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Abstract—While global optimization is a challenging topic
in the nonconvex setting, a recent approach for optimizing
polynomials reformulates the problem as an equivalent problem
on measures, which is called a moment problem. It is then relaxed
into a convex semidefinite programming problem whose solution
gives the first moments of a measure supporting the optimal
points. However, extracting the global solutions to the polynomial
problem from those moments is still difficult, especially if the
latter are poorly estimated. In this paper, we address the
issue of extracting optimal points and interpret it as a tensor
decomposition problem. By leveraging tools developed for noisy
tensor decomposition, we propose a method to find the global
solutions to a polynomial optimization problem from a noisy
estimation of the solution of its corresponding moment problem.
Finally, the interest of tensor decomposition methods for global
polynomial optimization is shown through a detailed case study.

I. INTRODUCTION

Tensors are pervasive mathematical tools that have been
shown valuable in many scientific areas ranging from engineer-
ing or medical imaging to chemistry and quantum physics [1].
At the heart of their success lie the different kinds of tensor
decompositions that factorize any tensor into smaller chunks
that are interpreted more easily. Among those factorizations,
Canonical Polyadic Decomposition (CPD) is of special interest
as it decomposes a tensor into a sum of rank-1 tensors [2], [3].
We aim here to broaden the scope of tensor decomposition
applications to the challenging area of global polynomial
optimization.

For a long time, polynomial functions, and more generally
ratios of polynomial functions, have been playing a key role in
signal processing. Indeed, their high flexibility as a modelling
tool is of great interest when approximating practical quantities
which are often intricate. For instance, one can mention their
importance in filter design [4], remote-sensing [5], commu-
nication networks [6] and process control in pooling [7].
Nevertheless, optimizing a multivariate polynomial function
under polynomial constraints is a difficult problem when no
convexity property holds [8]. Noticeably, some recent and
important mathematical breakthroughs [9]–[12] happened.

More precisely, the moment-based approach [10] transforms
the original problem into an equivalent moment problem,
whose variable is a measure. The latter is then solved through

convex relaxations. However, several practical difficulties re-
main. First, due to a very demanding computational load,
problems are limited in size or require to take into account
their specific structure [13], [14]. Another potential difficulty is
the extraction of the global solutions to the initial polynomial
problem from the solution to the equivalent moment problem.
We propose here to tackle this issue through the use of tensors.

In our previous work [15], we used tools from moment
problems to perform the CPD of a symmetric tensor. More
precisely, the CPD was based on the algebraic method de-
veloped in [16], which is very accurate but also sensitive
to perturbation. As a consequence, the corresponding CPD
method showed strong theoretical guarantees, but was limited
to low-rank tensors corrupted with low noise level.

In this work, we adopt a reverse viewpoint: we use CPD
algorithms to solve a moment problem, namely, searching
for an R-atomic measure supported on a compact set, some
of its moments being known. As previously mentioned, this
is especially of interest in the context of polynomial (or
more generally piecewise rational [17]) optimization while
performing the extraction of the global optima. Indeed, mini-
mizing a polynomial function under polynomial constraints is
equivalent to an optimization problem on measures. Solving
a relaxation of the latter, we obtain some of the moments of
the optimal measure, from which we extract the global optima
of the initial polynomial. We show here that this extraction is
equivalent to performing a CPD on a specific tensor.

In the extraction method used so far [16], if the recovered
moments are subject to a small perturbation, inexact results are
found. In this work, we propose to use the prolific literature on
tensor decomposition, and especially on CPD approximation
methods which have been proved to be robust to noise, to
perform the extraction of the global minimizers. An additional
benefit of using those CPD algorithms is the reduction in
dimensions of the relaxation to be solved, which results in
a lighter computational load.

Section II sets up the polynomial optimization problem and
its connection with the moment problem. Section III presents
shortly the reindexing and the CPD of a symmetric tensor
before exploring the link between the moment problem and
tensor decomposition. Section IV explains how polynomial
optimization can benefit from tensor decomposition tools.



Section V illustrates this benefit on a study case. Section VI
concludes our work.

We use the following notation: upper case calligraphic
letters denote tensors (T ) and fraktur letter (T) their values
after reindexing (see Section III). Bold upper case letters (M)
denote matrices, bold lower case letters (v) denote vectors,
and lower case letters (s) denote scalars. For a multi-index
α = (α1, · · · , αn) in Nn of length n, we define its absolute
value |α| = α1 + · · · + αn and we denote by Nnk the set of
multi-indices of n elements whose absolute value is smaller
than or equal to k.

II. GLOBAL POLYNOMIAL OPTIMIZATION

We consider the following optimization problem:

minimize
x∈K

p(x) , (1)

where p is a polynomial function and the feasible set K is a
compact subset of Rn defined by a finite number of polynomial
inequalities. More specifically, we want to retrieve the global
minimizers of (1) by getting rid of spurious local ones, which
makes the problem difficult. Let us emphasize that a similar
issue is encountered in more general situations such as rational
optimization or piecewise rational functions [17]. Addressing
these cases is however out of the scope of this paper.

Problem (1) is equivalent to a linear optimization problem
on the infinite dimensional space of probability measures [10],

minimize
µ∈M+(K)

∫
K
p(x)µ(dx)

s.t.
∫
K
µ(dx) = 1 ,

(2)

where M+(K) denotes the set of positive finite measures
supported on K. In the following, we assume that (1) admits a
finite number R of global minimizers. It follows that a solution
µ∗ to (2) is an atomic measure concentrated on a subset of
the global minimizers of (1). Here, we especially look for an
optimal measure µ∗ supported on the R global optima of (1)
and consequently we assume that µ∗ is R-atomic. This choice
is justified in Section IV-B.

Using recent techniques [10], the moments of µ∗ up to a
given even degree d are estimated. Indeed, Problem (2) is re-
formulated as an infinite-dimensional problem on the moments
of µ∗. For numerical tractability, the number of considered
moments is truncated up to a given degree d = 2k which
yields a Semi-Definite Program (SDP) of finite dimensions.
The integer k is the index for successive SDP problems of
increasing size, which are known as Lasserre’s hierarchy [10].
The optimal solution to the order k SDP problem is a vector
y∗(k) = (y∗α(k))α∈Nn

d
corresponding to all the moments up

to degree d. Note that the hierarchy is indexed by k instead
of d = 2k because of the moment matrix that intervenes in
the semidefinite constraint of the SDP problem: as detailed
in (10), this matrix contains all the moments up to degree
d and thus has its rows and columns indexed by moments
up to degree k. Ideally, y∗(k) contains the moments of the
measure µ∗ solution to (2) and the extraction step consists

then in recovering the support points of this atomic measure
from the vector y∗(k). These support points are the global
optimal solutions to (1).

In the next section, we interpret y∗(k) as a symmetric
tensor and use the tools developed for tensor decomposition
to perform the extraction phase.

III. MOMENT PROBLEM AS A TENSOR DECOMPOSITION

A. Symmetric tensor and reindexing

Let T denote a symmetric tensor of order d on Rn+1

with d ≥ 4 an even integer. By symmetry, the entries
(Ti1,...,id)0≤i1,...,id≤n of T are unchanged by any permutation
of the indices. Therefore, those entries are uniquely defined by
specifying the number of times each index value appears in i.
More precisely, to any d-tuple i = (i1, . . . , id), we associate
an n-tuple α(i) = (α1(i), . . . , αn(i)) of Nnd , where for each
l in J1, nK, αl(i) is the number of times the index value l
appears in i. Note that, since the order of the tensor is d, the
number of times the index 0 appear is uniquely defined by α
through d−

∑n
l=1 αl(i). We then index our tensor with α in

Nnd instead of i and define the tensor values

Ti = Tα(i) . (3)

In the following, we will drop the index i in α and simply
write Tα.

B. Canonical Polyadic Decomposition

A tensor is said to be symmetric rank-1 if it can be expressed
as

v⊗d = v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

for a vector v = (vi)i∈J0,nK of Rn+1, that is
[
v⊗d

]
i1,...,id

=
vi1 . . . vid . The CPD problem consists then in finding a decom-
position of T into a sum of rank-1 tensors, T =

∑R
r=1 v(r)

⊗d,
or equivalently

Ti1,...,id =

R∑
r=1

vi1(r) . . . vid(r) . (4)

The symmetric rank is the minimum number of terms required
in any representation of T as above. Classical steps to deter-
mine a CPD of T consist of first detecting its rank R and then
looking for an approximation of T as a tensor of rank R, that
is determining the vectors (v(r))r∈J1,RK. Notice that there are
ambiguities in defining the vectors of Decomposition (4) as
the order of the vectors in the sum is arbitrary.

Furthermore, if we assume that

(∀r ∈ J1, RK) v0(r) 6= 0 ,

we can normalize each vector v(r) along its first coordinate
and Decomposition (4) reads

T =

R∑
r=1

λr

(
v(r)

v0(r)

)⊗d
=

R∑
r=1

λru(r)
⊗d
, (5)



where u(r) =
(
v1(r)
v0(r)

, . . . , vn(r)v0(r)

)
is the dehomogenization of

v(r) and λr = v0(r)
d is a positive coefficient. Performing the

reindexing in (3), Decomposition (5) reads

Tα =

R∑
r=1

λru1(r)
α1 . . . un(r)

αn . (6)

C. Extraction step as a Canonical Polyadic Decomposition

We assumed in Section II that the sought measure µ∗ is
R-atomic, i.e. supported on R points (u(r))r∈J1,RK that are
global minimizers of (1)

µ∗ =

R∑
r=1

λrδu(r) . (7)

Moreover, the moments contained in the vector y∗(k) are
expressed as

(∀α ∈ Nnd ) y∗α(k) =

∫
K
xαµ∗(dx) . (8)

Replacing (7) in the right hand side of (8), we obtain

(∀α ∈ Nnd ) y∗α(k) =

R∑
r=1

λru(r)
α
,

which is, following (6), exactly the expression of the CPD of
a symmetric tensor T of order d on Rn+1 defined through the
indexing (3) as

(∀α ∈ Nnd ) Tα = y∗α(k) . (9)

Determining the R-atomic measure µ∗ solution to (2), and
thus the global minimizers of (1), is equivalent to finding the
vectors (u(r))r∈J1,RK and the coefficients (λr)r∈J1,RK of the
CPD of the symmetric tensor T built from the moment vector
y(k). Note that the link between tensor decomposition and
moment problem can be found in [18], [19] but with a different
formalism.

IV. IMPACT OF TENSOR DECOMPOSITION ON GLOBAL
SOLUTIONS EXTRACTION

A. Convergence of Lasserre’s hierarchy

In Section II, we saw that (2) is relaxed into a hierarchy of
SDP problems. Solving each SDP problem yields a truncated
vector of moments y∗(k) and also a lower bound J ∗k on the
optimal value of (1). The higher the order k, the tighter the
bound J ∗k and the higher the number of available moments
of µ∗ in y∗(k) but the higher also the dimensions of the SDP
problem. It has been proved that the sequence (J ∗k )k∈N is
increasing and converges to the optimal value of (1) [10].
Moreover, this convergence happens at a finite relaxation order
generically [20], i.e. for any instance of Problem (1) where the
coefficients of the polynomials are drawn from an absolutely
continuous probability distribution, there exists almost surely
a finite relaxation order k for which the optimal value of the
SDP relaxation is equal to the optimal value of (1).

A sufficient condition to detect convergence is given in [10]
using the rank of the moment matrix associated to y∗(k).

The moment matrix is a convenient tool to study moments
contained in y∗(k). It is built by arranging those moments
such that

(∀(α,β) ∈ Nnk × Nnk ) (Mk)(α,β) = y∗α+β(k) , (10)

where α, β are multi-indices indexing Mk following a given
monomial ordering, usually the graded lexicographic one.
Note that, following [21], knowing whether this rank condition
holds is equivalent to knowing the rank of the symmetric
tensor built from y∗(k). Hence, the tensor associated to y∗(k)
has rank R if convergence occurs for order k. However, this
condition is only sufficient and thus convergence can happen
for a lower relaxation order. In practice, we often compare the
lowest criterion value obtained by our method for Problem (1)
and the lower bound J ∗k to determine whether convergence
occurs.

B. Benefit of using interior point methods to solve SDP
problems

Many state-of-the-art SDP solvers are relying on interior
point methods. Those methods have the advantage to return as
a solution an interior point, i.e. a point y∗(k) in the relative
interior of the optimum face of the feasible set. It can be
proved [8, Lemma 1.4] that the corresponding moment matrix
returned by the SDP solver then has maximum rank among
all the matrices which are solutions to the SDP problem. This
is an important feature as it guarantees [8] that all global
minimizers of (1) can be recovered from y∗(k). Indeed, the
rank of the moment matrix, and thus of the tensor T built from
y∗(k), is equal to the number of global optima of (1). Having
a moment matrix of lower rank implies that some of those
minimizers will be missed after performing the extraction.
The choice of the SDP solver is therefore important for the
extraction.

C. Extraction of solutions: issues with the current method
When convergence in the hierarchy is reached, an algebraic

extraction method is currently used [16] in order to recover
the measure µ∗ from the moment vector y∗(k), and thus the
global minimizers of (1). Nevertheless this method has two
main drawbacks: it requires the knowledge of enough moments
in order to recover µ∗, i.e. a sufficiently high relaxation order,
and it is highly sensitive to noise on the moments.

Those disadvantages raise in several applications. Indeed,
since the dimensions of SDP problems increase exponentially
with the order of relaxation k, solving them with a sufficient
relaxation order k is often computationally too heavy for state-
of-the-art SDP solvers and one has to settle for the solutions
at the first orders of relaxations. As a consequence, we have
access only to a limited numbers of moments which are
moreover approximations of the true moments of µ∗. In this
context, the extraction method in [16] either fails due to the
lack of some moments, or extract minimizers far from the
global optima of (1) due to the perturbation on the moments.

Therefore, a robust extraction method is required for many
practical applications of polynomial optimization in order to
retrieve the exact global minimizers.



D. Robust extraction methods

We showed in Section III that the extraction problem is
equivalent to finding the CPD of a symmetric tensor. Thereby
robust tensor CPD methods can be used to perform the
extraction instead of the algorithm in [16]. Especially, many
algorithms relying on the minimization of a fit function instead
of algebraic tools have been developed to recover faithfully
tensors corrupted by noise, even when some elements are
missing [22]. Examples of such algorithms include uncon-
strained nonlinear optimization [23] (OPT), alternating least
square (ALS) [3], and nonlinear least square (NLS) [3].

Hence, after solving the SDP relaxations of order k, we
build the symmetric tensor T out of the solutions y∗(k) of the
SDP problem. This tensor can be seen as a noisy sub-tensor
of the infinite tensor of rank R containing all the moments
of the sought measure µ∗. Therefore, we apply robust CPD
algorithms to get a better approximation of the rank R infinite
tensor and enhance the quality of the global optimum of the
polynomial problem. Hence, using a moment vector from a
low order of the hierarchy, we can avoid huge computational
burden while obtaining accurate global minimizers of Prob-
lem (1). In practice indeed, the computational time becomes
longer for SDP relaxations at an order higher than 4 or 5 [10],
[14], [24]. This highlights the interest of inferring the solutions
from a lower relaxation order.

An important remark is that many CPD algorithms require
the prior knowledge of the rank R of the tensor decomposition
which implies, in our context, to know the number of solutions
to Problem (1). If the number of solutions R is not known, a
rank estimation method, such as the one from Tensorlab [25],
can be applied on T .

Let us summarize the overall procedure to solve (1):
• Reformulate (1) into the moment problem (2),
• Relax (2) into an SDP problem by replacing the measure
µ with its moments and truncating them up to degree 2k,

• Solve the SDP relaxation with an interior point method,
• Build the tensor T from y∗(k) obtained as a solution of

the SDP relaxation,
• Perform the CPD of T ,
• Deduce the global minima of (1) from the previous CPD.

V. CASE STUDY

Let us take the following simple polynomial optimization
problem from [16]

minimize
x∈R3

− (x1 − 1)
2 − (x2 − 1)

2 − (x3 − 1)
2

s.t. 1− (x1 − 1)
2 ≥ 0

1− (x2 − 1)
2 ≥ 0

1− (x3 − 1)
2 ≥ 0 .

(11)

Problem (11) has eight global minima

x∗1 = (0, 0, 0) x∗2 = (2, 0, 0) x∗3 = (0, 2, 0)

x∗4 = (0, 0, 2) x∗5 = (2, 2, 0) x∗6 = (2, 0, 2)

x∗7 = (0, 2, 2) x∗8 = (2, 2, 2) ,

and the optimal value is −3. Notice that it is not a convex
problem. We use GloptiPoly [26] to perform the relaxation
into SDP problems and to extract solutions using the algebraic
method [16]. Those SDP relaxations are solved by the SDP
solver SDPT3 [27]. We compare the extraction method from
GloptiPoly with the implementation of NLS from Tensor-
lab [25]. We choose NLS as it gives better results than ALS
and OPT.

A. Extraction method from GloptiPoly

We first apply directly Lasserre’s framework in GloptiPoly
to solve Problem (11). At the relaxation orders k = 1, k = 2,
and k = 3, we do not have convergence in Lasserre’s hierarchy
and the extraction method fails. Indeed, at those orders, there
are not enough moments in y∗(k) and thus the extraction
procedure from [16] fails while extracting the multiplication
matrices from the moment matrix. More precisely, in [15,
Proposition 1], the index βr + ei may be greater than the
dimension of the moment matrix Mk and thus the multipli-
cation matrix Ni cannot be extracted from it. The certificate
of convergence is obtained for the relaxation order k = 4 and
the algebraic extraction procedure hence retrieves the eight
solutions and the optimal value with a precision higher than
10−4.

B. Robust Extraction using NLS

On the other hand, instead of the algebraic method [16],
we extract the solutions by applying NLS algorithm on the
tensor generated by the moment vector y∗(k) for k = 1,
k = 2, and k = 3. At each order, we retrieve the eight
approximate solutions listed in Table I. Furthermore, Table II
shows the value of the criterion at optimality for the solutions
extracted with NLS and GloptiPoly, respectively. We observe
that, by applying NLS on the tensor corresponding to y∗(3),
we retrieve the eight global solutions and the correct optimal
value at a precision higher than 10−4. Therefore, there is no
need to solve the SDP problem of order k = 4. Moreover,
at the order k = 2, NLS gives already a good approximation
within an accuracy of 10−1 that can be enough in several
applications. The same conclusion holds for the optimal value:
it is clear from Table II that the optimality is not reached in the
hierarchy at k = 3 since the obtained optimal value is −2.94
instead of −3. However, using NLS as an extraction method
yields the correct optimal value with an accuracy higher than
10−4. We yet remark that the lower bounds J ∗1 , J ∗2 , and J ∗3
all equal the optimal value −3.

VI. CONCLUSION

We have addressed the problem of extracting the global
solutions to a polynomial optimization problem from the es-
timation of the truncated vector of moments obtained through
Lasserre’s hierarchy. We have proposed an alternative ap-
proach to the standard method for performing this extrac-
tion. By interpreting the extraction as a tensor decomposi-
tion problem, we use robust methods for tensor CPD such
as NLS algorithm in order to extract the global solutions



TABLE I
EXTRACTION OF SOLUTION IN POLYNOMIAL OPTIMIZATION USING NLS

(ACCURACY OF 10−4)

k = 1 k = 2 k = 3

x∗
1

−0.0116−0.0110
−0.0459

 0
0
0

 0
0
0


x∗
2

 1.0835
−0.1286
−0.2224

 1.9998
0.0006
0.0015

 2
0
0


x∗
3

−0.21871.1305
−0.2055

 0.0002
1.9994
0.0015

 0
2
0


x∗
4

−0.1728−0.1758
0.9500

 0.0002
0.0006
1.9985

 0
0
2


x∗
5

 1.3728
1.2453
−0.3417

  2.0006
2.0017
−0.0044

 2
2
0


x∗
6

 1.4839
−0.3589
1.5066

  2.0006
−0.0017
2.0044

 2
0
2


x∗
7

−0.39681.5726
1.5603

 −0.00062.0017
2.0044

 0
2
2


x∗
8

4.7932
5.2755
4.7767

 1.9984
1.9957
1.9862

 2
2
2



TABLE II
VALUE OF THE CRITERION AT THE EXTRACTED GLOBAL MINIMA

(ACCURACY OF 10−4)

k = 1 k = 2 k = 3

Using NLS

-3.1395 -3.0001 -3.0000
-2.7751 -2.9954 -3.0000
-2.9556 -2.9954 -3.0000
-2.7604 -2.9954 -3.0000
-1.9994 -3.0135 -3.0000
-2.3375 -3.0135 -3.0000
-2.5927 -3.0135 -3.0000
-4.6932 -2.9666 -3.0000

Using GloptiPoly -1.2762 -2.5297 -2.9401

Lower bound from GloptiPoly -3 -3 -3

before the convergence in the hierarchy, thus alleviating the
computational burden. Finally, a case study shows the benefit
of tensor decomposition for the extraction of global solutions
to polynomial optimization problems.
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