete control variable.
Descent algorithms require scalar products of the form < ∇j(u), δu > for at least m directions
δu.

Composite control variable case In the case the control variables includes different natures
of components e.g. u = (u1, u2) then we have:

∇j(u) = (
∂j

∂u1

(u),
∂j

∂u2

(u))T

143

j′(u) · δu =
∂j

∂u1

(u) · δu1 +
∂j

∂u2

(u) · δu2

Small dimensional vs large dimensional case In practice we will have to distinguish
small dimensional cases (m = O(1)) to large dimensional cases (m = O(102) and much more).
The challenging case will be the large dimensional one of course. That is a key question will
be:

How to compute the (scalar) values < ∇j(u), δu > for a large number of directions δu i.e.
with m large ?

In the next paragraphs, we first present methods to compute < ∇j(u), δu > which are tractable
for m very small only, i.e. for small dimensional inverse problems only.

10.5.2 Computing the gradient without adjoint model

Two natural options arise to compute the differential j′(u), therefore the gradient ∇j(u).

Option 1: the Finite Difference gradient

As already mentioned, the historical method, and the most simple one too, consists to approx-
imate the gradient values using Finite Differences (FD).
Let Uh be the discrete control space, dim(Uh) = m. Then, given δu ∈ Rm, an approximation
of the gradient in the direction δu can be obtained by employing one of the three following
formulas.

j′(u) · δu ≈ ±j(u± εδu)− j(u)

ε
at order 1 in ε (10.20)

j′(u) · δu ≈ j(u+ εδu)− j(u− εδu)

ε
at order 2 in ε (10.21)

Advantages and drawbacks of the FD approach.
⊕: simple to implement, non-intrusive.
	: requires (m+ 1) evaluations of j(u) therefore (m+ 1) resolutions of the direct model. This
is generally not possible for m large.
	: The accuracy depends on the choice of ε (and an optimal value of ε is a-priori unknown).

Option 2: expression of j′(u) based on the Tangent Linear Model (TLM)

The straightforward expression of j′(u) (differential calculations) Let us write the
straightforward expression of the differential. Let u0 in U , for all δu ∈ U ,

j′(u0) · δu =
∂J

∂u
(u0; y(u0)) · δu+

∂J

∂y
(u0; y(u0)) · wδu (10.22)

144

where wδu denotes the derivative of the state y with respect to u in the direction δu:

wδu =
dy

du
(u0) · δu (10.23)

In the case that J(u; y) has the particular form (10.3), we have: ∂yJ(u0; y) = J ′obs(y) and
∂uJ(u0; y) = αregJ

′
reg(u0). Therefore:

j′(u0) · δu = J ′obs(y(u0)) · wδu + αregJ
′
reg(u0) · δu (10.24)

wδu represents the differential of the state with respect to the control variable.
For example, wδu represents the differential of a temperature field in the domain with respect
to the (inhomogeneous therefore spatially distributed) diffusivity parameter.
particular This quantity wδu is not intuitive however it can be obtained by simply deriving the
direct model: this is the so-called Tangent Linear Model (TLM).

The TLM The TLM consists to differentiate the state equation with respect to the control
variable u. By simple differentiation, we obtain:

∂A

∂u
(u; yu) · δu+

∂A

∂y
(u; yu) · (dy

du
(u) · δu) = F ′(u) · δu (10.25)

Therefore the TLM:
Given u0 ∈ U and yu0 the corresponding solution of the state equation (10.1),
given a direction δu ∈ U, find wδu ∈ V such that:
∂A

∂y
(u0; yu0).wδu =

[
F ′(u0)− ∂A

∂u
(u0; yu0)

]
· δu in Ω

with corresponding linearized boundary conditions on ∂Ω

(10.26)

Remark 10.11.

• For each new value of δu, only the RHS of the TLM changes.
As a consequence if the numerical solver relies on a factorization of the LHS, the latter
can be done once for all.

• In the case of a linear model, that is the map y 7→ A(·; y) is linear, the TLM simplifies
as:

A(u0;wδu) =

[
F ′(u0)− ∂A

∂u
(u0; yu0)

]
· δu in Ω

In this case, the differential operator therefore the numerical solver, are the same to the direct
model solver. Only the RHS changes compared to the direct model.

145

The weak form of the TLM is as follows:
Given u ∈ U and yu0 solution of (10.9),
given δu ∈ U, find w ∈ V such that:
∂a

∂y
(u; yu0 , z).w = [

∂b

∂u
(u; z)− ∂a

∂u
(u; yu0 , z)].δu for all z ∈ V

(10.27)

Solving the TLM provides wδu =
dy

du
(u).δu,

that is the derivative of the state y with respect to the control u in the direction δu.

Recall that: M : u ∈ U 7→ yu0 ∈ V . Therefore
dy

du
(u) ∈ L(U ;V) and wδu ∈ V .

Note that of course if the direct model is linear then we simply have: ∂A
∂y

(u0; yu0).w = A(u0;w).

Advantages and drawbacks of the TLM-based expression.
	: If the direct model is non-linear, the TLM has to be implemented (intrusive approach).
Note that if the non-linear model is solved by the Newton-Raphson method (or if the direct
model is linear), then the RHS only has to be coded.
The TLM has to be solved m times to obtain wδu in each direction δu. Therefore if m is
large and the CPU time for each resolution is large than the TLM approach to compute wδu is
prohibitive.
⊕: The accuracy of wδu, therefore of the gradient, is fully controlled by the numerical scheme
accuracy.
Compared to the FD approach, this does not depend on an arbitrary setting of ε.

In the end, the FD approach and the TLM approach are feasible for small dimension cases only
that is for m = O(1). Moreover, if possible, it is preferable to compute the gradient using the
TLM compared to the FD.

Remark 10.12. It is assumed that the TLM is well-posed. Let us remark that if we have proved
existence of solutions to the non-linear model, one likely had to prove that the linearized model
is well-posed.
Moreover, if the implicit function theorem holds (and has been applied to prove the differentia-
bility of the state with respect to the control), then the linearized problem must be well-posed.
Nevertheless for real-like non-linear problems, even the linearized model analysis can be non
straightforward at all...

Resulting sensitivity maps Let us point out that the TLM provides wδu that is the local
sensitivity of the state yu with respect to the control u, at ”point” u in the direction δu.
In a modeling context, the resulting sensitivity map (it is distributed values) constitue rich
information to better understand the model and/or the modeled phenomena

146

The gradient obtained from the TLM correspond to the so-called ”sensitivity functions” derived
in the books [13, 27].

Exercice 10.13. Write the TLM of your practical; both the weak and the classical forms.

Exercice 10.14. In your programming practical, write a formal procedure aiming at plotting
”local sensitivity maps”. �

10.5.3 Gradient components: in the weak or the classical form?
*

This a ”to go further paragraph”.
We have written above the state, linear tangent and adjoint equations in their weak forms for
few reasons. First, it is the right framework to study the solutions in the weak sense. Second,
deriving the correct adjoint equations in the weak form may be more clear since the weak forms
include naturally the boundary conditions. Third, it is the natural framework in the case of
the finite element method.
Nevertheless, in practice if not considering the finite element method, deriving the equations
in their weak forms is not compulsory. Once the reader is confortable with these equation
derivations process, it is possible to write all the required equations directly in the classical
forms or going back from the weak to the classical forms.
A derivation of the equations in finite dimension or in the semi-discrete form (time-dependent
problems) are proposed in Section ??.

Gradient discretization in the case of FEM In the case of Finite Element discretization,
an extra question remains concerning the discretization of the gradient expression (??). Recall
j′(u) ∈ L(U ;R). Let us denote {ψui }1≤i≤m the finite element basis of the control variable u.
Then the i-th component of the (discretized) gradient is naturally defined as follows :

∂ij(u) =< j′(u), ψui >

Example Let us consider the direct model : −∆y = u (the control is the RHS) with homo-
geneous Dirichlet boundary conditions on ∂Ω. Let us consider the cost function :

j(u) =
1

2

∫
Ω

(yu)2dx+
1

2

∫
Ω

u2dx

If using finite element discretization, then the ith component of the gradient reads :

∂ij(u) =

∫
Ω

puψui dx+

∫
Ω

uψui dx , 1 ≤ i ≤ m

with pu the (discrete) adjoint state function (to be decomposed in its own finite element basis)
and u to be decomposed in its finite element basis too.

147

Finite difference case Now let us consider the same problem but using finite difference
schemes (and the same discretization for u and p, with m point values). The ith component of
the (discrete) gradient reads :

∂ij(u) = pui + ui , 1 ≤ i ≤ m

with pui the ith value of the (discrete) adjoint state.

In the case of finite element discretization, there is a choice to make for the gradient definition.
In the example above, the choice would read:∫

Ω

puψui dx vs pui (10.28)

These two possible expressions do not present the same properties, in particular concerning
their dependence on the local mesh element size.

10.6 Cost gradient computation: the adjoint method

Previously, the optimality system has been formally derived by introducing the Lagrangian and
by calculating necessary conditions of its stationary points. One of the resulting equation was
new; it was the so-called adjoint equation.
In this section, first the adjoint model is derived in a different way, second the calculations are
rigorously justified (Theorem 10.15).

The adjoint equations are a mathematical trick enabling the gradient computation by solving
one (1) extra system only. This has to be compared to the O(m) resolutions if using the
FD-based approach or the TLM-based approach.

10.6.1 Deriving the gradient expression without the term wδu

In this section the expression of the adjoint equations and the corresponding gradient expression
are rigorously derived for the general direct model (10.1), that is:

A(u; y) = F (u) in Ω with boundary conditions on ∂Ω

The goal is to minimize j(u) with j(u) = J(u; yu), yu the unique solution of the direct model.

If not confortable with the employed mathematical notations, the reader may directly read the
resulting expressions in discrete form in the summary section 10.8.

Recall that: ∀δu ∈ U ,

j′(u) · δu =
∂J

∂u
(u; yu) · δu+

∂J

∂y
(u; yu) · wδu (10.29)

148

Recall the TLM:

<
∂A

∂y
(u; yu).wδu, z >V ′×V =<

∂F

∂u
(u).δu, z >V ′×V − <

∂A

∂u
(u; yu).δu, z >V ′×V ∀z ∈ V

(10.30)
with wδu defined by (10.23).

Recall the relation for any linear operator L: < Ly, z >V ′×V =< L∗z, y >V ′×V .

By adding the two equations above, we obtain: ∀δu ∈ U ,

j′(u) · δu =
∂J

∂u
(u; yu) · δu− <

(
∂A

∂u
(u; yu)− ∂F

∂u
(u)

)
· δu, z >V ′×V

+ <

(
∂J

∂y
(u; yu)− (

∂A

∂y
)∗(u; yu) · z

)
, wδu >V ′×V ∀z ∈ V (10.31)

where (∂yA)∗ is the adjoint operator of the linearized direct model operator ∂yA.

The goal is here to make vanish the term in wδu in the expression of j′(u) · δu above.

Then we define an ”adjoint field” pu such that it satisfies:

<

(
∂A

∂y
(u; yu)

)∗
· pu, w >V ′×V = <

∂J

∂y
(u, yu), w >V ′×V ∀w ∈ V, (10.32)

We then reach our goal: an expression of j′(u) independent of wδu.

j′(u) · δu =
∂J

∂u
(u; yu) · δu− <

(
∂A

∂u
(u; yu)− ∂F

∂u
(u)

)
· δu, pu >V ′×V

We denote indifferently j′(u) · δu ≡< j′(u), δu >U ′×U with < ., . >U ′×U the duality product in
U (U Banach space).

We obtain the expected expression: ∀δu ∈ U ,

< j′(u), δu >U ′×U = <
∂J

∂u
(u; yu), δu >U ′×U − <

(
∂A

∂u
(u; yu)− ∂F

∂u
(u)

)∗
· pu, δu >U ′×U

(10.33)
Therefore the explicit expression of j′(u) in U ′ = L(U,R),

j′(u) =
∂J

∂u
(u; yu) −

(
∂A

∂u
(u; yu)− ∂F

∂u
(u)

)∗
· pu in U ′ (10.34)

This expression of j′(u) independent of wδu relies on the so-called adjoint equation (10.32).

149

10.6.2 The general key result

The formal calculations above have shown the key expressions of the adjoint equation and
the resulting gradient (differential) expression (10.34). Below, these same calculations are re-
demonstrated by using weak forms too. Moreover, a few comments are made.

Theorem 10.15. Let us consider the direct model (10.1) and the cost function j(u) defined
by (10.3)-(10.4). It is assumed that:
i) the state equation (10.9) is well-posed,
ii) the TLM (10.27) is well-posed,
iii) the operators A(u; y), F (u), see (10.9), are C1 with respect to u.
Then, given a C1 objective function J(u; y) and the cost function j(u) defined by (10.4),
the cost function j(c) is of class C1.
Moreover, the expression of the differential j′(u) reads: ∀δu ∈ U ,

j′(u) · δu =
∂J

∂u
(u; yu) · δu−

(
∂a

∂u
(u; yu, pu) · δu− ∂b

∂u
(u; pu) · δu

)
(10.35)

with ∂uJ(u; yu) = αregJ
′
reg(u) if considering the particular decomposition (10.3) of J(u; y).

yu is the unique solution of the state equation (10.9),
and pu is solution of the adjoint equation:

Given u and yu the unique solution of (10.9),
find p ∈ V satisfying:
∂a

∂y
(u; yu, p) · z =

∂J

∂y
(u, yu) · z ∀z ∈ V

(10.36)

Its solution pu (the adjoint state) exists and is unique.
One has ∂yJ(u; yu) = J ′obs(y) if considering the particular decomposition (10.3) of J(u; y).

Proof.
Under assumptions i)-iii), the implicit function theorem applies and the differentiability of the
state with respect to u follows: the operator M : u ∈ U 7→ yu ∈ V is C1. Therefore j(u) is of
class C1 too.
We have: j′(u) ∈ L(U ;R). As already written above:

< j′(u), δu >U ′×U = <
∂J

∂u
(u; yu), δu >U ′×U + <

∂J

∂y
(u; yu), wδu >V ′×V ∀δu ∈ U (10.37)

(see Lemma (10.22)) with < ·, · >U ′×U , < ·, · >V ′×V the corresponding duality products.
For sake of simplicity, we denote: j′(u) · δu ≡< j′(u), δu >U ′×U .

150

By this equation with the TLM in weak form, see (10.30), we obtain:

< j′(u), δu >U ′×U = <
∂J

∂u
(u; yu), δu >U ′×U

− <

(
∂A

∂u
(u; yu)− ∂F

∂u
(u)

)
· δu, z >V ′×V

+ <

(
∂J

∂y
(u; yu)−

(
∂A

∂y

)∗
(u; yu) · z

)
, wδu >V ′×V ∀δu ∈ U ∀z ∈ V

where (∂yA)∗ is the adjoint operator of the linearized direct model operator ∂yA.

The linearized problem is well-posed therefore the operator ∂yA(u; yu) is an isomorphism from
V into V ′, and its adjoint operator (∂yA)∗(u; yu) is an isomorphism from V into V ′ too, see e.g.
[10].
As a consequence, the adjoint equation (10.32) is well-posed too.
pu ∈ V is defined as its unique solution. We obtain the final expression (10.35) of j′(u). �

Advantages and drawbacks of the adjoint-based expression

⊕: The expression of j′(u) · δu does not depend on wδu anymore: the expression of j′(u) is
explicit with respect to the direction δu.
Thus, after discretization if solving the direct model plus the adjoint model then all components
of the gradient follow i.e. the complete gradient vector.
In other words, for m large, the adjoint-based approach enables to obtain the m gradient com-
ponents by one (1) extra system to solve only.

Let us recall that after discretization (in the finite dimension space Uh), we have:

∇j(u) ∈ Rm, < ∇j(u), δu >Rm= j′(u) · δu for all δu ∈ Uh ⊂ Rm

	: The adjoint model has to be implemented (intrusive approach).
This important drawback may be done by automatic differentiation. This option is more or
less complex depending on the direct code complexity and the programming langage.

Remarks

• By construction, the adjoint model is linear, whatever if the direct model is linear or not.
Recall the adjoint is the adjoint operator of the linearized direct operator.

• Let us point out that excepted for few particular cases (e.g. if the operator A is self-
adjoint, A∗ = A, of course), the adjoint model has in the general case no physical meaning.

151

• If the direct operator is self-adjoint, in other words if a(u, v) is bilinear symmetric, then
the adjoint operator equals the direct operator (but the RHS).
Indeed, in such a case, we have:

∂ya(u; yu, p).z =︸︷︷︸
linear

a(u; z, p) =︸︷︷︸
symmetric

a(u; p, z) (10.38)

Only the source term (RHS) and the boundary conditions differ from the state equation.
Then the differential operator, hence the numerical method and numerical solver, are the
same.

Case of non-homogeneous Dirichlet boundary conditions

Let us consider the condition: y = yd on Γd ⊂ ∂Ω. Then, the direct model reads:{
Find y ∈ Vt = V0 ⊕ yd such that :
a(u; y, z) = b(u; z) for all z ∈ V0

where Vt, affine subspace, is the Dirichlet translation of V0 (V0 subspace of V Hilbert).
A typical example for a second order linear elliptic equation is : V = H1(Ω), V0 = {z ∈ V, z =
0 on Γd} and Vt = V0 ⊕ yd = {z ∈ V, z = yd on Γd}.

Then the question is : What the non-homogeneous Dirichlet boundary conditions becomes
when defining the TLM hence the adjoint model ?

The answer is : the non-homogeneous Dirichlet condition in the direct model becomes the cor-
responding homogeneous condition in the linear tangent and adjoint models.

Let us show this statement in the linear case.
The direct model, if linear in y, re-reads as follows:{

Find y0 ∈ V0 such that :

a(u; y0, z) = b(u; z)− a(u; ỹd, z) = b̃(u; z) for all z ∈ V0

with y0 = y − ỹd, ỹd being a raising from yd on Γd onto the whole domain Ω.

Following the proof of Theorem 10.15, it is easy to notice that the corresponding boundary
condition in the TLM is homogeneous, hence the same for the adjoint model.

The optimality system

In the case, K = Uad = V and if considering the particular decomposition (10.3) of J(u; y), the
optimality system reads as follows.
The optimal control solution u of Problem (10.7) has to satisfy:

152


a(u; yu, z) = b(u; z) ∀z ∈ V
∂ya(u; yu, p) · z = J ′obs(y

u) · z ∀z ∈ V
j′(u) · δu = 0 ∀δu ∈ U

with j′(u) · δu = αregJ
′
reg(u) · δu− (∂ua(u; yu, pu)− ∂ub(u; pu)) · δu

(10.39)

The optimality system (10.39) is nothing else than the stationary point conditions (10.13) of
the Lagrangian. The adjoint state p is the lagrangian multiplier associated to the ”-model
constraint”.

Remark 10.16. * (”To go further”). The adjoint equations for a coupled system. If the direct
model is composed by two PDEs equations weakly coupled then the adjoint system is composed
by the corresponding adjoint equations weakly coupled too by in the reverse way.
If the direct model is composed by two PDEs equations coupled (fully) then the adjoint system
is composed by the corresponding adjoint equations (fully) coupled too.

Exercises

Exercice 10.17. Write the adjoint of a few classical second order and first order operators, in
the case of

• Dirichlet BC all over the boundary,

• mixed B.C.

See details of the enunciation in the supplementary material.

Exercice 10.18. Write the optimality system which characterizes the solution u of the optimal
control problem of your practical. Detail both the weak and the classical forms.

10.7 The VDA algorithm (3D-var)

Recall that we assume to be here in a context where the dimension of the control variable u is
large. As a consequence, gradient-based local minimization methods only are affordable (versus
e.g. gradient-free global optimization methods).

10.7.1 Gauss-Newton vs Quasi-Newton

Assume that the gradient expression ∇j(uh) is available for any uh ∈ Uh by performing a direct
model solver and an adjoint model solver.
A natural approach (and efficient) approach consists to use the Newton-Raphson algorithm to
solve the first order optimality condition (Euler’s equation) ∇j(u) = 0.

153

This numerical approach is very efficient since second order (when converging). However, it
requires the computation of the Hessian Hj of j which is often highly complex or too CPU time
consuming to compute...
That is why in many cases, first order descent algorithms based on the gradient information
only are preferred.
In practice, we use Quasi-Newton methods like the BFGS algorithm, [?]. A few recalls on the
Quasi-Newton methods and the BFGS algorithm in particular can be found in Appendix.

10.7.2 The 3D-Var algorithm

Given a first guess u0, we seek (um)m that decreases the cost function using a Quasi-Newton
method e.g. the L-BFGS algorithm.
The algorithm is as follows, see Fig. (10.3).

Given the current control value u,
1) compute the cost function j(u) from the direct model output yu,
2) compute the gradient ∇j(u) from the adjoint model output pu and the direct model

output yu,
3) given u, j(u) and ∇j(u), compute the new iterate unew as unew = u + αd(∇j(u))

where d ∈ Rm is the descent direction and α ∈ R+
∗ the step in the linear search.

The descent algorithm simply ensures that:

j(unew) < j(u)

*) Iterate until convergence.

Figure 10.3: VDA algorithm: optimal control of the PDE system (identification process). This
provides the so-called 3D-Var algorithm. (4D-var in its unsteady version, see next chapter).

Finally let us recall that if the cost function term Jobs(y) presents different local minima or
presents ”nearly flat valleys” then the choice of the first guess value, the regularization term

154

Jreg and the norms R−1, B−1 highly influence the optimal value u∗.

The local gradient values: a potential interesting information Computing a gradient,
even without performing a minimization algorithm, may present some interests in a modeling
point of view. Indeed, the gradient value represents a local sensitivity of the model output j
with respect the parameters u. These gradient values may help to understand the parameter
influences on the output criteria j, especially if it represents spatially distributed information.
Nevertheless, such sensitivity analyses remain limited since local in the sense that it is regarding
at a given point u only (and regarding to the considered observations too).

Let us remark that this idea of computing sensitivities in order to better understand both the
model and the physics can be applied in a context without observations.
Typically, it can be applied to cost functions depending on the state of the system only in view
to study the system stability.
For example, it can be interesting to quantify the sensitivity of the following model output:

j(u) =
1

2

∫
ω

‖∇yu‖2dx

with ω a subset of Ω.

155

10.8 The fundamental equations at a glance

10.8.1 General continuous formalism

The considered general non-linear stationary PDE model reads:
Given u(x), find y(x) such that:
A(u(x); y(x)) = F (u(x)) in Ω
with Boundary Conditions on ∂Ω

(10.40)

In weak form:
u ∈ Vt : a(u; yu, z) = b(u, z) ∀z ∈ V0 (10.41)

The direct model (= the state equation) is supposed to be well-posed.

The parameter-to-state operator (”model operator”) M(u) is defined as: M(u) = yu.
This operator M(·), which is a-priori non-linear, is supposed to continuous (well-posed direct
model).

The cost function j(u) is defined from the observation function J(u; y) as follows:

j(u) = J(u ; yu) (10.42)

where yu(x) denotes the unique solution of the direct model, given u(x).

The observation function J(u; y) is classically decomposed as follows:

J(u ; y) = Jobs(y) + αreg Jreg(u) (10.43)

with the data misfit term:

Jobs(y) =
1

2

∥∥∥Z(y)− zd
∥∥∥2

R−1
(10.44)

The observation operator Z(·) may be linear or not.
The regularization term is here defined from quadratic terms (in u or higher-order terms).

Classical expressions are: Jreg(u) = 1
2

∥∥∥u− ub∥∥∥2

B−1
or 1

2

∥∥∥Dpu
∥∥∥2

0
with p = 1 or 2.

The inverse problem is formulated as the following optimization problem:{
Minimize j(u) in Uad under the ”model constraint”
since j(u) = J(u; yu) with yu =M(u).

(10.45)

The adjoint model reads:
Given u(x), given yu(x), find p(x) such that:
(∂yA)∗(u(x); yu)(x) · p(x) = J ′obs(y

u(x)) in Ω
with the adjoint B.C. on ∂Ω

(10.46)

In weak form. By defining a∗((u, yu); p, z) ≡ ∂ya(u; yu, p) · z, the adjoint equation reads

p ∈ V0 : a∗((u, yu); p, z) = J ′obs(y
u) · z ∀z ∈ V0 (10.47)

156

The resulting gradient expression.
The relationship between the gradient ∇j(u) and the differential j′(u) is:

< ∇j(u), δu >Rm= j′(u) · δu for all δu ∈ Uh ⊂ Rm (10.48)

The differential of j reads: for all δu ∈ U ,

j′(u) · δu = αregJ
′
reg(u) · δu− (∂uA(u; yu) · δu− F ′(u) · δu) · pu (10.49)

In weak form.

j′(u) · δu = αregJ
′
reg(u) · δu− ∂ua(u; yu, pu) · δu+ ∂ub(u; pu) · δu (10.50)

In the case of a composite gradient i.e. c containing different components, c = (u1, u2), we
have:

j′(u) ≡ (
∂j

∂u1

(u),
∂j

∂u2

(u))T and j′(u) · δu =
∂j

∂u1

(u) · δu1 +
∂j

∂u2

(u) · δu2

10.8.2 Discrete formalism

Recall that the general continuous formalism above, based on the weak form of the equations,
enables to rigorously derive the adjoint equations and the gradient expression, including in the
non-linear case, even if the boundary conditions are non trivial. The discrete formalism below
is easier to handle but it may be incomplete in presence of complex boundary conditions.

The direct model reads: {
Given u ∈ Rm, find y ∈ Rn such that:
A(u; y) = F (u)

(10.51)

A(u; y) represents a system of n (non-linear) equations at n unknowns (y1, . . . , yn).
One has: A : Rm × Rn → Rn; A(u; y) ∈ Rn. F : Rm → Rn; F (u) ∈ Rn.

The solution of this non-linear system is supposed to be unique and is denoted by yu.
Let us denote by DyA(u; yu) (resp. DuA(u; yu)) the n equations derived with respect to y (resp.
u): it is the n× n-Jacobian matrix (resp. the n×m-Jacobian matrix).
Similarly, we denote by DuF (u) the n components of F (u) derived with respect to u: it is the
n×m-Jacobian matrix.

Let us recall the adjoint property (transpose in the real case) of a n × n-matrix M (therefore
a linear operator from Rn onto Rn): for y and z in Rn, (MTy, z)Rn = (y,Mz)Rn .
The observation function J(u; y) is defined as indicated in the general case.

157

Given these conventions, one has the adjoint model which reads:
Given u ∈ Rm, given yu ∈ Rn, find p ∈ Rn such that:
(DyA(u; yu))Tp = J ′obs(y

u)
(modulo the Dirichlet boundary conditions)

(10.52)

This is a linear system of n equations at n unknowns (p1, . . . , pn). The solution of this linear
system is supposed to be unique and is denoted by pu.

The resulting gradient ∇j(u) ∈ Rm reads:

∇j(u) = αreg∇Jreg(u)− (DuA(u; yu))T pu + (DuF (u))T pu (10.53)

In the case of few components e.g. u = (u1, u2)Rm1 × Rm2 , then one simply has:

∇uj(u) = (∇u1j(u),∇u2j(u))T

158

10.9 Applications to classical PDEs and operators

Optimality system for different BVP / examples

10.9.1 Classical PDEs

Diffusion equations

Linear case

Non-linear diffusivity

Advection-diffusion equations

Linear case

Viscous Burger’s model

Elasticity system

10.9.2 Adjoint of classical operators

ToDo: Ecrire catalogue de termes !

159

10.10 Practical aspects

In this chapter are presented two technics to validate the computed gradient. This is extremely
important to do so, as the validation of a direct solver for example.
Also, the concept of twin experiment enabling to investigate the reliability of the VDA based
inversions is presented.

10.10.1 Validate your codes: computed gradients

Validating a computational code is a mandatory step before performing simulations. Below are
described methods how to validate the adjoint code and the cost fucntion gradient.

• Validation of the adjoint code. It can be verified that the code actually computes the ad-
joint of the tangent linear code by computing the scalar product property. This supposes
however to have developed the tangent linear code too.

• Validation of the gradient. The adjoint-based gradient can be compared to finite differ-
ences values. This is the so-called the gradient test. This test should be done for any
computational code computing a model output gradient.

If not interested today in practical computational aspects, this section may be skipped.

The scalar product test

This test aims at checking if the adjoint code is actually the adjoint of the Tangent Linear code.
This test supposes to have developed both the adjoint code and the linear tangent code.

The test aims at numerically verifying the definition of an adjoint operator. Let M be a linear
operator defined from U to Y , we have:

< Mu, y >Y=< u,M∗y >U

Let u0 be a given parameter value.

• Given an arbitrary perturbation du ∈ U , the Tangent Linear code output is computed:

dy =

(
∂M
∂u

(u0)

)
· du

• Given an arbitrary perturbation dy∗ ∈ Y , the adjoint code output is computed:

du∗ =

(
∂M
∂u

(u0)

)∗
· dy∗

• The two following scalar products are computed:

spy =
〈
dy∗, dy

〉
Y and spu =

〈
du∗, du

〉
U

160

• The validation relies on the relation: spy = spu.

Figure 10.4 (b) shows a typical example of the scalar product test.

Figure 10.4: Adjoint code validation: scalar product test

The gradient test

The objective of this test aims at verifying that the gradient obtained from the adjoint corre-
sponds to the partial derivatives of the cost function.
If first using an adjoint code, this test must be done before any further computations based on
the adjoint-based gradient.
This test requires to perform a dozen of times the direct code and one time the adjoint code.
The Tangent Linear code is here not required.

Let u0 be a given parameter value. The Taylor expansion of the cost function j at u0 for a
small perturbation α δu (α ∈ R+) reads:

j(u0 + α δu) = j(u0) + α
∂j

∂u
(u0) · δu+ o

(
α‖δu‖

)
. (10.54)

It follows the uncentered finite difference approximation (order 1) and the centered finite dif-
ference approximation (order 2):

j(u0 + α δu)− j(u0 − α δu)

2α
=
∂j

∂u
(u0) · δu+O

(
α2‖δu‖2

)
. (10.55)

Then, we set either

Iα =
j(u0 + α δu)− j(u0 − α δu)

2α ∂j
∂u

(u0) · δu
(10.56)

or

Iα =
j(u0 + α δu)− j(u0)

α ∂j
∂u

(u0) · δu
(10.57)

According to the Taylor expansions above, we have: lim
α→0

Iα = 1.

161

The gradient test consists to check this property as follows.

• Given an arbitrary parameter value u0, compute ∂j
∂u

(u0) using the adjoint code.

• Using the direct code, compute j(u0).

• For n = 0, . . . , N :

• Compute αn = 2−n ;

• Using the direct code, compute j(u0 + αn δu) ;

• Compute Iαn ;

• Verify if lim
α→0

Iαn = 1 or not.

Figure 10.5 shows two results of the gradient test: at order 2 and at order 1. |Iα− 1| is plotted
vs α in logarithmic scale.
The convergence is good until α > 10−7.
However, observe the difference of accuracy between the 1st order and 2nd order approximation.

In the present exemple, the truncation errors errors appear for α smaller than ≈ 10−7 at order
1 (≈ 10−3 at order 2). (To show this statement, one add a fix term in the Taylor expansion
and notice that it is divided by the perturbation therefore increasing).

(a) (b)

Figure 10.5: The adjoint code validation. Gradient test at order 1 (a), at order 2 (b).

Exercice 10.19. Perform the gradient test for your practical problem.
Is your gradient computation valid ?

10.10.2 Twin experiments

When addressing a real-world problem with a DA approach, the first mandatory step is to
analyze twin experiments with increasing complexity. The principle of twin experiments is as
follows.

162

• First, a dataset (the observations zobs) is generated by applying the direct model to the
input parameter u (this value will be referred to as the ”true” value, denoted by ut).
The obtained observations are perfect in the sense that they are free from model errors.
Next, noise (e.g., Gaussian noise with a realistic amplitude) is added to these perfectly
synthetic data.

• Second, the optimal control process is performed starting from an initial guess value ub
that differs from the ”true” value ut (the one used to generate the synthetic data).

As a consequence, since the true solution ut corresponding to zobs is known, thorough investi-
gations can be conducted.

After the mandatory validation procedures (validations of the direct code, the adjoint code
plus the gradient values), twin experiments are the next step to investigate the developed VDA
formulation.

ut zobs0 zobs
Input parameter / Direct modelPerfect Data Noisy data

zobsu∗
Inverse problem / DataThe estimation /

Figure 10.6: Twin experiments concept.

163

10.11 Regularization based on covariances operators*

* This is a ”to go further” section.

10.11.1 Introduction

Let us consider back the following general non-linear stationary PDE model:
Given u(x), find y(x) such that:
A(u(x); y(x)) = F (u(x)) in Ω
with Boundary Conditions on ∂Ω

(10.58)

The direct model above defines the control-to-state operator M : u 7→ yu, yu the unique
solution given u.

The optimization problem reads:{
Minimize j(u) = J(u; yu) in Uad
with yu =M(u).

(10.59)

where the observation function J(u; y) is defined as, see (10.3):

J(u; y) = Jobs(y) + αregJreg(u) (10.60)

with Jobs(y) = ‖Zy − zobs‖2
R−1 and Jreg(u) = ‖u− ub‖2

B−1 (10.61)

where ub denotes the ”background value”, R−1 and B−1 denote symmetric (semi-)definite op-
erators therefore (semi-)norms.

As already discussed in Section 2.2, without regularization term (equivalently αreg = 0), the
inverse problem above can be ill-posed in the sense the optimal solution u∗ can be non unique.
The computed optimal solution(s) u∗ can depend on the first value u(0) of the iterative mini-
mization process. In such cases, the choice of u(0) is crucial. u(0) may be determined from a
good expertise of the modeled phenomena or from available data and priors.

Moreover, even if the problem is well-posed or u(0) well chosen, it is classical that the inverse
problem is ill-conditioned: the cost function j(u) is nearly flat in the vicinity of the minimum
ut, see Fig. 2.4.

This is for these two reasons that a regularization term Jreg(u) may be introduced. As defined
above, Jreg(u) locally ”convexify” the cost function in a vicinity of the background value ub.
In this case, the computed solution u∗ depends on ub and the weight parameter αreg too.

The covariance matrix of observation errors R in Jobs(y) should rely on a-priori statistical
knowledge on the observations errors, see Section 5.1.2 and Section 7.3. This is fully dependent

164

on the modeled phenomena and the employed instruments. This point is not discussed in the
present general context.

The error covariance matrix B in Jreg(u) may rely on knowledge on the background errors which
are generally badly known or even unknown... In the Bayesian context, this term corresponds
to the prior p(u) whose is assumed to be Gaussian, see Section 7.3.

Another option is to define B from a-priori probabilistic model(s) or even from simplified physics
of the modelled phenomena (see e.g. [?] for a spatial hydrology problem).

This chapter aims at showing:

1) how a natural change of variable is equivalent to pre-conditioning the optimality condition
∇Jreg(u) = 0,

2) a few equivalences between classical covariance operators (Gaussian, second-order auto
regressive kernel) and regularization terms,

3) links between classical covariance kernels and diffusive physical models.

10.11.2 Change of parameter variable, preconditioning

Let us consider the term Jreg(u) with B symmetric positive definite. We define B
1
2 such that:

B = B
1
2B

1
2 . B

1
2 is symmetric positive definite.

We have:

Jreg(u) = ‖u− ub‖2
B−1 = (B−1(u− ub), (u− ub))2 = ‖B

1
2 (u− ub)‖2

2 (10.62)

Then, it is quite natural to consider the change of variable v = B
1
2 (u−ub) to obtain the simple

expression: Jreg(u) = ‖v‖2
2.

However, the computation of B−
1
2 is CPU-time consuming. On the contrary the Cholesky

decomposition of B−1, B−1 = LBL
T
B, is quite low CPU time-consuming.

By considering the change of variable:

v = LTB(u− ub), (10.63)

we obtain:
Jreg(u) = ‖u− ub‖2

B−1 = ‖LTB(u− ub)‖2
2 = ‖v‖2

2 ≡ Greg(v) (10.64)

with Jreg = Greg ◦ C, C : u 7→ v = LTB(u− ub).
Then, we have:

∇Greg(v) = L−TB ∇Jreg(u) (10.65)

Therefore, the change of variable (10.63) modifies the descent directions during the minimisa-
tion process. Moreover, the change of variable may be perceived as a preconditioner of the first
order necessary optimality condition ∇Jreg(u) = 0. The introduction of B provides a different

165

optimization ”path”; hopefully more robust and faster convergence. This is the expectation...

The original parameter value u is simply recovered by applying the inverse of the (linear) change
of variable as: u = L−TB v + ub.

In practice, LB is computed with few lower-diagonals only that is defining an incomplete
Cholesky decomposition only.

10.11.3 Equivalences between B−1-norms and regularization terms

The norm ‖·‖B−1 in the definition of Jreg(u) is defined from a symmetric, positive linear operator
(a matrix in finite dimension) therefore a covariance operator. The most commonly employed
covariance operators are likely the following two, see e.g. [?] Chapter III and references therein.

ToDo: A POURSUIVRE: cf .tex

166

Chapter 11

VDA for Time-Dependent PDEs

This chapter aims at extending the VDA formulation to unsteady PDEs. The latter can be
(well-posed) parabolic or hyperbolic equations, non-linear or not. The calculations derived in
all this chapter are formal in the sense that we do not pay attention to the functional spaces.
For more rigorous derivations of optimality systems in optimal control problems, the reader
may consult e.g. [33, 46].

As in the stationary case, the derivations are first presented in a discrete formalism since it
does not require demonstrated skills in differential calculus. However, these derivations in finite
dimensions are restrictive. Next, the adjoint equation and the gradient expression are derived
in a general case therefore enabling to use the formula for a particular problem, see Theorem
11.4.

The resulting algorithm obtained for a time-dependent system is classically called 4D-var (even
if the model is not 3D in space...). Some strategies to reduce the complexity of this CPU and
memory consuming algorithm is discussed. Finally real-world applications are presented

The outline of this chapter is as follows1.

Contents
11.1 The inverse formulation . 169

11.1.1 The general direct model . 169

11.1.2 Cost function terms: data misfit and regularizations 170

11.1.3 The optimization problem . 172

11.2 Optimality equations in finite dimension (discrete forms) 172

11.3 The optimality equations in infinite dimension (continuous forms) 174

11.3.1 The TLM-based gradient . 175

1Recall that the sections indicated with a * are ”to go further sections”. They can be skipped in a first
reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.

167

168

11.3.2 The adjoint-based gradient . 177

11.4 The 4D-Var algorithm . 180

11.5 The fundamental equations at a glance 183

11.6 Complexity reduction & incremental 4D-Var algorithm* 184

11.6.1 Basic principles . 184

11.6.2 Incremental 4D-var algorithm . 184

11.6.3 On hybrid approaches . 187

11.7 Exercises . 189

11.7.1 Viscous Burgers’ equation . 189

11.7.2 Diffusion equation with non constant coefficients 189

169

11.1 The inverse formulation

11.1.1 The general direct model

Let us consider a general unsteady PDE model however first order in time to simplify the
presentation:

(D)


Given the I.C. y0(x), given the space-time control u(x, t),
find the state y(x, t) satisfying:
∂t y(x, t) + A(u(x, t) ; y(x, t)) = F (u(x, t)) in Ω×]0, T [
y(x, 0) = y0(x) in Ω
with Boundary Conditions for all t

(11.1)

where A(u; y)(x, t) is the differential operator. F (u(x, t)) is the RHS which may depend on the
control too.

Examples of direct models As a scalar parabolic equation example, the reader may guess
to the heat equation (scalar linear parabolic equation) or to the non-linear case:

A(u; y) = −div(λ(u1; y)∇y) + w · ∇y + cy and F (u) = u2

with u = (u1, u2).

One may guess to the (viscous) Navier-Stokes equations (non-linear parabolic system) too or
EXAMPLE STRUCTURAL (non-linear parabolic system) or to the Saint-Venant equations
(non-linear hyperbolic system).

In real-world problems, the I.C. is often uncertain. The I.C. can even be the most impor-
tant ”parameter” to be identified/estimated e.g. in atmosphere dynamic problems for weather
prediction. Then, we consider the control variable enriched with the I.C. as:

c(x, t) = (y0(x), u(x, t)) (11.2)

Of course, the solution y(x, t) of (D) depends on the I.C. y0(x) and on the parameter u(x, t).

In all the sequel, the state is denoted as y(c; t), y(t), y(c) or simply y, depending on the context.

We assume that the direct model is well posed in the following sense.

Assumption 11.1. Given c(x, t) ∈ C and T > 0, it exists a unique function y(x, t), y ∈
WV (0, T), solution of Problem (D). Furthermore, this unique solution y depends continuously
on c(x, t).

170

Mathematical functional spaces* Typical functional spaces C and WV (0, T) are as follows.
Let denote by V be a Hilbert space e.g. the Sobolev space H1

0 (Ω) for a scalar second order
linear PDE as the heat equation (linear parabolic equation).
The time-dependent PDE is assumed to be first order in time then the considered state space
W (a space-time functional space) is classically defined as:

WV (0, T) = {f s.t. f ∈ L2(0, T ;V), ∂tf ∈ L2(0, T ;V ′)}

The control parameter space U is supposed to be a Hilbert space. Typically, one considers:
UT = L2(0, T ;U) with U a Banach space e.g. L∞(Ω). The norm of UT is defined from the scalar
product of U as:〈
u1, u2

〉
UT

=
∫ T

0

〈
u1(t), u2(t)

〉
Udt.

Let H be the Hilbert space where the I.C. lives in. Then, the control c(x, t) belongs to the
space C = H × U .

The reader may refer e.g. to [34]. The examples of functional spaces above are typical ones for
linear BVP. Moreover, the control space UT may be relaxed (i.e. imposing less regularity).

Assumptions of differentiability* The parameter-to-state operator (the model operator
too) reads here as:

M : C → WV (0, T) : c(x, t) = (y0(x), u(x, t)) 7→ y(c(x, t);x, t) (11.3)

The direct model is well-posed implies that M(y) is continuous, for all t.

To consider cost functions j(c) of class C1 (continuously differentiable), one needs to assume
that the state y is differentiable with respect to the control parameter c that is

Assumption 11.2. The model operator M(c) is continuously differentiable for all t ∈]0, T [.

Under the assumption above, one can formally write:

y(c+ δc; t) = y(c; t) +
dy

dc
(c; t) · δc+ o0(‖δc‖C) (11.4)

This differentiability property will be necessary to calculate the cost function differential j′(c).
In some cases, this differentiability property is not satisfied at all control value c.
Indeed, in the case of a non-linear hyperbolic system such as the Euler (or Shallow Water)
equations for example, a shock can appear when making varies continuously e.g. a physical
model parameter or a boundary condition value. In this case, the operator M(c) is even not
continuous, therefore cannot be differentiable.

11.1.2 Cost function terms: data misfit and regularizations

The objective function J is decomposed as in the stationary case:

J(c ; y) = Jobs(y) + αregJreg(c) (11.5)

171

Then, the cost function j to be minimized is defined from J as usual:

j(c(x, t)) = J(c(x, t) ; yc(x, t))) (11.6)

where yc(x, t) is the (unique) solution of the direct model (D), given c(x, t).
We have: j : C → R.

Data misfit term In the unsteady case, the misfit term Jobs is naturally integrated in time
as follows:

Jobs(y(x, t)) =

∫ T

0

∥∥∥Z(y(x, t))− zobs(x, t)
∥∥∥2

R−1
dt (11.7)

with Z(·) the observation operator.
Z is a-priori non linear. R−1 denotes a norm like in the stationary case. In practice, as already
mentioned, it is often a diagonal matrix because of lack of information.

In practice, observations are often local (”point-wise”), moreover very sparse. Then, in the case
the observations are provided as time-series, the misfit observation term Jobs(y) reads as:

Jobs(y) =
N∑
n=1

∥∥∥Z(y(tobsn))− zobsn
∥∥∥2

R−1
(11.8)

where zobsn is the measurement at instant tobsn , n = 1, . . . , N .

The complete dataset is then: zobs = {zobsn }n=1,...,N .

Regularization terms Recall that c(x, t) = (y0(x), u(x, t)). Then, we naturally consider a
regularization term for each control component as:

Jreg(c(x, t)) = J0
reg(y0(x)) + Jureg(u(x, t)) (11.9)

If considering a background value yb for the I.C. to attract the minimization algorithm to this

value, we set: J0
reg(y0) =

∥∥∥ y0 − yb
∥∥∥2

B−1
.

The norm B−1 may be defined to represent ”at best” the inverse of the covariance matrix of
the background error matrix B as already discussed, see Section 7.3.

This term is quadratic in y0 therefore strictly convex.

For the control parameter u(x, t), one considers the same regularization terms as in the sta-
tionary case (see Section ??).

‘ We may define Jureg(u) from a background value ub: J
u
reg(u) =

∥∥∥u− ub∥∥∥2

2
. This choice comes

172

with its consequences: this defines a strictly convex term in u and it attracts the solution to
the background value, however for the best or for the worst...

One can consider higher-order terms too as in the stationary case e.g. Jureg(u) =
∥∥∥∇u∥∥∥2

2
. In

this case, Jureg(u) is no longer convex with respect to u but with respect to ∇u only.

11.1.3 The optimization problem

The optimization problem writes similarly to the stationary case:{
Find c∗(x, t) = (y∗0(x), u∗(x, t)) ∈ H × UT such that:
j(c∗) = min

H×UT
j(c) (11.10)

The control parameter vector c is here a-priori time-dependent. As a consequence, its discrete
version is an extremely large vector! Therefore the optimization problem is a large dimension
one. One of the consequence is that∇j(c) has to be computed by employing the adjoint method.

11.2 Optimality equations in finite dimension (discrete

forms)

The derivation of the adjoint equation and the gradient expression in finite dimension is easier
than in the continuous form since calculations requires less experience in differential calculus.
However, it is harder (and less elegant) to derive the equations for general cases in particular
for complex numerical schemes or non classical boundary conditions.
For a sake of simplicity, we present here the optimality equations in the case of a basic explicit
one step time scheme (namely the forward Euler scheme). The formal direct model reads:

(Dd)


Find {yk}1≤k≤NT ∈ Rn such that :
yk+1 =Mk(yk) k = 0, 1, ..., NT (the time steps)
y0 ∈ Rn given.

(11.11)

where Mk(yk) represents the n non-linear equations at instant tk.
We denote by Mk = DyMk(yk) the linearized model equations at ”point” yk, Mk ∈ Rn×n.

For a sake of simplicity again, the control variable c is simply here the I.C.:

c = y0 ∈ Rn

Moreover, it is supposed that: a) the observations zobs ∈ Rm are available at all time step; b)
the regularization term relies on the knowledge of a good background value yb.

173

Then, the cost function reads:

j(y0) =
1

2

NT∑
k=1

(Z(yk)− zobsk)TR−1(Z(yk)− zobsk) + α0
1

2
(y0 − yb)TB(y0 − yb) (11.12)

where Z : Rn → Rm is the observation operator which is a-priori non-linear too.
The norm R is given, R ∈ Rm×m (often simply diagonal as already discussed).

We denote the linear tangent observation operator taken at yk as: Zk = DyZ(yk), Zk ∈ Rm×n.

The cost gradient satisfies: for all δy0 in Rn,

< ∇j(y0), δy0 >Rn =

NT∑
k=1

< ∆k, Zk · wδk >Rm +α0 < B(y0 − yb), δy0 >Rn

with wδk = Dy0(yk) · δy0, wδk ∈ Rn and the notation ∆k = R−1(Z(yk)− zobsk).

By differentiating the direct model, we get:

Dy0(yk+1) · δy0 = Mk ·Dy0(yk) · δy0 , k = 1, ..., NT (11.13)

with the I.C. δy0 given.
The TLM above reads:

wδk+1 = Mkw
δ
k = (Mk . . .M0)δy0 (11.14)

By injecting this into the gradient expression, we obtain:

< ∇j(y0), δy0 >Rn =

NT∑
k=1

< (MT
0 . . .M

T
k−1)ZT

k ∆k, δy0 >Rn +α0 < B(y0− yb), δy0 >Rn (11.15)

The 1st term
∑NT

k=1

(
MT

0 . . .M
T
k−1

)
ZT
k ∆k in the expression above reads:

MT
0 Z

T
1 ∆1 + (MT

0 M
T
1)ZT

2 ∆2 + · · ·+ (MT
0 M

T
1 . . .M

T
NT−1)ZT

NT
∆NT

= MT
0

[
ZT

1 ∆1 +MT
1

[
ZT

2 ∆2 + [. . .]MT
NT−1Z

T
NT

∆NT

]
. . .
]

(11.16)

(11.17)

Let us define the sequence pk defined as follows: for k = (NT − 1), . . . , 0,

pk = MT
k pk+1 + ZT

k ∆k (11.18)

174

with pNT = 0, and (recall) ∆k = R−1(Z(yk)− zk).
We have:

pNT−1 = ZT
NT−1∆NT−1

pNT−2 = MT
NT−2

[
ZT
NT−1∆NT−1

]
+ ZT

NT−2∆NT−2

pNT−3 = MT
NT−3

[
MT

NT−2

[
ZT
NT−1∆NT−1

]
+ ZT

NT−2∆NT−2

]
+ ZT

NT−3∆NT−3

...

p0 = MT
0

[
MT

1

[
. . .
[
MT

NT−3

[
MT

NT−2

[
ZT
NT−1∆NT−1

]
+ ZT

NT−2∆NT−2

]
+ . . .

]
+ . . .

]
+ ZT

1 ∆1

]
+ ZT

0 ∆0(11.19)

(11.20)

This is a Horner type factorization.
It can be shown that the two expressions (11.16) and (11.19) are equal.
ToDo: calcul pas clair... a verifier.... mais le resultat est bien celui-ci (cf demo
continue)
Therefore:

p0 =

NT∑
k=1

(
MT

0 . . .M
T
k−1

)
ZT
k ∆k (11.21)

In conclusion, by introducing the following sequence (defining the discrete adjoint model):

(Ad)


Given the state at each time step {yk}1≤k≤NT ∈ Rn, find {pk}(NT−1)≥k≥0 ∈ Rn such that :
pk = MT

k pk+1 + ZT
k R
−1(Z(yk)− zk) for k = NT , ..., 1 (the time steps)

pNT = 0

(11.22)
with Zk = DyZ(yk), Zk ∈ Rm×n, the gradient simply reads as, see (11.15):

∇j(y0) = p0 + α0B(y0 − yb) (11.23)

A few remarks

- The adjoint model is retroacting in time. Its initial condition must be given at final time T .
- The gradient with respect to the Initial Condition equals the adjoint state at initial time
(modulo the minus sign and the regularization term).

11.3 The optimality equations in infinite dimension (con-

tinuous forms)

In this section, a rigorous derivation of the adjoint equation and the gradient expression are
proposed. The general expressions presented in Theorem 11.4, can be applied to a large class
of problems.

175

11.3.1 The TLM-based gradient

The approach is the same as in the stationary case: we derive the cost function j(c), we obtain
the differential expression j′(c) in function of the state derivative wδc = dy

dc
(c) · δc. The wδc is

by construction the solution of the Tangent Linear Model (TLM).

Gradient expression depending on the term wδc

By deriving the cost function (10.4), we get:

j′(c) · δc = ∂cJ(c ; yc).δc+ ∂yJ(c ; yc).wδc (11.24)

with wδc = dy
dc

(c) · δc and c = (y0, u).
If considering the particular form (11.5) (with αreg = 1) then:

j′(c) · δc = J ′obs(y
c) · wδc + J ′reg(c) · δc (11.25)

Let us consider the observation term as previously (see Section 11.1.2) with a linear observation
operator Z (for a sake of simplicity):

Jobs(y) =
1

2

∫ T

0

∥∥∥Zy(t)− zobs(t)
∥∥∥2

R−1
dt (11.26)

For the regularization term, one can naturally consider:

Jreg(c) =
1

2
αreg,0

∥∥∥ y0 − yb
∥∥∥2

B−1
+

1

2
αreg,u

∥∥∥∇u∥∥∥2

2
(11.27)

with the weights αreg,� to be determined.
With the definitions above, it follows the expression:

j′(c) · δc =

∫ T

0

〈
ZTR(Z yc(t)− zobs(t)), wδc(t)

〉
dt +

〈
B−1(y0 − yb), δy0

〉
+
〈
∇u,∇(δu)

〉
(11.28)

with < ·, · > the corresponding scalar products.

Functional spaces clarification* More rigorously, we have:

j′(c)·δc =

∫ T

0

〈
ZTRΛO(Z yc(t)−zobs(t)), wδc(t)

〉
V ′×V

dt +
〈
B−1(y0−yb), δy0

〉
H

+
〈
∇u,∇(δu)

〉
H

where 〈·, ·〉V ′×V denotes the duality product and 〈·, ·〉H denotes the H-scalar product.
The operator ΛO is simply the canonical isomorphism from Z0 into Z ′0 (in finite dimension, it
is simply equal to the Identity). Also, ZT ≡ Z∗ ∈ L(Z ′0, V ′) denotes the adjoint operator of
the linear operator Z; it is defined by:

∀η ∈ Z ′0, ∀ ξ ∈ V,
〈
Z∗η, ξ

〉
V ′×V =

〈
η, Zξ

〉
Z′0×Z0

176

On the term wδc Recall that the (unique) state of the system y(c) is assumed to be differ-
entiable with respect to c, c = (y0, u).
Given a perturbation δc ∈ C, the term wδc(t) represents the state derivative in the direction
δc = (δy0, δu) (Gateaux’s derivative). This term satisfies the relation:

wδc ≡ dy

dc
(c) · δc =

∂y

∂y0

(c) · δy0 +
∂y

∂u
(c) · δu

On the differential j′(c) and the composite gradient ∇j(c) Rigorously speaking, the
terminology ”gradient” refers to vectors in finite dimension spaces. However, we improperly
use the word gradient (as it is usually done in the literature too) to name the differentiable
j′(u) ∈ L(H × UT ;R) or the actual gradient ∇j(u) ∈ Rm.

Since the control variables has here two distinct components, c = (y0, u), then the gradient of
j(c) reads:

∇j(c) = (∇y0j(c),∇uj(c))
T (11.29)

And we have the differentiable which satisfies:

j′(c) · δc =
∂j

∂y0

(c) · δy0 +
∂j

∂u
(c) · δu (11.30)

for any perturbation δc = (δy0, δu).

Recall that we have: < ∇j(c), δc >Rm= j′(c) · δc for all δc ∈ Ch ⊂ Rm.

The Tangent Linear Model (TLM)

By deriving the direct model (D) with respect to c (in a direction δc and at ”point” y(c)), we
obtain the TLM.
The TLM solution is the term wδc. We have:

(LT)


Given c = (y0, u) ∈ H × UT and yc ∈ WV (0, T) solution of the direct problem (D),
given δc = (δy0, δu) ∈ H × UT , find wδc ∈ WV (0, T) such that:
∂tw

δc(t) + ∂A
∂y

(u; y) · wδc(t) = − ∂A
∂u

(u; y) · δu(t) + F ′(u) · δu(t) ∀t ∈]0, T [

wδc(0) = δy0

(11.31)

Remark 11.3. If the operator A is linear with respect to the state variable y, then we have:
∂A

∂y
(u(t), y(t)) · wδc(t) = A(u(t), wδc(t)).

In this case, the TLM is the same as the direct model but the I.C. and the RHS.

As a consequence, to compute wδc and to obtain the gradient defined by (11.28), one can solve
the TLM (LT).

177

However, the TLM must be solved again to obtain wδc for a different perturbation δc. After
discretization, if δch is large dimensional, the TLM-based approach is not tractable...
Like in the steady-state case, this is the reason why the adjoint equations are introduced
as soon as the discrete control variable dimension is greater than O(1). Indeed, the adjoint
equation will enable to obtain the gradient independently of the dimension of the discrete
control variable.

11.3.2 The adjoint-based gradient

We state here the central result providing the expression of the gradient in the general case
presented in Section 11.1.1. This gradient expression is based on the adjoint model solution.
The result below is the extension of Theorem 10.15 to time-dependent cases.

Theorem 11.4. Let us consider the direct model (11.1) and the cost function j(u) defined
by (11.6)-(11.27).
It is assumed that:
i) the direct model (11.1) is well-posed,
ii) the TLM (11.31) is well-posed,
iii) the unique solution y(c) is C1 with respect to c.

Then, the cost function j(c) is C1 and its gradient components reads ∇j(c) =
(∂y0j(c), ∂uj(c))

T with:
∂y0j(c) = pc(0) + αreg,0(J0

reg)
′(y0)

∂uj(c) = −
[
∂A

∂u
(u; yc)− F ′(u)

]T
pc(t) + αreg,u(J

u
reg)

′(u)
(11.32)

with yc the unique solution of the state equation (11.1) and pc solution of the adjoint model:

(A)


Given c(x, t) = (y0(x), u(x, t)) ∈ C and yc(x, y) ∈ WV (0, T) be the unique solution of (D),
find p(x, t) ∈ WV (0, T) such that:

−∂t p(x, t) +
[∂A
∂y

(u; yc)
]T
p(x, t) = J ′obs(y

c(x, t)) ∀t ∈]0, T [

p(x, T) = 0 in Ω

(11.33)
The solution pc of (A) exists and is unique; it is the adjoint state.

Proof.
Under Assumption iii) (deriving from the implicit function theorem, see details in the stationary
case), the cost function j(u) is C1.
First let us recall the direct expression of j′(c), see (11.6)(11.5):

j′(c) · δc = J ′obs(y
c) · wδc + J ′reg(c) · δc (11.34)

178

The goal is to obtain an expression of j′(c) independent of wδc.

The proof follows the same principles than in the stationary case (see the proof of Theorem
10.15). The only difference consists to integrate in time the equations. We write:∫ T

0

< (LT), p >V ′×V dt = 0 ∀p ∈ V

By integrating by part in time, we get:

−
∫ T

0

〈
wδc(t), ∂tp(t)

〉
V ′×V dt +

∫ T

0

〈
∂A
∂y

(u; y) · wδc(t), p(t)
〉
V ′×V dt

+
〈
p(T), wδc(T)

〉
H
−
〈
p(0), δy0

〉
H

+

∫ T

0

〈
[∂A
∂u

(u; y)− F ′(u)] · δu(t), p(t)
〉
V ′×V dt = 0

By making appear the adjoint operator of ∂A
∂y

(u; y), it comes:∫ T

0

〈
− ∂tp(t) +

[
∂A

∂y
(u; y)

]T
p(t), wδc(t)

〉
V ′×V dt

= −
〈
p(T), wδc(T)

〉
H

+
〈
p(0), δy0

〉
H
−
∫ T

0

〈
[∂A
∂u

(u; y)− F ′(u)] · δu, p(t)
〉
V ′×V dt

(11.35)

The goal is to make vanish the term wδc(t) in (11.34). This goal is reached by setting p as the
solution of the following equation:

− ∂tp(t) +
[∂A
∂y

(u; yc)
]T
p(t) = J ′obs(y

c) ∀t ∈]0, T [(11.36)

accompanied with the Initial Condition at final time: p(T) = 0.
These equations constitute the adjoint model (A).

The linearized problem is supposed to be well-posed therefore the operator ∂yA(u; yu) is an
isomorphism from V into V ′, and its adjoint operator (∂yA)T (u; yu) is an isomorphism from V
into V ′ too, see e.g. [10]. As a consequence, the adjoint equation above is well-posed too.

By making appear the adjoint operator of [∂A
∂u

(u; y) − F ′(u)] and by considering the adjoint
equation, 11.35 reads:∫ T

0

〈
J ′obs(y

c), wδc(t)
〉
V ′×V dt = +

〈
p(0), δy0

〉
H
−
∫ T

0

〈
[
∂A

∂u
(u; y)− F ′(u)]Tp(t), δu(t)

〉
U ′×Udt

(11.37)

Next, by combining (11.34), (11.37) and (11.36), we obtain:

j′(c) · δc = J ′reg(c) · δc +
〈
p(0), δy0

〉
H
−
∫ T

0

〈
[
∂A

∂u
(u; y)−F ′(u)]Tp(t), δu(t)

〉
U ′×U dt (11.38)

179

with (recall) c(x, t) = (y0(x), u(x, t)) and J ′reg(c) ·δc = αreg,0(J0
reg)

′(y0) ·δy0 +αreg,u(J
u
reg)

′(u) ·δu.

The expression of j′(c) · δc above does not depend anymore on wδc: this was the goal.

Moreover, since:

j′(c) · δc =
∂j

∂y0

(c) · δy0 +
∂j

∂u
(c) · δu , (11.39)

the gradient expression (11.32) follows by identification. �

A few remarks

In addition to the remarks already made in the finite dimension linear case, see Section 11.2,
let us notice that:

- By construction the adjoint model is linear, whatever if the direct model is linear or not (like
in the steady-state case).

- If the differential operator A(u; y) is linear and symmetric (in y(x, t)), the problem is self-
adjoint (see Section 10.6.2 for details): the adjoint model differs from the direct one by the
RHS only.

- By considering the expression of Jreg and Jobs as defined in Section 11.1.2, we obtain:
∂y0j(c) = pc(0) + αreg,0 B(y0 − yb)

∂uj(c) = −
[
∂A

∂u
(u; yc)− F ′(u)

]T
pc(t) + αreg,u (Jureg)

′(u)
(11.40)

Moreover, the RHS J ′obs(y
c(t)) of the adjoint model equals the data misfit term which reads:

ZTR−1(Zy(t)− zobs(t)).

Exercice 11.5. Consider the time-dependent case of your practical (linear case or not).
a) Write the adjoint equations; both in the weak and the classical forms.
b) Write the gradient expression based on the adjoint method.

The 1st order optimality system

As previously (steady-state system in the previous chapter), we can define the optimality sys-
tem. It is the set of equations characterizing the optimal solution:

• the state equation,

• the adjoint state equation,

180

• the first order necessary optimality condition (the gradient must vanishes).

11.4 The 4D-Var algorithm

The so-called 4D-var algorithm denotes the optimal control algorithm for unsteady PDEs sys-
tems (a-priori in 3 space-dimensions plus time therefore the 4D terminology).

The algorithm

The adjoint model is time dependent, reverse in time.
Since the minimisation is performed by using an iterative descent algorithm (eg the quasi-
Newton method BFGS), the algorithm reads as indicated in Fig. (11.1).
Given a first guess c0 ∈ Rn+m, compute cm ∈ Rn+m making diminish the cost function j(c),
j(c) ∈ R. To do so, at each iteration:

1) compute the cost function j(c) by solving the direct model from 0 to T ,

2) compute the gradient ∇j(c) ∈ Rn+m by solving the adjoint model from T to 0,

3) given the current iteration cn, the cost function value j(cn) and the gradient value ∇j(cn),
compute a new iterationcn+1 such that:

j(cn+1) < j(cn)

*) Iterate until convergence.

Cost function and its gradient

Forward code

Adjoint code

First guess

control variables

Optimal values

of control variables

if converged

S
IM

U
L

A
T

O
R

0T

0 T

search

linear

Optimization

routine

e.g. BFGS

Quasi−Newton algorithm

Figure 11.1: Optimal control algorithm for a time-dependent PDE model: the 4D-var algorithm.

A few remarks

Recall that the 4D-Var algorithm can be used for different goals.

181

A) To estimate the value of uncertain or unknown input parameters (time dependent or not),
it is an identification problem.

B) To calibrate the model in order to perform better predictions; forecasting is the goal.
In this case, the data assimilation proceeds by ”analysis cycles”. Figure 11.2 represents one
cycle.

In this context,

-) the first stage is called the ”analysis step”.
Observations of present and past time are assimilated to obtain the analysis i.e. the optimal
state value (that is the optimal model trajectory).

-) the second stage consists to run the model in time: it is the ”forecasting step”.

It is expected that if the model fits better the observations in the past, it will be more accurate
for future.
Next, the forecast is used in the next analysis cycle etc

Figure 11.2: The 4D-var algorithm here used to identify the I.C. y0. All observation within the
assimilation time window are assimilated in the global least-square formulation (analysis step).
Next, the resulting calibrated model is performed for prediction (forecasting step).

182

A concluding remark on hybrid approaches Data assimilation aims to fuse all available
information in an “optimal way”. This includes the “physics” of the phenomena (e.g., con-
servation laws), the parameters (generally empirical), the initial condition (e.g., for weather
forecasting), in-situ measurements, remote-sensed measurements (e.g., extracted from various
satellite datasets), and prior probabilities (covariance operators defining the norms).
Additional measurements may be used to improve the “analysis”, especially if its confidence
(accuracy) can be estimated by expertise or a statistical method.

Estimating uncertain parameters of physically-based models could be addressed by “non-
physically informed” (“blind”) Machine Learning methods such as deep Neural Networks, if
datasets are large enough.
A typical use of ML in this context would be to define the first guess by a NN. Next, the VDA
process would act as a physically-informed filter.
In other respects, note that the present physically-informed approach enables the introduction
of statistics and prior probabilities in the formulation.
Moreover, the VDA approach enables the assessment of the obtained estimations through the
“physical model reading”.

183

11.5 The fundamental equations at a glance

The time-dependent (non-linear) PDE model reads:

(D)


Given (y0(x), u(x, t)), find y(x, t) such that :
∂t y(x, t) + A(u(x, t) ; y(x, t)) = F (u(x, t)) in Ω×]0, T [
y(x, 0) = y0(x) in Ω

(11.41)

The direct model is supposed to be well-posed.
The control parameter is: c(x, t) = (y0(x), u(x, t)).
Then, the control-to-state operator (the model operator) M(c) is defined as: M(c) = yc(x, t).
M(·) is a-priori non linear.

The objective function classically reads:

J(c ; y) =
1

2

∫ T

0

∥∥∥Z(y(t))− zobs(t)
∥∥∥2

R−1
dt + α0

1

2

∥∥∥ y0 − yb
∥∥∥2

B−1
+ αuJ

u
reg(u) (11.42)

In discrete form, the observations term Jobs(c ; y) reads: 1
2

∑
n

(∑
i Z(yobs(xi, tn))− zobsi,n

)2

R−1 .

The cost function is defined as: j(c) = J(c ; yc),
where yc is the (unique) solution of the direct model given c.

The optimization problem reads:{
Find c∗(x, t) = (y∗0(x), u∗(x, t)) such that:
j(c∗) = min

c∈H×UT
j(c) (11.43)

The gradient components read: ∇j(c) = (∂j
∂y0

(c), ∂j
∂u

(c))T , with:{
∂y0j(c(x, t)) = pc(x, 0) + α0 B

−1(y0 − yb)(x)

∂uj(c(x, t)) = (−[∂uA(u; yc)] + [F ′(u)])
T · pc(x, t) + αu (Jureg)

′(u(x, t))
(11.44)

where pc is the (unique) solution of the adjoint model:

(A)


Given c = (y0(x), u(x, t)) and yc(x, t) the unique solution of the direct problem (D),
find p(x, t) such that:

−∂t p(x, t) +
[
∂yA(u(x, t); yc(x, t))

]T
p(x, t) = J ′obs(y

c(x, t)) in Ω×]0, T [

p(x, T) = 0 in Ω
(11.45)

184

11.6 Complexity reduction & incremental 4D-Var algo-

rithm*

This is a ”to go further” section.

11.6.1 Basic principles

For very large scale problems (e.g. oceans and atmosphere in geophysics), it can be unaffordable
to perform a 4D-var process as previously presented. In the case the assimilation is required for
prediction (e.g. weather forecast), the forecast obviously needs to be performed faster than real
time ! Even if based on mathematically reduced models e.g. the 2D shallow-water equations
(reduced version of the complete 3D Navier-Stokes model with mobile surface), the 4D-var
algorithm may remain too CPU time / memory consuming.
Then one can reduce the complete process by keeping the same (global) 4D-var control loop
but by reducing the direct model following different methods.

. Develop a reduced basis like POD to solve the direct model, potentially combined with
ML for non-linear models, see e.g. and [37] and references therein,

. Consider a much simpler physics instead of the original one (complet physics, fine grid)
in the optimal control loop. If considering a linear simplified direct model (eg a linearized
model at each iteration), this provides a LQ problem therefore much faster to solve. This
is the basic idea of the so-called incremental 4D-var algorithm which is presented below.

11.6.2 Incremental 4D-var algorithm

The basic idea of the incremental 4D-var algorithm is to combine in the minimization process
a low-resolution (or linearized equations) and the original full physics model.

Keeping the discrete notations previously introduced, the innovation vector dn is defined by
:

dn = (zn −Z(yn)) n ≥ 0

The innovation vector dn measures at time tn, the discrepancy between the model output and
the observed quantity, in the observation space.

The idea is to modify the 4D-var algorithm as follows:
1) the iterative control variable corrections are performed using a low-resolution model (poten-
tially both in physics and grids). This leads to low-resolution inner-loops.
2) Once these low-resolution inner-loops have converged, the discrepancy between the model
and the measurements (i.e. the innovative vector) is computed by using the original complete
direct model.

185

*) Repeat the process.

For a sake of simplicity, we define the operator model M as follows :

yn =M(y0)

If we set: yb = y0 + δy0, the sough quantity becomes δy0 and we have:

j(y0) =
1

2

N∑
n=0

(Z(yn)− zn)TR−1(Z(yn)− zn) +
1

2
δyT0 B

−1δy0

Next, the ”perturbation” δyn corresponding to the perturbation δy0 is defined as follows:

yn + δyn =M(y0 + δy0)

A formal linearization (Taylor’s expansion order 1) gives :

M(y0 + δy0) ≈M(y0) +M(y0) · δy0 hence yn + δyn ≈ yn +M(y0) · δy0

where M is the linear tangent model at time step tn. Then : δyn ≈M(y0) · δy0.

Similarly:
Z(yn + δyn) ≈ Z(yn) +Hn · δyn

with Hn the linearized observation operator at time step tn.

We have:

j(y0 + δy0) ≈ g(δy0) =
1

2

N∑
n=0

(Hn · δyn − dn)TR−1(Hn · δyn − dn) +
1

2
δyT0 B

−1δy0

The basic idea of the incremental 4D-var method is to minimize the cost function with re-
spect to the increment δy0. Considering the cost function g(δy0), the inverse problem becomes
linear-quadratic optimal control problem since δyn ≈ M(y0) · δy0. Then the minimization can
be performed using the Conjugate Gradient with preconditioning, hence very fast to compute.

In summary, the 4D-var incremental algorithm reads as follows (see Figure 11.3).

*) Inner loop.
The minimization process is performed with linearized operators (M and Hn), furthermore
potentially with coarser grids and simplified physics.
Since the cost function g(δy0) is strictly convex (it is quadratic in δy0), the extremely efficient

186

Figure 11.3: The incremental VDA (4D-Var) algorithm. A simplified physical model in con-
sidered in the inner loop. However, the innovative is still computed using the complete direct
model.

Conjugate Gradient method with preconditioning can be used to minimize g.

*) Outer loop.
Once the low-resolution minimization process has converged (the so-called ”analysis step” is
done), the original ”high-resolution / full” model is performed (it is the so-called ”prediction
stage”). The prediction stage gives new innovation vectors (the discrepancy between the model
and the observations).

Let us point out that the innovation vectors dn are the crucial input of the assimilation method,
thus they are computed using the high-resolution model.

*) Update the increment and the reference state.

Thus, the incremental 4D-var method is a mix of calibration on linearized operators, full physic
predictions and discrepancy measurements based on the fine innovation vector.

For more details, the reader should consult [9, 45], where the method is developed in a weather
forecast context.

187

The reader may consult [1] Chapter 5 too.

11.6.3 On hybrid approaches

Data assimilation aims at fusing in an ”optimal way” all available information: the ”physics”
of the phenomena (e.g. conservation laws), the parameters (generally empirical), the initial
condition (e.g. for weather forecast), the in-situ measurements, the remote-sensed measure-
ments (e.g. extracted from various satellite datasets), prior probabilities (covariance operators
defining the norms).

Additional measurements may be used to improve the ”analysis”, especially if its confidence
(accuracy) can be estimated by expertise or a statistical method.

Estimating uncertain parameters of physical-based models could be addressed by ”non-physically
informed” (”blind”) Machine Learning methods e.g. deep Neural Networks, if datasets are large
enough.
A typical use of ML in the present context would be to define the first guess by a NN. Next,
the VDA process would act as a physically-informed filter.

In other respect, note that the present physically-informed approach enables to introduce statis-
tics and prior probabilities in the formulation.
Moreover, the VDA approach enables to assess the obtained estimations through the ”physical
model reading”.

188

189

11.7 Exercises

The exercises below mainly consist to write the optimality system for classical PDE models.
ADD exercices on line, lyx format, cf Moodle page.

11.7.1 Viscous Burgers’ equation

The viscous Burgers’ equation is the 1d simplification of the Navier-Stokes momentum equation.
It is a scalar non-linear advection diffusion equation (non-linear advection term). The unknown
is u(x, t) the fluid velocity at point x and time t.
The control variables we consider in the present example are: the initial condition u0 and the
velocity value at one boundary extremity; the latter is denoted by v.
The forward (direct) model reads as follows.
Given c = (u0, v), find u which satisfies:

∂tu(x, t)− ν∂2
xxu(x, t) + u∂xu(x, t) = f(x, t) in]0, L[×]0, T [

u(x, 0) = u0(x) in]0, L[
u(0, t) = v(t) ; u(L, t) = 0 in]0, T [

(11.46)

We assume we have m observations points of the flow, continuous in time. Then, we seek to
minimize the following cost function:

j(c) =
1

2

∫ T

0

m∑
i=1

|u(xi)− uobsi |2dt

Exercice 11.6. Write the optimality system corresponding to this data assimilation problem.

11.7.2 Diffusion equation with non constant coefficients

We consider the diffusion equation (or heat equation) in an inhomogeneous media. Let u be
the quantity diffused and λ(x) be the diffusivity coefficient, non constant. The forward model
we consider is as follows. Given λ and the flux ϕ, find u which satisfies:

∂tu(x, t)− ∂x(λ(x)∂xu(x, t)) = f(x, t) in Ω×]0, T [
u(x, 0) = u0(x) in Ω
−(λ(x)∂nu(x, t) = ϕ in Γ1×]0, T [
u(x, t) = 0 in Γ0×]0, T [

(11.47)

with ∂Ω = Γ0 ∪ Γ1.
We assume we have measurements of the quantity u at boundary Γ1, continuously in time.
Then, we seek to minimize the following cost function:

j(c) =
1

2

∫ T

0

∫
∂Ω

|u(x)− uobs|2dsdt

Exercice 11.7. Write the optimality system corresponding to this data assimilation problem.

190

Bibliography

[1] Mark Asch, Marc Bocquet, and Maëlle Nodet. Data assimilation: methods, algorithms,
and applications. SIAM, 2016.

[2] Mark Asch, Marc Bocquet, and Maëlle Nodet. Data assimilation: methods, algorithms,
and applications. SIAM, 2016.

[3] Richard C Aster, Brian Borchers, and Clifford H Thurber. Parameter estimation and
inverse problems. Elsevier, 2018.

[4] Combettes P.-L. Bauschke H. Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2011.

[5] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Marchine
Learning Research, 18:1–43, 2018.

[6] Leonard David Berkovitz and Negash G Medhin. Nonlinear optimal control theory. CRC
press, 2012.

[7] Marc Bocquet. Introduction to the principles and methods of data assimilation in the
geosciences. Lecture notes, Ecole des Ponts ParisTech.

[8] M. Bonavita. Overview of data assimilation methods. ECMWF course online, 2019.

[9] L. Bouttier and P. Courtier. Data assimilation concepts and methods. ECMWF Training
course. www.ecmwf.int., 1999.

[10] H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, 2010.

[11] Edoardo Calvello, Sebastian Reich, and Andrew M Stuart. Ensemble kalman methods: A
mean field perspective. arXiv preprint arXiv:2209.11371, 2022.

[12] Alberto Carrassi, Marc Bocquet, Laurent Bertino, and Geir Evensen. Data assimilation in
the geosciences: An overview of methods, issues, and perspectives. Wiley Interdisciplinary
Reviews: Climate Change, 9(5):e535, 2018.

[13] Guy Chavent. Nonlinear least squares for inverse problems: theoretical foundations and
step-by-step guide for applications. Springer Science & Business Media, 2010.

191

192

[14] Sibo Cheng, César Quilodrán-Casas, Said Ouala, Alban Farchi, Che Liu, Pierre Tandeo,
Ronan Fablet, Didier Lucor, Bertrand Iooss, Julien Brajard, et al. Machine learning
with data assimilation and uncertainty quantification for dynamical systems: a review.
IEEE/CAA Journal of Automatica Sinica, 10(6):1361–1387, 2023.

[15] P. Courtier and O. Talagrand. Variational assimilation of meteorological observations with
the direct adjoint shallow water equations. Tellus, 42(A):531–549, 1990.

[16] Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algo-
rithm for linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,
57(11):1413–1457, 2004.

[17] Heinz Werner Engl, Martin Hanke, and Andreas Neubauer. Regularization of inverse
problems, volume 375. Springer Science & Business Media, 1996.

[18] Lawrence C. Evans. An Introduction to Mathematical Optimal Control Theory. University
of California, Berkeley, 2014.

[19] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business
Media, 2009.

[20] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis.
Chapman and Hall/CRC, 1995.

[21] David Gilbarg, Neil S Trudinger, David Gilbarg, and NS Trudinger. Elliptic partial differ-
ential equations of second order, volume 224. Springer, 1977.

[22] Matthew CG Hall and Dan G Cacuci. Physical interpretation of the adjoint functions
for sensitivity analysis of atmospheric models. Journal of the atmospheric sciences,
40(10):2537–2546, 1983.

[23] Per Christian Hansen. Discrete inverse problems: insight and algorithms. SIAM, 2010.

[24] Kayo Ide, Philippe Courtier, Michael Ghil, and Andrew C Lorenc. Unified notation for data
assimilation: Operational, sequential and variational (gtspecial issueltdata assimilation in
meteology and oceanography: Theory and practice). Journal of the Meteorological Society
of Japan. Ser. II, 75(1B):181–189, 1997.

[25] Jari Kaipio and Erkki Somersalo. Statistical and computational inverse problems, volume
160. Springer Science & Business Media, 2006.

[26] Barbara Kaltenbacher, Andreas Neubauer, and Otmar Scherzer. Iterative regularization
methods for nonlinear ill-posed problems, volume 6. Walter de Gruyter, 2008.

[27] Michel Kern. Numerical methods for inverse problems. John Wiley & Sons, 2016.

[28] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Andreas Kirsch. An introduction to the mathematical theory of inverse problems, volume
120. Springer Science & Business Media, 2011.

193

[30] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for
solving ordinary and partial differential equations. IEEE transactions on neural networks,
9(5):987–1000, 1998.

[31] F.X. Le Dimet and O. Talagrand. Variational algorithms for analysis assimilation of me-
teorological observations: theoretical aspects. Tellus A, 38:97–110, 1986.

[32] J.L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées par-
tielles. Dunod, 1968.

[33] J.L. Lions. Optimal control of systems governed by partial differential equations. Springer-
Verlag, 1971.

[34] JL Lions and R Dautray. Evolution problems i. mathematical analysis and numerical
methods for science and technology, vol. 5, 2000.

[35] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[36] GI Marchuk and VB Zalesny. A numerical technique for geophysical data assimilation
problems using pontryagin?s principle and splitting-up method. Russian Journal of Nu-
merical Analysis and Mathematical Modelling, 8(4):311–326, 1993.

[37] J. Monnier. Finite Element Methods & Model Reductions. INSA - University of Toulouse.
Open Online Course, 2022.

[38] Jennifer L Mueller and Samuli Siltanen. Linear and nonlinear inverse problems with prac-
tical applications. SIAM, 2012.

[39] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational physics, 378:686–707,
2019.

[40] Yoshikazu Sasaki. An objective analysis based on the variational method. J. Meteor. Soc.
Japan, 36(3):77–88, 1958.

[41] Yoshikazu Sasaki. Some basic formalisms in numerical variational analysis. Monthly
Weather Review, 98(12):875–883, 1970.

[42] Olivier Talagrand and Philippe Courtier. Variational assimilation of meteorological ob-
servations with the adjoint vorticity equation. i: Theory. Quarterly Journal of the Royal
Meteorological Society, 113(478):1311–1328, 1987.

[43] Albert Tarantola. Inverse problem theory and methods for model parameter estimation,
volume 89. siam, 2005.

[44] E. Trélat. Optimal control: theory and applications. Vuibert, Paris, 2008.

[45] Y. Trémolet. Incremental 4d-var convergence study. Tellus A, 59(5):706–718, 2008.

[46] Fredi Tröltzsch. Optimal control of partial differential equations: theory, methods, and
applications, volume 112. American Mathematical Soc., 2010.

194

[47] Curtis R Vogel. Computational methods for inverse problems. SIAM, 2002.

	I Inverse Problems: Basics Principles and Tools, Examples
	Inverse problems
	Direct - inverse?
	Examples
	General concepts
	Even the inversion of linear operators may not be trivial...
	Well-posedness, ill-posedness
	Direct - inverse models: reverse frequencies

	Basic tools
	Least-square solutions of regression problems, SVD
	Linear least-square problems
	Singular Value Decomposition analysis*
	Non linear least-square problems

	Ill-posed inverse problems: regularization
	Linear cases in small dimension: SVD truncation*
	General cases: Tikhonov's regularization
	L-curve for bi-objective optimization*
	Adaptative regularization & Morozov's principle*

	Real-world examples of inverse problems

	II Data Assimilation (DA): Sketch of Methods
	DA in a nutshell
	Data Assimilation (DA): what is it and why is it important?
	The different types of DA methods

	DA by sequential filters
	The Best Linear Unbiased Estimator (BLUE)
	A basic 1D example
	The BLUE in the general case
	Hessian, precision matrices
	Examples

	The Kalman Filter
	The linear dynamic model and observations
	The KF algorithm
	Examples
	Pros and cons of KF
	Extension to non-linear models and/or large dimensional problems: Ensemble KF (EnKF) and hybrid approaches

	DA by variational approach in simple cases
	Introduction
	The VDA formulation
	The (direct) model and the parameter-to-state operator
	The observation operator and the cost function
	The optimization problem

	Linear model, finite dimensional case
	Problem statement
	On the numerical resolution of the VDA problem
	Computing the cost function gradient j(u)
	A simple case: u in the RHS only

	Example
	A bit of history

	Bayesian inferences & equivalences in the Linear Gaussian case
	Bayesian analysis
	Founding calculations
	The most probable parameter u

	Assuming Gaussian PDFs
	Scalar / univariate case
	Vectorial / multivariate case*

	The Maximum A-Posteriori (MAP) in Gaussian cases: equivalences with the BLUE & the variational solution
	Computing the MAP
	Equivalences in the Linear Quadratic Gaussian (LQG) case

	Numerical computations
	Algorithm
	Pros and cons

	Examples

	DA by artificial neural networks
	Artificial Neural Networks (ANNs)
	Introduction
	ANNs structure
	ANNs training: the optimization problem
	Trained ANNs: surrogate models
	Optimization strategies and ANNs internal technics

	ANNs to solve u-parametrized equations
	Fully-parametrized ANN
	Semi-parametrized ANN

	Physics-Informed Neural Networks (PINNs)
	Basic formalism
	PINNs for direct modeling
	PINNs for inverse modeling

	Examples

	III Variational Approaches
	Optimal Control of ODEs
	Example: dynamic control of a vehicle
	The model
	Inverse problems

	Introductory remarks
	Control theory in a nutshell
	ODE solution behaviors: simple examples
	On the controllability of a system*

	The Linear-Quadratic (LQ) problem
	The general linear ODE-based model
	Quadratic cost functions
	Linear-Quadratic (LQ) optimal control problem

	Numerical methods for optimal control problems
	Two classes of numerical methods: direct, indirect
	Direct methods
	Numerical solution of the optimal vehicle dynamic

	Open-loop control: the Pontryagin principle & Hamiltonian
	Existence and uniqueness of the solution in the LQ case *
	The Pontryagin minimum principle
	The Hamiltonian
	Examples & exercises

	Closed-loop control: feedback law and the Riccati equation (LQ case) *
	Feedback law in the LQ case
	The optimal control theory: a solid basis for other contemporary technologies
	Towards non-linear cases

	Indirect methods (based on the Pontryagin principle) *
	The Boundary Value Problem
	Resulting numerical method
	Direct vs indirect methods

	The fundamental equations at a glance

	Optimal Control of Stationary PDEs: Adjoint Method, VDA
	General non-linear case in infinite dimension
	The direct model
	Examples
	The objective and cost function terms (misfit to data)
	Optimal control problem, VDA problem
	On the numerical resolution in the general context

	Back to mathematical foundations
	Differential calculus in infinite dimensions
	Weak forms and dual space representation
	Differential j'(u) vs gradient j(u)

	Equations derivation from the Lagrangian
	The Lagrangian
	The optimality system
	Using weak forms

	Mathematical purposes *
	Differentiability of the cost function
	Existence and uniqueness of the optimal control in the LQ case

	Gradient computation: methods for small dimension cases
	Recall: why and how to compute the cost function gradient?
	Computing the gradient without adjoint model
	Gradient components: in the weak or the classical form? *

	Cost gradient computation: the adjoint method
	Deriving the gradient expression without the term wu
	The general key result

	The VDA algorithm (3D-var)
	Gauss-Newton vs Quasi-Newton
	The 3D-Var algorithm

	The fundamental equations at a glance
	General continuous formalism
	Discrete formalism

	Applications to classical PDEs and operators
	Classical PDEs
	Adjoint of classical operators

	Practical aspects
	Validate your codes: computed gradients
	Twin experiments

	Regularization based on covariances operators*
	Introduction
	Change of parameter variable, preconditioning
	Equivalences between B-1-norms and regularization terms

	VDA for Time-Dependent PDEs
	The inverse formulation
	The general direct model
	Cost function terms: data misfit and regularizations
	The optimization problem

	Optimality equations in finite dimension (discrete forms)
	The optimality equations in infinite dimension (continuous forms)
	The TLM-based gradient
	The adjoint-based gradient

	The 4D-Var algorithm
	The fundamental equations at a glance
	Complexity reduction & incremental 4D-Var algorithm*
	Basic principles
	Incremental 4D-var algorithm
	On hybrid approaches

	Exercises
	Viscous Burgers' equation
	Diffusion equation with non constant coefficients

	Bibliography

