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Language At INSA Toulouse, this course is tough in GlobeEngliche (esperanto, in fact) excepted if all attendants understand French sufficiently well.

Goals of this course

-To revise, deepen the fundamentals numerical methods to solve inverse problem, -To learn the basics of the traditional Data Assimilation (sequential filters, variational) and Bayesian analysis and their connections, -To learn the connections between a piurely data-driven approach (based on Neural Networks) and the traditionnal DA methods, -To learn the bases of a Physically Informed Neural Network (PINNs) model, -To study more into detail the Variation Data Assimilation (VDA) method, -To design optimal control algorithms for systems governed by a PDE or an ODE, -To compute gradients of large dimensional model outputs by elaborating the adjoint method, -To learn to assess computational codes including the adjoint code and the resulting gradient, -To address real-like inverse problems by "optimally" combining the mathematical -physical equations (PDE models mainly), databases containing measurements of the phenomena and probabilistic priors, -To perform model calibration, parameter identification, local sensitivity analysis by assimilating the data into the model, -To identify (learn) model terms from accurate datasets. (Model Learning part).

At the end, the students are supposed to be able : -To set up and implement in Python a data assimilation formulation e.g. in (geophysical) fluid mechanics, structural mechanics, biology etc, given databases. -To compute large dimensional gradients by deriving the adjoint model and design the complete optimisation process, -To perform a model calibration, to estimate uncertain parameters by assimilating the data into the physical-based model, -To learn model terms (ODEs or PDEs) from (accurate) datasets. (Model Learning part).

Content Please consult the table of contents.

Numerous Python codes are provided to illustrate methods for solving inverse problems. 

Inverse problems

The outline of this chapter is as follows. 

Direct -inverse?

In the common sense, the term "model" denotes a direct model (also called "forward" model).

Figure 1.1: Representation of a direct model with its input variable ("parameter") u (a-priori vectorial) and its output variable y; and its inverse counterpart.

A direct problem based on the model operator M(.) consists to find (compute) a solution y given the input parameter u: find y, y = M(u).

The inverse problem consists to find u, given y i.e. to compute u = M -1 (y).

Numerous excellent books have been published on inverse problems, let us cite for example [START_REF] Curtis | Computational methods for inverse problems[END_REF][START_REF] Tarantola | Inverse problem theory and methods for model parameter estimation[END_REF][START_REF] Per | Discrete inverse problems: insight and algorithms[END_REF][START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Jennifer | Linear and nonlinear inverse problems with practical applications[END_REF][START_REF] Richard C Aster | Parameter estimation and inverse problems[END_REF].

Examples

Many examples are presented e.g. in [START_REF] Werner Engl | Regularization of inverse problems[END_REF][START_REF] Chavent | Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications[END_REF][START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Kern | Numerical methods for inverse problems[END_REF].

Example 1) The historical Lagrange interpolation problem. Find a polynomial p(x) of degree n, of coefficients (u 0 , • • • , u n ) that fit given values (y 1 , , ..., y n ) at some points (x 1 , ..., x n ). This Lagrange interpolation problem is actually the inverse problem of the following direct problem: calculate the given polynomial p(x) at the points (x 1 , ..., x n ). This example is somehow a problem of parameters identification, given the "model" p(u; x).

Example 2) A PDE-based identification problem. Let us consider a diffusion phenomena in a material. The non homogeneous diffusivity of the material (e.g. a conductivity of a biological tissue) is denoted by u(x). The model is the following. Given u(x) in the domain Ω, find the scalar quantity y(x, t) (e.g. an electrical field or wave intensity) satisfying:    ∂ t y(x, t) -div(u(x)∇y(x, t)) = 0 in Ω×]0, T [ y(x, 0) = y 0 (x)

in Ω y(x, t) = y d (x, t)

in ∂Ω×]0, T [

The initial condition y 0 and the value y d at boundary are given.

The direct problem consists to solve this classical Boundary Value Problem (BVP).

It is a well-posed problem (see later for exact meaning).

The inverse problem is as follows.

Given some boundary measurements of the field y(x, t) and the flux [u(x)∂ n y(x, t)] on ∂Ω, determine the unknown / uncertain diffusivity coefficient u(x) in the domain Ω.

The Electrical Impedance Tomography (EIT) problem This inverse problem described above corresponds to the impedance tomography problem. A particular case is the Electrical Impedance Tomography (EIT) problem.

" Electrical Impedance Tomography (EIT) is a noninvasive type of medical imaging in which the electrical conductivity, permittivity, and impedance of a part of the body is inferred from surface electrode measurements and used to form a tomographic image of that part" (from Wikipedia page). See eg. Fig. 1.2.

In the context of Electrical Impedance Tomography (EIT), the inverse problem aims at recovering conductivity (and permittivity) inside a body from surface measurements of electrical currents and potentials.

It is potentially an ill-posed problem, depending on the assumptions, see e.g. [L. Borcea, Inv. Problems (2002)].

EIT problem is still an active research problem; it still poses challenging questions for mathematicians, numericians and experimentalists. This problem is discussed in detail e.g. in [START_REF] Jennifer | Linear and nonlinear inverse problems with practical applications[END_REF]. Similar inverse problem in other real-world context Inverse problems based on similar diffusive equation arise in hydrology for example. The reader may consult e.g. [START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Jennifer | Linear and nonlinear inverse problems with practical applications[END_REF][START_REF] Richard C Aster | Parameter estimation and inverse problems[END_REF] to read other standard instructive inverse problems in various technological contexts. Mathematical models are generally PDEs or integral equations.

Other complex examples and real-world are presented in next chapter, in particular the inverse problem in spatial hydrology which is analysed into detail throughout the manuscript.

General concepts Basic formalism

In real-world problems, the measurements, denoted by z obs (z obs ≡ y obs if the observations are directly the model outputs), are almost always incomplete, sparse or inaccurate.

Moreover since the direct model represented by the operator M is un-perfect, measurements actually satisfies:

y obs = M(u) + ε (1.2)
with ε a global error term incorporating both the observation errors and the structural model error:

ε = ε obs + ε mod .
ε is defined as a stochastic field following an a-priori distribution, actually Gaussian when no other information is available.

We have assumed here that the observations are directly the model outputs: z obs = y obs .

1.3.1 When inverting linear operators may be not trivial...

In the linear case, the direct model is represented by a matrix M . Naïvely solving the inverse problem as u = (M -1 y obs ) may not work for few reasons. Two trivial ones are:

-observations y obs can be not numerous enough therefore providing an undetermined problem, -the error term ε can be unknown.

Moreover a third reason is due to the fact that the inverse operator M -1 can be ill-conditioned (small variations of y implies large variations of u).

Note that M well-conditioned direct model implies that M -1 ill-conditioned (and conversely). Indeed, the 2-norm condition number reads: κ 2 (M ) = max i |λ(M )| min i |λ i (M )| , λ i the eigenvalues. Moreover, λ i (M -1 ) = (λ i (M )) -1 . Therefore the statement. "Mathematically invertible" does not mean "numerically easily invertible"... In all the sequel, we define the control-to-state operator M (also called here the "model operator") as follows:

M : u ∈ U → y ∈ Y (1.3)

Well-posedness, ill-posedness

In the Hadamard sense 1 , a model is well-posed if the following conditions hold: i) it admits an unique solution, ii) the solution depends continuously on the data or input parameters.

The first condition i) (existence and uniqueness) is related to the functional space the solution is sough in.

The second condition ii) is a stability condition. This property is crucial too. Indeed, if this condition is not satisfied then any measurement or numerical error generates large errors in the model response i.e. a highly perturbed solution.

In all the sequel, it will be assumed that the direct model is well-posed. This is a necessary condition to go further ! Assumption ii) may be re-read as follows: the control-to-state operator M is continuous.

Even if the direct problem is well-posed, the inverse problem is often severely ill-posed ! In practice, an ill-posed inverse problem is extremely sensitive to any uncontrolled input perturbation such as measurement errors, model error, discrepancy between data scale and model scale etc

Note that thanks to the open mapping theorem, see e.g. [9]: If M is linear and continuous with U and Y Banach spaces, then the inverse model operator M -1 is continuous.

Ill-posed inverse problems are somehow the opposite of well-posed direct problems. Direct problems are usually the way that can be solved easily (compared to the inverse problem). Actually, direct and inverse models are back-and-forth transmission of information between u and y.

Roughly, if the direct model operator maps causes to effects, the inverse operator maps the effects to the causes. In science and engineering, inverse problems often consist to determine properties of unmeasurable quantities (in space and/or in time).

The observations (data, measurements) are generally far to be complete or even accurate. Poor observations, both in quantity and quality, is one of the source of difficulties to solve inverse problems.

Exercise. Propose a PDE-based model which is well-posed in the Hadamard sense.

An answer: linear elliptic BVPs, coercitive in a Hilbert space V , may be well-posed in vertu of the Lax-Milgram theorem.

Direct -inverse models: reverse frequencies

In real-world problems, the direct models generally represent the lowest frequencies of the modeled phenomena: min i |λ(M )| is relatively large compared to noise frequencies. The most energetic modes of the Fourier representation of a signal (e.g. y(u) the direct model output) are the lowest frequencies. Noises are high frequencies (therefore not energetic). As a consequence, the highest frequencies of y(u) are the lowest frequencies of k(y). Separating noise from the inverse model image is then a difficult task. 

Basic tools

The outline of this chapter is as follows. Linear Regression is likely the most employed approximation technique, dating (at least) from I. Newton and J. Cassini in the 1700's.... Today, it remains widely used to fit parametrized curves to experimental data. Thus, it still may be qualified as the simplest form of the modern Machine Learning technique... 11

Linear least-square problems

Let assume that we have m measurements (z i ) 1≤i≤m we seek to describe by a "model".

To do so, we choose to consider the following linear model with n unknown parameters (u i ) 1≤i≤n :

   a 11 u 1 + ... + a 1n u n = z 1 ... = ... a m1 u 1 + ... + a mn u n = z m 4 We denote: A = (a ij ) 1≤i≤m,1≤j≤n the chosen linear transformation (the linear model is given). A is a m × n-matrix, z ∈ R m the observation vector and u ∈ R n the unknown input parameter vector. This is a identification parameter problem. This problem reads as:

Given A ∈ R m×n and z ∈ R m , find u ∈ R n such that: Au = z (2.1)
In the case there is as much parameters u i as observations z k (yes, that sounds weird...), i.e. n = m, the model is well-posed if and only if A is a full-rank matrix. In this case, it exists a unique set of parameters u describing exactly the data.

Still in the case n = m but if the model is ill-posed in the sense rank(A) < n, then it exists solutions but they are not unique. In this case, the kernel of A, Ker(A), contains non zero vectors v such that: Av = 0. If u * is a solution then (u * + v) with v ∈ Ker(A) is also solution.

In practice there is no reason to have n = m !...

In the case n > m i.e. in the unlikely case there is more input parameters than observations, the system is under-determined. Generally, it exists solutions but they are non-unique.

In the case n < m i.e. in the usual case there is less input parameters than observations, the system is over-determined. A-priori it does not exist any solution fitting all data. Indeed, with m input parameters, it can exist a unique solution making fit the observations; but what about the extra (n -m) "constraint equations" ? Least-square solution(s)

Instead of seeking a solution satisfying each equation above (i.e. a solution making fit exactly all the observations), it is interesting to find a solution satisfying "at best" the system; in other words, a solution u minimizing the norm Au -z .

Of course the choice of different norms will lead to different solutions... An easy choice of norm is the Euclidian norm . 2 since it is associated to a scalar product on contrary to the norms . 1 and . ∞ for example.

Then the problem becomes:

Find u * ∈ R n such that:

j(u * ) = min R n j(u) with j(u) = 1 2 Au -z 2 2,m (2.2) 
It is an unconstrained optimization problem in a convex set.

The functional j reads: j(u) = 1 2 (A T Au, u) -(Au, z) + 1 2 (z, z). j is quadratic, convex since A T A is positive, hence j admits a minimum in R n . Furthermore, if A T A is definite (it means n ≤ m and A is full rank, dim(Im(A) = m) then the solution is unique. The gradient of j reads: ∇j(u) = A T Au -A T z. Then, the solution u has to satisfy the necessary optimal condition:

A T Au = A T z (2.3)
This is the normal equations.

Examples

The reader can find numerous well documented examples with corresponding Python codes available on the web, e.g. on the https://towardsdatascience.com web site1 .

A very basic example Below is presented a very basic simple. Data in (x,y) are generated (synthetic dataset). The matrix A is assembled by stacking x and a column of ones. The least squares solution is computed (linear algebra). The data points along with the fitted curve obtained from the least squares solution are plotted.

# B a s i c example o f l e a s t -s q u a r e s o l u t i o n a p p r o x i m a t i n g a s e t o f s c a l a r v a l u e s im po rt numpy a s np im po rt m a t p l o t l i b . p y p l o t a s p l t # G e n e r a t e some s y n t h e t i c data : l i n e a r g e n e r a t i o n ! To be c o m p l e x i f y . . . x = np . l i n s p a c e ( 0 , 1 , 1 0 1 ) y = 1 + x + x * np . random . random ( l e n ( x ) )

# Assemble m a t r i x A A = np . v s t a c k ( [ x , np . o n e s ( l e n ( x ) ) ] ) . T # Perform l e a s t s q u a r e s r e g r e s s i o n a l p h a = np . dot ( np . l i n a l g . i n v ( np . dot (A. T, A) ) , np . dot (A. T, y [ : , np . n e w a x i s ] ) )

# P l o t t h e data p o i n t s a l o n g with t h e l e a s t s q u a r e s r e g r e s s i o n p l t . p l o t ( x , y , ' ro ' , l a b e l ='Data ' ) p l t . p l o t ( x , np . dot (A, a l p h a ) , ' k--', l a b e l =' F i t ' ) p l t . x l a b e l ( ' x ' ) ; p l t . y l a b e l ( ' y ' ) ; p l t . t i t l e ( ' L e a s t s q u a r e s r e g r e s s i o n ' ) p l t . l e g e n d ( l o c =' upper l e f t ' ) p l t . show ( )

Full rank case* This paragraph is a "not compulsory" one.

In the case A full rank (i.e. dim(Im(A)) = m), then the solution is unique since A T A is symmetric positive definite. Even if A sparse, then A T A is a-priori non sparse; also u 2 (A T A) = (u 2 (A)) 2 , hence the normal equations can be an ill-conditioned system. Then, a good algorithm to solve the normal equations is a-priori not the Cholesky algorithm, especially if m large.

Remembering that the 2-norm is preserved under orthogonal transformations, a better option is to solve the following equivalent system:

min u∈R n 1 2 QAu -Qz 2 2,m
with Q an orthogonal matrix. By performing QR-factorizations (Householder's method), the resulting linear system to be inverted is a triangular n × n system, with its original conditioning number K 2 (A) preserved.

Singular Value Decomposition analysis*

This section is a "not compulsory" section.

The Singular Value Decomposition (SVD) is a widely employed and powerful technique used in linear algebra and data analysis. It can be applied to solve inverse problems, such as image reconstruction, noise reduction, system identification etc. SVD is an important tool to analyze linear inverse problems. It is the central tool to build up reduced models by the Proper Orthogonal Decomposition (POD) method and computing PCA.

Let us recall what is the Singular Value Decomposition (SVD) of a matrix A.

Recalls on the SVD

Given a rectangular m × n-matrix A, rank(A) = r < m, the SVD of A reads, see e.g.[]:

A = V Σu T = r i=1 σ i v i u T i
where:

. Σ is the r × r-diagonal matrix containing the singular values σ i of A:

(σ i ) 2 = λ i (A T A) = λ i (AA T ) for all λ i = 0, 1 ≤ i ≤ r 0 < σ r ≤ ... ≤ σ 1 . V = (V 1 , .
.., V r ), m × r-matrix, contains the unit orthogonal eigenvector basis of AA T : (AA T )V = V Σ 2 with V T V = I r ,

. W = (W 1 , ..., W r ), n × r-matrix, contains the unit orthogonal eigenvector basis of A T A:

(A T A)W = W Σ 2 with u T W = I r .
The vectors of V constitute an unit orthogonal basis of Im(A) ⊂ R m , while the vectors of W constitute an unit orthogonal basis of Ker T (A) ⊂ R n .

From the SVD, a pseudo-inverse (also called generalized inverse) of the rectangular matrix A can be defined as follows:

A -1 = W Σ -1 V T
The SVD provides optimal low-rank approximations to matrices. Indeed, we have:

Theorem 2.1. (Eckart-Young theorem). The r-rank SVD truncation of a m × n-matrix A is the optimal rank approximation to A in the least-squares sense. Indeed, the matrix A k = n i=1 σ i v i w T i with k ≤ r is optimal in the following sense:

A -A k F = min B∈R m×n , rank(B)≤k A -B F =   r m=(k+1) σ 2 m   1/2
where • F denotes the Frobenius norm.

Linear least-square & SVD

Let us go back the linear least-square problem. In (2.2), the residual to be minimized satisfies:

Au -z 2 2,m = V T (V Σu T u -z) 2 2,m = Σu T u -V T z 2 2,m
since V is an orthogonal matrix. Therefore the least-square solution formally reads:

u * = A -1 z = W Σ -1 V T z = r i=1 (σ i ) -1 v T i w i z (2.4)
with the singular values σ i ordered in decreasing order (decreasing gradually to 0).

Let us point out a few consequences of this expression.

• Smaller singular values are, greater they amplify the errors contained in the given RHS (the data) z. Vanishing singular values produce instabilities in the computation of the inverse problem solution u * above.

• The more the number of singular values are taken into account (from 1 to r at maximum), the more data errors ("noise" contained in data z) are amplified.

• The SVD provides a hierarchical approximation (potentially low-dimensional) to the inverse problem solution in the eigenvectors coordinate system.

A way to "regularize" an ill-posed linear inverse problem, consists to "stabilize" this estimation by simply truncating the sum at a given order r 0 < r. However, r 0 has to be not too large, not too small...

No universal criteria exist to quantify a good truncation rank r 0 . This has to be empirically determined from expertise and potentially on error criteria such as u r 0 -u * / u * in a given norm (typically the 2-norm or the ∞-norm).

Examples

The reader can find numerous well documented examples with corresponding Python codes available on the web, e.g. on the https://towardsdatascience.com web site2 .

A basic example Below is presented a very basic simple. A noisy signal (consisting of a sinusoidal wave with added Gaussian noise) is first generated. We then perform a SVD on the signal. By selecting a subset of singular values (the first k singular values), we can reconstruct the signal. The original and reconstructed signals are plotted.

# SVD t o r e c o n s t r u c t a 1D s i g n a l im po rt numpy a s np im po rt m a t p l o t l i b . p y p l o t a s p l t # G e n e r a t e a n o i s y s i g n a l t = np . l i n s p a c e ( 0 , 1 , 1 0 0 ) s i g n a l = np . s i n ( 2 * np . p i * 5 * t ) + np . random . normal ( 0 , 0 . 1 , 1 0 0 ) # Perform SVD U, S , V = np . l i n a l g . svd ( s i g n a l )

# R e c o n s t r u c t t h e s i g n a l u s i n g a s u b s e t o f s i n g u l a r v a l u e s k = 10 r e c o n s t r u c t e d s i g n a l = U [ : , : k ] @ np . d i a g ( S [ : k ] ) @ V [ : k , : ] # P l o t t h e o r i g i n a l and r e c o n s t r u c t e d s i g n a l s p l t . f i g u r e ( f i g s i z e =(8 , 4 ) ) p l t . p l o t ( t , s i g n a l , l a b e l =' O r i g i n a l S i g n a l ' ) p l t . p l o t ( t , r e c o n s t r u c t e d s i g n a l , l a b e l =' R e c o n s t r u c t e d S i g n a l ' ) p l t . x l a b e l ( ' Time ' ) ; p l t . y l a b e l ( ' Amplitude ' ) ; p l t . t i t l e ( 'SVD A p p l i e d t o an I n v e r s e Problem ' ) p l t . l e g e n d ( ) p l t . show ( )

Non linear least-square problems

Let us consider the same problem as previously: set up a model describing "at best" m available data z i , 1 ≤ i ≤ m but based on a non-linear model. In this case, the corresponding least-square formulation reads:

j(u * ) = min R n j(u) with j(u) = 1 2 M (u) 2 2,m (2.5) 
with

M defined from R n into R m , M non linear in u.
Again, it is an unconstrained optimization problem in a convex set.

In the previous linear case, M was equal to: M (u) = Au -z.

Note that neither the existence of a solution, nor its uniqueness is guaranteed without assumptions on the non-linear operator M (•) and/or the space solutions.In a nutshell, non-linear problems are much more difficult than linear ones. Below, and more generally in this course, one consider heuristic computational algorithms only.

Examples

Below a very few examples of non linear least-square problems. Many other examples can be found e.g. in [START_REF] Chavent | Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications[END_REF] or e.g. on the https://towardsdatascience.com web site.

Example: standard fitting problem The goal is to fit at best a (dense) dataset; the regression problem plotted in Fig. 2.2(L).

The chosen functional ("model") is:

j(u 1 , • • • , u 4 ) = u 1 exp(u 2 x) cos(u 3 x + u 4
) with the four parameters u i , i = 1, . . . , 4, to identify. Example: classification problem A basic way to solve a binary classification problem is to solve the non-linear least square problem defined by:

j(u 1 , • • • , u p ) = m i=1 (Φ(u 1 f 1 (x i ) + • • • + u p f p (x i )) -d i ) 2
where the functions f j (•) are given. Φ(u) is he sigmoidal function; Φ(u) = exp(u)-exp(-u) exp(u)+exp(-u) . Φ is a differentiable function approximating the sign function, Fig. 2

.2(R).

Example: The location problem by Global Navigation System Satellites (GPS, Galileo etc ). The location problem by Global Navigation System Satellites (GNSS) consists to estimate x, x ∈ R 3 (the location value). The measurements are distances d obs i from given locations a i with i = 1, • • • , m (the m satellites):

d obs i = a i -x exact 2,R 3 + ε i i = 1, .
., m where ε denotes a noise (the inacurracy of the measurements).

The least-square problem to be solved is:

min x∈R 3 j(x) (2.6) with: j : R 3 → R, j(u) = a i -u 2,R 3 -d obs i 2 2,R m = m i=1 a i -u 2,R 3 -d obs i 2
The functional j(•) is non convex, see Fig. (L) The graph of j(u), non convex functional in u. (R) Iso-values of j(u), data, exact solution and the least-square one.

Another example of approximation with the corresponding Python code Below is presented a basic example. We consider a nonlinear model function model(x, params). The data are generated as the "true" model output plus some Gaussian noise. We then define an objective function objective(params) that computes the difference between the observed data and the model predictions for a given set of parameters. Finally, the nonlinear least squares fit is obtained by using the least squares function from SciPy. The solutions are plotted.

# A non l i n e a r s q u a r e a p p r o x i m a t i o n problem im po rt numpy a s np im po rt m a t p l o t l i b . p y p l o t a s p l t from s c i p y . o p t i m i z e im por t l e a s t s q u a r e s # D e f i n e t h e f u n c t i o n t o be f i t # Perform t h e n o n l i n e a r l e a s t s q u a r e s f i t i n i t i a l p a r a m s = [ 0 . 2 , 0 . 2 ] r e s u l t = l e a s t s q u a r e s ( o b j e c t i v e , i n i t i a l p a r a m s ) 

Optimality condition: derivatives calculations

The necessary first order optimality condition for the general non-linear square problem (2.5) reads:

∇j(u) = 0 (2.7)
We have:

j(u) = 1 2 M (u) 2 2,m .
Let us denote the Jacobian of M as follows:

DM (u) = ∂M i ∂u j (u) 1≤i≤m,1≤j≤n
The Hessian for each model component

M i (u), 1 ≤ i ≤ m is denoted as follows: D 2 M i (u) = ∂ 2 M i ∂u l ∂u j (u) 1≤l≤m,1≤j≤n
.

Then, the gradient and the Hessian of j(u) read:

∇j(u) = DM T (u)M (u) H j (u) ≡ D 2 j(u) = DM T (u)DM (u) + m i=1 M i (u)D 2 M i (u)
Let us remark that in the linear case, the gradient read: ∇j(u) = A T M (u) = A T (Au -z) and the Hessian reads: H j (u) = A T A since the term D 2 M i in the Hessian expression vanishes.

Exercise 2.2. Verify the expression of the gradient and the Hessian above.

Gauss-Newton method, Levenberg-Marquardt method

The Newton algorithm applied to the optimality condition ∇j(u) = 0 consists to solve at each iteration:

H j (u n ) • δu = -∇j(u n ) ; u n+1 = u n + δu
Newton's algorithm requires the computation and the inversion of the Hessian of j.

For complex real-world models, the computation of H j is often prohibitive because too complex or too CPU-time consuming.

Exercise 2.3. Verify that the Newton algorithm applied to the equation (∇j(u) = 0) reads as above.

The principle of the Gauss-Newton method is to consider in the Newton method by approximating the Hessian by omitting the second order term:

H j (u) ≈ DM T (u)DM (u) ≡ Hj (u) (2.8)
This gives at each iteration:

Hj (u) • δu = -∇j(u n ) ; u n+1 = u n + δu (2.9) with (recall) ∇j(u n ) = DM T (u n )M (u n ).
Note that the linear system to be inverted is symmetric positive, and definite if DM (u n ) is full rank.

The Gauss-Newton method is observed to be very efficient if DM T (u n ) is full rank and if M (u) small when close to the solution. On the contrary it becomes inefficient if these two conditions are not satisfied and/or if the model is locally "far to be linear" i.e. if the term

m i=1 M i (u)D 2 M i (u) is non negligible (or even worse, dominant).
Finally, a good alternative method to solve non-linear least square problems is the Levenberg-Marquardt algorithm, see e.g. [START_REF] Richard C Aster | Parameter estimation and inverse problems[END_REF]. This algorithm is somehow a damped version of the Gauss-Newton method. It can be seen as the combination of a descent algorithm, next the Gauss-Newton algorithm as above.

Ill-posed inverse problems: regularization

In the simple least-square problem (2.1), if the matrix A is full rank that is dim(Im(A)) = m then the least-square solution, solution of the normal equations (2.3), is unique.

However, even if A is full rank, the system may be ill-conditioned typically because the smallest eigenvalue is extremely small3 . This issue is frequent when tackling real-world problems.

Then, in order to better solve the inverse problem, to select a solution with desirable properties, one "regularizes" the inverse problem. This consists to seek a solution presenting some minimal regularity ("smoothness").

In a mathematical point of view, this implies to seek the solution in a smaller functional space. For example, given a bounded geometry Ω, the function space C 1 (Ω) is strictly included into the bounded function space L ∞ (Ω). C 1 (Ω) functions are smoother than L ∞ (Ω) ones.

Linear cases in small dimension: SVD truncation*

This is a "to go further section"

In the case of a discrete linear problem, the SVD truncation is a good way to regularize the computed solution u as already discussed in Section 2.1.2.

However, computing the SVD of a linear operator may be not affordable for large scale problems. Moreover, the SVD decomposition does not apply to non linear operators.

Regularizing non-linear or simply large scale problems is a wide and difficult topic. The reader may consult excellent books e.g. [START_REF] Werner Engl | Regularization of inverse problems[END_REF][START_REF] Kaltenbacher | Iterative regularization methods for nonlinear ill-posed problems[END_REF][START_REF] Per | Discrete inverse problems: insight and algorithms[END_REF][START_REF] Kirsch | An introduction to the mathematical theory of inverse problems[END_REF][START_REF] Richard C Aster | Parameter estimation and inverse problems[END_REF] which adresses this topic in different manners.

General cases: Tikhonov's regularization

A. Tikhonov, Russian mathematician, 1906Russian mathematician, -1993)). Note this method may be due to Phillips and Miller too.

The most classical method to regularize large dimensions optimization problems (u ∈ R m with m large) consists to add the so-called Tikhonov's regularization term or variants. This approach consists to compute u * ∈ R n such that j α (u * ) = min R n j α (u) with the following enriched cost function:

j α (u) = 1 2 Au -z 2 2,m + α reg 1 2 Cu 2 2,n (2.10) 
where α reg is a positive scalar (the weight) making the balance between the two terms.

C is a linear operator (a matrix).

The added regularization term is convex, differentiable.

The simplest choice for C is C = Id. In the present linear case (A is linear operator), this provides the least-square solution with the minimal 2-norm.

The solution of the corresponding normal equations reads:

u * ≡ u reg = (A T A + α 2 reg C T C) -1 • A T z
Tikhonov like regularization term helps prevent overfitting by penalizing large parameter values and promoting solutions with smaller parameter magnitudes.

The larger the regularization parameter, the stronger the penalty on large parameter values. By including the Tikhonov regularization term in the objective function, the optimization algorithm seeks to find a balance between minimizing the error between the model predictions and the observed data and minimizing the magnitude of the parameter vector. 

Example (with the corresponding Python code)

Below is presented a basic example where a nonlinear model function model(x, params) is defined. A regularization function regularization(params, alpha) that computes the Tikhonov regularization term given a set of parameters and a regularization parameter alpha is also defined. We generate some noisy data by adding Gaussian noise to the true model output. We then define an objective function objective(params) that computes the difference between the observed data and the model predictions for a given set of parameters. Finally, we use the least squares function from SciPy to perform the nonlinear least squares fit with Tikhonov regularization by appending the regularization term to the objective function. The different fields are plotted.

# M i n i m i z a t i o n by Levenberg-Marquardt o f a f u n c t i o n a l e n r i c h e d with a Tykhonov r e g u l a r i z a t i o n term . # The w e i g h t p a r a m e t e r may be b e t t e r be tuned . . . im po rt numpy a s np im po rt m a t p l o t l i b . p y p l o t a s p l t from s c i p y . o p t i m i z e im por t l e a s t s q u a r e s # D e f i n e t h e f u n c t i o n t o be f i t # Perform t h e n o n l i n e a r l e a s t s q u a r e s f i t with Tikhonov r e g u l a r i z a t i o n i n i t i a l p a r a m s = [ 0 . 2 , 0 . 2 ] a l p h a = 0 . 0 1 # Tikhonov r e g u l a r i z a t i o n p a r a m e t e r r e s u l t = l e a s t s q u a r e s ( lambda params : np . append ( o b j e c t i v e ( params ) , r e g u l a r i z a t i o n ( params , a l p h a ) ) , i n i t i a l # E x t r a c t t h e f i t t e d p a r a m e t e r s f i t t e d p a r a m s = r e s u l t . x # G e n e r a t e t h e f i t t e d c u r v e y f i t t e d = model ( x , f i t t e d p a r a m s ) # P l o t t h e o r i g i n a l data and t h e f i t t e d c u r v e p l t . f i g u r e ( f i g s i z e =(8 , 4 ) ) p l t . p l o t ( x , y n o i s y , ' bo ' , l a b e l =' Noisy Data ' ) p l t . p l o t ( x , y t r u e , ' g -' , l a b e l =' True Curve ' ) p l t . p l o t ( x , y f i t t e d , ' r -' , l a b e l =' F i t t e d Curve ' ) p l t . x l a b e l ( ' x ' ) ; p l t . y l a b e l ( ' y ' ) ; p l t . t i t l e ( ' N o n l i n e a r L e a s t S q u a r e s F i t with Tikhonov R e g u l a r i z a t i o n ' ) p l t . l e g e n d ( ) p l t . show ( )

A few comments

In statistics, the Tikhonov regularization is called the ridge regression method.

In Machine Learning (ML), it corresponds to the so-called weight decay method. The Tikhonov's regularization term can be easily added even in large-scale optimization problems.

In real-world modeling problems, the regularization operator C is often defined as a differential operator (e.g. gradient operator) or as a Fourier operator e.g. aiming at filtering high frequencies.

Indeed, it turns out that numerous real-world phenomena (therefore the models) have the effect of low-pass filtering. As a consequence, the inverse operator acts as a high-pass filter....

Recall that the eigenvalues (or singular values) are the largest in the reverse mapping when they are the smallest in the forward mapping.

Amplifying high frequency is not a desirable feature since it amplifies noise and uncertainties e.g. noise in data measurements. As a consequence, regularization operators play a crucial role in inverse problem formulations.

Remark 2.4. Other regularization terms can be considered in particular in L q -norm with q = 1.

In this case, the regularization term is: α reg Cu 1 .

The case q = 1 is highly interesting because of the compress sensing property of 1-norm, see e.g. [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. The use of 1-norm provides a convex regularization but not differentiable therefore leading to non-differential convex optimization problems. Obviously this is no longer least square problems.

In the simplest case α reg u 1 , this leads to the so-called LASSO problem.

Setting the weight coefficient α reg value: an empirical but crucial choice

The weight parameter value α reg tunes the balance between the misfit to data and the smoothness of the solution. The solution of the inverse problem (highly) depends on this coefficient, however its "best value" is a-priori unknown... Setting the value of α reg is a crucial step of the inverse problem solving. Various methods exist in the literature to set up the value of α reg . Among them, let us mention: the simple discrepancy principle (also called Morozov's principle), generalized cross-validation and the L-curve method.

For details the reader may consult e.g. [START_REF] Per | Discrete inverse problems: insight and algorithms[END_REF] Chapter 5 or [P. C. Hansen, Ranu-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, 1998].

The L-curve concept is briefly described in next paragraph.

L-curve for bi-objective optimization*

This is a "to go further section"

Let us consider the minimization problem u * = arg min u j(u) with:

j(u) = j obs (u) + α reg j reg (u)
The introduction of the regularization term j reg (u) leads to a bi-objective optimization.

As already mentioned, the weight parameter value α reg has to be a-priori set. Obviously the computed optimal solution depends on α reg .

No magic criteria nor method exist to determine an optimal value of α reg .

The weight coefficient α reg has to respect a "good" trade-off between the two terms j misf it (•) and j reg (•).

In the case of large dimensional problems, an expertise of the modeled phenomena likely remains a good manner to determine an optimal value of α reg ... The so-called L-curve enables to visualize this trade-off.

Concept of L-curve

The L-curve is a concept in bi-objective optimization that helps visualize the trade-off between two conflicting objectives, see Fig. 2.6.

It is a graphical representation of the Pareto front (which is, recall, the set of all non-dominated solutions in a multi-objective optimization problem).

In bi-objective optimization, the goal is to find a set of solutions that are not dominated by any other better solutions. The L-curve shows the relationship between the two objectives and helps the modeler understand the trade-offs involved in satisfying the two objectives... Example of L-curve (with the corresponding Python code)

Let us consider the following basic optimization problem in R 2 :

min x f 1 (x) = 100(x 2 1 + x 2 2 ) and max x f 2 (x) = -(x 1 -1) 2 -x 2 2
such that:

g 1 (x) = 2(x1 -0.1)(x1 -0.9) ≤ 0 , g 2 (x) = 20(x1 -0.4)(x1 -0.6) ≥ 0 -2 ≤ x 1 ≤ 2 , -2 ≤ x 2 ≤ 2
This optimization problem has two objectives functions which are subject to two inequality constraints. The goal is to find the set of solutions that optimize both objectives while satisfying the constraints. To visualize the trade-off between the objectives, we can try to analyse plot the L-curve. This is what the Python code below does (using the pymoo library). x " , prob = 0 . 9 , e t a =15) , mutation=g e t m u t a t i o n ( " r e a l p m " , e t a =20) , ) r e s = m i n i m i z e ( problem , a l g o r i t h m ) # P l o t t i n g t h e L-c u r v e im po rt m a t p l o t l i b . p y p l o t a s p l t p l t . s c a t t e r ( r e s . F [ : , 0 ] , r e s . F [ : , 1 ] ) p l t . x l a b e l ( " O b j e c t i v e 1 " ) ; p l t . y l a b e l ( " O b j e c t i v e 2 " ) ; p l t . t i t l e ( " L-c u r v e " ) p l t . show ( )

Adaptative regularization & Morozov's principle*

This is a "to go further section" Firstly let us note that the truncation order in the Truncated SVD, see (2.4), plays a similar role to the regularization parameter α reg in Tykhonov's regularization, see e.g. [START_REF] Per | Discrete inverse problems: insight and algorithms[END_REF] Chapter 4 for further discussions. In particular , the regularization parameter α reg tending to 0 plays a similar role to the truncation rank tending to the maximal value. Moreover, Tykhonov's regularization is convergent in the sense that u reg converges to solution u * when α reg tending to 0 under certain conditions, see e.g. [START_REF] Werner Engl | Regularization of inverse problems[END_REF] Chapter 10 for details and proofs.

Adaptive regularization strategy is an approach used in numerical optimization to improve the performance of optimization algorithms. It involves adjusting the regularization parameter during the optimization process to achieve better results. The success of this regularization approach heavily depends on the Tikhonov parameter tuning strategy but also on the dimension of the projection subspace.

If defining the weight parameter α > 0 of the regularization term4 is set as a decreasing sequence as

α (0) > • • • > α (n) > 0, n = 1, • • • , n * ,
then the optimization procedure may be faster and more accurate, see e.g. [START_REF] Werner Engl | Regularization of inverse problems[END_REF][START_REF] Kaltenbacher | Iterative regularization methods for nonlinear ill-posed problems[END_REF] and references therein.

Let us consider the unperturbed ("perfect") estimation problem: z obs = M (u). Given a noise level ε, u ε denotes the solution of:

z ε obs = M (u ε ) + ε (2.11)
The stop iteration number n * (ε) may be chosen through the Morozov' discrepancy principle which reads: The weight parameter sequence α (n) may be defined for example as, see e.g. [START_REF] Kaltenbacher | Iterative regularization methods for nonlinear ill-posed problems[END_REF] Chapter 4 for further discussions:

τ 1 ε ≤ z ε obs -M (u ε n * ) ≤ τ 2 ε (2.12) with 1 ≤ τ 1 < τ 2 .
α (n) = α (0) q [n/n 0 ] , n = 1, • • • , n * (2.13)
where n 0 > 1 is the number of iteration for each α (n) , [m] returns the maximum integer smaller than m, α (0) and q are given constants, α (0) > 0, 0 < q < 1.

The values of α (0) , q, n 0 are chosen experimentally e.g. as: q = 0.5, n 0 = 5 and α 0 = 1.

The stop iteration n * may be then chosen according to (2.12). # D e f i n e t h e Tikhonov f u n c t i o n a l and t h e p e n a l t y term a l p h a = 0 . 1 # I n i t i a l g u e s s f o r a l p h a q = 2 # Power f o r t h e norm i n t h e f u n c t i o n a l P s i = lambda x : np . l i n a l g . norm ( x , ord=q ) * * q # Apply t h e Morozov ' s d i s c r e p a n c y p r i n c i p l e tau1 = 0 . 5 # Lower bound f o r t h e d i s c r e p a n c y tau2 = 2 . 0 # Upper bound f o r t h e d i s c r e p a n c y w h i l e True : # S o l v e t h e r e g u l a r i z e d problem x a l p h a = np . l i n a l g . s o l v e (M( x t r u e ) . T @ F( x t r u e ) + a l p h a * P s i ( x t r u e ) , F( x t r u e ) . T @ z n o i s y ) 

Example of application of the

#

Real-world examples of inverse problems

The outline of this chapter is as follows. 

The challenge and model choice to solve it

The considered challenge consists to estimate rivers bathymetry from surface observations. The latter may be in-situ cameras distributed with a certain density or from space (with a coarser accuracy and frequency), see Fig. 3.1.

Any river flow dynamic model requires the bathymetry knowledge. However, rivers bathymetry are unknown or uncertain for a large majority of rivers in the world. The goal is here to infer the bathymetry from water surface elevation knowledge at certain locations.

Water surface elevations are now measured for numerous rivers of our planet from satellites like the SWOT instrument (NASA-CNES mission, launched in 2022). The SWOT instrument measures water free surface elevations H at ≈ 1 km scale with ±10cm uncertainty, at ≈ 11 days frequency. Technologically speaking this is revolutionary. In a mathematical point of view, this is quite "large" scale measurements (≈ 10 3 m) compared to the expected flow model scale (≈ 10 m). This last feature add additional difficulties to solve the problem. 

Inversions require to be based on an adequate direct model

In inverse modelling, generally the more complete the model is, the more difficult its inversion is. Also, the a-priori natural direct models may be inadequate for the considered inverse problem. Model invertibility depends on the available data.

Let us investigate this question in the present case.

Hierarchical flow models When modeling a fluid or structure dynamics system for example, the first laws to understand are the basic equilibrium laws. In the river flows case, it is the Gauckler-Manning-Strickler law. Let us consider a 1D river flow model. The key characteristic of a river flow is its discharge; it is denoted by Q ([m 3 s -1 ]).

Under the river geometry assumption above, assuming the rivers are quite large, the basic equilibrium flow law reads:

Q = KAh 2/3 √ S (3.1)
where K is the Strickler parameter ([m 1/3 s -1 ]). Given the altimetry measurements, the surface slope S = |∂ x H(x)| is known. On the contrary, h and A can be determined if b is given only.

In practice, K has to be determined such that the flow equilibrium (steady-state and locally uniform) holds. Thus in the case of real-world complex flows, K is an uncertain physical parameter to be empirically or numerically determined. Given measurements of (H, W ), assuming that the bathymetry elevation b is known (equivalently h and A), the basic equilibrium law above enable to determine the ratio (Q/K) but not the pair (Q, K).

Then, it seems to be hopeless to determine b from such simple algebraic law only since the complete triplet (Q, K, b) is a-priori unknown. (We refer e.g. to [?, ?] for further analyses). These remarks hold for the present most simple scalar Gauckler-Manning-Strickler equation but also for any other derived version of this basic equilibrium law.

Let us now consider the relatively complete river flow dynamics model called Saint-Venant's model (a 1D shallow-water system). (Barré de Saint-Venant, 1797-1886, French "ingénieur", physicist and mathematician). These equations are still up-to-date to model river flows: they enable to accurately simulate river flow dynamics, see e.g. [START_REF] Novak | Hydraulic modelling-an introduction: principles, methods and applications[END_REF]. It is 1D equations in space in variables (A, Q)(x, t). The equations read, see e.g. [?]:

∂ t A(x, t) + ∂ x Q(x, t) = 0 ∂ t Q(x, t) + ∂ x Q 2 A (x, t) + gA ∂ x H(x, t) = -g A S f (A, Q; K)(x, t) (3.2)
where g is the gravity magnitude [m.s -2 ] and S f is the Manning-Strickler friction term:

S f (A, Q; K) = |Q|Q K 2 A 2 h 4/3 (3.3)
These equations constitute a non-linear hyperbolic PDE system quite complex to mathematically analyse, see e.g. ??.

An ill-posed inverse problem... Numerical inversions based on the measurements of surface elevations only (and data assimilation techniques) enable to infer discharge values Q(x, t) (with a potential bias) but not the river bathymetry profiles b(x), see e.g. [START_REF] Prata De Moraes Frasson | Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates[END_REF][START_REF] Larnier | River discharge and bathymetry estimation from swot altimetry measurements[END_REF]. Indeed, it is easy to show that the solution (A, Q)(x, t) (Mathematically, the shallow-water system (3.2) is very similar to the Euler equations modeling non-viscous fluid flows where the Mach number plays exactly the same role as the Froude number). It turns out that at large scale, river flows generally presents low Froude numbers : F r <≈ 0.3 and lower, see e.g. [START_REF] Larnier | Hybrid neural network-variational data assimilation algorithm to infer river discharges from swot-like data[END_REF]. (This corresponds to subcritical flows: no shock occur). In this case, the mass and momentum equations of the Saint-Venant system (3.2) can be combined into a single scalar equation in variable H(x, t) only. This standard modeling simplification in fluid mechanics is sometimes called the "lubrication theory", see e.g. [45, ?]. This provides the so-called diffusive wave equation, see e.g. [?]:

of
∂ t (Q * ) + ∂ x Q 2 * A * + gA * ∂ x H = -gA * S f (A * , Q * ; C-2/3 K) (3.
∂ t H(x, t) -u(x, t)Λ(H, b; x)∂ 2 xx H(x, t) + 5 3 u(x, t)∂ x H(x, t) = 5 3 u(x, t)∂ x b(x) with Λ(H, b; x) = (H(x)-b(x)) |∂xH(x)| .
To solve this scalar equation in H(x, t), the parameters b(x) and u(x, t) have to be given. Therefore infering b(x) given H(x, t) only (even if provided at all point x and all time instant t) is hopeless since the flow velocity u(x, t) is a-priori unknown. However, it can be noticed that in its steady-state version this equation does not depend on u anymore! Indeed, if no quantity depend on time, the equation simplifies as:

-3 5 Λ(H, b; x)∂ 2 xx H(x) + ∂ x H(x) = ∂ x b(x).
It turns out that rivers flow can often be quite well approximated at short time scale (hour scale) by their steady-state, see e.g. [START_REF] Prata De Moraes Frasson | Exploring the factors controlling the error characteristics of the surface water and ocean topography mission discharge estimates[END_REF]. This makes the steady-state version of the diffusive wave equation a good candidate to tackle the bathymetry inference problem.

In the end, an adequate model to determine the river bathymetry b(x) given water surface elevation H(x) may be the following: 

- 3 5 Λ(H, b; x)∂ 2 xx H(x) + ∂ x H(x) = ∂ x b(x) x in (0, L) (3.5 
∂ t H(x, t) -u(x, t)Λ(H, b; x)∂ 2 xx H(x, t) + 5 3 u(x, t)∂ x H(x, t) + 5 3 u(x, t) ∂ x W W H(x, t) = 5 3 u(x, t)∂ x b(x) + 5 3 u(x, t) ∂ x W W b(x)
The challenge addressed as an inverse problem To solve the proposed challenge, we address the following inverse problem: Given measurements of the free surface elevation H obs and river width W obs at km-scale, estimate the bathymetry b(x) such that the flow model outputs H(x) fit with the observations H obs .

A preliminary mathematical analysis

Since posed in a 1D geometry, the flow model (3.5) -

Λ ref (b)(x)∂ 2 xx H(x) + ∂ x H(x) + ∂ x W W (x)H(x) = ∂ x b(x) + ∂ x W W (x)b(x) (3.6)
with the effective diffusivity here defined as:

Λ ref (b)(x) = 3 10 (H ref -b)(x) |∂ x H ref (x)| (3.7)
The BC are non-homogeneous Dirichlet ones (the measured values of H).

Assuming that measurements of (H, W ) are available (these measurements are denoted by (H obs , W obs )), this equation is a standard scalar linear advection-diffusion equation in H(x), with b(x) as the only uncertain parameter. The unknown parameter b(x) appears in the diffusivity coefficient and in the RHS through its derivative(s).

Given b and W , the direct model solution H(x) exists and is unique. It is denoted by

H b : H b = M(b).
More precisely, with b and W given in

H 1 (0, L) (therefore continuous in [0, L]), h ref ≡ (H ref -b)
and W non vanishing, it exists an unique a weak solution H b in H 1 (Ω). This results from the application of the Stampacchia (Lax-Milgram) theorem. Also, the corresponding ODE solution can be explicitly calculated as detailed later.

On the non-uniqueness of the unknown parameter

Let us write here a simple uniqueness analysis. To do so, we classically consider b 1 and b 2 two bathymetry values. We have: ∀x ∈ [0, L], . By subtracting the two equations above, we obtain:

-Λ ref (b k )∂ 2 xx H(x) + ∂ x H(x) + ∂ x W W (x)H(x) = ∂ x b k (x) + ∂ x W W ( 
∂ x b(x) = 3 10 
∂ 2 xx H(x) |∂ x H ref (x)| - ∂ x W W (x) b(x) (3.9) 
We set: Φ(x) = 3 10

∂ 2 xx H(x) |∂xH obs (x)| -∂xW W (x) . It follows: b(x) = b(x 0 ) exp x x 0 Φ(s) ds , that is: b(x) = b(x 0 ) exp 3 10 x x 0 ∂ 2 xx H(x) |∂ x H ref (x)| ds -ln |W (x)| (3.10) with x 0 > 0. Assuming H(x) = H obs (x) = H ref (x) ∀x, moreover assuming ∂ x H obs (x) < 0 ∀x, it follows: b(x) = b(x 0 ) |∂xH(x)| 3 10 W (x)
. That is:

b 2 (x) = b 1 (x) + (b 2 -b 1 )(x 0 ) |∂ x H(x)| 3 10 W (x) (3.11) Remark 3.2.
In the case where the direct model is the classical diffusive equation (single scale model),

-Λ ref (b)∂ 2 xx H(x) + ∂ x H(x) = ∂ x b(x), we obtain: b 2 (x) = b 1 (x) + (b 2 -b 1 )(x 0 )|∂ x H(x)| 3 10 (3.12)
This calculation demonstrates that if b 2 (x 0 ) = b 1 (x 0 ) (and if the flow is a non trivial one with ∂ x H(x) = 0 ∀x) then an infinity of bathymetry shapes answer the problem: the inverse problem is ill-posed due to non-unicity of solution.

However the solution is unique as soon as a single value of b is known at one location x 0 : the inverse problem can be carried over to the determination of a single value.

Problem flipping: equation in the parameter variable*

Since the direct model is a simple ODE (accompanied with boundary conditions therefore defining a BVP), it may be possible to "flip the problem". This is what is done below: we write the model equation in variable b(x) instead of H(x).

Let us consider the original (non-linear) diffusive equation without the terms ∂xW W (x) for sake of simplicity only:

-Λ(b)∂ 2 xx H(x) + ∂ x H(x) = ∂ x b(x)
. This equation re-reads:

∂ x b(x) - 3 10 
∂ 2 xx H(x) |∂ x H(x)| b(x) = - 3 10 
H(x) |∂ x H(x)| ∂ 2 xx H(x) + ∂ x H(x)
By denoting the water surface slope S = ∂ x H and assuming S(x) = ∂ x H(x) < 0 ∀x, it follows:

∂ x b(x) + 3 10 
∂ x S S (x)b(x) = L(H, S)(x) (3.13) with the RHS L(S, H)(x) = 3 10 H(x) ∂xS S (x) + S(x).
The corresponding homogeneous differential equation reads:

∂x b b (x) = -3 10 ∂xS S (x). Therefore the fundamental solution: b(x) = b(x 0 ) |S| -3/10 (x).
A particular solution of the differential equation reads: b * (x) = |S| -3/10 (x)

x |S| -3/10 (s) L(S, H)(s) ds.

Therefore its general solution:

b(x) = S -3/10 (x) b(x 0 ) + 3 10 x x 0 S -13/10 (s)∂ x S(x)H(s) ds + x x 0 |S| +7/10 (s) ds (3.14)
What appropriate approach to estimate this 1D inverse problem solution?

Eqn 3.14 provides the family of solutions b(x) in function of b(x 0 ), given the water surface elevation H(x) and slope S(x).

In a perfect world, that is without measurement error, no scale definition uncertainty in particular for slopes, the inverse problem is solved: its solution is explicitly determined by (3.14)! However, in the real-world, the measurements are not available at all points x but at large scale only. This is true for H(x), and even more for the slope S(x) and the curvature values ∂ x S(x).

Indeed, higher the derivative degree is, more difficult accurate measurements are difficult to acquire is (at a given fixed scale).

The slope value S(x) and the curvature values ∂ x S(x) highly depend on the considered scale of course. Setting these values implicitly fix the flow model scale.

Moreover, given an acceptable representative scale with respect to the model and to instrument capabilities, the measurements are never perfect: they contain errors. For example, the SWOT instrument measures H(m) at ≈ 1 km scale with ±10cm uncertainty. The uncertainty on the slope (and even more critical on the curvature) are today not precisely known yet. As a consequence in the real-world context, Eqn (3.14) is not necessarily the best way to estimate the solution (assuming that b(x 0 ) is given). This explicit expression (3.14) of the inverse problem solution is highly sensitive to errors on data and provides the resulting error as a drift increasing with the distance (x-x 0 ). As a consequence, solving the inverse problem from the BVP based on Eq (3.5) is a-priori more robust (with respect to the various uncertainties) due to the two fixed values at domain boundaries. This is what will be done by a Variational Data Assimilation (VDA) method presented in the next chapter. Moreover the employed VDA method will be combined with a Bayesian inference as presented in subsection 4.4. This will provide posterior distributions (given priors...).

Chapter 4

DA by sequential filters & Bayesian analysis

The outline of this chapter is as follows. Data Assimilation (DA) is the science of optimally combining different knowledge sources that we acquire about a phenomenon modeled by various mathematical tools. These knowledge sources include:

• A mathematical model representing the physical phenomena (in the broad sense).

• Observations, also referred to as measurements or data.

• Statistics on the observations and/or prior probability density functions (pdf) on the modeled phenomena.

The goal of DA is to estimate the state of a system as it evolves in time by combining these different knowledge sources in an optimal way. In real-world problems, particularly in environmental sciences (meteorology, oceanography, hydrology, seismology, etc.), data are heterogeneous, multi-scale, and sparse both in space and time. As a consequence, they only partially represent the modeled phenomena.

The mathematical model is generally a Partial Differential Equations (PDE) system. It may also be a Stochastic Differential Equation (SDE), but SDEs are not considered in the present course. Data are generally heterogeneous (in-situ measurements, satellite images, drone videos, etc.) and of a large amount (large datasets). In this textbook, datasets are assumed to have been analyzed, pre-treated (cleaned, filtered, potentially reduced) before their assimilation into the mathematical models.

DA may be perceived as a process to solve physics-based inverse problems containing uncertainties of different natures (modeling ones, measurement ones, priors ones).

DA: what for? Setting up and performing a Data Assimilation (DA) process can be motivated by different goals, including:

• Correcting a model output (given datasets).

• Calibrating the model to improve its prediction accuracy.Calibration may rely on identifying a parameter of the model, a boundary condition value (e.g., at open boundaries), or the system Initial Condition (IC) e.g., in atmospheric dynamics for weather prediction.

• Identifying a physical parameter such as an effective fluid viscosity, an organ conductivity in the Electrical Impedance Tomography problem mentioned in Section 1.2, or the river bathymetry in the space hydrology problem studied in Section 3.1.

Once calibrated, the model may be used as a physically-based interpolator between sparse (space-time) data. In the case of a dynamics system (a time-dependent model), once the model has been calibrated from past observations (uncertain parameters, B.C. or IC have been estimated), the model may be assumed to be more accurate for prediction, as shown in Figure 4.1.

The "traditional" DA methods mentioned above differ from purely ML approaches (e.g., Artificial Neural Networks) since they rely on a model (typically a PDE). However, Physically-Informed Neural Networks (PINNs) aim to combine Neural Networks (a purely Machine Learning technique) with physical models. Distinctions and common goals between these two wide classes of methods are briefly presented in Section ??.

The different types of DA methods

Up to the years 2020's, DA mainly relied on two different classes of methods (so-called here tradiational methods): sequential and variational ones. The choice may be driven either of the unknown parameters of the inverse problem is of large dimension or not.

1) Sequential approaches (filters) dedicated to the estimation, given series of observations. The fundamental filter is the Kalman Filter (KF) which is optimal in the linear Gaussian case.

In non-linear cases, one may consider the Extended Kamal Filter (ExKF) or the Ensemble Kalman Filters (EnKF).

2) The variational approach (VDA for Variational Data Assimilation) relies on the optimal control of the model, with respect to the unknown/uncertain parameter.

It consists to minimize a cost function j(u) measuring misfits between model outputs and measurements, while respecting the physics-based model as a constraint.

VDA can be developed to estimate the state of a dynamical system like filters do, but also to estimate/identify models uncertain parameters, indifferently for time-independent or timedependent models, linear or not. The variational approach is particularly well-suited for large dimension non-linear problems.

In the 2010s, combinations of Variational Data Assimilation (VDA) and Ensemble methods have been widely adopted for large-dimensional, highly non-linear systems, such as atmospheric dynamics. These approaches were developed at institutions like the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Oceanic and Atmospheric Administration (NOAA) in the USA.

Another potential approach relies on Particle Filters, which won't be addressed in this discus- Image source: [START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF] sion. For a comprehensive overview of Data Assimilation (DA) methods, readers may refer to sources like [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] and [START_REF] Carrassi | Data assimilation in the geosciences: An overview of methods, issues, and perspectives[END_REF].

More recently, particularly since the 2020s, DA algorithms based on "Physics-Informed" Neural Networks have emerged. See, for example, [START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF] and the recent review [START_REF] Cheng | Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review[END_REF].

To model real-world problems, Data Assimilation (DA) must incorporate both deterministic elements (based on known physics) and stochastic elements (to account for uncertainties). These uncertainties can originate from various sources: the physics model (e.g., partial differential equations) is inherently incomplete, measurements contain errors, and so on.

Each approach (sequential or variational) possesses its own strengths, advantages, and drawbacks.

In idealistic Linear Quadratic (LQ) cases (where the model is linear and the cost function to minimize is quadratic), both the VDA approach and the reference sequential method, namely the Kalman Filter (KF), are equivalent (assuming the appropriate norms are considered).

Furthermore, in the Linear Quadratic Gaussian (LQG) case i.e. with Gaussian fields, VDA and the KF can be elegantly interpreted within a Bayesian framework. These results are presented in a dedicated chapter. Additionally, some connections between VDA and NN-based methods are exposed.

However, for non-linear problems (which are representative of real-world scenarios), the mathematical equivalences no longer hold. Thus, for non-linear and large-dimensional problems, the VDA formulation represents a numerically efficient (and mathematically elegant) approach.

This textbook first introduces a few traditional methods (KF, EnKF, and VDA), then focuses on the VDA approach. It also establishes a connection with NN-based models and PINNs.

As VDA relies on the optimal control of the physical system, this provides an opportunity to cover important aspects of optimal control (Part II of the textbook).

The Best Linear Unbiased Estimator (BLUE)

The Best Linear Unbiased Estimator (BLUE) is the simplest statistical estimator. It may be used when the underlying PDF of the measured process is unknown. It restricts the estimator to be linear in data. More precisely, it aims to find a linear estimator that is unbiased and has minimum variance. As a consequence, the BLUE estimator requires only the first two moments (mean and variance) of the PDF to be known.

A basic 1D example

Let us consider two measurements of a scalar quantity u: z 1 = 1 and z 2 = 2. Naturally, one seeks u minimizing the following cost function:

j(u) = (u -z 1 ) 2 + (u -z 2 ) 2 .
The function j(u) simply measures the misfit in the Euclidian norm (the 2-norm). This a standard least-square problem since u does not have to satisfy an underlying model. The solution is:

u * = 3 2 .
Now, let us assume that the second data represents the quantity 2u and not u (difference of instrument). Then, the two measurements are: z 1 = 1 and z 2 = 4. We here seek u minimizing the cost function:

g(u) = (u -z 1 ) 2 + (2u -z 2 ) 2 .
In this case, the solution is u * = 9 5 . This solution differs from the previous one! This very simple example illustrates that the least-square solution depends on the norm considered in the cost function (here the "natural" 2-norm): the standard least-square solution depends on the measurement norm (and on the data accuracy of course too). In presence of errors, which is always the case in real-world problems, the considered norms have to take into account the measurement accuracies.

Informal definition of the BLUE

Considering the aleatory variable û defined from the data z obs , the BLUE u * is defined from the three following properties:

a) u * is a linear function of z obs . b) u * is unbiased (means are unchanged): E(u * ) = u.
c) u * is optimal in the sense it has the smallest variance among all unbiased linear estimations.

Calculation of the BLUE for the 1D basic example

Here the observation operator is the identity, however the two measurements are assumed to contain errors. Using simple notations, we have:

z i = u + ε i , i = 1, 2
The errors of measurements ε i are supposed to be:

-unbiased: E(ε i ) = 0. (Sensors are unbiased).
-with a known variance: V ar

(ε i ) = σ i , i = 1, 2.
(The sensor accuracies are known).

-uncorrelated : E(ε 1 ε 2 ) = 0. (Measurements are independent hence the covariance vanishes; in addition, means vanish therefore this relation).

Note that these assumptions are generally not satisfied in real-world problems.

By construction (Property a)), the BLUE satisfies:

u * = a 1 z 1 + a 2 z 2 (linear model).
The coefficients a i have to be determined. We have:

u * = (a 1 + a 2 )u + a 1 ε 1 + a 2 ε 2 . By linearity of E(•), E(u * ) = (a 1 + a 2 )u + a 1 E(ε 1 ) + a 2 E(ε 2 ) = (a 1 + a 2 )u Property b) of the BLUE (unbiased estimator) implies that (a 1 + a 2 ) = 1 (equivalently a 2 = (1 -a 1 )).
Recall that by definition, V ar(u

* ) = E[(u * -E(u * )) 2 ] = E[(u * -u) 2 ]. Therefore: V ar(u * ) = E[(a 1 ε 1 + a 2 ε 2 ) 2 ] = a 2 1 E(ε 2 1 ) + 2a 1 a 2 E(ε 1 ε 2 ) + a 2 2 E(ε 2 2 ) = a 2 1 σ 2 1 + (1 -a 1 ) 2 σ 2 2
By definition, u * minimizes the variance (Property c)). The latter is minimal if its derivative with respect to a 1 vanishes. Therefore:

a 1 = σ 2 2 σ 2 1 +σ 2 2 .
Therefore, the BLUE reads:

u * = 1 ( 1 σ 2 1 + 1 σ 2 2 ) ( 1 σ 2 1 z 1 + 1 σ 2 2 z 2 ) (4.1) Note that: V ar(u * ) = σ 2 1 σ 2 2 (σ 2 1 +σ 2 
2 ) . Therefore:

1 V ar(u * ) = 1 σ 2 1 + 1 σ 2 2 .
In statistics, the inverse of a variance is called precision.

Equivalence with an optimization problem

It is easy to verify that the BLUE u * defined by (4.1) is the unique minimum of the following quadratic cost function:

j(u) = 1 2 1 σ 2 1 (u -z 1 ) 2 + 1 2 1 σ 2 2 (u -z 2 ) 2 (4.2)
Indeed, we have:

j (u) = 1 σ 2 1 + 1 σ 2 2 = 1 V ar(u * ) .
The Hessian of the cost function j(u) (the "convexity rate" of j) equals the estimation accuracy, see Fig. The Hessian = the second derivative j"(u) in the present 1D case. j"(x) measures the "convexity rate" of j(u), therefore the estimation accuracy of the statistical estimation.

It can be quite easily shown that the BLUE calculated above (assuming unbiased measurements) minimizes the following cost function too:

j(u) = 1 2 (u -z 1 , u -z 2 ) σ 2 1 ρ 12 σ 1 σ 2 ρ 12 σ 1 σ 2 σ 2 2 -1 u -z 1 u -z 2 = 1 2 u -z obs 2 N (4.3)
In this cost function expression, the norm N takes into account correlations of the measurements errors. As a consequence, the extra diagonal terms are non vanishing.

Recall that:

• 2 =< •, • >.

With m observations

The extension of the calculation above (the BLUE in the 1d case) is straightforward. Under the same assumption on each observation z i , the BLUE reads:

u * = 1 V ar(u * ) ( m i=1 1 σ 2 i z i ) with 1 V ar(u * ) = m i=1 1 σ 2 i
Therefore the BLUE u * minimizes the following cost function:

j(u) = 1 2 m i=1 1 σ 2 i (u -z i ) 2 .
As previously, the Hessian (here a simple scalar second derivative) defines the "convexity rate"; it measures the analysis accuracy:

j (u) = 1 V ar(u * ) .
With correlated errors, the extended expression j(u) = 1 2 u1 -z 2 N holds with N defined as above.

The BLUE formulated as a sequential filter in the basic 1D case Filters are stochastic algorithms which operate recursively on streams of (uncertain) input data to produce a statistically optimal estimation of the underlying state. Sequential filters are the most employed DA algorithms. The historical filter is the Kalman Filter (KF); it is presented in next section. Let us here re-read the BLUE as a sequential filter in the basic 1d case with two observations. In this case, the BLUE expression can be re-written as:

u * = σ 2 2 z 1 + σ 2 1 z 2 σ 2 1 + σ 2 2 = z 1 + σ 2 1 σ 2 1 + σ 2 2 (z 2 -z 1 )
Let us consider that: a) z 1 is a first estimation. It is then called the background or the first guess value. We denote this first-guess value by u b :

u b ≡ z 1 .
b) z 2 is an independent observation. We denote this newly obtained observation by z : z ≡ z 2 .

Following this point of view, the BLUE u * reads :

u * = u b + ( σ 2 b σ 2 b + σ 2 0 )(z -u b ) (4.4)
The term (z -u b ) is called the innovation and denoted by d: d = (z -u b ).

Using the terminology of sequential data assimilation, the equation reads as follows: "The best estimation u * equals the first guess + the gain times the innovation".

In the 1D case, the gain is a scalar factor, equal to (

σ 2 b σ 2 b +σ 2 0
).

In vectorial cases, the gain is a matrix. In filter methods, defining the gain matrix is the key point. The vectorial case id developed in next section.

The BLUE in the general case

The linear estimation problem

All the previous calculations can be extended to the vectorial case: the system state u has n variables and one has m measurements.

Here, we seek to estimate u = (u 1 ...u n ) T ∈ R n given the measurements (observations) z obs = (z obs,1 , . . . , z obs,m ) T ∈ R m . We denote by ε obs the observation errors.

We have the following linear estimation problem:

z obs = Zu + ε obs u ∈ R n , z ∈ R m (4.5)
with Z a linear operator, Z ∈ M n×m .

The error term ε obs is assumed to be such that: 1) errors are unbiased: E(ε obs ) = 0.

2) covariances are known: Cov(ε obs ) = E(ε obs ε T obs ) is given. We set: R = Cov(ε obs ) (4.6)

The covariance matrix Cov(ε obs ) is supposed to be definite therefore invertible. R -1 is symmetric positive definite therefore defining a norm.

In real-world problems, R is often assumed to be simply diagonal. Thus R -1 = diag(ρ obs,1 , . . . , ρ obs,m ) with ρ obs,i being (a-priori) precisions on the observations.

Definition

A formal definition of the BLUE can be stated as follows.

Definition 4.1. Considering the linear relation (4.5), the BLUE for u is the vector u * such that:

u * = argmin v∈R n E[(v -u) 2 ]
subject to E(v) = u (unbiasedness) and the constraint (4.5) of course.

Given u b a first estimate (also called background), the error of background reads ε b = (u b -u t ) where u t denotes the "true" solution i.e. the exact solution satisfying z t = Zu t . The covariance matrix Cov(ε b ) is assumed to be definite therefore invertible. We set:

B = Cov(ε b ) (4.7)
B -1 is symmetric positive definite therefore defining a norm.

In practice, of course that u t and Cov(ε b ) are unknown. However, the following results provide useful insights.

The central result

We have:

Proposition 4.2.
Under the assumptions on the error terms ε obs and ε b above, the two statements below hold.

1) The expression of the BLUE u * can be explicitly derived and reads:

u * = u b + K (z obs -Zu b ) (4.8)
with u b the first estimate (background value) and the gain matrix K defined by:

K = BZ T (R + ZBZ T ) -1 (4.9)
with R and B defined by (4.6) and (4.7) respectively.

2) This expression of u * above is also the unique minimum of a quadratic cost function j(u):

u * = argmin u∈R n j(u) with j(u) = z obs -Zu 2 R -1 + u -u b 2 B -1 (4.10)
The general expression (4.9) of K of course simplifies in the scalar case as in (4.4): K = (

σ 2 b σ 2 b +σ 2 0 ).
Proof. The proof of 1) can be found in the detailed online course [START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF], see also e.g. [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF] Chapter 4.

Let us show that the first expression of K above is optimal. ToDo: will be written ...

The proof of 2) is much shorter. Since Z is a linear operator, the functional j : u ∈ R n → j(u) ∈ R is quadratic. It admits an unique minimum. This minimum is characterized by the condition: ∇j(u) = 0, equivalently j (u) • δu = 0 for all δu ∈ R n .

We have:

j (u) • δu = 2 < R -1 (z obs -Zu), Zδu > +2 < B -1 (u -u b ), δu >
Therefore the optimality condition j (u)•δu = 0 reads:

Z T R -1 (z obs -Zu)+B -1 (u-u b ) = 0 u = u b + BZ T R -1 (Zu -z obs )
ToDo: reprendre ce calcul ... Remark 4.3. The expression of the functional j(u) above is the starting point of the variational approach including for non linear estimation problems. The variational approach is presented in a next chapter. ToDo: Ecrire correction

On the norms expression

The natural norms in the present estimations problems are the ones defined from B and R (here denoted by ) as:

v -v 0 -1 = < -1 (v -v 0 ), (v -v 0 ) > 1/2 (4.11)
This expression of norm is called the Mahalanobis distance, defined as:

dM (v; v 0 , N ) = v -v 0 N -1 = < N -1 (v -v 0 ), (v -v 0 ) > 1/2 (4.12)
It is the natural measure in multivariate analysis. In particular, for a normal distribution N (µ, B), the Gaussian PDF is determined by the Mahalanobis distance as:

p(u) = 1 (2πdet(B)) 1/2 exp - dM (u; µ, B) 2 (4.13)

Hessian, precision matrices

The Hessian H j (u) of the cost function j(u) defined by (4.10), H j (u) ∈ M n×n , reads:

H j (u) = Z T R -1 Z + B -1 for all u ∈ R n (4.14)
Let us define the estimation error as ε u = (u * -u true ) and the related covariance matrix

P u ≡ Cov(ε u ) = E(ε u ε T u ). P -1
u represents the precision matrix.

Following the expression (4.8), we have:

ε u = ε b + K(ε obs -Zε b ).
Next, following quite long calculations, a few explicit expressions of P u can be obtained. We refer e.g. to [START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF][START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF]. In particular, we can show that:

P -1 u = Z T R -1 Z + B -1 (4.15)
That is:

-the precision of the estimation equals the model precision plus the background precision.

-as already noticed in the simple scalar 1D case, the Hessian H j (u) which measures the convexity rate of the quadratic cost function j(u), also measures the estimation precision, see Fig. 4.2.

Examples

The reader may consult one of the numerous well documented Python codes available on the web, e.g. the https://towardsdatascience.com webpage1 , or e.g. on https://github.com/jolange/BLUEpy.

A detailed simple example Suppose we have a data set with a parameterized PDF that depends on an unknown parameter. The BLUE estimator restricts the estimate of the parameter to be a linear combination of data samples with some weights. The goal is to find the vector that provides estimates that are unbiased and have minimum variance. The estimation problem can be solved by finding the vector that satisfies two constraints only: linearity and unbiasedness.

Below a basic Python code implementing the BLUE to estimate a parameter based on a 1D dataset. This code first defines a (tiny) 1D dataset. It then calculates the BLUE using linear algebra. It finally plots the regression line along with the data points. ) b e t a h a t = np . l i n a l g . i n v (X. T @ np . l i n a l g . i n v (D) @ X) @ X. T @ np . l i n a l g . i n v (D) @ y # C a l c u l a t e t h e p r e c i s i o n m a t r i x P = np . l i n a l g . i n v (X. T @ np . l i n a l g . i n v (P) @ X) What happens if the model or the observation operator is non linear?

The central result previously shown holds for a linear observation operator Z only. In realworld problems, the estimation problem is rarely linear. Moreover Cov(ε obs ) and Cov(ε b ) are a-priori unknown... However for non linear estimation problems, the equivalency between the BLUE expression and the optimization problem (??) provide good insights to define "optimal" R -1 -norm in the functional j to be minimized, see (??). This point is addressed later in the variational approach (VDA sections).

The Kalman Filter

Filters are stochastic algorithms which operate recursively on streams of uncertain input data to produce a statistically optimal estimation of the underlying state. Note that filters aim at estimating the state of the system (the model output) and not input parameters of the model. KF enables to improve estimation as new data is available, without recomputing from beginning. It is applied in numerous engineering domains (e.g. in the area of autonomous navigation). KF is also called Linear Quadratic Estimator (LQE) since it optimally solves Linear Quadratic Gaussian (LQG) problems.

On sequential DA methods and KF in particular, the reader may consult e.g. the very complete book [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF].

The linear dynamic model and observations

Filters naturally apply to dynamical systems since they provide a sequence of states (time series). Let us consider here a scalar linear dynamic model aiming at computing the system state u k for all k ≥ 0, u k ∈ R n . The iteration k denotes here the time index. We have:

u k = M u k-1 + ε k-1 mod (4.16)
where M is the transition operator which is here linear: M is a n × n matrix. ε mod denotes the model error.

We assume that at the same time instants, observations z k , z k ∈ R m , are available, with:

z k obs = Zu k + ε k obs (4.17)
The observation operator Z is supposed to be linear too: Z denotes a m × n matrix. Both the model errors ε mod and the observation errors ε obs are supposed to be Gaussian, given in R n and R m respectively. They are supposed to satisfy:

ε k mod ∼ N (0, Q k ) and ε k obs ∼ N (0, R k )
where Q and R are the covariance matrices of the model and observation errors respectively.

The KF algorithm Basic principles

At each iteration k, KF works in two steps:

Step 1): the forecast (prediction) step.

A first estimation u k f is computed as the solution of the dynamic model (4.16).

Step 2): the analysis (correction) step.

Given the newly acquired data z k obs , a corrected estimation of u k , denoted by u k a , is computed. u k f plays here the role of a background value. Because of the linearity of M and Z plus the assumptions on the errors previously mentioned, u k a is defined as the BLUE. Then, the central KF scheme equation reads as follows: for k ≥ 1,

u k a = u k f + K k (z k obs -Zu k f ) (4.18)
with K k is the gain matrix defined as for the BLUE, see (4.9), where B is here replaced by the forecast covariance errors matrix denoted by P k f the forecast covariance errors matrix,

P k f = cov(ε k f ), ε k f = (u k f -u k t ). Thus, K k = P k f Z T R + ZP k f Z T -1 (4.19)
The gain K k acts as the weight of the innovation term (z k obs -Zu k f ).

The analysis error is defined as ε k a = (u k a -u k t ). The related covariance errors matrix reads: P k a = cov(ε k a ). One can show that P k a satisfies, see e.g. [START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF] Chapter 2:

P k a = (I -K k Z)P k f (4.20)
Extreme cases: perfectly observed system / perfect model Perfect model. If the forecast errors tends to 0, that is P k a → 0 then K k → 0 for all k.

Perfect data. If the observations errors tends to 0, that is R → 0 then

K k → Z -1 for all k.
The weighting of the innovation by the gain K may be read as follows.

As the measurement error covariances tend to 0, the observation z obs is trusted more and more while the model response u f is trusted less and less. On the opposite, as the forecast error covariances tend to 0, the model response u f is trusted more and more while the observation z obs is trusted less and less.

Basic extreme cases In the simple case where: a) Z = Id; b) the covariance observation errors matrix is diagonal such that R ≡ ∆ obs R = diag((σ obs 1 ) 2 , . . . , (σ obs m ) 2 ), (σ obs i ) -2 the precision of the i-th data, the gain matrix simplifies as:

K k = P k f ∆ obs R + P k f -1 .
Moreover, if the forecast covariance errors matrix P k f is diagonal (and constant along the iterations) as P k f = (σ f ) 2 Id, (σ f ) -2 the forecast precision, the gain matrix simplifies as in the 1D simple case:

K = diag σ 2 f ((σ obs 1 ) 2 + σ 2 f ) , . . . , σ 2 f ((σ obs m ) 2 + σ 2 f )
The KF algorithm

Initialization. The I.C. of the system state u 0 is given. We set: ε 0 = (u 0 -u t ) and P 0 f = Cov(ε 0 ) = E(ε 0 (ε 0 ) T ). The error covariance matrix P 0 f is supposed to be given too (...). From iteration (k -1) to iteration k, 1) Analysis step.

-Compute the Kalman gain matrix K k as in (4. [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF]).

-Deduce the analysis value u k a as:

u k a = u k f + K k (z k obs -Zu k f ).
-Compute the covariance matrix P k a as in (4.20). 2) Forecast step.

-Solve the model to obtain the forecast value u k+1 f :

u k+1 f = M u k a .
-Compute the covariance matrix of forecast errors P k+1 f as:

P k+1 f = M P k a M T + Q k+1 .
If the linear operators M and Z depend on the iteration k, the results hold and the algorithm naturally extends.

Examples

See one of the numerous well documented Python codes available on the web, e.g.:

• https://machinelearningspace.com/object-tracking-python/

• https://thekalmanfilter.com/kalman-filter-python-example 

Pros and cons of KF

⊕ Considering a linear model M and a linear observations operator Z, assuming that the covariances Cov(ε mod ) and Cov(ε obs ) are Gaussian, KF is the optimal sequential method, see e.g. [START_REF] Carrassi | Data assimilation in the geosciences: An overview of methods, issues, and perspectives[END_REF].

⊕ At each iteration k, the new estimation u k a depends on the previous time step state u k-1 and the current measurement z k only: no additional past information is required, see Fig. The KF scheme (4.18) is bearly affordable for large dimension models (dim(u) >>). Indeed, to compute the gain matrix K, see (4.9), one needs to invert the matrix (R + ZBZ T ). Without specific properties of the matrix, in the case of n and/or m large, this requires high computational ressources.

The basic version of the KF does not apply to non-linear models. In non-linear cases, KF can be extended by linearizing the "transition" operator M at each time step: this is the idea of the Extended Kalman Filter (ExKF). However, the ExKF is not optimal anymore. Moreover, its use is limited too by its high computational requirements as the KF.

Case of non-linear models and/or large dimensional problems:

Ensemble KF (EnKF) and hybrid approaches

For non-linear large dimensional cases, one uses variants of KF such as for example the SEEK filter, [?]. Also, one classically uses the Ensemble Kalman Filter (EnKF). In a nutshell, EnKF consists to perform a Monte-Carlo algorithm to estimate the covariance errors matrices. EnKF have shown excellent results even for high-dimensional problems (O(10 8 ) and more), see e.g. [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF][START_REF] Calvello | Ensemble kalman methods: A mean field perspective[END_REF].

In short, the Ensemble Kalman Filter (EnKF) is a recursive filter that is used to estimate the state of a system as the basic KF. However it is suitable for large dimensional problems. The EnKF is a Monte Carlo implementation of the Bayesian update problem, which involves updating the probability density function (PDF) of the state of the modeled system after taking into account the data likelihood.

One advantage of EnKF is that advancing the PDF in time is achieved by simply advancing each member of the ensemble.

It is worth noticing that the EnKF makes the assumption that all PDF involved are Gaussian.

As already mentioned, this assumption is a-priori not true for non-linear problems...

In summary, KF

The KF is an algorithm that estimates the state of a linear dynamic system based on noisy measurements. It uses a recursive process to update the state estimate as new measurements become available. At each iterate, the estimator relies on the BLUE. The KF is widely used in various fields, including engineering, economics, and computer science. However, it is restricted to linear estimation problems of relatively small dimensions. EnKF The EnKF is an extension of the KF that addresses the limitations of the KF for large dimensional and/or non linear systems. It uses an ensemble of state vectors to represent the probability distribution of the system state. The EnKF updates the ensemble members based on observations and propagates them forward in time using a numerical model. It is widely employed in geosciences but not only. VDA As it will studied now, the variational method is based on another approach: it aims to find the optimal estimate of the system state by minimizing the cost function j(u).

It then relies on an optimization algorithm which iteratively adjusts the state (model prediction) y(u) based on the observations z obs . The variational approach is a good option to address large dimensional problems (dim(u) >>) and non linear problems (M and/or Z non linear). It is widely employed in geosciences but not only.

Note that the current state-the-art for operational large dimensional and complex multi-physics non-linear models consists to combine VDA with EnKF. Such hybrid approaches have been developed in particular in operational weather forecast centers like ECMWF or NOAA for example.

Each of these methods can be nicely related to a Bayesian analysis.

To study the non-VDA DA methods in details, the reader may consult e.g. [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF][START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF][START_REF] Carrassi | Data assimilation in the geosciences: An overview of methods, issues, and perspectives[END_REF] and one of the excellent material available online e.g. http://www.cs.unc.edu/ welch/kalman, [START_REF] Bonavita | Overview of data assimilation methods[END_REF] etc.

Bayesian analysis

Rev. Thomas Bayes (1702-1761), English statistician and philosopher. The Bayes's law, also Bayesian analysis is a method of statistical inference that allows one to combine prior information about a parameter with evidence 3 from information contained in a dataset (a sample).

The method involves specifying a prior probability distribution for the parameter of interest, obtaining evidence. By combining the prior distribution with the evidence and using the Bayes theorem, a posterior probability distribution for the parameter is obtained. For a complete study on Bayesian analysis, the reader may consult the phenomenal book [START_REF] Gelman | Bayesian data analysis[END_REF][START_REF] Kaipio | Statistical and computational inverse problems[END_REF].

Founding calculations Problem statement

Let u be the parameter to be estimated given M observations z obs = (z obs,1 , . . . , z obs,M ), with:

z obs = M(u) + ε (4.21)
with M denoting a non linear operator and ε the error term, ε = (ε obs + ε mod ). ε obs represents the observation error and ε mod represents structural model errors. On contrary 3 evidence: something that increases the probability of a supported hypothesis to the observation error, the model error has to be inferred during the model estimation, together with the model parameter u.

For a sake of simplicity, it is assumed here that: ε mod = 0.

The Bayes law

Let p(u) be the prior distribution of u. Let p(z obs |u) be the probability of z obs given u: it is the likelihood resulting from the (direct) model M.

The joint probability density of u and z obs reads in terms of the conditional densities as:

p(u, z obs ) = p(u|z obs )p(z obs ) = p(z obs |u)p(u)
This provides the Bayes's law:

p(u|z obs ) = p(z obs |u) p(z obs ) p(u) (4.22) 
This relation can read as:

Posterior ∝ ( Likelihood × Prior )

The denominator p(z obs ) is simply a normalizing constant. (It is sometimes called the evidence). Its value may be obtained by integrating over all u: p(z obs ) = p(y|u) p(u)du. This value may be chosen such that the total mass of the posterior distribution p(u|z obs ) equals 1 too.

p(u|z obs ) is the posterior distribution (a-posteriori density). In the present inverse problem context, p(u|z obs ) is the sough quantity.

In practice, values of interest are the most probable value u * = arg max u p(u|z obs ), i.e. the Maximum A-Posteriori (MAP), or the posterior mean ū = mean(p(u|z obs )) or quantiles of p(u|z obs ).

Remark 4.5.

• The prior distribution p(z obs |u) can be numerically approximated by a Monte-Carlo method by performing the direct model M a very large number of times (let us say O(10 4 ) and more). This implies to tackle a quite low CPU-time consuming model.

• If a lot of data are available, the choice of the prior doesn't matter so much. On the contrary, if not so much data are available, the choice of a relevant prior (the background information) becomes important...

• For large scale real-world problems, the priors may be quite subjective, as a consequence the resulting posteriors become subjective too... • Since the posterior p(u|z obs ) results from the data y, it is expected that it is less variable than the prior p(u)....

For an arbitrary prior distribution, generally no analytical solution of the posterior distribution is known, only approximations may be obtained.

On the contrary, in the Linear Gaussian case i.e. the prior p(u) is Gaussian and the model operator M is linear, the likelihood p(z obs |u) is Gaussian and the posterior distribution p(u|z obs ) is Gaussian too. In this case, the expression of p(u|z obs ) can be calculated. This expression is presented in a next paragraph.

The most probable parameter u

As estimator let us consider the most probable parameter value u.

Given the observations z obs , given the background value u b , the most probable parameter satisfies:

u * = arg max u (p(u|z obs and u b )) (4.23)
Since the function (-log)(•) is monotonic decreasing therefore convex, the optimization problem above can be equivalently written by minimizing the following functional:

j(u) = -log(p(u|z obs ) + c (4.24)
with c denoting any constant value. Then the most probable parameter u satisfies:

u * = arg min u j(u)
Assuming that the observation errors and the background errors are uncorrelated (this is reasonable), we get: for any constant c.

The calculations above are valid for any distributions p(u) and p(z obs |u). However, if considering Gaussian PDFs, the choice of the log function in the definition of j(u) turns out to be judicious...

Assuming Gaussian PDFs

Let us assume from now that ε obs ∼ N (0, σ obs ).

Scalar / univariate case

For sake of simplicity, we here consider the scalar / univariate case: the parameter u is a scalar function.

The prior distributions Let us assume the prior distribution p(u) is Gaussian. We set:

p(u) ∼ N (u b , σ 2 u ), p(u) = 1 (2π) 1/2 σ u exp - 1 2σ 2 u (u -u b ) 2 (4.26) 
We get M observations. We set: z obs = (z obs,1 , . . . , z obs,M ).

Assuming p(z obs |u) ∼ N (z obs , σ 2 obs ) and that the M data are all independent, we get:

p(z obs |u) = Π M m=1 1 (2π) 1/2 σ obs exp - 1 2σ 2 obs (z obs,m -z obs ) 2
that is:

p(z obs |u) ∝ exp - 1 2σ 2 obs M m=1 (z obs,m -z obs ) 2 (4.27)
Recall that given a Gaussian prior p(u), if the model operator M is linear then the likelihood p(z obs |u) is Gaussian. On the contrary if M is non linear then p(z obs |u) is non Gaussian.

Resulting posterior expression If both p(u) and p(z obs |u) are Gaussian then the posterior p(u|z obs ) is Gaussian too, as the product of two Gaussians. Indeed, by applying the Bayes law (4.22), the posterior reads as:

p(u|z obs ) ∝ exp - 1 2σ 2 u (u -u b ) 2 - 1 2σ 2 obs M m=1 (z obs,m -z obs ) 2 (4.28)
which is equivalent too (see e.g. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] Chap. 3 for detailed calculations):

p(u|z obs ) ∝ exp - 1 2σ 2 p (u -u p ) 2 (4.29) with u p = σ 2 p u b σ 2 u + M m=1 z obs,m σ 2 obs and σ 2 p = 1 σ 2 u + M σ 2 obs -1 (4.30)
Vectorial / multivariate case* This is a "to go further" section.

In the vectorial / multivariate case, u is a vectorial function. A Gaussian distribution is described by a mean which is vectorial and a covariance matrix. The calculation principles remain the same but a bit more complex. The Gaussian prior p(u) reads as p(u) ∼ N (u b , B -1 ) with B a given invertible covariance matrix4 , thus:

p(u) = 1 (2π) n/2 σ u exp - 1 2 u -u b 2 B -1 (4.31) with σ 2 u = det(B).
The likelihood is supposed to be Gaussian: p(z obs |u) ∼ N (z obs , R -1 ), with R an invertible covariance matrix. The M observations are supposed to all independent, therefore:

p(z obs |u) ∝ exp M m=1 z obs,m -z obs 2 R -1 (4.32)
Like in the scalar case, by applying the Bayes law (4.22) the posterior distribution p(u|z obs ) is Gaussian as the product of two Gaussians whose expression satisfies (see e.g. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] for more details on the calculations):

p(u|z obs ) ∝ exp - 1 2 u -u p 2 P -1 (4.33)
with the (vectorial) mean value u p which satisfies:

u p = P -1 B -1 u b + Z T R -1 z obs (4.34)
The posterior covariance matrix P satisfies, see e.g. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF]:

P -1 = (B -1 + Z T R -1 Z) (4.35)
One can show that P -1 = (I -KZ)B with K the gain matrix which can be calculated, see e.g. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF].

Numerical computations

In the computational point of view, given a Gaussian prior p(u) and assuming a Gaussian likelihood p(z obs |u), the posterior p(u|z obs ) is numerically approximated as follows.

• Define a sufficiently fine grid of the parameter space U, U ⊂ R d .

• Evaluate the N r values p(u n ) for n = 1, . . . , N r (with N r large enough), therefore an approximation of the prior p(u).

• Evaluate the likelihood distribution value p(z obs |u) as follows.

-Perform the N r model outputs M(u n ), n = 1, . . . , N r, -Evaluate:

p(z obs |u n ) = 1 (2π) 1/2 σ obs exp - 1 2σ 2 obs (z obs -M(u n )) 2
This measures how probable it is to observe u n , given the fixed likelihood form N (z obs , σ obs ).

• Finally, evaluate the approximation of p(z obs |u) as:

p(z obs |u) ≈ Π N r n=1 p(z obs |u n )
• Deduce the posterior p(u|z obs ) as:

Posterior p(u|z obs ) ∝ Prior p(u) × Likelihood p(z obs |u)

Note that M is here indifferently linear or not. However, the assumption p(z obs |u) Gaussian is a-priori not satisfied in non linear cases...

Equivalence with the BLUE / variational solution

By using the likelihood form (4.27) (and by setting an adequate constant value), it follows that the most probable parameter u satisfies u * = arg min u j(u) with:

j(u) = 1 2 M(u) -z obs 2 R -1 + 1 2 u -u b 2 B -1 (4.36)
It follows that, in the linear case, the most probable estimation u * corresponds to the BLUE if the norms R -1 and B -1 are defined as in (4.6) and (4.7) respectively, see Prop. 4.2.

The functional j(u) above is the key starting point in the variational approach presented in the next chapter.

Recall that the most probable estimation u * , which corresponds to the so-called Maximum A-Posteriori (MAP), maximizes the posterior:

u * = arg max u p(u|z obs ) (4.37)

Summary

In summary, computing the most probable posterior value (i.e. the MAP) involves maximizing a product. Next, by considering the log-likelihood function and under Gaussian assumptions leads to the minimization of the same quadratic cost function j(u) as in the BLUE formulation (if considering the ad-hoc norms R -1 and B -1 as in Prop. 4.2).

Remark 4.6. The term u -u b 2 B -1 in the definition of j(u), see (4.36) can be read as a Tykhonov regularization term, see Section 6.2.2. In the probabilistic point of view, this term corresponds to the Gaussian assumption on u whose the variance is expected to be minimized.

Limitations of this analysis

The approach presented in this chapter is rich and elegant; it is however suffer from a few limitations.

1. Even if the prior distribution of u is supposed to be Gaussian (which can be a reasonable assumption), the resulting likelihood p(z obs |u) is not Gaussian in the case of a non linear operator M.

2. In terms of computations, a brute force way to obtain the posterior p(u|z obs ) would be to explore all combinations of possible u and to evaluate p(z obs |u). This is absolutely not feasible for non small dimensional problems (or CPU-time consuming models).

The good approach consists to sample the search space using a Markov Chain Monte Carlo (MCMC) method (use of Markov Chains to perform Monte Carlo estimations) like the Metropolis-Hastings algorithm. However, MCMC algorithms remain very CPU-time consuming for large dimensional problems since they requires huge number of model output evaluations (let us say O(10 4 ) and more model runs). . Note that the KF can be derived from the Bayesian analysis too, see e.g. [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] Chapter 3. . Finally, let us point out that the VDA approach naturally applies to non-linear large dimensional problems and enables to relax the Gaussian assumptions. Numerical solutions can be computed by gradient-based optimisation algorithms which are much more economical compared to the Bayesian or to the KF-based approaches.

However, in non-linear contexts, one does not have any guarantee of uniqueness of the optimal parameter nor convergence of the process to the expected solution(s).

Examples

The reader can find numerous well documented examples with corresponding Python codes available on the web, e.g. on the https://towardsdatascience.com web site5 ,6 .

A detailed simple example Below is presented a Python code computing a simple Bayesian analysis to estimate a scalar parameter u. First, synthetic data are generated with a given value of u (0.6 in this case). The prior distribution for u is defined: a Beta distribution with α = β = 1. The likelihood of the observed data z obs given u is specified: it is supposed to be a Bernoulli distribution. Finally, a Markov chain Monte Carlo (MCMC) sampling is employed to obtain samples from the posterior distribution of u. The prior, likelihood and the resulting estimated posterior are plotted, as well as the trace of the MCMC algorithm. 

Equivalences in the Linear Quadratic Gaussian (LQG) case

Let us recall the linear estimation problem considered in this chapter: estimate u satisfying

z obs = M(u) + ε (4.38)
with M denoting a non linear operator, ε the error term, ε = (ε obs + ε mod ). For a sake of simplicity, it is assumed here that ε mod = 0.

Let us assume: H1) the model M is linear. We set Z ≡ M and we have Z ∈ M n×m .

H2) the error model is Gaussian with ε obs ∼ N (0, R -1 ).

The equivalences

Then under these assumptions, it has been demonstrated that:

1. the Best Linear Unbiased Estimator (BLUE), which is the simplest statistic estimator, is equivalent to minimize the following quadratic functional

j(u) = z obs -Zu 2 R -1 + u -u b 2 B -1 (4.39)
where the norms R -1 and B -1 are defined as R = (Cov(ε obs )) and B = (Cov(ε b )) respectively.

2) If we assume a Gaussian prior distribution for the uncertain parameter u, then the most probable solution u * (= the MAP) coincides with the BLUE, provided we use the same B -1 and R -1 norms as above.

In a nutshell, if the operator Z (representing here the "model") is Linear, if the prior p(u) is Gaussian, therefore the likelihood p(z obs |u)), then the posterior p(u|z obs ) is Gaussian too. Moreover, the MAP is nothing else than the (unique) optimum of the Quadratic function j(u) defined by (4.39), considering the appropriate covariances matrices R and B7 .

In others words, in the LQG case, both the VDA solution and the sequential KF estimation are fully interpretable through Bayesian analysis since the three approaches (deterministic VDA, statistic BLUE / sequential KF, Bayesian estimation) mathematically yield the same estimation u * .

However, each corresponding algorithm to compute u * are fundamentally different and come with distinct advantages and drawbacks.

It is important to note that this mathematical equivalence holds true only in the LQG case, which is a-priori not the case in real-world problems. Furthermore in practice, the error covariances matrices are often unknown. This result in the LQG case, however, provides a strong guideline to address non linear problems.

In the case of large dimensional non linear problems

In practice, the Bayesian analyses and the KF-based filters are challenging for large dimensional problems (i.e. with dim(u) >>) since the corresponding algorithms are highly CPU-time and

The variational approach is primarily targeted at large dimensional and/or non-linear problems since the formulation naturally extends to such contexts. Indeed, the resulting VDA algorithms (3D-Var, 4D-Var and so on, as detailed later) remain performant for large dimensional non linear problems.

In what follows, the inverse problem consists at estimating u(x) such that:

   A(u(x); y(x)) = B(u(x))
with observations z obs connected to y through the observation operator Z.

(5.1)

A(u; y) denotes a PDE-based operator, for example A(u; y) = -div(λ(u)∇y) + y 3 with λ(•) a given function, and the RHS B(u) = g( ∇u ) with g(•) a given function.

Contrary to the classical "explicit" least square problems, see (2.1), the unknown u is related to the measurements z obs through a mathematical model M, M : u → y(u) with y(u) solution of (5.1) given u.

As a consequence, even in the linear case (M(u) linear), the optimal solution u * = arg min u j(u) is not obtained by simply solving a linear system as the normal equations (2.3).

In the present general context (Problem (5.1)), the VDA approach relies on the optimal control of the physically-based model.

However in the particular case where the parameter u is the RHS of the equation, the optimal estimate u * can be derived without introducing optimal control concepts. This is what is done in a next section: we mathematically solve by VDA the identification problem for linear operators A(u; •) where the parameter u equal the RHS (B(u) = u).

This allows us to illustrate the basic principle of VDA methods while employing only simple algebraic tools.

The general case which requires more complex mathematical tools and concepts is addressed in Part II of this manuscript, see e.g. Chapter 8, after a presentation of the optimal control methods for ODEs (Chapter 7).

The VDA formulation

Let us present a typical VDA formulation for a general non linear however stationary PDEbased model.

Then the cost function j(u) is defined from the observation function J(u; y u ) as: j(u) = J(u ; y u ) where y u is solution of (5.8).

(5.6)

The cost function j(u) depends on the control u through the state of the system y u = M(u). The term J reg (u) is a regularization Tykhonov-type term: it penalizes the discrepancy with the prior u b in norm B -1 . The scalar parameter α reg is the weight parameter to balance the two terms. u b is "background" value of u (therefore a prior of the inverse problem). We refer the reader to Chapter 1 for these concepts.

The choice of the norm B -1 is important too. 1 . It has been shown in the previous chapters that in the LQ case, the optimal choice relies on the covariance errors matrices.

The optimization problem

Solving the VDA problem consists to find:

u * (x) = arg min u(x)∈U j(u(x)) (5.7)
This is an optimal control problem.

The solution u * (if existing) is an optimal control of the system. This is the estimate we are looking for. This is the VDA solution.

In others words, the VDA approach consists to solve a non-linear least-square problem with an underlying physical model. The latter constitutes a constraint of the optimization problem.

The solution of VDA in a simple case

In this section, the VDA solution is derived in the case the model is linear and finite dimensional.

We develop here the calculations in finite dimension since more simple than in infinite dimensions. Indeed, in infinite dimensions, e.g. in Banach and Hilbert spaces, the calculations require some extra knowledge in differential calculus, in particular for non-linear problems. Calculations in infinite dimensions for general non linear problems are addressed in Part II.

Problem statement

Let u be the control variable, u ∈ R m . Let the model be linear and represented by A(u), A(u) ∈ M n×n a non singular real matrix. The (direct) model reads:

Given u ∈ R m , find y ∈ R n such that: A(u) y = F u (5.8)
with F a rectangular matrix, F ∈ M n×m , m < n, of maximal rank m.

Given u, the solution of the direct model is denoted by y u . It is called the state of the system.

Let J(u; y) be the objective function measuring the misfit between the state y and the observations defined as in (5.4) (5.5). However, here the observation operator Z is linear: Z ∈ M n×n . Therefore:

J(u; y) = Zy -z obs 2 R -1 + α reg u -u b 2 B -1
(5.9)

with R -1 and B -1 symmetric positive semi-definite matrices of dimension n × n.

Recall that the cost function j(u) to be minimized is defined from the observation function J as: j(u) = J(u ; y u ) with y u ≡ y(u) is solution of (5.8).

The estimation problem consists to find u * ∈ R m such that: j(u * ) = min

U h j(u).
The set U h denotes here a subset of R m which may include inequality constraints or equality constraints on u (thus defining an optimization problem with additional constraints).

A first expression of the cost gradient

In the case the control of the system is through the RHS only, that is A is independent on u see (5.8), the inverse problem solution is much easier to characterize. Indeed, in this case, explicit calculations can be derived and we can easily introduce the concept of adjoint equations.

Formal expression of j(u)

Formally, the state of the system satisfies the relation:

y u = (A(u)) -1 F u.
Of course, in practice, one never compute A -1 , instead the linear system is solved by a linear algebra method (e.g. a Gauss-type algorithm). However, the cost j(u) reads explicitly in function of u as:

J(u; y) = (A(u)) -1 F u -z obs 2 R -1 + α reg u -u b 2 B -1
(5.10)

Gradient expression

Recall that j : R m → R, j(u) = J(u; y(u)) with: J(u; y) defined by (5.5).

We have the gradients ∇j(u) ∈ R m , ∇ u J(u; y) ∈ R m and ∇ y J(u; y) ∈ R n .

Why an adjoint equation? Because it is not tractable to compute A -T .

To avoid the computation of A -T , we naturally solve the following (linear) equation:

A T p = ∇ y J(u; y(u)) (5.15)
This is the so-called adjoint equation. p denotes an additional field, p ∈ R n . It is the adjoint state.

If A is non-singular therefore its "adjoint" A T too. Since the unique solution p depends on u, we denote it by p(u) too. Note that p depends on y(u) too.

Then, the gradient expression not explicitly dependent on A -T reads as:

∇j(u) = F T p(u) + 2α reg B -1 (u -u b ) (5.16)
with p(u) the unique solution of the (5.15).

This additional field p enabling to obtain the gradient expression above is called the adjoint state of the system. It is by definition the solution of the adjoint equation (5.15). The adjoint equation is the one which enable to derive an expression of ∇j(u) not explicitly in function of A -T .

Optimality condition

The 1st order necessary condition of optimality reads: ∇j(u) = 0. Since the expression of ∇j(u) depends on p(u), it depends on on y(u) too: we obtain the socalled optimality system which gather the set of the three equation characterizing the minimum. These three equations read:

  
The direct equation: Ay = F u The adjoint equation:

A T p = ∇ y J(u; y(u)) The 1st order necessary condition:

∇j(u) = F T p(u) + 2α reg B(u -u b ) = 0 with here: ∇ y J(u; y(u)) = 2Z T R -1 (Zy(u) -z obs ).
The calculation of the cost function gradient ∇j(u) can be done for general non-linear models (under assumptions of differentiability of y(u) of course). This calculation is done for general non linear problems in infinite dimensions in next chapters. Calculations in infinite dimensions require higher mathematical backgrounds, however, they enable to rigorously derive the expressions.

Example

Let us consider a simplified version of the model equation arising in the spatial hydrology problem, see Section 3.1. In the present section, the considered equation simply reads as: (It will be noticed that if considering real-like data, the numerical Peclet number of the equation is very low, therefore a centered scheme is here suitable). Formulate the obtained numerical scheme in matrix form as: AH = F b.

-Λ ref (x)∂ 2 xx H(x) + ∂ x H(x) = ∂ x b(x) in (0, L) (5.17 
2) Write the optimality system which characterizes the solution b * of the optimal control problem.

3) Propose an algorithm to numerically solve this inverse problem. 4) Employ the Python code provided on the course Moodle page to perform numerical solutions.

A bit of history

Firstly, let us recall that PDE-based models represent an extremely wide range of systems encountered in engineering, R&D, and academic research. Examples include fluid mechanics (geophysical or not), structural mechanics, nanotechnologies, biological systems, geophysics, coupled multi-physic systems, etc.

The least-square method is a standard method used to approximate a solution for over-determined systems. It was historically developed by J.C. Gauss (1777-1855) and A.-M. Legendre (1752-1833). At the age of 24, J.C. Gauss made a correct prediction of an asteroid trajectory based on past observations. Optimal control of ODEs, and subsequently PDEs, emerged after the second world war with applications in aeronautics (missile guidance). A key point of optimal control is the Pontryagin minimum principle2 , a necessary condition of optimality for an ODE system. Optimal control theory is an extension of the calculus of variations: it involves mathematical optimization problems with an underlying model (the differential equation). The calculus of variations (first developed by J. Bernouilli in 1696 with the Brachistochrone problem from the greek words "brakhisto" (shorter) and "chronos" (time)) deals with the minimization of functionals (mappings from a set of functions to R). Functionals are often definite integrals involving functions and their derivatives. The functions that minimize functionals may be obtained by using the Euler-Lagrange equation, which was stated in the 1750s.

The Kalman Filter was co-developed in the 1960s by R. Kalman, a Hungarian-born American electrical engineer and mathematician. It was used in the context of NASA's Apollo program to better estimate trajectories.

The historical application of Data Assimilation (DA), and more particularly the variational approach (VDA), is weather forecasting (atmosphere dynamics) starting in the 80s. The most important parameter to estimate is the Initial Condition, i.e., the atmosphere state at present time. Pioneer works of VDA include Y. Sasaki in the 60-70s [START_REF] Sasaki | An objective analysis based on the variational method[END_REF][START_REF] Sasaki | Some basic formalisms in numerical variational analysis[END_REF], F.X. Le Dimet -O. Talagrand [START_REF] Le Dimet | Variational algorithms for analysis assimilation of meteorological observations: theoretical aspects[END_REF], O. Talagrand -P. Courtier [START_REF] Talagrand | Variational assimilation of meteorological observations with the adjoint vorticity equation. i: Theory[END_REF], also [START_REF] Matthew | Physical interpretation of the adjoint functions for sensitivity analysis of atmospheric models[END_REF][START_REF] Courtier | Variational assimilation of meteorological observations with the direct adjoint shallow water equations[END_REF][START_REF] Gi Marchuk | A numerical technique for geophysical data assimilation problems using pontryagin?s principle and splitting-up method[END_REF] and others.

Nowadays, operational DA systems in Weather Forecast Centers are hybrid in nature, mixing VDA and (non-linear) filters (EnKF in particular). DA methods are now widely employed in many other environmental and geophysics sciences due to the presence of large uncertainties in model parameters and multi-scale features of environmental phenomena. However, DA is useful in many other application domains where PDEs are good basic models and uncertain Initial Conditions or Boundary Conditions or model parameters need to be better estimated.

learning and find applications in all scientific areas inclmudeing modelling real-world physical phenomena.

The here considered ANNs are simply fully connected Neural Networks. They are also referred to as Feed-Forward Neural Networks or multi-layer perceptrons. ANNs are defined by their architecture (number of internal layers, number of perceptrons per layer) and their activation functions (e.g., the differentiable tanh and sigmoid functions or the ReLU -rectified linear unit -function).

After training (this will be clarified later), ANNs can represent multi-scale and non-linear features of underlying, unknown operators that represent the data.

ANNs, along with their various versions (CNN, LSTM, Generative NN, etc.), enable remarkably accurate identification of nonlinear trends in data, provided they are trained on a sufficiently large dataset. It's worth mentioning that predictions may need to be made sufficiently close to the learned data.

In essence, well-trained ANNs can be seen as highly effective multi-scale interpolators. Additionally, supervised learning applied to physically-based data provides an alternative approach for building effective models and solving inverse/identification problems. Let us denote by N θ an ANN composed of L hidden layers with θ = (W, b) ∈ R N θ as its parameters (W the set of weight matrices, b the set of bias vectors). We denote by N l the neurones number in the l-th layer. l = 0 denotes the input layer and (L + 1) the output layer. The input and output layers generally have only a few perceptrons. Let us denote: by f l the i-th layer function,

f l : x l-1 ∈ R N l-1 → x l ∈ R N l
, by σ l its activation function and by θ l = (W l , b l ) its parameters.

We have σ l : R N l → R N l , the weight matrix W

(N l-1 ,N l ) l ∈ M N l ,N l-1 ( 
R) and the bias vector b l ∈ R N l . Thus,

x l = f l (x l-1 ) = σ l W (N l-1 ,N l ) l • x l-1 + b l , x l ∈ R N l (6.1)
An ANN can be read as the composition of the (L + 1) elementary vectorial functions f l as follows. For x an input in R n and y the output, y ∈ R p ,

N θ : x ∈ R n → y(θ)(x) ∈ R p with N θ (x) = (f L+1 • . . . • f 1 ) (x) (6.2) 
The dimension input variable space n may be small or large, therefore defining a small or large dimensional problem. The output field y is often large dimensional, particularly in regression problems. However, the final output often measures a quantity through its norm, therefore "gathering" the (numerous) output components onto a one-dimensional quantity only.

ANNs training: the optimization problem

Let us consider a dataset D containing data pairs (X obs s , Y obs s ), s = 1, • • • , N s . A misfit functional measuring (here simply in 2-norm) the discrepancy between the NN output and the given target value Y obs is defined as:

J obs (D) = Y obs -N θ (X obs ) 2 2,Ns = 1 N s Ns s=1 Y obs s -N θ (X obs s ) 2 (6.3)
Training an ANN consists to minimize this misfit functional J(D) obs with respect to the NN parameters θ. Then we define the functional to be minimized as:

j D,obs (θ) = J obs (D) (6.4)
Thus, training the ANN consists to solve the following differentiable optimization problem:

θ * = min θ j D,obs (θ) (6.5)
For deep ANNs, θ is extremely high dimensional e.g. O(10 q ) with q = 6 and more. Problem (6.5) is therefore a very large dimensional optimization problem requiring advanced (and still under investigations) efficient minimization algorithms, see next section for a few details.

After training, the ANN N θ , determined by its architecture and its optimized parameters

θ * = (θ * 0 , • • • , θ * L+1 )
, is supposed to accurately represent the underlying unknown operator mapping the input data onto the output data, that is:

N θ * ≈ F where F : X obs → Y obs (6.6)
It is an approximation: even after training we do not have N θ * (X obs ) = Y obs .

Trained ANNs: surrogate models

After training, ANNs enable to remarkably find nonlinear trends between data therefore providing excellent estimators. If sufficiently well trained, N θ * is supposed to approximate the underlying unknown operator F : X obs → Y obs , even if the latter is multi-scale and highly non linear. However, to be "accurate", the predictions given new input data may need to be sufficiently close to the learned data.

Moreover, given a new value of the input parameter, a forward run of an ANN is extremely fast. indeed, it is a simple evaluation of a composition of (numerous) basic functions. Thus in a modeling context, a (well) trained ANN constitues a surrogate model.

Then, if defined from the parameter space U onto a physics-based model output space Y, or observations space Z, N θ * (u) constitutes a surrogate of the (corresponding) direct model.

Conversely, if defined from the state space Y, or observations space Z, onto the parameter space U, N θ * (u) constitutes a surrogate of the inverse model.

Moreover, nowadays, a few progresses remain to be done in particular for large dimensional problems, see e.g. [START_REF] Cheng | Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review[END_REF] for a review. Also the resulting surrogate model may be not as accurate as good physical-based models (when existing).

Case of an output functional

In a modeling context, the user is often interested in a particular quantity of interest g(y), g : R p → R, with y deriving from the ANN output, y = N θ (x). Let us cite an example: y(x) be a temperature depending on a material property x, g(y) the total energy in a given subdomain. Then, by introducing the following operator J θ ,

J θ (x) = g • N θ (x), J θ : R n → R (6.7)
Learning this functional J θ consists to solve the following optimization problem:

θ * = argmin θ g(Y obs ) -J θ (X obs ) 2 2,Ns (6.8) 
by employing the same strategies as for N θ (x).

Optimization strategies and ANNs internal technics Optimization strategies

The choice activation function σ of the perceptrons depend on the required properties:

-the sigmoid or tanh function provide a differentiable NN (therefore's omehow regular, smooth), -the rectified linear unit (ReLU) function is the prefered choice for information reduction or extraction.

To numerically minimize j D (θ), first-order gradient-based optimization algorithms are employed.

For relatively small dimensional problem up to large dimensional problem (say up to dim(x) = O(10 6 )), the deterministic L-BFGS descent algorithm is a good choice as it is quite accurate.

For larger dimensional problems, a stochastic descent algorithm is required: the ADAM algorithm [START_REF] Kingma | A method for stochastic optimization[END_REF] is nowadays considered the reference algorithm.

Note that for moderately large problems (say dim(x) ≈ O(10 6 )), a good strategy consists to first performing the ADAM algorithm, and then applying the L-BFGS algorithm. This enables a good balance between convergence speed and final accuracy.

ANNs hyper parameters

The so-called hyper-parameters of the NN are the learning rate, decay rate, dropout probability, see e.g. [?] for details. These so-called "hyper-parameters" are mainly experimentally chosen. The selected values are those providing the minimal value of j D (•). In a modelling context, these hyper-parameters can be seen as "priors" of the model and it can be an issue to be tune them (similarly to a regularization term weight α in bi-objective optimization).

Gradient computation by automatic differentiation

First-order descent algorithms require the computation of the large dimensional cost gradient ∇J(θ). Computing efficiently such large dimensional gradients, dim(∇J(θ) ∼ dim (θ) ≈ O(10 6 -10 9 ), may be a challenge. However, ANNs presents a very simple particular form: it is a composition (of numerous however) elementary functions, see (6.2). As a consequence, the cost function gradient ∇J(θ) can be computed by applying the differential chain rule to this composition form. This is what is done by the so-called "back-propagation" procedure. This step is performed using Automatic Differentiation. The basic principles of Automatic Differentiation can be found in Section ??; also for details the reader may refer e.g. to [START_REF] Gunes Baydin | Automatic differentiation in machine learning: a survey[END_REF] and references therein.

Nowadays, ANNs can be easily coded in Python using one of the libraries available online such as PyTorch -Mpi4Py, TensorFlow, Scikit-NN etc.

Architectures of ANN to solve inverse problems

This section has been conceptualised with Hugo Boulenc during his PhD investigations (INSA-IMT, 2022-25). The figures have been produced by H. Boulenc.

Let us consider the same general u-parametrised PDE-based model as in (5.2):

A(u; y)(x) = B(u)(x) for x ∈ Ω (6.9)

with Ω an open subset of R d .

The physical-based model A(•; •) is a-priori non-linear both in u and y.

Fully-parametrized ANN

Let us consider the pair (u; x) as the input variable of the ANN: x the space variable, u(x) the spatially distributed PDE parameter. Given an output quantity of interest g(y), y the model output (= the state of the system), the ANN can be schematized as on Fig. 6.2.

After learning, the trained ANN N θ * is expected to be an approximation of the model operator M defined as:

N θ * ≈ M with M : (u; x) → y(u; x) (6.10)
with y(u; x) satisfying the model equation (6.9). Of course as soon as the model parameter u is a bit large dimensional, the training is not feasible due to the too numerous samples required.

After learning one should be able to both perform as a predictor N θ * (u; x) given non-learned values of (u; x). (For a sake of clarity, the biases b l are not indicated on the figures).

Moreover, under the assumption that u is very low dimensional, dim(u) = O(1), one should be able to infer values of u given data y obs (x). Indeed, in this last case, a basic optimization procedure enables to infer u from y obs , that is to solve the inverse problem consisting to identify u given y(x).

An example for a simple model with low dimensional parameter u is presented in Section 6.4.

Semi-parametrized ANN

For larger dimensional parameter u, say up to dim(u) = O(10 q ) q ≈ 2, a so-called semiparametrized version of NN can be a good approach. This consists to build an ANN as indicated on Fig. 6.3. An example for a simple model with quite low dimensional parameter u is presented in Section 6.4.

On the gradient computations

As already mentioned, a key point of the efficiency of ANNs is the possibility to easily compute the output functional gradient with respect to the input parameter. This is done by applying the chain rule to the large composition of the elementary functions f l (x), see (6.2) by automatic algorithmic (Automatic Differentiation process). Obviously, the computation complexity (in terms of operations numbers therefore CPU-time) is very different if considering large dimensional problem (with a large dimension of the model parameter) or small dimensional ones. Moreover, the gradient expression is not the same for the fully-parametrized NN than for the semi-parametrized one. The mathematical expression of the gradients are detailed later in both cases in Section .

Physics-Informed Neural Networks (PINNs)

An important drawback of ANNs is their lack of explainability and reliability.

In context of modeling physical phenomena, a way to address this issue consists to introduce the physical equation as a constraint in the minimization procedure. This can be simply done by adding the residual of the model into the loss function. This principle is those of the so-called PINNs introduced in [START_REF] Isaac E Lagaris | Artificial neural networks for solving ordinary and partial differential equations[END_REF][START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF]. The residual of the model reads here:

r(u; y) = A(u; y) -L(u) (6.11)
The loss function J to be minimized is then constituted by the standard misfit term J obs as in (6.3), plus the residual functional J res (u; y) defined by:

J res (u; y) = r(u; y) 2,X col (6.12)
where X col denotes a set of points within the domain Ω. It is somehow collocation points where the residual has to be evaluated.

The total loss function J, J : U × Y → R, then reads:

J α (u; y) = J obs (y) + αJ res (u; y) (6.13)
Training a PINNs as proposed in [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF] consists to solve the optimization problem (6.5) with the loss function defined by j(θ) = J(u; y(θ)), J(u; y) defined by (6.13), and with a semiparametrized architecture as those indicated on Fig. 6.4 or 6.4. The same minimization strategies as for the standard NN N θ (x) are employed.

PINNs rely on Automatic Differentiation. Finally, the most important remark relies on the way to compute the residual r(u; y) = A(u; y) -L(u).

Residual of PDEs involves partial derivatives as ∂ x 1 y(x), ∂ 2 x 2 x 2 y(x) etc, depending on the PDE order and expression. The space variable x = (x 1 , . . . , x d ) is an input of the ANN. Therefore Automatic Differentiation of the ANN can provide any partial derivative ∂ q x j ...x l y therefore simply evaluating the residual (6.11). This is very likely the most important trick of the PINNs concept, [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Lu | Deepxde: A deep learning library for solving differential equations[END_REF].

PINNs for direct modeling

The architecture indicated on Fig. 6.4 relies on the direct-model without considering its parametrisation: u is here given, fixed.

After training, the PINNs is supposed to provide a surrogate direct model, with: 

N θ * ≈ M u with M u : x → y(x) (6.14) x σ 1 σ 1 . . . . . . . . . Feed-forward Neural Network (θ) σ d σ d . . . ỹ(θ)(x) ∂• ∂x Automatic differentiation J res (ỹ(θ)) model residual (u is fixed) J(ỹ(θ)) Gradient Descent on θ ∂J ∂θ

PINNs for inverse modeling

The architecture indicated on Fig. 6.4 still relies on the direct model without considering its parametrisation (the model parameter u(x) is not an input variable of the NN), however, u appears in the cost term J res (u; y).

After training, the PINNs is supposed to provide a surrogate inverse model, with:

N θ * ≈ M with M : (u; x) → y(u; x) (6.15)
In both cases (direct and inverse model surrogates), the loss gradient is computed by AD. However for a better understanding of these ANN architectures, the mathematical expressions of the loss gradient are detailed in a next section.

We refer e.g. to [START_REF] Lu | Deepxde: A deep learning library for solving differential equations[END_REF] and references therein for more details on PINNs. 

Examples

A reference library addressing PINNs-like architecture is the DeepXDE library1 . Various examples of direct and inverse problems solved by PINNs-like architectures are proposed.

For examples locally developed at IMT-INSA Toulouse, please consult the supplementary material.

Part II

Variational Assimilation for Large Dimensional Non Linear Problems: Mathematical Material.

Chapter 7

Back to the Optimal Control of ODEs

In this chapter, the optimal control of systems governed by an Ordinary Differential Equation is briefly studied; we refer for example to [START_REF] Evans | An Introduction to Mathematical Optimal Control Theory[END_REF][START_REF] Trélat | Optimal control: theory and applications[END_REF] for a full course on the subject. The present chapter follows closely the presentation done in [START_REF] Trélat | Optimal control: theory and applications[END_REF].

The basic and important case is studied: the case with a linear ODE model and a quadratic cost function; this the so-called "LQ case". A proof of existence and uniqueness of the optimal solution is given. Next its characterization using the Pontryagin's minimum principle and the Hamiltonian is presented. Also the notion of controllability and the Kalman's condition are very briefly presented. These last concepts may be skipped if interested in Variational DA methods only.

Optimal control is the foundation of automation, which is widely developed in fields such as aeronautics, robotics, etc. It is also at the basis of more contemporary methods such as Reinforcement Learning (RL) in Artificial Intelligence (AI). Optimal control relies on a welldetermined, physics-based model, while RL can be used in situations where the system model is not fully known. Moreover, RL relies on stochastic processes, more precisely on Markov Decision Processes, which are discrete-time optimal stochastic control problems.

The outline of this chapter is as follows 

Example: dynamic control of a vehicle

We here consider the example of a vehicle dynamic following a basic 1D trajectory. (The vehicle could be a robot, a space vehicle or a drone). The reader can find other examples e.g. in [START_REF] Tröltzsch | Optimal control of partial differential equations: theory, methods, and applications[END_REF].

This problem is numerically solved by the code provided on the INSA Moodle page of the course.

The model Model equation in the original position variable x(t)

The problem here considered is as follows. At instant t, the vehicle position is represented by x(t)(m), its velocity by x (t)(ms -1 ).

The goal is to control the vehicle trajectory by acting on a command u(t) e.g. the engine power.

We have x : [0, T ] → R and u : [0, T ] → R.

Let m (kg) be the vehicle mass, u be the pedal position (in %).

The dynamic trajectory model may simply reads as:

m x"(t) = -K x (t) + G u(t) in (0, T ) (7.1)
with K a friction coefficient (N s/m) and G a gain parameter (ms -1 (%pedal) -1 ).

The equation is closed with I.C.: (x , x)(0) is given e.g. equal to (0, 0).

Model equation in variable y(t) = x (t) (velocity variable)

By making the change of variable y(t) = x (t), the state equation simply reads:

y (t) = -k 1 y(t) -k 2 u(t) in (0, T ) (7.2)
with k constant parameters of the model. The direct model is then a simple 1st order linear ODE in the velocity variable y. The equation is closed with the I.C. y(0) = 0. Given u(t), the equation has an unique solution y(t).

The original variable of position x can be next recovered as: x(t) = t 0 y(s)ds + c with c s.t. x(0) = 0.

The inverse problem

The inverse problem (here an optimal control problem) is as follows. Given the dynamic target z target (t), can we identify (and compute) a control u(t) such that the vehicle sticks as close as possible to z target (t) ? Moreover by consuming a minimum of power ? Moreover by considering reasonable accelerations ?

One can translate such questions in a mathematical point of view by minimizing this type of cost function:

j α (u) = 1 2 T 0 |y u (t) -z target (t)| 2 dt + α reg 1 2 T 0 u(t) 2 N dt (7.3)
with y u the unique solution of the model equation, given u.

N denotes a symmetric positive matrix therefore defining a semi-norm. If moreover definite, N defines a norm. It may defined as: v N = | d l dt l v| 2 with l = 0, 1 or even 2. to make it insensitive to perturbation. Controllability is a central (hot) topic in automatic; it is not in DA. As a consequence, controllability is not discussed in this textbook. B) Defining a control u such that a criteria (the cost function) j(•) is minimal. The cost function j(•) depends on the control but also on the state of the system: this is what is defining optimal control problems. This is what is needed to set up a VDA process. Bases of optimal control are developed in chapters 7 and 8.

Optimal control is a science between the automatic science and applied mathematics. For extended presentations to optimal control theories, the reader may consult e.g. the excellent books [START_REF] Evans | An Introduction to Mathematical Optimal Control Theory[END_REF][START_REF] Trélat | Optimal control: theory and applications[END_REF].

ODE solution behaviors: a few simple examples

The aim of this section is simply to illustrate how the response of an apparently gentle scalar second order ODE equation can widely change if simply changing the source term expression.

The source term can be seen as the command of the system.

The simple ODE-based model: spring -mass system

Let us consider here another basic example: the dynamics of a spring -mass system, see Fig.

7.2.

The mass m is submitted to a force f (y), which is supposed here to be equal to:

-[k 1 (y -L) + k 2 (y -L) 3 ].
L is the spring length at rest, k are the spring stiffness parameters.

An external force (depending on time t) is applied: u(t) i.

Given the external force u(t), the spring position y(t) is described by the differential equa- On the controllability of a system* This section is a "to go further section".

When addressing an optimal control problem, a natural question is: whether or not the control can make the system reach the target ? This question of controllability is important in a context of automatic of course. It is not in the present context of Data Assimilation. However, we here very briefly present the concept of controllability for a linear dynamical system where Kalman's conditions provide an answer. The reader may refer e.g. to [START_REF] Trélat | Optimal control: theory and applications[END_REF] for more information on the topic.

Basic concept of reachable set Let y u (t) be the solution of the ODE system corresponding to a given control u(t) y u is supposed to exist and to be unique. The set of reachable states from the initial state y 0 in time T > 0, can be defined as, [START_REF] Trélat | Optimal control: theory and applications[END_REF]:

Acc(y 0 , T ) = {y u (T ), with u ∈ L ∞ ([0, T ], Ω)}
with Ω a compact subset of R m . We set: Acc(y 0 , 0) = y 0 .

Let us provide a result for the very simple linear system y (t) = A(t)y(t) + B(t)u(t), y(t) ∈ R n with I.C. y(0) = y 0 . This system solution reads:

y(t) = M (t) t 0 M (s) -1 B(s)u(s)ds.
Here, y is linear in u. Then it can shown (see [START_REF] Trélat | Optimal control: theory and applications[END_REF]) that for all t > 0, the reachable set Acc(0, t) is a vectorial subspace of R n . Moreover if B is constant in t then for any 0 < t 1 < t 2 , Acc(0, t 1 ) ⊂ Acc(0, t 2 ).

Controllability of autonomous linear systems: Kalman's condition Let us consider the following first order linear autonomous ODE system in R n : y (t) = Ay(t) + Bu(t) + r(t), with A and B independent of t. The control variable u ∈ R m (the control is not constraint).

We say that the system is controllable at any time T if Acc(y 0 , T ) = R n . This means that for any y 0 and y 1 in R n , there exists a control u such that y(0) = y 0 and y(T ) = y 1 . The Kalman's condition theorem states that the first order linear autonomous ODE system above is controllable at any time T if and only if the rank of matrix C = (B, AB, ..., A n-1 B) equals n;. This matrix C is called the Kalman matrix. The condition rank(C) = n is called the Kalman controllability condition.

Since the Kalman's condition does not depend neither on T nor on y 0 , then the first order linear autonomous system above is controllable at any time from any I.C. Of course, this results does not hold for general systems (in particular non linear ones).

The Linear-Quadratic (LQ) problem

This section addresses a basic, reference, optimal control problem class: the Linear-Quadratic (LQ) problem.

The general linear model

Let A, B and S be three mappings defined from I =]0, T [ into M n,n (R), M n,m (R) and R n respectively. The three mappings are assumed to be bounded i.e. L ∞ (I) (this assumption could be relaxed since locally integrable would be sufficient). We consider the following linear first order ODE.

  

Given u(t), find y(t) such that: y (t) = A(t)y(t) + B(t)u(t) + S(t) for t ∈ I = [0, T ] with the initial condition y(0) = y 0 .

(7.5)
In other words, we consider a phenomena which can be modelled by this linear ODE. (7.5) is the direct model, y(t) is the the state of the system, and u(t) is the control of the system. The function u(t) is assumed to be in L ∞ (I).

Explicit expression of the solution.

A classical result states that (7.5) has one and only one solution y(t), y(t) continuous from I into R n . Moreover an explicit expression of y in integral form holds.

Let us consider for sake of simplicity the case S = 0. In this case, we have:

y(t) = M (t)y 0 + M (t) t 0 M (s) -1 B(s)u(s)ds (7.6) with M (t) ∈ M n,n (R) such that: M (t) = A(t)M (t), M (0) = Id. Note that if A(t) = A constant then M (t) = exp (tA).
The control-to-state map M(u)

The general optimal control problem will consist to find a control u(t) minimizing a given criteria (cost function) j(u). This will be detailed in next section.

Then we introduce the control-to-state map (model operator) M(u) as follows:

M : u(t) → y u (t) ≡ y(u(t)) with U ⊂ L ∞ (I, R m ) and Y ⊂ C 0 (I, R n ).
The following central property holds.

Proposition 7.1. In the linear case, the control-to-state operator M(u(t)) is affine for all t in [0, T ].

Proof. Let y(t) be the (unique) solution associated to u(t): y(t) = M(u(t)). The result follows straightforwardly from the explicit expression (7.6) of the solution y(t), here in the case S = 0. In the general case with S = 0, the expression is more complex but the argument remains the same.

Quadratic cost functions

The choice of the cost function to be minimized is part of the problem definition. Since it will be minimized, convexity properties are expected. Moreover if using computational gradient-based methods, differentiability properties are expected too. Recall that "quadratic ⇒ differentiable and strictly convex".

In the present dynamical system context, the typical objective function reads as:

J(u; y) = 1 2 T 0 y(t) 2 W dt + 1 2 T 0 u(t) 2 U dt + 1 2 y(T ) 2 Q (7 .7) 
(Each terms weights are here set to 1 for sake of simplicity).

The cost function j(u) is next defined from the objective function J(u; y) by:

j(u) = J(u ; y u ) (7.8)
with y u the unique solution of the (linear) model, given u.

The three terms are the time averaged cost of the state, the control and the final state, in norms W , U and Q respectively. This functional j is a multi-objective cost functional.

Note that by definition the objective function J(u; y) is here quadratic in its primal variables (u; y). On the contrary, j(u) is not quadratic in u! However, it will be demonstrated that since the model operator M is affine (Prop. 7.1), j(u) is strictly convex.

Mathematical considerations. The operators Q, W and U are symmetric positive matrices in M n,n (R), M n,n (R) and M m,m (R) respectively, therefore defining (semi-)norms. Moreover U is supposed to be definite. Thus, the penality term in u is minimal for u vanishing.

Let us recall that for a matrix M symmetric positive definite, in vertu of Courant-Fischer's theorem (Rayleigh's quotient), there exists a constant c > 0 such that:

∀v ∈ R m , v 2 M ≥ c v 2 .
In other words, such linear operator M is coercive, uniformly in time.

Since the observation functional is quadratic and the model is linear, the natural functional space for control variable is M = L 2 ([0, T ], R m ). Let us point out that the a-priori natural space C 0 ([0, T ], R m ) is not a Hilbert space...

Linear-Quadratic (LQ) optimal control problem

The optimal control problem defined by (7.5)-7.7) reads as follows. Given y 0 and T , find u * (t) such that

u * = arg min u j(u) (7.9) 
with j(u) = J(u ; y u ), y u (t) the solution of the linear ODE (7.5).

It is a Linear-Quadratic (LQ) optimal control problem.

The LQ problem is quite idealistic. However, many instructive properties of the system can be written, both in a mathematical and numerical point of view. To better understand more complex non-linear problems or non quadratic observation function J(u; y), a complete analysis of the LQ problem provides good insights.

It will be shown latter that (under gentle assumptions on the variable spaces) it exists an unique solution u * to the problem. This is in particular due to the fact the term T 0 y(t) 2 W dt in the objective function definition is strictly convex. This relies on the statement that the composition of a linear map with a quadratic map is strictly convex.

Numerical methods for optimal control problems 7.4.1 Two classes of numerical methods

Basically, it exists two classes of numerical methods in optimal control: direct methods and indirect methods.

• Direct methods simply consist in discretizing the state y and the control u, to reduce the problem to a standard discrete optimization problem.

Next, the minimization relies on nonlinear programming algorithms such as e.g. the classical Sequential Quadratic Programming (SQP) algorithm.

• Indirect methods consist in numerically solving a problem resulting from the so-called maximum principle.

The latter relies on the necessary first-order optimality conditions and on the Hamiltonian. These concepts are presented in next sections.

Methods mixing the two approaches are frequently employed too.

In short, pros and cons of each approach are as follows.

o Direct methods are easy to implement. They do not require to introduce the Hamitonian and the adjoint equation (which are introduced in the next sections). They are tractable in small dimensions only, not in large dimensions.

o Indirect methods require to derive the optimality system relying on the Hamiltonian and the adjoint equations (see next sections). They are efficient in all dimensions, large ones included.

Indirect methods are presented after having introduced the Pontryagin principle and derived the optimality system which is based on the Hamiltonian concept.

-If the problem has equality constraints and no inequality constraints, then the method is equivalent to apply Newton's method to the first-order optimality conditions (KKT condition).

Pros and cons are as follows.

⊕ The algorithm is available on any well built optimization library or computational system.

-Each iteration may demand a lot of computational time.

-The algorithm requires cost functions twice differentiable.

-The algorithm may converge to local minima only. 

Numerical solution of the optimal vehicle dynamic

A Python code numerically solving the 1D example presented in Section 7.1 is available on the course webpage.

Since the problem is of tiny dimension (it is 1D only), and the model is very low CPU-time consuming (a 1D scalar ODE), a basic direct method is well adapted.

Exercise 7.2. 1) Detail the equations to solve by a direct method the vehicle dynamic problem described in Section 7.1. 2) Detail the numerical algorithm implemented into the Python code provided on the Moodle course page. Follow the instructions (supplementary material).

A correction is presented in the next two paragraphs.

1) The discrete equations

A good choice of time scheme is the Runge-Kutta RK4 scheme. However, for a sake of simplicity, let us consider here the explicit (forward) Euler time scheme. The time interval [0, T ] is digitalized using a constant time step: h = T /N , t i = ih, i = 0, . . . , N . Given the I.C. y 0 , we have for n = 0 • • • (N -1),

y n+1 = y n -h (k 1 y n + k 2 u n ) (7.13)
Given the target velocity z target and considering minimal variations of the command, we set:

j α (u) = 1 N n |y n -z target (t n )| 2 + α reg 1 N n (u (t n )) 2
And we solve the optimization problem:

argmin u=(u 1 ,••• ,u N ) j(u)
with the N equality constraints (7.13).

Additional inequality constraints on u, or even equality constraints on some values of u n , also inequality constraints on the state y.

2) The coded algorithm

The time grid described below is those of the command. The time grid to solve the model equation is (much) smaller; it is not explicitly detailed. The current time step index is denoted by i.

The control is performed on sub-intervals centred on i therefore considering fast and future time intervals. The time interval length (the horizon) is denoted by M :

I M = [i -M, i + M ].
The model equation is then solved on a sub-interval centred on i of same length M or potentially larger one of length P : I P = [i -P, i + P ] with P ≥ M . The ODE solver is the standard RK4 scheme.

A possible algorithm version is as follows. This is the algorithm which has been coded into the Python program available on the course page.

• Initialization. The state y(0) is given (I.C.).

• For each time instant i (of the command time grid), i = 1, . . . , N , -Setup the current working sub-interval I P , I P = [max(0, i -P ), i + P ] (P the prediction horizon),

-Given the values of control at time instant t i-1 and t i , solve the ODE in the time step interval [t i-1 , t i ]. This provides the state at current time, y i ≈ y(t i ).

-Evaluate the cost function in the prediction interval i.e. j α (u i+1 , . . . , u i+P ),

-Solve the (standard) optimization problem: min (u i ,...,u i+M ) j α (u i , . . . , u i+P ) (7.14)

Note. For the indices in {i + M + 1, . . . , i + P }, the control values are here set to the value at index (i + M ) i.e. u (i) (i + M ).

This step provides the control value u (i) in the current working sub-intervall [t i , t i+P ].

• Iterate Figure 7.4: The optimal control policy is here simply imposed by using a basic direct method since the problem is of small dimension (a scalar control variable) and the model is very low CPU-time consuming.

The Pontryagin principle & the Hamiltonian

In this section are presented the fundamental concepts of Pontryagin's principle, Hamiltonian, optimality system which include the adjoint equation. The Pontryagin's principle states a necessary optimality condition. This necessary condition is sufficient in the LQ case. Moreover, as previously shown, direct numerical methods do not require the use of any new concept such as the Hamiltonian. However, the resulting algorithms are tractable in small dimensions only.

To address large dimensions systems, typically y(t) ∈ R n with n = O(10 p ), p ≈ 4 and more), indirect methods are more adapted or even required. However, indirect methods require to derive the optimality system which relies on the Hamiltonian and the adjoint equation concepts.

Existence and uniqueness of the solution (LQ case) *

This section is a "to go further section". First, let us prove the existence and uniqueness of the optimal control solution in the LQ case. For a sake of simplicity, we do not consider the source term in the direct model: S(t) = 0.

Theorem 7.3. Let j(u) be defined by (7.7). It exists a unique u ∈ M minimizing j(u) with the "constraint" y(t) solution of (7.5).

In other words, it exists a unique optimal control u(t) and a corresponding trajectory y(t) to the LQ problem.

Proof derived from those presented e.g. in [START_REF] Trélat | Optimal control: theory and applications[END_REF]. A) Existence.

It is based on the convergence of minimizing sequence (calcul of variations, D. Hilbert, 1900 approx.).

Step 1). The cost function is bounded by below: inf{j(u), u ∈ M } > -∞ since j(u) ≥ 0. There exists a minimizing sequence (u n ) defined for all t ∈ [0, T ]; i.e. a sequence such that:

lim n→+∞ j(u n ) = inf{j(u), u ∈ M } (As a matter of fact, ∀n ∈ N, ∃v n such that: m ≤ j(v n ) < m + 1 n ).
Step 2) There exists α > 0 such that: j(u) ≥ α u 2 M . Thus, the minimizing sequence (u n ) is bounded in M . Hence there exists a sub-sequence (u n k ) which converges weakly to a control u in M :

u n k u in L 2 (I)
Step 3) Let us denote by y n (resp. y) the state associated to u n (resp. u). The system (7.5) is a first order linear O.D. E. (and with S(t) = 0); we known an explicit expression of the solution:

∀t, y n (t) = M (t)y 0 + M (t) t 0 M (s) -1 B(s)u n (s)ds (7.15) with M (t) ∈ M n,n (R) such that: M (t) = A(t)M (t), M (0) = Id. (If A(t) = A constant then M (t) = exp (tA)).
Similarly, we have: ∀t, y(t) = M (t)y 0 + M (t) t 0 M (s) -1 B(s)u(s)ds. Thus, we obtain that the sequence (y n ) n converge to y. Passing to the limit in (7.15), we obtain the existence of y u , solution corresponding to u.

Step 4) It remains to prove that u minimizes j. Since u n u in L 2 , since j is continuous hence lower semi-continuous, we have (by definition):

j(u) ≤ lim n inf j(u n ) and necessarily j(u) = inf v∈M j(v).
Then, if all hypothesis are satisfied in I = [0, +∞ then y (t) is in L 1 (I) and necessarily the minimizing trajectory y(t) tends to 0 when t tends to +∞.

The Pontryagin principle in the LQ case

L. Pontryagin, Russian mathematician, 1908-1988.

In the case of non-linear state equation, the cost function is non-convex and the Pontryagin minimum principle (also called maximum principle) states a necessary condition of optimality.

In the LQ case, the Pontryagin minimum principle is a necessary and sufficient condition of optimality. It introduces the Hamiltonian2 and the adjoint equation.

Let us recall the equations in the LQ case, see (7.5)(7.7). The linear model reads:

Given u(t), find y(t) such that:

y (t) = A(t)y(t) + B(t)u(t) + S(t) for t ∈ I = [0, T ] (7.16) 
with I.C.: y(0) = y 0 . Next the cost function j satisfies j(u) = J(u; y u ) where y u is the unique solution of the model and J(•; •) is the quadratic observation function defined by:

J(u; y) = 1 2 T 0 y(t) 2 W dt + 1 2 T 0 u(t) 2 U dt + g(y(T )) (7.17) 
Note that we consider here the term in y(T ) slightly more general than before with g(•) any function defined from R n into R, C 1 and convex.

The goal is to characterize the optimal control satisfying: u * = arg min u j(u) with j(u) = J(u; y u ).

Theorem 7.5. The trajectory y(t) associated with the control u(t), is optimal for the LQ problem (7.16)(7.17) if there exists an adjoint field p(t) which satisfies:

p (t) = -p(t)A(t) + y T (t)W for almost t ∈ [0, T ] (7.18) 
with the Final Condition: p(T ) = -∇ T g(y(T )). By convention, p(t) is here a column vector, on the contrary to y(t). Furthermore, the optimal control u satisfies:

U u(t) = B T (t) p T (t) for almost t ∈ [0, T ] (7.19) 
Recall that W and U are symmetric. Applying integration by parts, it follows that for all δu, ∇j(u) • δu = -T 0 < W y(t), δy(t) > dt+ < W y(T ), δy(T ) > +∇g(y(T )) δy(T )

- T 0 < U u(t), δu(t) > dt+ < U u(T ), δu(T ) > = 0
The relation ∇j(u) • δu = 0 above provides an expression of u in function the term δy.

Then, let us inject the explicit expression of δy(t) (7.20) in the expression of ∇j(u) • δu above.

After a slight manipulation we get:

∇j(u) • δu = - T 0 < W M (t) t 0 M (s) -1 B(s)δu(s)ds, y(t) > dt + < W M (T ) T 0 M (s) -1 B(s)δu(s)ds, y(T ) > +∇g(y(T )) M (T ) T 0 M (s) -1 B(s)δu(s)ds - T 0 < U u(t), δu(t) > dt+ < U u(T ), δu(T ) >
The expression of the solution of the adjoint equation 7.18 with the F.C. p(T ) = -∇ T g(y(T )) reads:

p(t) = ΛM -1 (t) + t 0 < W M (s), y(s) > ds M -1 (t) with Λ = -< M (T ), ∇g(y(T )) > - T 0 < W M (s), y(s) > ds.
By combining the three expressions above and by imposing that ∇j(u) = 0, we obtain the relation: ToDo: Detailler calcul

U (t)u(t) = B T (t) p T (t)
This is the expected expression.

Remark 7.7. In case of an infinite time interval (T = +∞), the final condition becomes: lim +∞ p(t) = 0.

The Hamiltonian

W. Hamilton, 1805-1865, Irish physicist, astronomer and mathematician.

In this section, the central concept of Hamiltonian is introduced. In classical mechanics, the state of a system is described by its generalized coordinates (say q) and their conjugate momenta (say p). The Hamiltonian function H(q, p)(t) is defined as the total energy of the system, that is the kinetic energy plus the potential energy, see e.g.the on-line course [START_REF] Evans | An Introduction to Mathematical Optimal Control Theory[END_REF] on this topic.

Let us consider the linear direct model without source term for sake of simplicity (S = 0):

  
Given u(t), find y(t) such that:

y (t) = A(t)y(t) + B(t)u(t) for t ∈ (0, T ) with the Initial Condition: y(0) = y 0 . (7.22) 
and the cost function expression:

j(u) = 1 2 T 0 y(t) 2 W + u(t) 2 U dt + g(y(T )) (7.23) 
In this optimal control context, the Hamiltonian H is the functional defined as:

H(y, p, u) = p(Ay + Bu) - 1 2 ( y 2 W + u 2 U ) (7.24) 
with

H : R n × R n × R m → R.
The Hamiltonian combines the objective function and the state equation like the Lagrangian in static optimization problems with constraints. Here the multipliers p(t) is a function of time rather than a constant. Note that the term g(y(T )) appears in the F.C. of the adjoint p(t) and not in the Hamiltonian.

Let us calculate the partial derivatives of H(y, p, u). We have: ToDo: Verifier coherence definition H et eqns obtenues (cf old version) !

   ∂ y H(y, p, u)(t) • δy(t) = (pA, δy)(t) -(y T W, δy)(t) ∂ p H(y, p, u)(t) • δp(t) = ((Ay + Bu), δp)(t) ∂ u H(y, p, u) • δu(t) = (B T p T , δu)(t) -(U u, δu)(t), (7.25) 
where (•, •) denotes the scalar product in the adequate Euclidian spaces.

Consequently, the necessary and sufficient conditions of the LQ problem solution stated in Theorem 7.5 correspond to stationary conditions of the Hamiltonian in the following sense. For all t,   

y (t) = ∂ p H(y, p, u)(t) = A(t)y(t) + B(t)u(t) -p (t) = ∂ y H(y, p, u)(t) = p(t)A(t) -y T (t)W 0 = ∂ u H(y, p, u)(t) ⇔ U u(t) = B T (t)p T (t) (7.26) 
with the Final Condition (F.C.): p(T ) = -∇ T g(y(T )) .

(Recall that p is a line vector in R n ).

These three relations constitute the so-called optimality system.

The first two equations are the state equation and the adjoint state equations respectively (with the F.C. depending on y(T )): they constitute the so-called Hamiltonian equations.

The Hamiltonian equations are accompanied by the last equation which is the optimality condition on u, a necessary and sufficient condition in the present LQ case. In general, these three equations are fully coupled.

The Hamiltonian: the conserved quantity in time .

Exercise 7.8. Let (y * , p * , u * ) be the solution of the LQ problem (7.22). Show that the mapping t → H(y * , p * , u * )(t) is constant.

Correction. For all t,

d t H(y, p, u)(t) = ∂ y H(y, p, u)(t)y (t) + ∂ p H(y, p, u)(t)p (t) + ∂ u H( y, p, u)(t)u (t) 
= -p (t)y (t) + y (t)p (t) + 0 for any solution of the optimality system = 0

Hence the result.

In some contexts, the Hamiltonian denotes the energy of the system.

Remark 7.9. The solution of the LQ problem exists and is unique, see Theorem 7.3. Moreover, the stationary conditions of the Hamiltonian H(y, p, u) defined by (7.24) corresponds to the necessary and sufficient conditions of the LQ problem unique solution, see Theorem 7.5 and Eq. (8.40).

If the model is non linear or if the objective function J(u; y) is not quadratic then Theorem 7.5 does not hold anymore. However, in this case, the stationary conditions of the Hamiltonian H(y, p, u) corresponds to necessary conditions of the LQ problem solution... Therefore the corresponding triplet(s) (y, p, u) may represent optimal control policies for the dynamical system.

Some links can be done between the Hamiltonian and the Lagrangian.

For the control of PDEs (see next chapter), to obtain the adjoint equation, a Lagrangian will be introduced.

The reader may consult e.g. the on-line course [START_REF] Evans | An Introduction to Mathematical Optimal Control Theory[END_REF] presenting the concepts of "Hamiltonian mechanics" and "Lagrangian mechanics".

Examples & exercises

Exercise 7.10. Write the Hamiltonian and the resulting optimality system for the optimal control problem applied to the vehicle dynamics presented in Section 7.1.

For other exercices, please consult the supplementary material.

Feedback law and the Riccati equation (LQ case) *

This section is a "to go further section". Riccati familly (father and son), Italian mathematicians, 18th century.

The optimality condition derived above gives an expression of the optimal control u(t) in function of the adjoint solution p(t). In very simple cases like in some exercises above, it is possible to explicitly integrate the adjoint equation, resulting to an expression of u(t) depending on the state y(t): this states the so-called feedback law or closed-loop control. This is the expected information in automatic. However, in general, the expression of u in function of y is far to be trivial... In the LQ case, the feedback law is known: it is obtained by solving the Riccati equation presented below. Such feedback laws are not required in a contact of Data Assimilation. Therefore the result below may be skipped for readers interested in DA only.

Feedback law in the LQ case: closed-loop control

In the LQ case we have the following result.

Theorem 7.11. Under the assumptions of the existence -uniqueness Theorem 7.3, the (unique) optimal control u * writes as a feedback function (closed-loop control) as:

u * (t) = K(t)y(t) with K(t) = U -1 B T (t)E(t)
where the matrix E(t), E(t) ∈ M n (R), is solution of the Riccati equation:

E (t) = W -A T (t)E(t) -E(t)A(t) -E(t)B(t)U -1 B T (t)E(t) ∀t ∈ (0, T )
with the Final Condition: E(T ) = -Q.

For all t, the matrix E(t) is symmetric. Furthermore, since Q and W are positive definite, E(t) is positive definite too.

We refer to [START_REF] Trélat | Optimal control: theory and applications[END_REF] for the proof. This result provides a precious expression of the optimal control u in function of the state y. The aim of optimal control is to determine the best possible policy by minimizing a cost function over a period of time. It is the fundamental of automatic which is widely developed in aeronautics, robotics etc. RL is a mathematical framework for decision-making first introduced in the 1950s; it is now greatly employed in Machine Learning (AI). There are links between RL and optimal control: both theories lie in the common goal of learning an optimal action policy. However, while optimal control requires complete knowledge of the system, while in RL, an agent learns to make optimal decisions by interacting with its environment, maximizing the sum of "rewards" obtained over time. In case the agent makes a bad decision, it receives penalties. This is achieved by exploring the environment, taking actions, receiving rewards and learning from these experiences. RL can be used in situations where the system model is not fully known, on contrary to the optimal control. Moreover, RL relies on stochastic processes, more precisely on Markov Decision Processes which are discrete-time optimal stochastic control problems.

Towards non-linear and PDE cases: a few comments

What happens in non-linear cases ? In practice, optimal control problems are often nonlinear. Therefore, the results presented for the LQ problem do not apply directly, especially the analytic expression of the optimal control. Nevertheless, a good understanding of the LQ solution structure, particularly the strict convexity of the resulting cost function, is useful for tackling non-linear or non-strictly convex problems.

To solve a non-linear optimal control problem (in the sense of computing an optimal control u and the optimal trajectory y u ), one option is to employ numerical methods.

Connection between the control of ODEs and PDEs For PDE systems, the Pontryagin principle does not directly apply, and the feedback laws are generally not known. These topics are covered in more detail in the following chapter. This area is still an active field of mathematical research, with recent results including Riccati-like equations for the Navier-Stokes fluid flow equations at low Reynolds numbers, among others.

Despite these challenges, it remains possible to write equations characterizing the optimal control solution for PDE systems. This is achieved through the optimality system based on the adjoint equations, similar to the optimality system derived using the Hamiltonian. This approach is developed further in the next chapter for non-linear elliptic PDE systems.

Numerical methods based on the Pontryagin principle*

This section is a "to go further section".

Let us consider the LQ problem (7.5)(7.7); the final time T is given. The Pontryagin principle states that the unique optimal control u * satisfies the optimality system (8.40).

We present here numerical methods based on this optimality system. This approach leads to Boundary Value Problems (BVP) solved by e.g. a Newton-Raphson algorithm.

The Boundary Value Problem

By setting z(t) = (y(t), p(t)), the two first equation of the optimality system (the state and the adjoint equations) can be written as a first order dynamical system :

z (t) = F (u(t); z(t))
with the I.C. z(0) = (y 0 , •) and the Final Condition (F.C.) z(T ) = (•, p T ). We write the IC and the FC as: R(z(0), z(T )) = 0. (For more details, see e.g. [START_REF] Trélat | Optimal control: theory and applications[END_REF]).

Then, the problem to solve reads:

z (t) = F (u(t); z(t)) R(z(0), z(T )) = 0 (7.27)
This is a Boundary Value Problem (BVP) and not simply a Cauchy problem.

Resulting numerical method

Basic principle Let us denote by z(z 0 ; t) the solution of the Cauchy problem: z (t) = F (u(t); z(t)), z(0) = z 0 . We set: G(z 0 ) = R(z 0 , z(z 0 ; T )). Then, Problem (7.27) consists to solve:

G(z 0 ) = 0 (7.28)
Computing the roots of G(•) or solving the BVP (7.27) is equivalent. This problem can be numerically solved by the Newton-Raphson method (under C 2 regularity conditions).

Note that solving 1D BVP like (7.27) by solving successive Cauchy problems is called "shooting methods".

The multiple step version An efficient version of the "shooting method" above consists to split the time interval [0, T ] into sub-intervalls [t p , t p+1 ] and compute the values z(t p ) at the start of each sub-intervall. Conditions of continuity at each sub-intervall boundary have to be imposed.

The multiple shooting method is more stable than the basic version one.

The reader may refer to [START_REF] Trélat | Optimal control: theory and applications[END_REF] and references therein for more details on shooting type methods.

Direct vs indirect methods

Let us briefly present the pros and cons of direct methods presented in Section 7.1 and indirect methods. For details, the author may refer to e.g. [START_REF] Trélat | Optimal control: theory and applications[END_REF] and references therein. 7.9 The fundamental equations at a glance

The Linear model

The linear model (without source term s(t)) reads:

  
Given u(t), find y(t) such that: y (t) = A(t)y(t) + B(t)u(t) for t ∈ I = [0, T ] with the initial condition: y(0) = y 0 .

(7.29)

The model operator (control-to-state map) M(u) is defined as: M(u) = y u . This operator M(u(t)) is here affine in u(t), for all t in [0, T ].

The cost functional j(u) is defined from quadratic terms. First, the observation function is defined:

j(u(t)) = J(u(t), y u (t)) = 1 2 T 0 y u (t) 2 W dt + 1 2 T 0 u(t) 2 U dt + 1 2 y u (T ) 2 Q (7.30)
Given the observation" functional J(u; y), the cost function is defined as:

j(u) = J(u ; y u ) (7.31)
with y u (t) the unique solution of (7.29), given u.

The LQ optimal control problem Given the I.C. y 0 and the final time T , find u * (t) such that:

j(u * ) = min u j(u) (7.32)
The Hamiltonian is the conserved quantity in time. Its expressions is:

H(y, p, u) = p(Ay + Bu) - 1 2 ( y 2 W + u 2 U ) (7.33)
with H : R n × R n × R m → R, u(t) the control, y(t) the state of the system and p(t) the adjoint state, solution of the adjoint model.

The adjoint model reads:

p (t) = -p(t)A(t) + y(t) T W (t) for t ∈ [T, 0] (7.34)
with the final condition: p T (T ) = -Qy(T ). (p is a line vector).

The Pontryagin maximum principle states that if the control u(t) is defined as:

u(t) = U (t) -1 B(t) T p(t) T for almost t ∈ [0, T ] (7.35)
then the state y u (t) associated to this control u(t), is optimal for the LQ problem.

The Pontryagin maximum principle can be read as follows: the equations below have to be satisfied.

   y (t) = ∂ p H(y, p, u) = Ay + Bu -p (t) = ∂ y H(y, p, u) = pA -y T W 0 = ∂ u H(y, p, u) ⇐⇒ pB -u T U = 0 (7.36)
with the final condition: p(T ) = -∇g(y(T )) = -y(T ) T Q. This is the optimality system.

Chapter 8

Optimal Control of Stationary PDEs: Adjoint Method, VDA

This chapter presents optimal control basis for PDE systems. This leads to Variational Data Assimilation (VDA) formulations. The final goal is the computational algorithms to estimate control variable even if they are large dimension. The algorithms rely on the derivation of the first order optimality system which is based on the adjoint equations. The calculations are derived for a general non-linear elliptic PDE model (stationary) therefore formerly valid for a large class of models. Firstly, a brief presentation of the equations is provided in discrete dimension for readers who are not confortable with infinite dimensions, functional analysis, and differential calculus. Secondly the equations in infinite dimensions (in Hilbert spaces) are derived more rigorously. Theorem 8.37 states a general result which can be applied to any stationary PDE to obtain the adjoint equation and the cost gradient of a particular problem.

The resulting computational control algorithm leading to VDA is highlighted. It is known as the 3D-Var algorithm in the DA literature. This algorithm enables the fitting of model outputs to data, allowing for the identification of uncertain input parameters and model calibration.

Examples are presented.

Some results and developments require relatively high mathematical skills; this is particularly the case when addressing the differentiability of the PDE solution (with respect to the control variable) and when addressing the existence and uniqueness of the optimal control in the LQ case. These mathematical developments are gathered in a dedicated section entitled "mathematical purposes". This section can be skipped by readers interested in practicals and algorithms only. Before reading this section, the reader may need to revise basic concepts in functional analysis. Some of them are recalled in Appendix.

It is supposed here that the reader is aware of basic optimization concepts and gradient-based 119 minimization algorithms. A few of theses basic concepts are shortly recalled in Appendix as well (including a few exercises extracted from the literature).

For a deeper exploration of the topic of optimal control of PDEs (not necessarily the LQ problem and without addressing VDA), the reader may refer to, e.g. [START_REF] Tröltzsch | Optimal control of partial differential equations: theory, methods, and applications[END_REF].

The outline of this chapter is as follows A(u; y) = -div(λ∇y) and F (u) = u with mixed boundary conditions: y = 0 on Γ 0 ; -λ∂ n y = ϕ on ∂Ω/Γ 0 , with ϕ given. λ ∈ L ∞ (Ω), λ > 0 a.e. The corresponding functional spaces are : U = L 2 (Ω), V = H 1 Γ 0 (Ω). The control u is spatially distributed; it constitutes the source term (the RHS). The state equation models a diffusion phenomena e.g. heat diffusion in a structure, concentration in a fluid, the elastic deformation of a membrane under external force f = u, the electrostatic field in a conducting media, etc. Here, u is a distributed control since defined in Ω; it represents an external force (since in the RHS). Prove that it has one and only one (weak) solution in V . b) Prove that the unique solution y is continuous with respect to u i.e. the operator π : u ∈ U → y u ∈ V is continuous. 

Example 2)

A non linear version of the previous example is as follows.

A(u; y) = -div(λ(y; u)∇y) with mixed boundary conditions (independent of u). In this still classical case, the PDE is non linear due to the term λ(y; •).

Example 3)

Let us consider: A(u; y) = -div(λ∇y) and F (u) = f . A and F are here independent on the control u, however the boundary conditions are, as: y = 0 on Γ 0 and -λ∂ n y = u on ∂Ω/Γ 0 (λ, f ) are given in adequate functional spaces. In this case u is a boundary control, it represents the flux at boundary. The correct functional spaces are : U = L 2 (Ω), V = H 1 Γ 0 (Ω). As previously, the corresponding state equation has one and only solution in V (in vertu of Lax-Milgram theorem). The inequalities of continuity and coercivity show the continuity of y with respect to u.

The objective and cost function terms (misfit to data)

The formalism is the same as previously presented. One seek to make fit "at best" (in the least-square sense here) the model outputs to data. The observation operator Z mapping the state of the system y onto the observation space O is introduced as : Z : y ∈ V → z ∈ O with O here supposed to be a Hilbert space. The observation operator Z is a-priori non-linear.

Z may represent a complex non-linear multi-scale model e.g. a map between sequences of 2D optical images representing a 3D fluid dynamic flow to 3D velocity fields.

Next, a natural definition of the observation function is as already presented as:

J obs (y) = Z(y) -z obs 2 R -1 (8.2)
The misfit is measured in the observation space Z, using the norm • R . The operator R -1 is symmetrical positive (semi-)definite therefore defining (semi-)norms. Recall that in the Linear-Quadratic-Gaussian case, the optimal definition of R -1 relies on a covariance matrix of the observation errors R (see Section ??). In practice, because of lack of information, R is often simply diagonal, the diagonal coefficients represent the a-priori confidence we have on each observation. If enriched by a regularization term, the objective function reads as: J(u ; y) = J obs (y) + α reg J reg (u) (8.3) with J reg the regularization term. Note that J : U × V → R with J obs : V → R and J reg : U → R.

The cost function j(u) is finally defined as: j(u) = J(u ; y(u)) where y(u) (also denoted y u ) is the (unique) solution of the direct model (8.1). (8.4) We have: j : U → R.

Classical regularization terms

Classical regularization terms are as follows. a) If a "first guess"/ "background" value u b is provided (value which is supposed to a good first estimation of the unknown parameter u ), then one may consider the term:

J reg (u) = u -u b 2 B -1 (8.5)
with B -1 symmetrical positive (semi-)definite, defined as discussed in Section ??.

This additional term J reg (u) is quadratic (in u) therefore strictly convex... b) If one seeks to impose higher regularity on the parameter u, one may set:

J reg (u) = ∇u 2 2
or even ∆u This term enforces to find the optimal solution u with higher regularity therefore in a smaller sub-space.

Recall that ∇u 2 dx corresponds to the energy of the Laplace operator ∆u (isotropic linear elastic model solution).

∆u 2 dx corresponds to the energy of the bi-Laplacian operator ∆ 2 u (plate model solution).

Note that J reg (u) is here not quadratic in u anymore... More sophisticated regularization term expressions may be derived from physical or probabilistic analyses. This point is discussed in a next chapter.

LQ problems vs real-world problems Most of the control problems are not LQ problems for one of at least one of the following reason:

• The model is not linear.

• The regularization term J reg (u) is higher order only (e.g. of the form ∇u 2 ) therefore not strictly convex in u (but in ∇u only).

• Even if the direct model is linear then we generally do not have measurements everywhere in Ω, that is at each numerical grid points/nodes! In real-world problems, data z obs are generally available at some locations only or densely but at larger scale compared to the model resolution scale. For example, satellite observations are generally too large scale (therefore averaged observations) to measure small scale dynamics. Another example are camera measurements of a material presenting complex multi-scale structures. As a consequence, the actual misfit term may have one of the following form:

ω (Z(y) -z obs ) 2 dx or M m=1 (Z(y)(x m ) -z obs (x m )) 2 or Ω (Z(y) -F(z obs )) 2 dx
where ω is a non-convex subset of the complete domain Ω, M is the total number of point-wise data and F denotes e.g. an uncertain low-pass band filter.

In one of these cases, the cost function is not strictly convex anymore and the uniqueness of a minimum u * is not guaranteed anymore.

The minimization problem is often ill-conditioned: in the vicinity of a minimum (potentially local only), the cost function presents "nearly flat valleys", Fig. 8.1.

Figure 8.1: Tikhonov regularization. (L) A typical "poorly" convex functional j misf it (•): illconditioned minimisation problem. (R) Regularized functional j(.) = (j misf it (.) + α reg j reg (.)), with j reg is here strictly convex in u and defined from a prior value u 0 .

Optimal control problem, VDA problem

Variational Data Assimilation (VDA) simply relies on the optimal control of the model (here a PDE) with the cost function j(u) measuring the discrepancy between data and model outputs.

As previously, the control-to-state mapping (the "model operator") reads as: M : u ∈ U → y u ∈ V with y u the (unique) solution of the direct model (8.1).

Let U ad , subset of U , be the admissible control set.The optimal control problem reads:

     Find u * ∈ U ad such that: j(u * ) = min U ad j(u)
with the cost function j defined by (8.4) .

(8.7)

Problem (8.7) can be re-read as:

Minimize j(u) = J(u; y u ) in U ad under the "model constraint" (8.1) (8.8)

Weak forms and dual space representation

Considering weak forms of the equations is interesting in mathematical analysis e.g. aiming at characterizing "weak" solutions that is solutions in larger functional spaces thus enabling to represent observed/real-world singularities (discontinuities). Moreover, weak formulations constitute the first key stage to derive a Finite Element numerical scheme. Here, considering the weak form of the equations enables to naturally and rigorously derive the adjoint equations including in the presence of non trivial boundary conditions (which is often the case in realworld problems).

Then, let us write the weak (variational) form of the direct model. To do so, let us set the forms: a(u; y, z) :

U × V × V → R ; a(u; y, z) =< A(u; y), z > V ×V b(u; z) : U × V → R ; b(u; z) =< F (u), z > V ×V
Let us point out that both z → a(.; ., z) and z → b(.; z) are necessarily linear (linearity of the forms with respect to test functions z). Furthermore, if the direct model is linear (i.e. with respect to its unknown y) then the form a(.; y, z) is bilinear. If not, it is not.

The weak formulation of the direct model (the state equation) reads:

Given u ∈ U, find y ∈ V such that: a(u; y, z) = b(u; z) for all z ∈ V (8.9)

By using the Riez-Frechet representation theorem (see Section ?? in Appendix), (8.9) is equivalent to: A(u; y) = F (u) in V (8.10)

Exercice 8.3. Apply this general presentation to the toy BVP.

Differential j (u) vs gradient ∇j(u)

As previously discussed, to numerically solve the optimal control problem with large dimension (discrete) control variable, one needs to employ descent algorithms which are based on the gradient information ∇j(u).

To compute the gradient one first needs to clarify what is the link between the differential j (•) and the gradient ∇j(•).

To perform computations, the state equation (direct model) has to be discretized using an adequate numerical method e.g. finite differences, finite elements, finite volumes. Recall that j : U → R, then j (u) ∈ L(U ; R).

Let us denote U h the discrete control space with dim(U h ) = m (there is m discrete control variables). We assume that U h ⊂ U .

The gradient ∇j(u) to be computed, ∇j(u) ∈ R m , is related to the differential j (u) by the relation:

< ∇j(u), δu > R m = j (u) • δu for all δu ∈ U h ⊂ R m (8.11)
Of course, the functional j(•) is here assumed to be differentiable. In the sequel sufficient conditions are presented to have j(•) continuously differentiable that is of class C 1 .

Note that a few exercises on differential calculus is proposed in the supplementary material of this course. Also one may do the following exercise.

Exercice 8.4. Let j be the cost function defined by j(u) = J(u; y u ) with J defined by (8.3). a) Write a sufficient condition to have j of class C 1 . b) Write an expression of the differential j (u).δu, for all δu c) Is the cost function j(u) strictly convex ? Discuss the answer depending on the observation operator Z and the regularization term form.

Recall: linear + quadratic implies strictly convex.

Equations derivation from the Lagrangian

As already mentioned, the optimization problem (8.8) may be read as a standard differentiable optimization problem with the model (8.1) viewed as an equality constraint.

The Lagrangian

All calculations below are formal: we do not pay attention to functionals spaces. The equations may be read as being discrete systems too.

The optimization problem (8.8) may be viewed as a (differentiable) optimization problem with the model (8.1) being an equality constraint. Then, it is natural to write the corresponding Lagrangian L: L(u; y, p) = J(u; y)-< A(u; y) -F (u), p > (8.12)

with p the Lagrangian multiplier.

• If considering that A(u; y) and F (u) denote the PDE terms in finite dimension, e.g. A(u; y) the rigidity matrix in FEM and F (u) the RHS vector, then < •, • > simply denotes the Euclidian scalar product.

• If considering that A(u; y) and F (u) represent the operators of the PDE, e.g. A(u; y) = -div(u∇y), then < •, • > denotes the dual product < •, • > V ×V with V the state y belongs to, V a Hilbert space.

In this case, p is a dual variable belonging to V too.

No constraint are here imposed to the control u (neither equality nor inequality ones).

The optimality system

The stationary point(s) of the Lagrangian provide the necessary optimality condition. These points are determined by the relation: ∇L(u; y, p) = 0. This reads:

   ∂ u L(u; y, p) • δu = 0 ∀δu ∂ y L(u; y, p) • δy = 0 ∀δy ∂ p L(u; y, p) • δp = 0 ∀δp (8.13)
The last equation of (8.13) provides the direct model: A(u; y) = F (u).

The second equation of (8.13) provides the following linearized equation:

∂ y J(u; y) • δy-< ∂ y A(u; y) • δy, p >= 0 ∀δy. Therefore: < ∂ y J(u; y) -[∂ y A(u; y)] T • p, δy >= 0 ∀δy. Therefore: [∂ y A(u; y)] T • p = ∂ y J(u, y)
This is the so-called adjoint equation.

The first equation of (8.13) reads: ∂ u J(u; y) -[∂ u A(u; y) -F (u)] = 0. It will be shown later that this equation is the necessary condition which reads: "the gradient equals 0".

Using the particular decomposition of J(u; y) introduced in (8.3), we have:

∂ y J(u, y).δy = J obs (y) • δy and ∂ u J(u; y).δu = J reg (u) • δu (8.14)
In summary, we have the set of equations:

   Given u, find y s.t. : A(u; y) = F (u) (Direct model) Given (u, y), find p s.t. : [∂ y A(u; y)] T • p = J obs (y) (Adjoint model) Given (y, p), find u s.t. : [∂ u A(u; y) -F (u)] • p = J reg (u) (1st order condition) (8.15)
This set of equations constitutes the so-called optimality system.

Using weak forms

Let V be the state space (y ∈ V ), V a Hilbert space. Let < •, • > V ×V be the dual product. Then, the Lagrangian reads:

L(u; y, p) = J(u; y) -a(u; y, p) -b(u; p) L : U × V × V → R
Next, the last equation of (8.13) provides the state equation (the direct model in weak form):

a(u; y, δp) = b(u; δp) ∀δp ∈ V
The second equation of (8.13) provides the following linearized equation:

∂ y a(u; y, p).δy = ∂ y J(u, y).δy ∀δy ∈ V It is the adjoint equation.

The first equation of (8.13) reads:

∂ u J(u; y) • δu -[∂ u a(u; y, p) -∂ u b(u; p)] • δu = 0 ∀δu ∈ U It will be shown that: j (u) • δu = ∂ u J(u; y) • δu -[∂ u a(u; y, p) -∂ u b(u; p)] • δu.
Therefore this last equation reads: j (u) = 0.

These three equations summarizes as:

   a(u; y, z) = b(u; z) ∀z ∈ V ∂ y a(u; y, p) • z = ∂ y J(u, y) • z ∀z ∈ V ∂ u J(u; y) • δu -[∂ u a(u; y, p) -∂ u b(u; p)] • δu = 0 ∀δu ∈ U (8.16)
Exercice 8.5. Apply the general expressions above to the equations of the programming practical.

Mathematical purposes *

This is a "to go further section".

Differentiability of the cost function

In the following, we will need to differentiate the cost function j (with respect to its unique variable u). Thus, the following question is of main interest in order to address the optimal control problem:

An example is as follows. The control appears in the RHS of the (finite dimensional) state equation as:

Ay = F u in R n (8.17)
with A ∈ M n×n a non singular real matrix, F a rectangular matrix, F ∈ M n×m , m < n, of maximal rank m.

We consider the usual quadratic observation function J(u; y) = Zy -z obs 2 2 , with the observation operator Z a non-singular linear matrix Z of M n×n . For a sake of simplicity, we set here z obs = 0.

The cost function is defined as usual as: j(u) = J(u; y u ). The optimal control problem aims at solving u * = arg min u∈R m j(u) .

Exercise 8.8. Show that this optimal control problem admits an unique solution u * , even without regularization term in J(u; y).

Correction. In this particular linear case, we have:

y u = A -1 F u ≡ M u . The control-to-state map M is linear.
Let us set N = (Z • M ), N non-singular matrix of M n×n . We have:

j(u) =< N u, N u > 2 =< N T N u, u > 2 = u 2 N T N
Indeed, the matrix N T N is symmetric positive definite (since Z and M invertible), therefore defining a norm. As a consequence j(u) is strictly convex: it admits an unique minimum u * .

Back to the general continuous case

In the general case (moreover in infinite dimension), the idea remains the same as the previous basic linear case. Calculations are a bit heavier due to the non vanishing dataset z obs , also due to the more general observation operator Z (however still linear).

Recall that the state equation reads:

A(u; y) = F (u) in V
with V the dual space of the Hilbert space V . Next, the cost function j(u) is defined from the observation function J(u; y), see (8.4), which is defined as the sum of the data misfit term J obs (y) and a regularization term J reg (u), see (8.3).

The state equation operator is said to be coercive in V if for all y ∈ V , for all u ∈ U , there exists α > 0 such that: < A(u; y), y > V ×V = a(u; y, y) ≥ α y 2

The regularization term may have different forms. If J reg (u) is quadratic, therefore strictly convex, as defined by (8.5), this defines a LQ problem.

In the LQ case, the existence and uniqueness of the optimal control u * hold.

Theorem 8.9. Let us assume that the state equation operator A(•; y) is linear and coercive.

Let us consider the observation function J(u; y) defined as (8.3) with the regularization term (8.5). Assume moreover that U ad is a closed convex subset of U . Then, it exists a unique solution u * at the optimal control problem (8.7).

Proof derived from those presented in [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF][START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF] Chapter 1. Past Step 0) below, the proof is very similar to those of Theorem 7.3.

Let us consider the expression of J(u; y) as in (8.3)-(8.5) with u b = 0. The cost function satisfies j(u) = J(u; y u ).

Step 0) We first reformulate the cost function expression as follows:

j(u) = Z(y u -y 0 ) + Zy 0 -z obs 2 + u 2 B -1
with y 0 given in V . We set:

π(u, v) = (Z(y u -y 0 ), Z(y v -y 0 )) Z + (Bu, v) and D(v) = (z obs -Zy 0 , Z(y v -y 0 )) Z Then, the cost function reads:

j(u) = π(u, u) -2D(u) + z obs -Zy 0 2 Z
Since the model operator M is affine and continuous, the form π is bilinear symmetric in U . Moreover it is coercive in the sense:

π(u, u) ≥ c 0 u 2 , c 0 > 0, ∀u ∈ U
The form D(u) is linear continuous in U . Therefore j(u) is continuous and satisfies:

j(u) ≥ c 0 u 2 -c 1 u (8.18)
for a given c 1 > 0.

j (u) • δu = ∂j ∂u 1 (u) • δu 1 + ∂j ∂u 2 (u) • δu 2
Small dimensional vs large dimensional case In practice we will have to distinguish small dimensional cases (m = O(1)) to large dimensional cases (m = O(10 2 ) and much more).

The challenging case will be the large dimensional one of course. That is a key question will be:

How to compute the (scalar) values < ∇j(u), δu > for a large number of directions δu i.e. with m large ?

In the next paragraphs, we first present methods to compute < ∇j(u), δu > which are tractable for m very small only, i.e. for small dimensional inverse problems only.

Computing the gradient without adjoint model

Two natural options arise to compute the differential j (u), therefore the gradient ∇j(u).

Option 1: the Finite Difference gradient

The historical method and the most simple one too consists to approximate the gradient values using Finite Differences (FD). Let U h be the discrete control space, dim(U h ) = m. Then, given δu ∈ R m , an approximation of the gradient in the direction δu can be obtainedf by employing one of the three following formlas.

j (u).δu ≈ ± j(u ± εδu) -j(u) ε at order 1 in ε (8.20) j (u).δu ≈ j(u + εδu) -j(u -εδu) ε at order 2 in ε (8.21)

Advantages and drawbacks of the FD approach. ⊕: simple to implement, non-intrusive. : requires (m + 1) evaluations of j(u) therefore (m + 1) resolutions of the direct model. This not possible for m large.

: The accuracy depends on the choice of ε (and an optimal value of ε is a-priori unknown).

Option 2: expression of j (u) based on the Tangent Linear Model (TLM)

The straightforward expression of j (u) (differential calculations) Let us write the straightforward expression of the differential. Let u 0 in U , for all δu ∈ U ,

j (u 0 ) • δu = ∂J ∂u (u 0 ; y) • δu + ∂J ∂y (u 0 ; y) • w δu (8.22)
where w δu denotes the derivative of the state y with respect to u in the direction δu:

w δu = dy du (u 0 ) • δu (8.23)
In the case that J(u; y) has the particular form (8.3), we have: ∂ y J(u 0 ; y) = J obs (y) and ∂ u J(u 0 ; y) = α reg J reg (u 0 ). Therefore:

j (u 0 ).δu = J obs (y) • w δu + α reg J reg (u 0 ) • δu (8.24)
w δu represents the differential of the state with respect to the control variable. For example, w δu represents the differential of a temperature field in the domain with respect to the (inhomogeneous therefore spatially distributed) diffusivity parameter. particular This quantity w δu is not intuitive however it can be obtained by simply deriving the direct model: this is the so-called Tangent Linear Model (TLM).

The TLM The TLM consists to differentiate the state equation with respect to the control variable u. By simple differentiation, we obtain:

∂A ∂u (u; y u ) • δu + ∂A ∂y (u; y u ) • ( dy du (u) • δu) = F (u) • δu (8.25) 
Therefore the TLM:

          
Given u 0 ∈ U and y u 0 the corresponding solution of the state equation (8.1), given a direction δu ∈ U, find w δu ∈ V such that: ∂A ∂y (u 0 ; y u 0 ).w δu = F (u 0 ) -∂A ∂u (u 0 ; y u 0 ) • δu in Ω with corresponding linearized boundary conditions on ∂Ω (8.26)

Remark 8.11.

• For each new value of δu, only the RHS of the TLM changes. As a consequence if the numerical solver relies on a factorization of the LHS, the latter can be done once for all.

• In the case of a linear model, that is the map y → A(•; y) is linear, the TLM simplifies as:

A(u 0 ; w δu ) = F (u 0 ) - ∂A ∂u (u 0 ; y u 0 ) • δu in Ω
In this case, the differential operator therefore the numerical solver, are the same to the direct model solver. Only the RHS changes compared to the direct model.

The gradient obtained from the TLM correspond to the so-called "sensitivity functions" derived in the books [START_REF] Chavent | Nonlinear least squares for inverse problems: theoretical foundations and step-by-step guide for applications[END_REF][START_REF] Kern | Numerical methods for inverse problems[END_REF].

Exercice 8.13. Write the TLM of your practical; both the weak and the classical forms.

Exercice 8.14. In your programming practical, write a formal procedure aiming at plotting "local sensitivity maps".

Gradient components: in the weak or the classical form? *

This a "to go further paragraph". We have written above the state, linear tangent and adjoint equations in their weak forms for few reasons. First, it is the right framework to study the solutions in the weak sense. Second, deriving the correct adjoint equations in the weak form may be more clear since the weak forms include naturally the boundary conditions. Third, it is the natural framework in the case of the finite element method. Nevertheless, in practice if not considering the finite element method, deriving the equations in their weak forms is not compulsory. Once the reader is confortable with these equation derivations process, it is possible to write all the required equations directly in the classical forms or going back from the weak to the classical forms.

A derivation of the equations in finite dimension or in the semi-discrete form (time-dependent problems) are proposed in Section 6.2.2.

Gradient discretization in the case of FEM In the case of Finite Element discretization, an extra question remains concerning the discretization of the gradient expression (??). Recall j (u) ∈ L(U ; R). Let us denote {ψ u i } 1≤i≤m the finite element basis of the control variable u. Then the i-th component of the (discretized) gradient is naturally defined as follows :

∂ i j(u) =< j (u), ψ u i >
Example Let us consider the direct model : -∆y = u (the control is the RHS) with homogeneous Dirichlet boundary conditions on ∂Ω. Let us consider the cost function :

j(u) = 1 2 Ω (y u ) 2 dx + 1 2 Ω u 2 dx
If using finite element discretization, then the ith component of the gradient reads :

∂ i j(u) = Ω p u ψ u i dx + Ω uψ u i dx , 1 ≤ i ≤ m
with p u the (discrete) adjoint state function (to be decomposed in its own finite element basis) and u to be decomposed in its finite element basis too.

and the TLM reads:

< ∂A ∂y (u; y u ).w δu , z > V ×V =< ∂F ∂u (u).δu, z > V ×V -< ∂A ∂u (u; y u ).δu, z > V ×V ∀z ∈ V (8.30
) with w δu defined by (8.23). Recall the relation for any linear operator L: < Ly, z > V ×V =< L * z, y > V ×V . Then by adding the two equations above, we obtain: ∀δu ∈ U ,

j (u) • δu = ∂J ∂u (u; y u ) • δu-< [ ∂A ∂u (u; y u ) - ∂F ∂u (u)].δu, z > V ×V + < [ ∂J ∂y (u; y u ) -( ∂A ∂y ) * (u; y u ).z], w δu > V ×V ∀z ∈ V (8.31)
where (∂ y A) * is the adjoint operator of the linearized direct model operator ∂ y A.

The goal is to make vanish the term in w δu in the expression of j (u) • δu above.

Then we define p u such that it satisfies:

< ( ∂A ∂y (u; y u )) * • p u , w > V ×V = < ∂J ∂y (u, y u ), w > V ×V ∀w ∈ V, (8.32) 
We obtain the expression of j (u) independent of w δu :

j (u) • δu = ∂J ∂u (u; y u ) • δu-< [ ∂A ∂u (u; y u ) - ∂F ∂u (u)] • δu, p u > V ×V (8.33)
This is the expected expression of j (u); it will be written in the weak form in the sequel.

However, note that he expression of j (u) above is not explicit. Let us write the explicit expression of j (u). j (u) is an element of U = L(U, R) (U Banach space). Then, we denote indifferently: j (u) • δu ≡< j (u), δu > U ×U where < ., . > U ×U denotes the duality product.

Using this notation and the definition of an adjoint operator, the last expression above reads:

< j (u), δu > U ×U = ∂J ∂u (u; y u ) • δu-< [ ∂A ∂u (u; y u ) - ∂F ∂u (u)] T • p u , δu > U ×U (8.34)
Therefore the explicit expression of j (u):

j (u) = ∂J ∂u (u; y u ) -[ ∂A ∂u (u; y u ) - ∂F ∂u (u)] T • p u (8.35)
The expressions above independent of the term w δu rely on the so-called adjoint equation (8.32).

   a(u; y u , z) = b(u; z) ∀z ∈ V a * ((u, y u ); p, z) ≡ ∂ y a(u; y u , p) • z = J obs (y u ) • z ∀z ∈ V j (u) • δu = 0 = α reg J reg (u) • δu -[∂ u a(u; y u , p u ) -∂ u b(u; p u )] • δu ∀δu ∈ U (8.40)
The optimality system (8.40) is nothing else than the stationary point conditions (8.13) of the Lagrangian. The adjoint state p is the lagrangian multiplier associated to the "-model constraint".

Remark 8. [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]. * ("To go further"). The adjoint equations for a coupled system. If the direct model is composed by two PDEs equations weakly coupled then the adjoint system is composed by the corresponding adjoint equations weakly coupled too by in the reverse way.

If the direct model is composed by two PDEs equations coupled (fully) then the adjoint system is composed by the corresponding adjoint equations (fully) coupled too.

Exercises

Exercice 8.17. Write the optimality system which characterizes the solution u of the optimal control problem of a basic BVP and inverse problem of your choice.

Exercice 8.18. Write the optimality system which characterizes the solution u of the optimal control problem of your practical. Detail both the weak and the classical forms.

8.7

The VDA algorithm (3D-var) 8.7.1 Gauss-Newton vs Quasi-Newton

Recall that we assume to be in context where the dimension of the control variable u is large, then local minimization methods only are affordable (versus global optimization ones).

To solve the first optimality condition ∇j(u) = 0, a natural approach is to use the Newton-Raphson algorithm. This approach is very efficient since second order (when converging). However, it requires the computation of the Hessian H j of j which is often a too complex and/or too CPU time consuming step. That is why in many cases, first order descent algorithms (based on the gradient information only) are preferred. In practice, we use Quasi-Newton methods like the BFGS algorithm, [?]. A few recalls on the Quasi-Newton methods and the BFGS algorithm in particular can be found in Appendix.

at a given point u only (and regarding to the considered observations too).

Let us remark that this idea of computing sensitivities in order to better understand both the model and the physics can be applied in a context without observations. Typically, it can be applied to cost functions depending on the state of the system only in view to study the system stability. For example, it can be interesting to quantify the sensitivity of the following model output:

j(u) = 1 2 ω ∇y u 2 dx
with ω a subset of Ω.

The resulting gradient expression.

The relationship between the gradient ∇j(u) and the differential j (u) is:

< ∇j(u), δu > R m = j (u) • δu for all δu ∈ U h ⊂ R m (8.50)

The differential of j reads: for all δu ∈ U , In the case of a composite gradient i.e. c containing different components, c = (u 1 , u 2 ), we have: Recall that the general continuous formalism above, based on the weak form of the equations, enables to rigorously derive the adjoint equations and the gradient expression, including in the non-linear case, even if the boundary conditions are non trivial. The discrete formalism below is easier to handle but it may be incomplete in presence of complex boundary conditions.

j (u
The direct model reads:

Given u ∈ R m , find y ∈ R n such that: A(u; y) = F (u) (8.53)

A(u; y) represents a system of n (non-linear) equations at n unknowns (y 1 , . . . , y n ). One has: A : R m × R n → R n ; A(u; y) ∈ R n . F : R m → R n ; F (u) ∈ R n .

The solution of this non-linear system is supposed to be unique and is denoted by y u . Let us denote by D y A(u; y u ) (resp. D u A(u; y u )) the n equations derived with respect to y (resp. u): it is the n × n-Jacobian matrix (resp. the n × m-Jacobian matrix). Similarly, we denote by D u F (u) the n components of F (u) derived with respect to u: it is the n × m-Jacobian matrix.

Let us recall the adjoint property (transpose in the real case) of a n × n-matrix M (therefore a linear operator from R n onto R n ): for y and z in R n , (M T y, z) R n = (y, M z) R n . The observation function J(u; y) is defined as indicated in the general case.

Practical aspects

In this chapter are presented two technics to validate the computed gradient. This is extremely important to do so, as the validation of a direct solver for example. Also, the concept of twin experiment enabling to investigate the reliability of the VDA based inversions is presented.

Validate your codes: computed gradients

Validating a computational code is a mandatory step before performing simulations. Below are described methods how to validate the adjoint code and the cost fucntion gradient.

• Validation of the adjoint code. It can be verified that the code actually computes the adjoint of the tangent linear code by computing the scalar product property. This supposes however to have developed the tangent linear code too.

• Validation of the gradient. The adjoint-based gradient can be compared to finite differences values. This is the so-called the gradient test. This test should be done for any computational code computing a model output gradient.

If not interested today in practical computational aspects, this section may be skipped.

The scalar product test

This test aims at checking if the adjoint code is actually the adjoint of the Tangent Linear code. This test supposes to have developed both the adjoint code and the linear tangent code.

The test aims at numerically verifying the definition of an adjoint operator. Let M be a linear operator defined from U to Y, we have:

< M u, y > Y =< u, M * y > U
Let u 0 be a given parameter value.

• Given an arbitrary perturbation du ∈ U, the Tangent Linear code output is computed: The gradient test

The objective of this test aims at verifying that the gradient obtained from the adjoint corresponds to the partial derivatives of the cost function.

If first using an adjoint code, this test must be done before any further computations based on the adjoint-based gradient. This test requires to perform a dozen of times the direct code and one time the adjoint code.

The Tangent Linear code is here not required.

Let u 0 be a given parameter value. The Taylor expansion of the cost function j at u 0 for a small perturbation α δu (α ∈ R + ) reads: • First, a dataset (the observations z obs ) is generated by applying the direct model to the input parameter u (this value will be referred to as the "true" value, denoted by u t ). The obtained observations are perfect in the sense that they are free from model errors. Next, noise (e.g., Gaussian noise with a realistic amplitude) is added to these perfectly synthetic data.

• Second, the optimal control process is performed starting from an initial guess value u b that differs from the "true" value u t (the one used to generate the synthetic data).

As a consequence, since the true solution u t corresponding to z obs is known, thorough investigations can be conducted.

After the mandatory validation procedures (validations of the direct code, the adjoint code plus the gradient values), twin experiments are the next step to investigate the developed VDA formulation. In practice, L B is computed with few lower-diagonals only that is defining an incomplete Cholesky decomposition only.

Chapter 9

VDA for Time-Dependent PDEs

This chapter aims at extending the VDA formulation to unsteady PDEs. The latter can be (well-posed) parabolic or hyperbolic equations, non-linear or not. The calculations derived in all this chapter are formal in the sense that we do not pay attention to the functional spaces.

For more rigorous derivations of optimality systems in optimal control problems, the reader may consult e.g. [START_REF] Lions | Optimal control of systems governed by partial differential equations[END_REF][START_REF] Tröltzsch | Optimal control of partial differential equations: theory, methods, and applications[END_REF].

As in the stationary case, the derivations are first presented in a discrete formalism since it does not require demonstrated skills in differential calculus. However, these derivations in finite dimensions are restrictive. Next, the adjoint equation and the gradient expression are derived in a general case therefore enabling to use the formula for a particular problem, see Theorem 9.4.

The resulting algorithm obtained for a time-dependent system is classically called 4D-var (even if the model is not 3D in space...). Some strategies to reduce the complexity of this CPU and memory consuming algorithm is discussed. Finally real-world applications are presented

The outline of this chapter is as follows1 . with its consequences: this defines a strictly convex term in u and it attracts the solution to the background value, however for the best or for the worst... One can consider higher-order terms too as in the stationary case e.g. J u reg (u) = ∇u . In this case, J u reg (u) is no longer convex with respect to u but with respect to ∇u only.

The optimization problem

The optimization problem writes similarly to the stationary case:

Find c * (x, t) = (y * 0 (x), u * (x, t)) ∈ H × U T such that: j(c * ) = min H×U T j(c) (9.10)

The control parameter vector c is here a-priori time-dependent. As a consequence, its discrete version is an extremely large vector! Therefore the optimization problem is a large dimension one. One of the consequence is that ∇j(c) has to be computed by employing the adjoint method.

Optimality equations in finite dimension (discrete forms)

The derivation of the adjoint equation and the gradient expression in finite dimension is easier than in the continuous form since calculations requires less experience in differential calculus. However, it is harder (and less elegant) to derive the equations for general cases in particular for complex numerical schemes or non classical boundary conditions. For a sake of simplicity, we present here the optimality equations in the case of a basic explicit one step time scheme (namely the forward Euler scheme). The formal direct model reads: For a sake of simplicity again, the control variable c is simply here the I.C.:

c = y 0 ∈ R n
Moreover, it is supposed that: a) the observations z obs ∈ R m are available at all time step; b) the regularization term relies on the knowledge of a good background value y b .

with p N T = 0, and (recall) ∆ k = R -1 (Z(y k ) -z k ). We have: 

p N T -1 = Z T N T -1 ∆ N T -1 p N T -2 = M T N T -2 Z T N T -1 ∆ N T -1 + Z T N T -2 ∆ N T -2 p N T -3 = M T N T -3 M T N T -2 Z T N T -1 ∆ N T -1 + Z T N T -2 ∆ N T -2 + Z T N T -3 ∆ N T -3 . . . p 0 = M T 0 M T 1 . . . M T N T -3 M T N T -2 Z T N T -1 ∆ N T -1 + Z T N T -2
p 0 = N T k=1 M T 0 . . . M T k-1 Z T k ∆ k (9.21)
In conclusion, by introducing the following sequence (defining the discrete adjoint model): -The gradient with respect to the Initial Condition equals the adjoint state at initial time (modulo the minus sign and the regularization term).

The optimality equations in infinite dimension (continuous forms)

In this section, a rigorous derivation of the adjoint equation and the gradient expression are proposed. The general expressions presented in Theorem 9.4, can be applied to a large class of problems.

On the term w δc Recall that the (unique) state of the system y(c) is assumed to be differentiable with respect to c, c = (y 0 , u). Given a perturbation δc ∈ C, the term w δc (t) represents the state derivative in the direction δc = (δy 0 , δu) (Gateaux's derivative). This term satisfies the relation: On the differential j (c) and the composite gradient ∇j(c) Rigorously speaking, the terminology "gradient" refers to vectors in finite dimension spaces. However, we improperly use the word gradient (as it is usually done in the literature too) to name the differentiable j (u) ∈ L(H × U T ; R) or the actual gradient ∇j(u) ∈ R m .

w δc ≡ dy dc ( 
Since the control variables has here two distinct components, c = (y 0 , u), then the gradient of j(c) reads: for any perturbation δc = (δy 0 , δu).

Recall that we have: < ∇j(c), δc > R m = j (c) • δc for all δc ∈ C h ⊂ R m .

The Tangent Linear Model (TLM)

By deriving the direct model (D) with respect to c (in a direction δc and at "point" y(c)), we obtain the TLM. The TLM solution is the term w δc . We have:

(LT )

      
Given c = (y 0 , u) ∈ H × U T and y c ∈ W V (0, T ) solution of the direct problem (D), given δc = (δy 0 , δu) ∈ H × U T , find w δc ∈ W V (0, T ) such that: ∂ t w δc (t) + ∂A ∂y (u; y) • w δc (t) = -∂A ∂u (u; y) • δu(t) + F (u) • δu(t) ∀t ∈ ]0, T [ w δc (0) = δy 0 (9.31) Remark 9.3. If the operator A is linear with respect to the state variable y, then we have: ∂A ∂y (u(t), y(t)) • w δc (t) = A(u(t), w δc (t)).

In this case, the TLM is the same as the direct model but the I.C. and the RHS.

As a consequence, to compute w δc and to obtain the gradient defined by (9.28), one can solve the TLM (LT ).

The goal is to obtain an expression of j (c) independent of w δc .

The proof follows the same principles than in the stationary case (see the proof of Theorem 8.15). The only difference consists to integrate in time the equations. We write: The goal is to make vanish the term w δc (t) in (9.34). This goal is reached by setting p as the solution of the following equation: The linearized problem is supposed to be well-posed therefore the operator ∂ y A(u; y u ) is an isomorphism from V into V , and its adjoint operator (∂ y A) T (u; y u ) is an isomorphism from V into V too, see e.g. [9]. As a consequence, the adjoint equation above is well-posed too.

By making appear the adjoint operator of [ ∂A ∂u (u; y) -F (u)] and by considering the adjoint equation, 9.35 reads: with (recall) c(x, t) = (y 0 (x), u(x, t)) and J reg (c) • δc = α reg,0 (J 0 reg ) (y 0 ) • δy 0 + α reg,u (J u reg ) (u) • δu.

The expression of j (c) • δc above does not depend anymore on w δc : this was the goal.

Moreover, since: the gradient expression (9.32) follows by identification.

A few remarks

In addition to the remarks already made in the finite dimension linear case, see Section 9.2, let us notice that:

-By construction the adjoint model is linear, whatever if the direct model is linear or not (like in the steady-state case).

-If the differential operator A(u; y) is linear and symmetric (in y(x, t)), the problem is selfadjoint (see Section 8.6.2 for details): the adjoint model differs from the direct one by the RHS only.

-By considering the expression of J reg and J obs as defined in Section 9.1.2, we obtain: Moreover, the RHS J obs (y c (t)) of the adjoint model equals the data misfit term which reads: Z T R -1 (Zy(t) -z obs (t)).

Exercice 9.5. Consider the time-dependent case of your practical (linear case or not). a) Write the adjoint equations; both in the weak and the classical forms. b) Write the gradient expression based on the adjoint method.

The 1st order optimality system

As previously (steady-state system in the previous chapter), we can define the optimality system. It is the set of equations characterizing the optimal solution:

• the state equation,

• the adjoint state equation, Once the low-resolution minimization process has converged (the so-called "analysis step" is done), the original "high-resolution / full" model is performed (it is the so-called "prediction stage"). The prediction stage gives new innovation vectors (the discrepancy between the model and the observations).

Let us point out that the innovation vectors d n are the crucial input of the assimilation method, thus they are computed using the high-resolution model. *) Update the increment and the reference state.

Thus, the incremental 4D-var method is a mix of calibration on linearized operators, full physic predictions and discrepancy measurements based on the fine innovation vector.

For more details, the reader should consult [8,[START_REF] Trémolet | Incremental 4d-var convergence study[END_REF], where the method is developed in a weather forecast context.

Then we perform a forward run to generate observations at points 1 and 2 shown with black stars in figure 9.7(a). Then, we suppose that the inflow discharge is constant (4.95 m 3 s -1 ), and we try to retrieve its real value by assimilating observations. We present in Figure 9.8 the identified inflow discharge for different experiments. In Fig. 9.8(a), observations are h and q at each cell and each time step. In Fig. 9.8(b), observations are h at point 1 and (h, q) at point 2, both at each time step. In Fig. 9.8(c), observations are h at point 1 only, but at each time step.

We can notice that the identified inflow discharge is good even with the observation of h at point 1 only.

In a practical point of view, such a test case show the ability of the method to identify inflow discharge in a river ...

One notice that the end of the flood event is not well identified. This is the "blind period" phenomena: for example in case (c), the inflow discharge after 270 s can not be identified because the information from the inflow boundary did not reach yet the gauge station. 
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 12 Figure 1.2: Electrical Impedance Tomography (EIT) for cardio-pulmonary monitoring: voltage measurements around the thorax using an EIT system with 16 electrodes. (R) Image extracted from C. Putensen et al., J. Clinical Medecine (2019).
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 21 Figure 2.1: Linear least-square problem (with dense observations-measurements !). (L) The most simple case: linear regression; two parameters to identify. (R) An other simple case (polynomial, degree 3).
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 22 Figure 2.2: Non-linear least square problems: examples. (L) A fitting problem (with dense data); 4 parameters to identify. (R) The (differentiable) sigmoid function employed to solve binary classification problems.
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 23 Figure 2.3: Non-linear least square problems: the location problem.(Image extracted from Vandenberghe's UCLA course).
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 24 Figure 2.4: Tikhonov regularization. (L) A typical "poorly convex" functional j data (•): illconditioned minimisation problem. (M) Regularized functional to be minimized: j(.) = (j data (.) + α reg j reg (.)) with j reg (u) = u -u 0 , u 0 a prior value. (R). Data fitting (in the LS sense) without and with regularization (Image extracted from a MIT course).
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 25 Figure 2.5: Bi-objective optimization: a typical L-curve (here in a clear pattern...). The optimal computed optimal solution depends on the weight parameter α reg (here denoted by λ). The L-curve: values of the two objective functions (misfit and regularization terms) for different values of the weight parameter α reg ≡ λ.
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 26 Figure 2.6: Bi-objective optimization and functional values obtained with different weight parameter values α reg : (L) the L-curve criteria; (R): The Morozov's principle.
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 31 Figure 3.1: An inverse problem arising in spatial hydrology: estimate the unobserved bathymetry b(x) from altimetry measurements. Measurements are the water surface elevation H(x, t) and the river width W (x, t).

  We denote by H(x, t) ([m]) the river surface elevation, by b(x) ([m]) the bathymetry elevation and by h(x, t) ([m]) the water depth, H = (h + b). The cross-subsection A(x, t) ([m 2 ]) is here represented by rectangles of width W (x, t) ([m]), see Fig. 3.1. We have A = hW .

  x)b k (x) for k = 1, 2 (3.8) Plus the non-homogeneous Dirichlet B.C. on H. Let us set: b(x) = (b 2 -b 1 )(x)
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 41 Figure 4.1: (Left) Goals of DA. 1) DA to identify an uncertain input parameter (it can be for a steady-state model). The resulting calibrated model is more accurate. It can be used as a physically-consistent interpolator between data. 2) DA to build up a predictive model (here for a time-dependent model). The model is first calibrated from past observations. Second, it is performed for prediction. (Right) The different DA methods and their connections (see later).Image source:[START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF] 
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 42 Figure 4.2: 1D case. (Up) the cost fucntiuon. (Down) The second derivative (= here, the precision).The Hessian = the second derivative j"(u) in the present 1D case. j"(x) measures the "convexity rate" of j(u), therefore the estimation accuracy of the statistical estimation.
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 44 Considering a state u of dimension 2 only, with the 2nd component measured only, retrieve the simple BLUE expression from the general expression (4.8).
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  Example o f t h e u s e o f t h e Kalman F i l t e r (KF) i n a v e r y s i m p l e 1D problem # Goal : c o r r e c t i o n o f n o i s y measurements o f a 1D s i g n a l (= e . g . water l e v e l measurements o f a tank ) # T r i v i a l l i n e a r e s t i m a t i o n problem : z = u + e p s i l o n m o d e l im po rt numpy a s np im po rt m a t p l o t l i b . p y p l o t a s p l t p r i n t ( " * * * * * * * * * * * * * * * " ) p r i n t ( " * * * main . py * * * " ) # G e n e r a t e data ( s y n t h e t i c data ) T =1; L = 1 0 ; n p t s = 1 0 0 ; time = np . l i n s p a c e ( 0 , T, n p t s ) # i n I S u n i t s = s e c o n d s data = np . l i n s p a c e ( 0 , L , n p t s ) # + np . s i n ( 2 * np . p i /L) # t h e measurements ( i n I S u n i t s ) # o b s e r v a t i o n e r r o r s : Gaussian n o i s e s i g m a o b s = 0 . 5 p r i n t ( ' s t a n d a r d d e v i a t i o n o f t h e o b s e r v a t i o n s e r r o r s s i g m a o b s = ' , s i g m a o b s ) n o i s e = np . random . normal ( 0 , s i g m a o b s , n p t s ) # t o be tuned i f n e c e s s a r y n o i s y d a t a = data + n o i s e # p e r t u r b e d o b s e r v a t i o n s = t h e s y n t h e t i c data # E s t i m a t i o n by KF e s t i m a t e d v a l u e = np . z e r o s l i k e ( data ) ; p r e d i c t i o n p e r f e c t = np . z e r o s l i k e ( data ) # tab c r e a t i o n e s t i m a t e d v a l u e [ 0 ] = n o i s y d a t a [ 0 ] # 1 s t v a l u e o f e s t i m a t i o n = t h e measurement # model e r r o r : Gaussian s i g m a f = 0 . 2 p r i n t ( ' s t a n d a r d d e v i a t i o n o f t h e model e r r o r s i g m a f = ' , s i g m a f ) # KF g a i n ( r e f v a l u e and / o r assumed t o be c o n s t a n t ) KF gain= s i g m a f / ( s i g m a f + s i g m a o b s ) p r i n t ( ' g a i n c o e f f i c i e n t KF gain = ' , KF gain ) # r e f e r e n c e s ( ' " i d e a l i s t i c " ) e s t i m a t i o n s # p r e d i c t i o n model : z = u p e r f e c t v a l u e s = data # p e r f e c t model v a l u e s from p e r f e c t data p r e d i c t i o n p e r f e c t m o d e l = n o i s y d a t a # p e r f e c t model v a l u e s from n o i s y data # e s t i m a t i o n by KF f o r i i n r a n g e ( 1 , l e n ( time ) ) : # p r e d i c t i o n model : z = ( I d e n t i t y + e p s m o d e l ) ( u ) p r e d i c t e d v a l u e = e s t i m a t e d v a l u e [ i -1 ] + np . random . normal ( 0 , s i g m a f ) # a n a l y s i s s t e p g a i n = KF gain # c o n s t a n t g a i n ( h e r e a s c a l a r v a l u e ) i n n o v a t i o n = n o i s y d a t a [ i ]p r e d i c t e d v a l u e e s t i m a t e d v a l u e [ i ] = p r e d i c t e d v a l u e + g a i n * i n n o v a t i o n # t h e a n a l y s i s v a l u e # P l o t s p l t . p l o t ( time , n o i s y d a t a , ' o ' , l a b e l =' measurements (= t h e data ) ' ) p l t . p l o t ( time , e s t i m a t e d v a l u e , ' k ' , l a b e l =' e s t i m a t i o n by KF' ) p l t . p l o t ( time , p r e d i c t i o n p e r f e c t m o d e l , ' c ' , l a b e l =' p r e d i c t i o n based on t h e p e r f e c t model from n o i s y data p l t . p l o t ( time , p e r f e c t v a l u e s , '--r ' , l a b e l =' p e r f e c t v a l u e s ' ) p l t . x l a b e l ( ' time ' ) ; p l t . y l a b e l ( ' v a l u e s ' ) p l t . l e g e n d ( ) ; p l t . show ( )
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Figure 4 .

 4 Figure 4.3: (Up) VDA algorithm (Down) KF algorithm. Figure extracted from [?].

Figure 4 . 4 :

 44 Figure 4.4: The classical DA methods. Image extracted from[START_REF] Bocquet | Introduction to the principles and methods of data assimilation in the geosciences[END_REF] 

Figure 4 . 5 :

 45 Figure 4.5: The distributions in a scalar/univariate Gaussian case: prior (dotted), likelihood (dashed) and the resulting posterior (solid) Gaussian distributions. ( Posterior ∝ Prior × Likelihood). Figure extracted from [1].

  p(z obs and u b |u) = p(z obs and u b )p(u) Using the Bayes law (4.22), it follows: j(u) = -log p(z obs |u) -log p(u) + c (4.25)

#
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 22 ) with Λ ref = (H ref -b ref ) |∂xH ref | . (H ref , b ref ) are given functions such that h ref (x) = (H ref -b ref )(x) ≥ h min > 0 a.e. The equation is closed with non-homogeneous Dirichlet boundary conditions. The inverse problem as those presented in Section 3.1 is considered: infer b(x) given H(x, t). We seek to solve the optimization problem b * (x) = arg min b(x)∈B j(b(x)), with j(b) = J(b ; H b ), H b the (unique) solution of (5.17) given b, J(b; H) = H -H obs 2 , b b a background value (first guess) given. The unknown parameter b(x) appears in the RHS of the equation only (through its derivative): this case fits the general basic case addressed in Section 5.3.3. Exercise 5.1. 1) Discretize the direct model equation by a Finite Differences method.
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 61 Figure 6.1: A small ANN with 2 hidden layer (L = 2). For each connection correspond a weight parameter value and a bias value. Image extracted from [.].
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 12 ANNs structureLet us briefly describe how an ANN can be built up and trained from (large) datasets. The first crucial step is to hold a large training (reliable) dataset describing the targeted phenomena.Let us consider a dataset D containing the pairs (X obs s , Y obs s ),s = 1, • • • , N s ,(called examples or samples in the ML jargon) with X s the s-th input variable (called 'feature' in the ML jargon) and Y s the corresponding output (called 'label' in the ML jargon).

Figure 6 . 2 :

 62 Figure 6.2: ANN to approximate the output of a u-parametrized model : the fully-parametrized ANN version.

Figure 6 . 3 :

 63 Figure 6.3: ANN to approximate a parametrized PDE-based model : the semi-parametrized version.

Figure 6 . 4 :

 64 Figure 6.4: PINNs like architecture to build a surrogate direct model: approximate observations with a physical model as "weak" constraint.

Figure 6 . 5 :

 65 Figure 6.5: PINNs like architecture to solve a parameter identification problem.

Figure 7 . 1 :

 71 Figure 7.1: Optimal control of a vehicle: given a velocity target z target (t), what is the optimal control value u(t) while imposing "reasonable" accelerations ? Figure plotted by the ocmputational code provided on the webpage of the course.

Figure 7 . 2 :

 72 Figure 7.2: The spring-mass system example from [51]. (Up)(L) The spring-mass system. (Up)(R) The solution (state of the system) without control. (Down) The solution: (L) with damp control, (R) with another control value leading to the Van der Pol equation.

Figure 7 . 3 :

 73 Figure 7.3: The SQP algorithm for an example. Image extracted from [].

Figure 7 . 6 :

 76 Figure 7.6: (L) Optimal control of a system: closed loop. (R) Reinforcement Learning framework. Image extracted from

Figure 7 . 7 :

 77 Figure 7.7: Pros and cons of direct methods vs indirects methods (shooting methods) to numerically solve an optimal control problem. Extracted from[START_REF] Trélat | Optimal control: theory and applications[END_REF] 

Exercice 8

 8 .2. a) Write the state equation (and recall the adequate functional spaces).

  vertu of Lax-Milgram theorem. b) The inequalities of continuity and coercivity give the result.

j

  (u) • δu = α reg J reg (u) • δu -[∂ u A(u; y u ) • δu -F (u) • δu] • p u (8.51)In weak form:j (u) • δu = α reg J reg (u) • δu -∂ u a(u; y u , p u ) • δu + ∂ u b(u; p u ) • δu (8.52)

••

  Given an arbitrary perturbation dy * ∈ Y, the adjoint code output is computed: The two following scalar products are computed: sp y = dy * , dy Y and sp u = du * , du U • The validation relies on the relation: sp y = sp u .

Figure 8 .

 8 Figure 8.4 (b) shows a typical example of the scalar product test.

Figure 8 . 4 :

 84 Figure 8.4: Adjoint code validation: scalar product test

j(u 0

 0 + α δu) = j(u 0 ) + α ∂j ∂u (u 0 ) • δu + o α δu . (8.56)It follows the uncentered finite difference approximation (order 1) and the centered finite difference approximation (order 2):j(u 0 + α δu) -j(u 0 -α δu) 2α = ∂j ∂u (u 0 ) • δu + O α 2 δu 2 . (8.57)Then, we set eitherI α = j(u 0 + α δu) -j(u 0 -α δu) 2α ∂j ∂u (u 0 ) • δu(8.58)orI α = j(u 0 + α δu) -j(u 0 ) α ∂j ∂u (u 0 ) • δu (8.59)According to the Taylor expansions above, we have: lim α→0 I α = 1.

Figure 8 . 6 :

 86 Figure 8.6: Twin experiments concept.
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(Find

  {y k } 1≤k≤N T ∈ R n such that : y k+1 = M k (y k ) k = 0, 1, ..., N T (the time steps) y 0 ∈ R n given.(9.11) where M k (y k ) represents the n non-linear equations at instant t k . We denote by M k = D y M k (y k ) the linearized model equations at "point" y k , M k ∈ R n×n .

(

  Given the state at each time step {yk } 1≤k≤N T ∈ R n , find {p k } (N T -1)≥k≥0 ∈ R n such that : p k = M T k p k+1 + Z T k R -1 (Z(y k ) -z k ) for k = N T , ...,1(the time steps) p N T = 0 (9.22) with Z k = D y Z(y k ), Z k ∈ R m×n , the gradient simply reads as, see (9.15): ∇j(y 0 ) = p 0 + α 0 B(y 0 -y b ) (9.23) A few remarks -The adjoint model is retroacting in time. Its initial condition must be given at final time T .

  c) • δc = ∂y ∂y 0 (c) • δy 0 + ∂y ∂u (c) • δu

  ∇j(c) = (∇ y 0 j(c), ∇ u j(c)) T (9.29)And we have the differentiable which satisfies:j (c) • δc = ∂j ∂y 0 (c) • δy 0 + ∂j ∂u (c) • δu(9.30)

T 0 < 0 w 0 [ 0 - 0 [

 00000 (LT ), p > V ×V dt = 0 ∀p ∈ V By integrating by part in time, we get:-T δc (t), ∂ t p(t) V ×V dt + T 0 ∂A ∂y (u; y) • w δc (t), p(t) V ×V dt + p(T ), w δc (T ) H -p(0), δy 0 H + T ∂A ∂u (u; y) -F (u)] • δu(t), p(t) V ×V dt = 0By making appear the adjoint operator of ∂A ∂y (u; y), it comes:T ∂ t p(t) + ∂A ∂y (u; y) T p(t), w δc (t) V ×V dt = -p(T ), w δc (T ) H + p(0), δy 0 H -T ∂A ∂u (u; y) -F (u)] • δu, p(t) V ×V dt(9.35) 

-

  ∂ t p(t) + ∂A ∂y (u; y c ) T p(t) = J obs (y c ) ∀t ∈ ]0, T [ (9.36) accompanied with the Initial Condition at final time: p(T ) = 0. These equations constitute the adjoint model (A).

T 0 J

 0 obs (y c ), w δc (t) V ×V dt = + p(0), δy 0 H -y) -F (u)] T p(t), δu(t) U ×U dt (9.37) Next, by combining (9.34), (9.37) and (9.36), we obtain:j (c) • δc = J reg (c) • δc + p(0), δy 0 H -T 0 [ ∂A ∂u(u; y) -F (u)] T p(t), δu(t) U ×U dt(9.38) 

j

  (c) • δc = ∂j ∂y 0 (c) • δy 0 + ∂j ∂u (c) • δu ,(9.39)

∂

  y 0 j(c) = p c (0) + α reg,0 B(y 0 -y b ) ∂ u j(c) = -∂A ∂u (u; y c ) -F (u) T p c (t) + α reg,u (J u reg ) (u) (9.40)
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 93 Figure 9.3: The incremental VDA (4D-Var) algorithm. A simplified physical model in considered in the inner loop. However, the innovative is still computed using the complete direct model.

Figure 9 . 6 :

 96 Figure 9.6: The toy test case mesh (a) and the bathymetry (b)

  

  Morozov's principle (with the corresponding Python code)Below a code example which apply the Morozov's principle to a simple inverse problem with noisy data. It iteratively adjusts the regularization parameter α until the discrepancy between the forward model M (u) and the noisy data z noise falls within the desired bounds defined by τ 1 and τ 2 .

	# A p p l i c a t i o n o f t h e Morozov ' s p r i n c i p l e
	im po rt numpy a s np
	im po rt m a t p l o t l i b . p y p l o t a s p l t
	# D e f i n e t h e data and t h e o p e r a t o r
	x t r u e = np . l i n s p a c e ( 0 , 1 0 , 1 0 0 )
	u t r u e = np . s i n ( x t r u e )
	M = lambda x : np . s i n ( x )
	# Add n o i s e t o t h e data
	n o i s e l e v e l = 0 . 1
	z n o i s y = u t r u e + n o i s e l e v e l * np . random . randn ( l e n ( u t r u e ) )

  this system is unchanged if multiplied by an adequate factor. Let us show this statement.Let C be any real value strictly positive: C may be a mean value of Q or a mean value of the friction parameter K. Let us define re-scaled state variables as follows: (A * , Q * ) = (A, Q)/ C.

	The 1st equation of (3.2)(a) (mass equation) divided by C is unchanged: ∂ t (A * ) + ∂ x (Q * ) = 0.
	Therefore after re-scaling the same mass equation holds: Q and A are simply re-scaled by the
	same factor.
	Next, the re-scaled Eqn (3.2)(b) (momentum equation) divided by C reads:

  Below an illustrative Python code based on the Pykalman library. The code first generates a time series of the water level in a reservoir (which increases linearly from 0 to 10). It then adds Gaussian noise to the water level measurements to simulate noisy measurements: this is synthetic data, randomly perturbed. Next, one uses a basic KF to estimate the true water level from the noisy measurements.

• https://github.com/Garima13a/Kalman-Filters

• https://arxiv.org/ftp/arxiv/papers/1204/1204.0375.pdf A detailed simple example A nice simple example is proposed e.g. on towardsdatascience.com website 2 . The considered example aims at better estimating the level of a water tank given noisy sensor data.
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  ∆ N T -2 + . . . + . . . + Z T 1 ∆ 1 + Z T 0 ∆ 0 (9.19) (9.20) This is a Horner type factorization. It can be shown that the two expressions (9.16) and (9.19) are equal. ToDo: calcul pas clair... a verifier.... mais le resultat est bien celui-ci (cf demo continue) Therefore:

https://towardsdatascience.com/linear-regression-using-least-squares-a4c3456e8570

hhttps://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-datascience-388a54be95d

Recall that the conditonning number of a matrix A equals maxi σi(A) mini σi(A) . For A normal, this ratio equals tomaxi |λi(A)| mini |λi(A) |

The subscript reg is here skipped for sake of clarity

https://towardsdatascience.com/linear-regression-with-ols-unbiased-consistent-blue-best-efficientestimator-359a859f757e

https://towardsdatascience.com/a-simple-kalman-filter-implementation-e13f75987195

The inverse of a covariance matrix (if existing) is a so-called precision matrix.

https://towardsdatascience.com/how-to-use-bayesian-inference-for-predictions-in-python-4de5d0bc84f3

https://towardsdatascience.com/estimating-probabilities-with-bayesian-modeling-in-python-7144be007815

In the LQ case, the cost function j(u) is strictly convex therefore admitting a unique minimum. This point is mathematically shown in a subsequent chapter.

The notations R -1 and B -1 are the classical notations in the DA community,[START_REF] Ide | Unified notation for data assimilation: Operational, sequential and variational (gtspecial issueltdata assimilation in meteology and oceanography: Theory and practice)[END_REF].

L. Pontryagin, a blind Russian mathematician 

https://deepxde.readthedocs.io/en/latest

Recall that the sections indicated with a * are "to go further sections". They can be skipped in a first reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.91

The so-called "Hamiltonian" in control theory is a particular case of the Hamiltonian in mechanics; it is inspired by the Lagrangian you have studied during your optimization course.

Recall that the sections indicated with a * are "to go further sections". They can be skipped in a first reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.

Recall that the sections indicated with a * are "to go further sections". They can be skipped in a first reading or if the reader is not particularly interested in deeper mathematical basis, mathematical proofs.161

Chapter 5

DA by variational approach: simple cases

The outline of this chapter is as follows. 

Introduction

The previous estimation problems aimed at estimating u satisfying the linear equation M(u) = z obs + ε, with u ∈ R n , z obs ∈ R m , with M observations given, z obs = (z obs,1 , . . . , z obs,M ). The VDA approach consists to minimize the cost function j(u) defined as in (4.36).

In the LQG case (in particular M is a linear operator), u * = arg min u j(u) is the same solution as the BLUE, see Prop. 4.2, and the MAP, see (4.37). 69

The (direct) model and the parameter-to-state operator

The considered PDE-based model reads as follows.Given the unknown/uncertain parameter u, find y which satisfies the Boundary Value Problem (BVP):

accompanied by Boundary Conditions (BC).

The PDE-based operator A(•; •) is a-priori non-linear both in u and y that is the maps u → A(u; •) and y → A(•; y) are non-linear.

Given the parameter u, the direct model (5.2) is supposed to have a unique solution y which is then denoted by y u or y(u).

The parameter-to-state map (also previously called the model operator) M is defined as:

with y(u) solution of (5.2) given u.

The observation operator and the cost function

Data (also called observations or measurements) are denoted by z obs . Data are not necessarily of same nature than the state of the system y.

For example, z obs denotes measured wavelength electromagnetism signals which have to be next compared to a temperature y, the model output (state of the system). Then, one needs to introduce an observation operator Z which maps the state of the system y onto the observations space as: z(x) = Z(y(x))

(5.

3)

The observation operator Z(•) can be a linear or not, more or less complex e.g. a multi-scale non linear model or simply the Identity if measuring directly the state of the system.

Given observations z obs , one naturally wants to minimize the misfit term Z(y(u)(x))-z obs (x) 2 R -1 . As already mentioned, in real-world problems and because of lack of information, the observation norm R -1 is often assumed to be diagonal: R -1 = diag(ρ obs,1 , . . . , ρ obs,m ). Then, the coefficients ρ obs,m simply represent the confidence one has on each observation. Moreover, as discussed in Section 2.2, it is often necessary to introduce a regularization term in the minimized cost function. Let us introduce the so-called observation function J(u; y) defined as: J(u; y) = J obs (y) + α reg J reg (u) (5.4) with J obs (y) = Z(y) -z obs 2 R -1 and J reg (u) = u -u b 2 B -1

(5.5)

We have the map (model operator): u ∈ R m → y(u) ∈ R n . We denote by D u y(u) the differential of y with respect to u, it is a n × m-Jacobian matrix. D u y(u) represents the derivative of the state y(u) with respect to the parameter u. For example the derivative of a temperature field y(x) with respect to the spatially-distributed source term u(x).

From the relation j(u) = J(u; y(u)), we get for all v ∈ R m , < ∇j(u), v >=< ∇ u J(u; y(u)), v) > + < ∇ y J(u; y(u)), D u y(u) • v > (5.11) where < •, • > denotes here the Euclidian scalar products (either in R m or in R n ) with y(u) = (A(u)) -1 F u.

We have:

with D((A(u)) -1 ) the differential of the inverse of the direct model operator.

However, the expression (5.12) of D u y(u) is not tractable. This point is partly addressed below and will be addressed in detail in a next chapter.

In the most simple case

For sake of simplicity, let us consider from now a simplified u-parametrized model.

The simplified model equation

We consider the following direct model equation:

That is the parameter u appears in the RHS of the model only (and not in the differential operator A anymore).

In this case, we simply have: D u y(u) = A -1 F , expression to be compared to (5.12).

Then, for all v ∈ R m , < ∇j(u), v >=< ∇ u J(u; y(u)), v) > + < F T A -T ∇ y J(u; y(u)), v >

From the expression of J(u; y), see (5.9), we get: ∇ u J(u; y(u)) = 2α reg B -1 (u -u b ) and ∇ y J(u; y(u)) = 2Z T R -1 (Zy(u) -z obs )

Therefore the gradient expression: ∇j(u) = F T A -T ∇ y J(u; y(u)) + 2α reg B -1 (u -u b ) (5.14) with ∇ y J(u; y(u)) = 2Z T R -1 (Zy(u) -z obs ).

Chapter 6

DA by Artificial Neural Networks DA and ML share similarities: they both enable the solution of inverse problems such as parameter identification and model calibration from data. This is particularly true between Variational Data Assimilation (VDA) and Artificial Neural Networks (ANN) since both imply to solve large dimensional optimization problems of the form: min param J(param).

The function J is called the cost in VDA and the loss in ML.

Both method classes employ the gradient descent algorithm to minimize J. The adjoint method used to compute the gradient in VDA is equivalent to the back-propagation algorithm employed in ANNs.

In this chapter, we highlight the similarities between VDA and ANNs when used to solve identification problems from observations or model output data. Moreover we present ANN architectures enabling to perform "Physics Informed" machine learning.

6.1 Artificial Neural Networks (ANNs)

Introduction

A bit of history ANNs date back to the 1940s, initially inspired by the structure of the human brain. In the 1960s and 1970s, the development of the Perceptron algorithm and the backpropagation algorithm marked significant progress. However, in the 1980s, limitations were discovered, leading to a period known as the "AI Winter." The resurgence of interest in ANNs came in the 2000s, driven by advances in computing power and the availability of largescale datasets. This resurgence, combined with novel architectures like Convolutional Neural Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for sequential data, led to breakthroughs in various fields, including computer vision, natural language processing, and reinforcement learning. Today, ANNs are a cornerstone of modern machine

The parameter α, α > 0, enables to balance the two terms of the cost function.

The optimal control problem reads: min

where U is a (semi-)interval of R, representing potential inequality constraints on u.

In higher-dimensions, m > 1, U has to be a convex closed subset of R m .

Remarks

• The cost function j(u) depends on u explicitly through its second term, but also through y u (t) in its first term: this is why it is a optimal control problem and not simply a standard optimization problem.

• If considering the regularization term |u| 2 in j(u) and since the model is linear, then the cost function j(u) is strongly convex. In this case, the problem is what we call a Linear-Quadratic (LQ) optimal control problem.

It will be shown later that LQ problems admits an unique solution u * (under assumptions on U).

Practical considerations

The objective could be for examples: 1) to minimize travel time; 2) to remain within speed limits; 3) to do not accelerate excessively.

If considering Goal 1), the optimal solution should consist to maximize u each change of the target value.

If considering Goal 2), the optimal solution should consist to consider y within admissible ranges.

If considering Goal 3), a solution would consist to penalize the control variations. To do so, we may define the term in u in the cost function expression (7.3) as:

This last term is a penalization term or a regularization term. The optimization problem (7.4) is bi-objective: a trade-off between the two terms have to found. The two cost function terms are balanced through the weigh parameter α reg . Goal 3) will be solved in Section 7.4.3 by employing a simple numerical direct method.

Introductory remarks 7.2.1 A few words on the control theory

The control theory aims at analyzing dynamical systems modified by a command (the control). The two objectives of the control theory are the followings: A) Acting on the control in order to bring the system state to a final state given (if possible). It is a controllability problem. The goal is generally to stabilize the system by feedback in order tion:

This 2nd order ODE is closed with the I.C. (y, y )(0) = (y 0 , y 0 ) given.

It is a linear ODE if k 2 = 0, non-linear if not. u(t) can be perceived as a control of the system.

For sake of simplicity, without changing the nature of the problem, we set:

Different states of the system according to different control values Case u(t) = 0 i.e. without any external action.

In this case the equations reads: Case u(t) = -y (t). In this case, the applied external force aims at damping the spring. The equation reads:

The numerical solution is computed, then the phase diagram and trajectory are obtained, see Fig. 7.2.

Using the Lyapunov theory, it can be shown that the origin is asymptotically stable. The spring position and the velocity reach the equilibrium position in infinite time, not in finite time.

Case u(t) = -(y(t) 2 -1)y (t). With this control expression, the model is a particular case of the classical Van der Pol equation:

Two different solutions are computed and plotted on Fig. 7.2 (phase diagram and trajectories).

Using the Lyapunov theory, it can be proved that it exists a periodic solution which is attractive (plotted on Figure 7.2).

This very classical example is treated in detail in [START_REF] Trélat | Optimal control: theory and applications[END_REF], we refer to this book for more details.

These three examples simply illustrate the wide range of behaviours which can be obtained by simply changing the control expression, even in the case of a gentle scalar equation.

Direct methods

Direct methods consist to:

• write the optimal control problem equations in a discrete form,

• solve the optimization problem by a standard differentiable optimization algorithm e.g. the classical Sequential Linear Quadratic (SQL) algorithm.

Let us write in a discrete form the general LQ problem (7.5)(7.7). A regular time grid

The discrete state y h , y h = (y 1 , . . . , y N ), is obtained by performing a numerical scheme e.g. Runge-Kutta 4 (or Euler scheme).

In discrete form, the problem to be solved reads:

For a sake of simplicity, let us consider the basic explicit Euler scheme to solve the equation y (t) = A(t)y(t) + B(t)u(t).

The discrete system reads:

The finite dimensional optimization problem reads:

) under the N constraints (7.11) on y h (= the numerical scheme equations) ⊕ potential equality-inequality constraints on u h . (7.12) Such (finite dimensional) optimization problem, with (equality-inequality) constraints, can be solved by the Sequential Quadratic Programming (SQP) algorithm. Other variants of formulations can be considered.

Recalls on the SQP algorithm Sequential Quadratic Programming (SQP) algorithms denote iterative methods for constrained nonlinear optimization problems. The objective function and the constraints are supposed to be C 2 . The SQP algorithms principle is as follows. One solves a sequence of optimization subproblems; each of them optimizes a quadratic representation of the objective function, under the constraints which are linearized.

-If the problem is unconstrained, then the method reduces to the Newton method: the optimum is such that it makes vanish the gradient. In other words, u(t) minimizes j(u) (j(u) = min v∈M j(v)) and the corresponding state (trajectory) y u is an optimal trajectory. B) Uniqueness. Recall that, see (7.7)(7.9):

For all t, u(t) U is a norm hence convex but not strictly convex... Proof of this assertion: the triangle inequality. However, in a Hilbert space, the square of a norm (eg u(t) 2 U ) is strictly convex, see e.g. [4] Chap. 10, p118.

Moreover, it has been previously proved that the control-to-state operator M is affine therefore convex, see Prop. 7.1. In other respects . W and . Q are semi-norms therefore convex.

Finally the cost function j(u) is strictly convex and the uniqueness follows. Indeed, let u 1 and u 2 be such that:

We have:

which must be the case.

Note that the strict convexity of j(•) is due to the quadratic term u(t) 2 U . This term represents a Tykhonov regularization term.

Remark 7.4. In the autonomous case (A and B constant), we have:

Remark 7.6.

• Note that the equations in q ≡ p T (q a line vector as y) read: q (t) = -A T (t)q(t) + W y(t) and U u(t) = B T (t) q(t)

• This theorem provides an expression of the optimal control u * not explicitly depending on the state y but in function of an auxiliary field called the adjoint field. The adjoint field p(t) is solution of a linear equation "similar" to the model one (with -A T instead of A in particular), reverse in time therefore starting from a condition at t = T . p depends on y through the adjoint equation.

• In the case g(y(T )) = 1 2 y(T ) 2 Q , we have: p T (T ) = -Qy(T ).

An explicit expression of the optimal control u * in function of y will be presented later: this is the so-called feedback law.

Proof of the theorem. The proof of the theorem is based on 'calculus of variations'. The calculations are similar to those proving the general Theorem 8.15 tackling non-linear stationary PDEs.

It has been proved that the cost function j(u) is strictly convex and the optimal control u * exists and is unique, see Theorem

Let δu be a perturbation to u * We denote by u δ the perturbed optimal control, u δ = u * + δu, and by y δ the corresponding perturbed solution. y δ starts from the same I.C. y 0 as y, that is δu(0) = 0 = δy(0). We denote by δy the difference (y δ -y u ): y δ = y u + δy.

The perturbed solution satisfies: y δ (t) = A(t)y δ (t) + B(t)u δ (t) + S(t). By linearity of the equation, we obtain: δy (t) = A(t)δy(t) + B(t)δu(t).

Therefore the expression of the solution perturbation:

The optimal control u * is uniquely determined by the Euler condition ∇j(u) = 0 where: 

General non-linear case in infinite dimension

Let us go back to infinite dimensional spaces and general non linear elliptic type BVP.

The direct model

Let Ω be a bounded domain (Ω Lipschitz). Let U be the controls space. U is supposed to be a Hilbert space. U Banach space only is potentially enough, however for simplicity it is here considered as a Hilbert space. Let V be the states space, V a Hilbert space.

We consider the following general direct model (the state equation):

where A is an elliptic operator (with respect to the state y), defined from U × V into V (dual of V ). A(•; •) is a-priori non-linear, both with respect to the parameter u and with respect to the state y.

F is defined from U into V .

Assumption 8.1. The state equation (8.1) is well posed in the Hadamard sense: it has an unique solution y ∈ V , moreover this solution is continuous with respect to the parameters (in particular with respect to u).

In the linear case (A elliptic operator linear with respect to y) the Lax-Milgram theorem might be the right framework to prove the existence-uniqueness, while the Mint-Browner theorem is useful for a large class of non-linear cases, see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF].

Optimal control terminology: distributed control, boundary control -If the control u appears in the "bulk" (i.e. in Ω) then one says that it is a distributed control.

-If u appears on the boundary conditions only, then one says that it is a boundary control.

Examples

Two simple linear examples based on second order elliptic operators are as follows.

In other words, the problem is an optimization problem under the constraint "the model is satisfied". This point of view naturally leads to introduce the Lagrangian of this optimization problem. This is the approach followed in next section.

From direct modeling to model calibration, parameter identification, ….

Model output:

The computed solution or a resuting quantity (eg a local by-product value)

Inputs parameters: 

On the numerical resolution in the general context

The VDA problem consists to solve the optimization problem (8.8). If the dimension of the (discrete) parameter u is large, moreover if the computation of the cost function j(u) is CPU-time consuming (this the case e.g. if considering a 3d PDE model), then this optimization problem cannot be solved by a global optimization algorithm such as e.g. MCMC / Monte-Carlo type method. In this case, it has to be solved by descent algorithm aiming at computing a local minimum only. Descent algorithms require the information of the gradient ∇j(u), see some details in Appendix.

The computation of the gradient ∇j(u) in the large dimensional case (u is of large dimension), is tricky. Different ways to compute the gradient ∇j(u) are discussed in next sections, including those by introducing the adjoint model.

Back to mathematical foundations 8.2.1 Differential calculus in infinite dimensions

Please consult the Appendices and the supplementary material.

Is the cost function (continuously) differentiable ?

This question of differentiability is potentially difficult to answer for non-linear systems. For non-linear hyperbolic system in particular, the solution may be even not continuous with respect to the control variable u... A useful result to address this question of differentiability is the implicit function theorem. 

Then, the operator (the "implicit function") M : u → y u , with y u is the (unique) solution of the state equation, is locally C 1 (locally means it exists a neighborhood of u 0 such that).

In short, in view to apply the implicit function theorem we need to verify that the state operators are C 1 and the linearized problem is well-posed.

Here the "implicit function" is the "model operator" M(u) defined by (??).

Example 3) We set: A(u; y) = -u y, F (u) = f , with mixed boundary conditions: y = 0 on Γ 0 ; -u∂ n y = ϕ on ∂Ω/Γ 0 , with ϕ given. Here, u is a distributed control, it is the diffusivity coefficient of the material.

Exercice 8.7. a) Write the corresponding state equation, and prove that it has we and only (weak) solution in V for u given in L ∞ ( Ω), u > 0 a.e.. b) Prove that the unique solution y is continuous and differentiable with respect to u (in the right functional space).

Existence and uniqueness of the optimal control in the LQ case

Warm up with a basic linear finite dimensional problem

Let us consider a problem such that M , the control-to-state map, is defined from R m onto R n as M : u → y u , with y u the unique solution of the state equation given u. Moreover, we assume that M is linear.

From now, the proof is very similar to those for ODEs, see Theorem 7.3.

A) Proof of existence. It is based on the convergence of minimizing sequence (calculus of variations, D. Hilbert, 1900 a.c. approx.).

Step 1). Let (u n ) be a minimizing sequence:

From (8.18)(8.19), we obtain:

Hence there exists a sub-sequence (u n k ) which converges weakly to a control u in U ad :

Step 2). U ad is a closed convex subset hence weakly closed. Hence u ∈ U ad .

Step 3). Since the cost function j(u) is continuous (lower semi-continuous would be enough), we have: j(u) = min v∈U ad j(v). In other words, u is solution of the optimal control problem.

B) Uniqueness. The bilinear form v → π(v, v) is coercitive hence the cost function is strictly convex.

Then, the uniqueness is a straightforward consequence of the strict convexity of j(u).

Exercice 8.10. Detail the proof of uniqueness.

Correction.

Hint: It is very similar to the proof in the ODE case.

Cases with higher-order regularization terms J reg (u) In the case J(u; y) is still decomposed as (8.3) but with a higher-order regularization term such as e.g. (8.6), then J reg (u) may be not strictly convex anymore, without additional assumption... In such a case, the existence holds but the uniqueness may not. However, if e.g.

, then in vertu of the Poincaré's inequality, the estimation (8.18) still holds and the proof remains the same. In this case, the control variable u is controlled by its gradient (the regularization term) plus a given value at some locations (on Γ 0 ).

Gradient computation: methods for small dimension cases 8.5.1 Preliminaries: why and how to compute the cost function gradient?

To solve the optimization problem (8.8) few approaches are a-priori possible, global optimization methods or local minimization methods. The choice mainly depends on the CPU time (denoted by T j cpu ) required to evaluate the cost function j(u) and on the control variable dimension m (therefore the dimension of the gradient ∇j(u)).

If T j cpu is small (let say in fractions of seconds using your laptop or a super-computer, whatever), then one can adopt a global optimization approach based on stochastic algorithms e.g. Monte-Carlo type algorithms, heuristic methods (e.g. genetic algorithms) or surface response approximation.

When the state equation is a PDE system, T j cpu is generally not small enough to do so. In this case, global optimization is not worth considering. Then, one has to adopt local minimization approaches based on algorithms of descent. Then the computation of the cost function gradient is required.

If the m is large then one very likely needs to employ descent algorithms, therefore to compute the cost function gradient ∇j(u h ).

Before going further, let us recall the relation ship between differential j (u) in a given direction δu and the gradient value in this direction, see 8.11:

Problem statement

In the discrete context, the dimension of the gradient ∇j(u) equals m, m the dimension of the discrete control variable. Descent algorithms require scalar products of the form < ∇j(u), δu > for at least m directions δu.

Composite control variable case

In the case the control variables includes different natures of components e.g. u = (u 1 , u 2 ) then we have:

The weak form of the TLM is as follows:

Given u ∈ U and y u 0 solution of (8.9), given δu ∈ U, find w ∈ V such that: ∂a ∂y (u;

Solving the TLM provides w δu = dy du (u).δu, that is the derivative of the state y with respect to the control u in the direction δu.

Recall that:

Note that of course if the direct model is linear then we simply have: ∂A ∂y (u 0 ; y u 0 ).w = A(u 0 ; w).

Advantages and drawbacks of the TLM-based expression.

: If the direct model is non-linear, the TLM has to be implemented (intrusive approach). Note that if the non-linear model is solved by the Newton-Raphson method (or if the direct model is linear), then the RHS only has to be coded. The TLM has to be solved m times to obtain w δu in each direction δu. Therefore if m is large and the CPU time for each resolution is large than the TLM approach to compute w δu is prohibitive. ⊕: The accuracy of w δu , therefore of the gradient, is fully controlled by the numerical scheme accuracy. Compared to the FD approach, this does not depend on an arbitrary setting of ε.

In the end, the FD approach and the TLM approach are feasible for small dimension cases only that is for m = O(1). Moreover, if possible, it is preferable to compute the gradient using the TLM compared to the FD. Remark 8.12. It is assumed that the TLM is well-posed. Let us remark that if we have proved existence of solutions to the non-linear model, one likely had to prove that the linearized model is well-posed. Moreover, if the implicit function theorem holds (and has been applied to prove the differentiability of the state with respect to the control), then the linearized problem must be well-posed. Nevertheless for real-like non-linear problems, even the linearized model analysis can be non straightforward at all...

Resulting sensitivity maps

Let us point out that the TLM provides w δu that is the local sensitivity of the state y u with respect to the control u, at "point" u in the direction δu. In a modeling context, the resulting sensitivity map (it is distributed values) constitue rich information to better understand the model and/or the modeled phenomena Finite difference case Now let us consider the same problem but using finite difference schemes (and the same discretization for u and p, with m point values). The ith component of the (discrete) gradient reads :

with p u i the ith value of the (discrete) adjoint state.

In the case of finite element discretization, there is a choice to make for the gradient definition.

In the example above, the choice would read:

These two possible expressions do not present the same properties, in particular concerning their dependence on the local mesh element size.

Cost gradient computation: the adjoint method

Previously, the optimality system has been formally derived by introducing the Lagrangian and by calculating necessary conditions of its stationary points. One of the resulting equation was new; it was the so-called adjoint equation.

In this section, first the adjoint model is derived in a different way, second the calculations are rigorously justified (Theorem 8.15).

The adjoint equations are a mathematical trick enabling the gradient computation by solving one (1) extra system only. This has to be compared to the O(m) resolutions if using the FD-based approach or the TLM-based approach.

Deriving the gradient expression without the term w δu

In this section the expression of the adjoint equations and the corresponding gradient expression are rigorously derived for the general direct model (8.1), that is:

The goal is to minimize j(u) with j(u) = J(u; y u ), y u the unique solution of the direct model.

If not confortable with the employed mathematical notations, the reader may directly read the resulting expressions in discrete form in the summary section 8.8.

Recall that we have: ∀δu ∈ U , Then, given a C 1 objective function J(u; y) and the cost function j(u) defined by (8.4), the cost function j(c) is of class C 1 . Moreover, the expression of the differential j (u) reads: ∀δu ∈ U ,

with ∂ u J(u; y u ) = α reg J reg (u) if considering the particular decomposition (8.3) of J(u; y). y u is the unique solution of the state equation (8.9), and p u is solution of the adjoint equation:

Given u and y u the unique solution of (8.9), find p ∈ V satisfying: ∂a ∂y (u; y u , p).z = ∂J ∂y (u, y u ).z ∀z ∈ V (8.37)

Its solution p u (the adjoint state) exists and is unique.

One has ∂ y J(u; y u ) = J obs (y) if considering the particular decomposition (8.3) of J(u; y).

Proof.

Under assumptions i)-iii), the implicit function theorem applies and the differentiability of the state with respect to u follows: the operator

We have: j (u) ∈ L(U ; R). As already written above:

(see Lemma (8.22)) with < ., . > U ×U , < ., . > V ×V the corresponding duality products.

For sake of simplicity, we denote: j (u) • δu ≡< j (u), δu > U ×U .

By this equation with the TLM in weak form, see (8.30), we obtain:

where (∂ y A) * is the adjoint operator of the linearized direct model operator ∂ y A.

The linearized problem is well-posed therefore the operator ∂ y A(u; y u ) is an isomorphism from V into V , and its adjoint operator (∂ y A) * (u; y u ) is an isomorphism from V into V too, see e.g. [9]. As a consequence, the adjoint equation (8.32) is well-posed too. p u ∈ V is defined as its unique solution. We obtain the final expression (8.36) of j (u).

Advantages and drawbacks of the adjoint-based expression

⊕: The expression of j (u) • δu does not depend on w δu anymore: the expression of j (u) is explicit with respect to the direction δu. Thus, after discretization if solving the direct model plus the adjoint model then all components of the gradient follow i.e. the complete gradient vector.

In other words, for m large, the adjoint-based approach enables to obtain the m gradient components by one (1) extra system to solve only.

Let us recall that after discretization (in the finite dimension space U h ), we have:

: The adjoint model has to be implemented (intrusive approach). This important drawback may be done by automatic differentiation. This option is more or less complex depending on the direct code complexity and the programming langage.

Remarks

• By construction, the adjoint model is linear, whatever if the direct model is linear or not.

Recall the adjoint is the adjoint operator of the linearized direct operator.

• Let us point out that excepted for few particular cases (e.g. if the operator A is selfadjoint, A * = A, of course), the adjoint model has in the general case no physical meaning.

• If the direct operator is self-adjoint, in other words if a(u, v) is bilinear symmetric, then the adjoint operator equals the direct operator (but the RHS). Indeed, in such a case, we have:

Only the source term (RHS) and the boundary conditions differ from the state equation.

Then the differential operator, hence the numerical method and numerical solver, are the same.

Case of non-homogeneous Dirichlet boundary conditions

Let us consider the condition: y = y d on Γ d ⊂ ∂Ω. Then, the direct model reads:

where V t , affine subspace, is the Dirichlet translation of V 0 (V 0 subspace of V Hilbert).

A typical example for a second order linear elliptic equation is :

Then the question is : What the non-homogeneous Dirichlet boundary conditions becomes when defining the TLM hence the adjoint model ?

The answer is : the non-homogeneous Dirichlet condition in the direct model becomes the corresponding homogeneous condition in the linear tangent and adjoint models.

Let us show this statement in the linear case. The direct model, if linear in y, re-reads as follows:

Find y 0 ∈ V 0 such that : a(u; y 0 , z) = b(u; z) -a(u; ỹd , z) = b(u; z) for all z ∈ V 0 with y 0 = y -ỹd , ỹd being a raising from y d on Γ d onto the whole domain Ω.

Following the proof of Theorem 8.15, it is easy to notice that the corresponding boundary condition in the TLM is homogeneous, hence the same for the adjoint model.

The optimality system

In the case, K = U ad = V and if considering the particular decomposition (8.3) of J(u; y), the optimality system reads as follows.

The optimal control solution u of Problem (8.7) has to satisfy:

The 3D-Var algorithm

Given a first guess u 0 , we seek (u m ) m that decreases the cost function using a Quasi-Newton method e.g. the L-BFGS algorithm.

The algorithm is as follows, see Fig. (8.3).

Given the current control value u, 1) compute the cost function j(u) from the direct model output y u , 2) compute the gradient ∇j(u) from the adjoint model output p u and the direct model output y u , 3) given u, j(u) and ∇j(u), compute the new iterate u new as u new = u + αd(∇j(u))

where d ∈ R m is the descent direction and α ∈ R + * the step in the linear search. The descent algorithm simply ensures that: Finally let us recall that if the cost function term J obs (y) presents different local minima or presents "nearly flat valleys" then the choice of the first guess value, the regularization term J reg and the norms R -1 , B -1 highly influence the optimal value u * .

The local gradient values: a potential interesting information Computing a gradient, even without performing a minimization algorithm, may present some interests in a modeling point of view. Indeed, the gradient value represents a local sensitivity of the model output j with respect the parameters u. These gradient values may help to understand the parameter influences on the output criteria j, especially if it represents spatially distributed information. Nevertheless, such sensitivity analyses remain limited since local in the sense that it is regarding In weak form:

The direct model (= the state equation) is supposed to be well-posed.

The parameter-to-state operator ("model operator") M(u) is defined as: M(u) = y u . This operator M(•) is here a-priori non-linear.

The cost function j(u) is defined from the observation function J(u; y) as follows:

where y u (x) denotes the unique solution of the direct model, given u(x).

The observation function J(u; y) is classically decomposed as follows:

with the data misfit term:

The observation operator Z(•) may be linear or not. The regularization term is here defined from quadratic terms (in u or higher-order terms). Basic classical expressions are:

The optimization problem reads:

Minimize j(u) in U ad under the "model constraint" since j(u) = J(u; y u ) with y u = M(u).

(8.47)

The adjoint model reads:    Given u(x), given y u (x), find p(x) such that: (∂ y A) T (u(x); y u )(x) • p(x) = J obs (y u (x)) in Ω with the adjoint Boundary Conditions on ∂Ω (8.48)

In weak form. Let us define: a * ((u, y u ); p, z) ≡ ∂ y a(u; y u , p) • z. Then,

Given these conventions, one has the adjoint model which reads:

This is a linear system of n equations at n unknowns (p 1 , . . . , p n ). The solution of this linear system is supposed to be unique and is denoted by p u .

The resulting gradient ∇j(u) ∈ R m reads:

In the case of few components e.g. u = (u 1 , u 2 )R m 1 × R m 2 , then one simply has: The gradient test consists to check this property as follows.

Applications to classical PDEs and operators

• Given an arbitrary parameter value u 0 , compute ∂j ∂u (u 0 ) using the adjoint code. • Using the direct code, compute j(u 0 ).

• For n = 0, . . . , N :

• Using the direct code, compute j(u 0 + α n δu) ;

• Verify if lim α→0 I αn = 1 or not. Figure 8.5 shows two results of the gradient test: at order 2 and at order 1. |I α -1| is plotted vs α in logarithmic scale. The convergence is good until α > 10 -7 . However, observe the difference of accuracy between the 1st order and 2nd order approximation.

In the present exemple, the truncation errors errors appear for α smaller than ≈ 10 -7 at order 1 (≈ 10 -3 at order 2). (To show this statement, one add a fix term in the Taylor expansion and notice that it is divided by the perturbation therefore increasing). 

Twin experiments

When addressing a real-world problem with a DA approach, the first mandatory step is to analyze twin experiments with increasing complexity. The principle of twin experiments is as follows.

Regularization based on a-priori error covariances *

* This is a "to go further" section.

Introduction

Let us consider back the following general non-linear stationary PDE model:

in Ω with Boundary Conditions on ∂Ω (8.60)

The direct model above defines the control-to-state operator (model operator) M : u → y u .

The optimization problem reads as previously:

Minimize j(u) = J(u; y u ) in U ad with y u = M(u).

where the observation function J(u; y) is defined as previously too, see (??):

u b denotes the "background value". R -1 and B -1 denote symmetric definite operators therefore norms.

As already discussed in Section 2.2, without regularization term (equivalently α reg = 0), the inverse problem above can be ill-posed in the sense the optimal solution u * can be non unique. The computed optimal solution(s) u * can depend on the first value u (0) of the iterative minimization process. In such cases, the choice of u (0) is crucial. u (0) may be determined from a good expertise of the modeled phenomena or from available data and priors. Moreover, even if the problem is well-posed or u (0) well chosen, it is classical that the inverse problem is ill-conditioned: the cost function j(u) is nearly flat in the vicinity of the minimum u t , see Fig. 2.4. This is for these two reasons that a regularization term J reg (u) is introduced. As defined above, J reg (u) locally "convexify" the cost function in a vicinity of the background value u b . In this case, the computed solution u * depends on u b and the weight parameter α reg too.

The covariance matrix of observation errors R in J obs (y) should rely on a-priori statistical knowledge on the observations errors, see Chapter ??. This is fully dependent on the modeled phenomena and the employed instruments. This point is not discussed in the present general context.

The error covariance matrix B in J reg (u) may rely on knowledge on the background error which a re generally absolutely unknown! Another option is to define B from a-priori probabilistic model(s). Also, another option is to derive B from simplified physics of the modelled phenomena as it has been done e.g. in spatial hydrology in [?].

This chapter aims at showing:

1) how a natural change of variable is equivalent to pre-conditioning the optimality condition ∇J reg (u) = 0,

2) a few equivalences between classical covariance operators (Gaussian, second-order auto regressive kernel) and regularization terms,

3) links between classical covariance kernels and diffusive physical models.

Change of parameter variable, preconditioning

Let us consider the term J reg (u) with B symmetric positive definite. We define B 1 2 such that:

We have:

Then, it is quite natural to consider the change of variable v = B 1 2 (u -u b ) to obtain the simple expression: J reg (u) = v 2 2 . However, the computation of B -1 2 is CPU-time consuming.

On the contrary the Cholesky decomposition of B -1 , B -1 = L B L T B , is quite low CPU timeconsuming. By considering the change of variable:

we obtain:

. Then, we have:

Therefore, the change of variable (8.64) modifies the descent directions during the minimisation process. Moreover, following (8.66), the change of variable may be perceived as a preconditioner of the first order necessary optimality condition ∇J reg (u) = 0. The introduction of B provides a

The inverse formulation 9.1.1 The general direct model

Let us consider a general unsteady PDE model however first order in time to simplify the presentation:

Given the I.C. y 0 (x), given the space-time control u(x, t), find the state y(x, t) satisfying: ∂ t y(x, t) + A(u(x, t) ; y(x, t)) = F (u(x, t))

in Ω×]0, T [ y(x, 0) = y 0 (x) in Ω with Boundary Conditions for all t (9.1) where A(u; y)(x, t) is the differential operator. F (u(x, t)) is the RHS which may depend on the control too.

Examples of direct models As a scalar parabolic equation example, the reader may guess to the heat equation (scalar linear parabolic equation) or to the non-linear case:

One may guess to the (viscous) Navier-Stokes equations (non-linear parabolic system) too or EXAMPLE STRUCTURAL (non-linear parabolic system) or to the Saint-Venant equations (non-linear hyperbolic system).

In real-world problems, the I.C. is often uncertain. The I.C. can even be the most important "parameter" to be identified/estimated e.g. in atmosphere dynamic problems for weather prediction. Then, we consider the control variable enriched with the I.C. as:

Of course, the solution y(x, t) of (D) depends on the I.C. y 0 (x) and on the parameter u(x, t).

In all the sequel, the state is denoted as y(c; t), y(t), y(c) or simply y, depending on the context.

We assume that the direct model is well posed in the following sense.

Assumption 9.1. Given c(x, t) ∈ C and T > 0, it exists a unique function y(x, t), y ∈ W V (0, T ), solution of Problem (D). Furthermore, this unique solution y depends continuously on c(x, t).

Mathematical functional spaces* Typical functional spaces C and W V (0, T ) are as follows.

Let denote by V be a Hilbert space e.g. the Sobolev space H 1 0 (Ω) for a scalar second order linear PDE as the heat equation (linear parabolic equation). The time-dependent PDE is assumed to be first order in time then the considered state space W (a space-time functional space) is classically defined as:

The control parameter space U is supposed to be a Hilbert space. Typically, one considers: U T = L 2 (0, T ; U) with U a Banach space e.g. L ∞ (Ω). The norm of U T is defined from the scalar product of U as:

Let H be the Hilbert space where the I.C. lives in. Then, the control c(x, t) belongs to the space C = H × U.

The reader may refer e.g. to [START_REF] Lions | Evolution problems i. mathematical analysis and numerical methods for science and technology[END_REF]. The examples of functional spaces above are typical ones for linear BVP. Moreover, the control space U T may be relaxed (i.e. imposing less regularity).

Assumptions of differentiability* The parameter-to-state operator (the model operator too) reads here as:

3)

The direct model is well-posed implies that M(y) is continuous, for all t.

To consider cost functions j(c) of class C 1 (continuously differentiable), one needs to assume that the state y is differentiable with respect to the control parameter c that is Assumption 9.2. The model operator M(c) is continuously differentiable for all t ∈ ]0, T [. Under the assumption above, one can formally write:

This differentiability property will be necessary to calculate the cost function differential j (c).

In some cases, this differentiability property is not satisfied at all control value c. Indeed, in the case of a non-linear hyperbolic system such as the Euler (or Shallow Water) equations for example, a shock can appear when making varies continuously e.g. a physical model parameter or a boundary condition value. In this case, the operator M(c) is even not continuous, therefore cannot be differentiable.

Cost function terms: data misfit and regularizations

The objective function J is decomposed as in the stationary case:

Then, the cost function j to be minimized is defined from J as usual:

where y c (x, t) is the (unique) solution of the direct model (D), given c(x, t).

We have: j : C → R.

Data misfit term In the unsteady case, the misfit term J obs is naturally integrated in time as follows:

with Z(•) the observation operator.

Z is a-priori non linear. R -1 denotes a norm like in the stationary case. In practice, as already mentioned, it is often a diagonal matrix because of lack of information.

In practice, observations are often local ("point-wise"), moreover very sparse. Then, in the case the observations are provided as time-series, the misfit observation term J obs (y) reads as:

where z obs n is the measurement at instant t obs n , n = 1, . . . , N .

The complete dataset is then: z obs = {z obs n } n=1,...,N .

Regularization terms Recall that c(x, t) = (y 0 (x), u(x, t)). Then, we naturally consider a regularization term for each control component as:

If considering a background value y b for the I.C. to attract the minimization algorithm to this value, we set:

.

The norm B -1 may be defined to represent "at best" the inverse of the covariance matrix of the background error matrix B as already discussed, see Section 4.5.

This term is quadratic in y 0 therefore strictly convex.

For the control parameter u(x, t), one considers the same regularization terms as in the stationary case (see Section ??).

' We may define J u reg (u) from a background value u b :

. This choice comes Then, the cost function reads:

where Z : R n → R m is the observation operator which is a-priori non-linear too. The norm R is given, R ∈ R m×m (often simply diagonal as already discussed).

We denote the linear tangent observation operator taken at y k as:

The cost gradient satisfies: for all δy 0 in R n ,

By differentiating the direct model, we get:

with the I.C. δy 0 given. The TLM above reads:

By injecting this into the gradient expression, we obtain:

The 1st term

Let us define the sequence p k defined as follows: for k = (N T -1), . . . , 0,

The TLM-based gradient

The approach is the same as in the stationary case: we derive the cost function j(c), we obtain the differential expression j (c) in function of the state derivative w δc = dy dc (c) • δc. The w δc is by construction the solution of the Tangent Linear Model (TLM).

Gradient expression depending on the term w δc

By deriving the cost function (8.4), we get:

with w δc = dy dc (c) • δc and c = (y 0 , u). If considering the particular form (9.5) (with α reg = 1) then:

Let us consider the observation term as previously (see Section 9.1.2) with a linear observation operator Z (for a sake of simplicity):

For the regularization term, one can naturally consider:

with the weights α reg, to be determined. With the definitions above, it follows the expression:

with < •, • > the corresponding scalar products.

Functional spaces clarification* More rigorously, we have:

where •, • V ×V denotes the duality product and •, • H denotes the H-scalar product.

The operator Λ O is simply the canonical isomorphism from Z 0 into Z 0 (in finite dimension, it is simply equal to the Identity). Also, Z T ≡ Z * ∈ L(Z 0 , V ) denotes the adjoint operator of the linear operator Z; it is defined by:

However, the TLM must be solved again to obtain w δc for a different perturbation δc. After discretization, if δc h is large dimensional, the TLM-based approach is not tractable... Like in the steady-state case, this is the reason why the adjoint equations are introduced as soon as the discrete control variable dimension is greater than O(1). Indeed, the adjoint equation will enable to obtain the gradient independently of the dimension of the discrete control variable.

The adjoint-based gradient

We state here the central result providing the expression of the gradient in the general case presented in Section 9.1.1. This gradient expression is based on the adjoint model solution.

The result below is the extension of Theorem 8.15 to time-dependent cases. 

Given c(x, t) = (y 0 (x), u(x, t)) ∈ C and y c (x, y) ∈ W V (0, T ) be the unique solution of (D), find p(x, t) ∈ W V (0, T ) such that:

33) The solution p c of (A) exists and is unique; it is the adjoint state.

Proof. Under Assumption iii) (deriving from the implicit function theorem, see details in the stationary case), the cost function j(u) is C 1 . First let us recall the direct expression of j (c), see (9.6)(9.5):

• the first order necessary optimality condition (the gradient must vanishes).

The 4D-Var algorithm

The so-called 4D-var algorithm denotes the optimal control algorithm for unsteady PDEs systems (a-priori in 3 space-dimensions plus time therefore the 4D terminology).

The algorithm

The adjoint model is time dependent, reverse in time.

Since the minimisation is performed by using an iterative descent algorithm (eg the quasi-Newton method BFGS), the algorithm reads as indicated in Fig. (9.1). Given a first guess c 0 ∈ R n+m , compute c m ∈ R n+m making diminish the cost function j(c), j(c) ∈ R. To do so, at each iteration:

1) compute the cost function j(c) by solving the direct model from 0 to T ,

2) compute the gradient ∇j(c) ∈ R n+m by solving the adjoint model from T to 0,

3) given the current iteration c n , the cost function value j(c n ) and the gradient value ∇j(c n ), compute a new iterationc n+1 such that: 

A few remarks

Recall that the 4D-Var algorithm can be used for different goals.

A) To estimate the value of uncertain or unknown input parameters (time dependent or not), it is an identification problem.

B) To calibrate the model in order to perform better predictions; forecasting is the goal. In this case, the data assimilation proceeds by "analysis cycles". In this context, -) the first stage is called the "analysis step". Observations of present and past time are assimilated to obtain the analysis i.e. the optimal state value (that is the optimal model trajectory).

-) the second stage consists to run the model in time: it is the "forecasting step".

It is expected that if the model fits better the observations in the past, it will be more accurate for future.

Next, the forecast is used in the next analysis cycle etc Next, the resulting calibrated model is performed for prediction (forecasting step).

A concluding remark on hybrid approaches Data assimilation aims to fuse all available information in an "optimal way". This includes the "physics" of the phenomena (e.g., conservation laws), the parameters (generally empirical), the initial condition (e.g., for weather forecasting), in-situ measurements, remote-sensed measurements (e.g., extracted from various satellite datasets), and prior probabilities (covariance operators defining the norms). Additional measurements may be used to improve the "analysis", especially if its confidence (accuracy) can be estimated by expertise or a statistical method.

Estimating uncertain parameters of physically-based models could be addressed by "nonphysically informed" ("blind") Machine Learning methods such as deep Neural Networks, if datasets are large enough.

A typical use of ML in this context would be to define the first guess by a NN. Next, the VDA process would act as a physically-informed filter.

In other respects, note that the present physically-informed approach enables the introduction of statistics and prior probabilities in the formulation. Moreover, the VDA approach enables the assessment of the obtained estimations through the "physical model reading".

The fundamental equations at a glance

The time-dependent (non-linear) PDE model reads:

Given (y 0 (x), u(x, t)), find y(x, t) such that : ∂ t y(x, t) + A(u(x, t) ; y(x, t)) = F (u(x, t))

in Ω×]0, T [ y(x, 0) = y 0 (x) in Ω (9.41) The direct model is supposed to be well-posed. The control parameter is: c(x, t) = (y 0 (x), u(x, t)). Then, the control-to-state operator (the model operator) M(c) is defined as: M(c) = y c (x, t). M(•) is a-priori non linear.

The objective function classically reads:

In discrete form, the observations term J obs (c ; y) reads: The gradient components read: ∇j(c) = ( ∂j ∂y 0 (c), ∂j ∂u (c)) T , with:

where p c is the (unique) solution of the adjoint model:

Given c = (y 0 (x), u(x, t)) and y c (x, t) the unique solution of the direct problem (D), find p(x, t) such that:

Complexity reduction & incremental 4D-Var algorithm*

This is a "to go further" section.

Basic principles

For very large scale problems (e.g. oceans and atmosphere in geophysics), it can be unaffordable to perform a 4D-var process as previously presented. In the case the assimilation is required for prediction (e.g. weather forecast), the forecast obviously needs to be performed faster than real time ! Even if based on mathematically reduced models e.g. the 2D shallow-water equations (reduced version of the complete 3D Navier-Stokes model with mobile surface), the 4D-var algorithm may remain too CPU time / memory consuming.

Then one can reduce the complete process by keeping the same (global) 4D-var control loop but by reducing the direct model following different methods.

. Develop a reduced basis like POD to solve the direct model, potentially combined with ML for non-linear models, see e.g. and [START_REF] Monnier | Finite Element Methods & Model Reductions[END_REF] and references therein,

. Consider a much simpler physics instead of the original one (complet physics, fine grid) in the optimal control loop. If considering a linear simplified direct model (eg a linearized model at each iteration), this provides a LQ problem therefore much faster to solve. This is the basic idea of the so-called incremental 4D-var algorithm which is presented below.

Incremental 4D-var algorithm

The basic idea of the incremental 4D-var algorithm is to combine in the minimization process a low-resolution (or linearized equations) and the original full physics model.

Keeping the discrete notations previously introduced, the innovation vector d n is defined by :

The innovation vector d n measures at time t n , the discrepancy between the model output and the observed quantity, in the observation space.

The idea is to modify the 4D-var algorithm as follows: 1) the iterative control variable corrections are performed using a low-resolution model (potentially both in physics and grids). This leads to low-resolution inner-loops.

2) Once these low-resolution inner-loops have converged, the discrepancy between the model and the measurements (i.e. the innovative vector) is computed by using the original complete direct model. *) Repeat the process.

For a sake of simplicity, we define the operator model M as follows :

If we set: y b = y 0 + δy 0 , the sough quantity becomes δy 0 and we have:

Next, the "perturbation" δy n corresponding to the perturbation δy 0 is defined as follows:

y n + δy n = M(y 0 + δy 0 )

A formal linearization (Taylor's expansion order 1) gives :

where M is the linear tangent model at time step t n . Then : δy n ≈ M (y 0 ) • δy 0 .

Similarly:

with H n the linearized observation operator at time step t n .

We have:

The basic idea of the incremental 4D-var method is to minimize the cost function with respect to the increment δy 0 . Considering the cost function g(δy 0 ), the inverse problem becomes linear-quadratic optimal control problem since δy n ≈ M (y 0 ) • δy 0 . Then the minimization can be performed using the Conjugate Gradient with preconditioning, hence very fast to compute.

In summary, the 4D-var incremental algorithm reads as follows (see Figure 9.3).

*) Inner loop. The minimization process is performed with linearized operators (M and H n ), furthermore potentially with coarser grids and simplified physics. Since the cost function g(δy 0 ) is strictly convex (it is quadratic in δy 0 ), the extremely efficient

The reader may consult [START_REF] Asch | Data assimilation: methods, algorithms, and applications[END_REF] Chapter 5 too.

On hybrid approaches

Data assimilation aims at fusing in an "optimal way" all available information: the "physics" of the phenomena (e.g. conservation laws), the parameters (generally empirical), the initial condition (e.g. for weather forecast), the in-situ measurements, the remote-sensed measurements (e.g. extracted from various satellite datasets), prior probabilities (covariance operators defining the norms).

Additional measurements may be used to improve the "analysis", especially if its confidence (accuracy) can be estimated by expertise or a statistical method.

Estimating uncertain parameters of physical-based models could be addressed by "non-physically informed" ("blind") Machine Learning methods e.g. deep Neural Networks, if datasets are large enough.

A typical use of ML in the present context would be to define the first guess by a NN. Next, the VDA process would act as a physically-informed filter.

In other respect, note that the present physically-informed approach enables to introduce statistics and prior probabilities in the formulation. Moreover, the VDA approach enables to assess the obtained estimations through the "physical model reading".

Exercises

The exercises below mainly consist to write the optimality system for classical PDE models. ADD exercices on line, lyx format, cf Moodle page. We assume we have m observations points of the flow, continuous in time. Then, we seek to minimize the following cost function:

Exercice 9.6. Write the optimality system corresponding to this data assimilation problem.

Diffusion equation with non constant coefficients

We consider the diffusion equation (or heat equation) in an inhomogeneous media. Let u be the quantity diffused and λ(x) be the diffusivity coefficient, non constant. The forward model we consider is as follows. Given λ and the flux ϕ, find u which satisfies:

with ∂Ω = Γ 0 ∪ Γ 1 . We assume we have measurements of the quantity u at boundary Γ 1 , continuously in time.

Then, we seek to minimize the following cost function:

Exercice 9.7. Write the optimality system corresponding to this data assimilation problem.

Real-world examples in hydrology

For this illustration, the information and images have been extracted from the literature, see the cited sources and references.

We present here a few examples extracted from research studies. The results demonstrate the capabilities of VDA to infer crucial quantities in highly non-linear models applied to quite complex real-world problems. The employed software is the open-source computational code DassFlow (Data Assimilation for Free Surface Flows, [START_REF] Dassflow | data assimilation for free surface flows[END_REF]).

Identification of the topography in a 2d shallow-water model

The numerical results below have been obtained by M. Honnorat and J. Marin in years 2005's, see [START_REF] Honnorat | Assimilation de données lagrangiennes pour la simulation numérique en hydraulique fluviale[END_REF][START_REF] Monnier | Modèles numériques directs et inverses d'écoulements de fluides[END_REF]. It is academic twin experiments aiming at infering river bathymetries.

The first experiment aims at identifying the topography in an academic case. The domain is 30 m long and 4 m large. Its topography is defined by: z b (x, y) = 0.9 exp -1 4 (x -10) 2 exp (-(y -1) 2 ) + 0.7 exp -1 8 (x -20) 2 exp (-2(y -3) 2 ) (9.48)

The inflow boundary is at x = 0, the outflow boundary at x = 30. Boundaries y = 0 and y = 4 are walls. We use a rectangular structured mesh of dimension 90 × 20. Bed roughness, defined by its Manning coefficient, is uniform (n = 0.025). (see the definition of the source term S f in the shallow-water model). We impose a constant discharge q in = 8 m 3 /s at x = 0 and a constant water height h out = 1.4 m at x = 30. We obtain a steady state solution after about 80 s of simulation. From this steady state solution, we extract the observations: h obs and u obs every 0.02 s during 20 s on each cell. That is we fully observe the steady-state flow.

The objective of this test case is to recover the topography. The first guess is a flat bottom.

We run the data assimilation process with the following cost function:

T 0 h(t) -h obs (t)

2 Ω + q(t) -q obs (t) We consider a toy test case which includes many features of real river flows. The computational domain contains a main channel (river) and floodplains, see figures 9.6 and 9.7).

Again, the present test case is a twin experiment. At the inflow boundary, we set the inflow discharge shown if figure 9.8 (a) simulating a flood event. Observation of h at point 1 only. From [START_REF] Honnorat | Assimilation de données lagrangiennes pour la simulation numérique en hydraulique fluviale[END_REF][START_REF] Monnier | Dassflow (data assimilation for free surface flows): numerical analysis report[END_REF]