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Abstract— This work investigates the general two-user
compound Broadcast Channel (BC) in which an encoder wishes
to transmit two private messages W1 and W2 to two receivers
while being oblivious to the actual channel realizations controlling
the communication. The focus is on the characterization of the
largest achievable rate region by resorting to more involved
encoding and decoding techniques than the usual coding schemes
of the standard BC. Involved decoding schemes are first explored,
and an achievable rate region is derived based on the principle
of Interference Decoding (ID), in which each receiver decodes
its intended message and chooses to (non-uniquely) decode, or
not, the interfering non-itended message. This decoding scheme
is shown to be capacity achieving for a class of non-trivial
compound BEC/BSC broadcast channels while the worst-case
of Marton’s inner bound—based on No Interference Decoding
(NID)—fails to achieve the capacity region. Involved encoding
schemes are later investigated, and an achievable rate region
is derived based on Multiple Description (MD) coding wherin
the encoder transmits a common description as well as multiple
dedicated private descriptions to the many possible channel
realizations of the users. It turns out that MD coding yields larger
inner bounds than the single description scheme—Common
Description (CD) coding—for a class of compound Multiple Input
Single Output Broadcast Channels (MISO BC).

Index Terms— Channel capacity, channel state information,
broadcast channels (BCs), compound channels, multiple descrip-
tion coding, multiple input single output broadcast channel
(MISO BC).

I. INTRODUCTION

THE two-user Broadcast Channel (BC) –as first introduced
by Cover in [1]– consists of an encoder which wishes to
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transmit both a common message W0 and two private messages
W1 (resp.) W2, each dedicated to a user observing the channel
output Y (resp.) Z . Following this seminal work, intensive
research was undertaken to characterize the capacity region of
this setting which implies the design of efficient interference
mitigation techniques.

In this work, we study the two-user compound BC wherin
an encoder wishes to communicate two private messages
W1 (resp. W2) to two users which can each observe the
output of one of many possible channel statistics (Y1, . . . , YJ )
(resp.(Z1, . . . , Z K )). The actual channel statistic controlling
the communication is unknown to the transmitter, however,
it is assumed to remain constant during the communication,
and the aim is to ensure reliable communication whatever the
channel realization. The compound channel model is relevant
whenever the transmitter fails to acquire a perfect estimate
of the channel but knows only a subset, or an interval,
to which it belongs. Finite rate feedback from the receiver to
the transmitter, which relies on a quantization step, might be
the most realistic scenarios in which compound channels are
encountered. It is also well understood that, when interested in
the maximum error probability, the compound BC is equivalent
to a BC with multiple users and common messages. Thus,
the channel uncertainty in the compound BC is equivalent to
multicasting in a multi-user scenario.

Let us first briefly discuss the optimal coding schemes for
the two-user BC, reported also partly in [2]. Although the
capacity region of the BC remains an open problem to date,
Marton established in [3] an achievable rate region for the
general two-user BC based on the notion of random binning
and superposition coding, with common and private messages,
which is commonly referred to as Marton’s inner bound. This
inner bound remains the best hitherto known in literature while
the best outer bound on the capacity region of the BC is due to
Nair & El Gamal [4]. These two bounds were shown to coin-
cide for several classes of ordered channels, e.g., degraded,
less-noisy, and more-capable BCs (see [5] and references
therein) and more recently [6], for essentially less noisy and
essentially more capable BCs. The optimal coding scheme for
such ordered BCs relies on superposition coding scheme at the
encoder and allowing the user with the best channel observa-
tion to decode the interfering message, i.e., that of the opposite
user, in addition to its intended message. Marton’s inner
bound also proved to be capacity-achieving for some non-
ordered channels: the deterministic and semi-deterministic BC
in [3] and [7], the MIMO BC in [8], as well as the product
and sum of two unmatched channels in [9]. For the latter
channel models, it is rather random binning that proves to be
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crucial for interference management, i.e., precoding against
interference.

In the works listed herebefore, the channel statistic is
perfectly known to the transmitter and thus, the encoder can
exploit this knowledge to allow for an efficient interference
mitigation scheme. Indeed, in all settings where Marton’s inner
bound is tight, the construction of the optimal auxiliary code
depends on the prior knowledge of either the channel output
statistic (e.g. deterministic and semi-deterministic BCs) or a
function of these statistics (e.g. users’ ordering in ordered
single antennas BCs). When the transmitter has no Channel
State Information (no-CSIT), very few capacity results are
known for the compound BC among which are the two results
in [10] and [11]. The coupling between interference and
channel uncertainty calls for more involved coding schemes
that Marton’s coding scheme, which will be the focus of our
contribution.

A. Related Works

We investigate in this work more involved encoding and
decoding techniques than the usual coding schemes that proved
to be capacity-achieving for some classes of BCs, namely,
Interference Decoding (ID) and Multiple Description (MD)
coding.

The idea behind ID was first introduced in [12] for Gaussian
settings and formalized later in [13], and it consists in a com-
bination of non-unique decoding with the possibility at each
receiver to decode, or not, the interfering messages intended
to the others users. The benefits of this decoding scheme
results not only from non-unique decoding [14] but it follows
essentially from allowing to decode, or not, interference. Note
here that the straight-forward extension of the results of [13]
to the BC is not geenral enough for it encompasses only
superposition coding but fails at including random binning.
Nevertheless, it provides an interesting insight on how to
recover a superposition coding like inner bound while keeping
a symmetric encoding, which will be crucial in the construc-
tion of our Interference Decoding scheme.

While ID allows to choose between decoding or not the
interference, authors in [15] suggested a coding scheme which
relies on decoding part of interference, which includes decod-
ing interference or not decoding it. Though the setting investi-
gated therein is fundamentally different from the compound
BC we are investigating here, the results they suggest are
strongly related to ours and will be thoroughly compared to
them later on. The idea behind the coding scheme in [15] is
to introduce an additional auxiliary codeword in the encoding
step which is meant to carry part of the interferinterfering
message and to be decoded at only one user. This renders the
exentsion of the inner bound to multiple users very hard since
it involves extra superposition and binning operations. Thus,
we will not pursue this direction in our work, but will restrict
to Marton’s encoding scheme whilst improving on Marton’s
inner bound through ID.

Authors in [16] derived an inner bound based on coset
codes for the three users BC. The idea behind using coset
codes is to allow the users to decode a compressive function of

the interfering messages of other users, for instance, w2 ⊕ w3,
and thus a complete cancellation of interference with less
impediment to the information rates than fully decoding the
interfering messages, i.e., decoding w2 and w3. A class
of 3 users BCs is proposed where two links are interference
free and for which the straightforward extension of Marton’s
coding scheme is strictly suboptimal as compared to the
coset coding. Such a coding technique based on coset codes,
proves to be useful when there are many interfering messages,
however, it does not enlarge Marton’s inner bound in the two
user’s case. Yet this work presents the first class of 3 users BC
for which Marton’s inner bound, with many common layers
messages, is strictly sub-optimal.

When the channels are not ordered, e.g, MISO BC, design-
ing optimal coding schemes with no-CSIT calls for more
involved encoding strategies. The intuition follows from the
analysis of the effect of channel uncertainty on the Degrees of
Freedom (DoF), which are very insightful to understand how
interference should be managed in multiple antennas settings.
For finite state compound settings, Weingarten et al. had first
derived both inner and outer bounds on the DoF region and on
the sum-DoF of the compound MISO BC [17] with some cases
of optimality. The outer bound derived therein was conjectured
to be loose, but later Gou et.al [18] and Maddah-Ali [19]
proved the optimal DoF region of the generic compound
MISO BC, both in the complex and in the real settings,
to match this outer bound. The achievability of the optimal
DoF relies on either a linear or a non-linear coding scheme
combined with block expansion (coding over many time slots)
in [17] while the proof made in [19] resorts to number theory
tools and consists in Interference Alignment (IA) over rational
dimensions of the real numbers (see also [20]). When the
states span an infinite set, i.e., in the ergodic setting, DoF
become limited. Indeed, in [21], it is shown that with Rayleigh
fading channels, the sum-DoF collapses to the number of
transmit antennas: time-sharing is optimal. A few more works
deal with various models of the amount and accuracy of CSI
available at the transmitter, e.g. [22]. It turns out that richer
encoding strategies, like interference alignment along with
block expansion are crucial in dealing with interference, and
thus, any optimal scheme for the finite power limited MISO
BC should encompass such DoF-optimal schemes.

B. Our Contribution

In this work, we explore the role that two main interference
mitigation techniques can play in the compound BC setup,
and show that, by operating clever optimization either on the
encoding or on the decoding side, we can alleviate the effect
of uncertainty when coupled with interference in two different
ways.

We first start by deriving a rate region that takes advan-
tage of the combination of Marton’s random binning, and
superposition coding with the choice of decoding or not
interference which we denote by ID. We show that for the
compound BC –unlike the standard two-user BC– ID can
strictly outperform Marton’s standard coding scheme based
only on random binning, and superposition coding, denoted



later by No-Interference Decoding (NID). This results from
that ID allows a symmetric encoding and deals with the
source’s uncertainty by relegating the asymmetric decoding
to the receive terminals. To illustrate clearly the gain of ID
over NID, we investigate a class of discrete ordered compound
Binary Erasure/ Binary Symmetric (BEC/BSC) BCs for which
we derive the capacity region resorting to ID and show that
NID yields a strictly sub-optimal rate region.

As for the class of non-oredered compounds BCs, more
involved encoding schemes need to be investigated since we
need to precode against interference rather than to decode it.
Since each channel statistic involves a distinct intereference
signal, precoding against interference with only one common
auxiliary code, i.e., Common Description (CD) coding, might
be inefficient. For this reason, we look at the role that
Multiple Description (MD) coding can play in the non-ordered
compound BC, where the encoder precodes against inter-
ference differently for the many channel statistics of each
user through private descriptions each tailored to one channel
statistic. We follow a similar approach to that in [23] where
MD coding has already proved to be useful over compound
state-dependent channels. We prove that MD coding is benefi-
cial as compared with CD coding [3] and we illustrate this for a
class of compound Gaussian MISO BC under a specificDirty-
Paper Coding (DPC) scheme [24].

Finally, we discuss the relative behaviour of ID and MD
coding techniques and present a brief example to support their
exclusive inclusion.

The remainder of this paper is organized as follows.
Section II presents the system model and provides basic
definitions as well as a simple outer bound on the capacity
region of a general compound BC. In Section III, we study
the utility of ID for the compound BC. We start by deriving
the ID inner bound in Section III-A and show in Section III-B
that ID is capacity achieving for a class of discrete compound
BCs while NID is strictly sub-optimal. Next, in Section IV,
we introduce MD coding and specialize it to the compound
Gaussian MISO BC in Section V. The performances of these
two inner bounds are then compared to the outer bound pre-
sented in Section V-G. Last, we compare the relative behavior
of both the ID and MD inner bounds in Section VI-A and end
with summary and discussion in Section VI-B.

Notations

The term p.m.f will refer to probability mass function.
Random variables (resp. their realizations) are denoted by
upper (resp. lower) case letters. Vectors are denoted by bold
font characters and RV stands for random variable, ARV for
Auxiliary Random Variable, while FME stands for Fourier
Motzkin Elimination. For any sequence (xi )i∈N+ , notation
xn

k stands for the collection (xk, xk+1, . . . , xn). xn
1 is simply

denoted by xn . Entropy is denoted by H (·), and mutual
information by I (·; ·) while differential entropy is denoted
by h(·). E (resp. P) denote the expectation (resp. the generic
probability) measure while the notation PX is specific to the of
a RV X . |X | stands for the cardinality of the set X . We denote

typical and conditional typical sets by T n
δ (X) and T n

δ (Y |xn),
respectively (see Appendix A for details). Let X , Y and Z be
three RVs on some alphabets with joint probability distribu-
tion PXY Z . If PX |Y Z (x |yz) = PX |Y (x |y) for all x, y, z, then
they form a Markov chain, which is denoted by X −�−Y −�− Z .
The binary entropy function H2 is defined ∀x ∈ [0 : 1] by
H2(x) � −x log2(x) − (1 − x) log2(1 − x), and the binary
convolution operator (�) as: x � y � x(1 − y) + (1 − x)y
for all (x, y) ∈ [0 : 1]2. For two channels with outputs Y1
and Y2, Y2 � Y1 means Y1 is less noisy than Y2. ht is to be
understood as the transpose of the real valued vector h. Let
Bu be a unit norm 2 × 1 column vector. We denote the scalar
product between vectors Bu and h j by h j,u = ht

j Bu .

II. PROBLEM DEFINITION

Consider the compound BC problem which consists in one
source terminal and two distinct receivers each observing one
of many possible channel outputs and where the source wishes
to communicate two private messages W1 and W2, one to each
receiver. This setup is equivalent to a setting where each user
is represented by multiple users that are interested in the same
message W1 or W2.

A. Definition of the Compound BC

• Consider a collection of n-th extensions of discrete mem-
oryless BCs (defined by a pmf and the input and output
alphabets)

{Wn
j,k} j∈J ,k∈K = {PY n

j Zn
k |Xn X n,Yn,Zn},

defined by the conditional p.m.fs:

PY n
j Zn

k |Xn =
n∏

i=1

PY j,i Zk,i |Xi .

• Users’ pair of index ( j, k) takes values in the finite set
of indices J × K � [1 : J ] × [1 : K ].

• An (M1n, M2n , n)-code for this channel consists of: two
sets of messages M1 and M2, an encoding function
that assigns an n-sequence xn(w1, w2) to each pair of
messages (w1, w2) ∈ M1 ×M2 and decoding functions,
one at each receiver, that assign to the received signal an
estimate of its intended message or an error.
The probability of error is given by:

P(n)
e ( j, k) � P

(
Ŵ j

1 �= W1 ∪ Ŵ k
2 �= W2

)
.

• A rate pair (R1, R2) is said to be achievable if there exists
an (M1n, M2n , n)-code satisfying:

lim inf
n→∞

1

n
log2 Mln ≥ Rl for all l ∈ {1, 2}

lim sup
n→∞

max
j∈J ,k∈K

P(n)
e ( j, k) = 0.

The capacity region is the conrex hull of the set of all
achievable rate pairs (R1, R2) and is denoted as CJ×K.



B. Outer Bound on the Capacity Region of
the Compound BC

We derive in this section an intuitive outer bound on the
capacity region of the compound BC. This outer bound results
from a straightforward extension to the compound setting of
the best-known outer bound on the capacity region of the BC.
It will be useful in the examples we investigate later.

Let the rate region R( j,k)
NEG denote the outer bound derived

in [4] applied to each pair of users with index ( j, k). For the
private message setup, the rate region is given by

R( j,k)
NEG(PQU V X ) �

{
(R1, R2) :

R1≤I (QU ; Y j ),

R2≤I (QV ; Zk),

R1 + R2≤I (U ; Y j |QV ) + I (QV ; Zk),

R1 + R2≤I (QU ; Y j ) + I (V ; Zk|QU)
}

,

for a specific joint p.m.f PQU V X . A simple outer bound on the
capacity region of the compound BC is stated in the following
theorem.

Theorem 1 (Outer bound). The capacity region of the
two-user compound BC CJ×K verifies:
CJ×K ⊆ Co �

⋃
PU PV

⋂
j∈J ,k∈K

⋃
PQX |UV

R( j,k)
NEG(PQU V X ), (1)

where the channel input X is a deterministic mapping of
Q × U × V into X .

Remark 2. It is worth mentioning that when the compound BC
consists in only one BC, the outer bound [4] was not proven to
be tight in general. For ordered compound setups, the fact of
optimizing the common auxiliary RV Q for each channel with
index ( j, k), prevents this outer bound from being tight since
the encoder is oblivious to the actual channel realization. For
instance, it cannot optimize the code for each of the possible
channels instances. However, this bound can still be tight in
some cases of interest as will be clarified later on.

Proof: We need to recall that the proof in [4] of the
outer bound for users’ pair ( j, k), uses the specific choice
of auxiliary RV:

Ui=W1,

Vi=W2,

Q( j,k)
i =(Y i−1,( j ), Zn,(k)

i+1 ).

Here, we notice that the auxiliary RV (Ui , Vi ) do not
the depend on the users’ pair index. Thus, we can show
that for all channel indices ( j, k) with the specific choice:
Ui = W1 , Vi = W2,

n R1≤
n∑

i=1

I (Q( j,k)
i Ui ; Y j,i ),

n R2≤
n∑

i=1

I (Q( j,k)
i Vi ; Zk,i ),

n(R1 + R2)≤
n∑

i=1

[
I (Ui ; Y j,i |Q( j,k)

i Vi )

+I (Q( j,k)
i Vi ; Zk,i )

]
,

n(R1 + R2)≤
n∑

i=1

[
I (Q( j,k)

i Ui ; Y j,i)

+I (Vi ; Zk,i |Q( j,k)
i Ui )

]
,

where Q( j,k)
i = (Y i−1

j,1 , Zn
k,i+1). Thus, we could possibly factor

the resulting joint p.m.f on (Ui , Vi ) over all compound channel
indices, and let only the common variable choice vary from
one channel to another. Moreover, we can show in the same
fashion as in [4, Lemma 3.2], that the maximizing distribution
of the input PX |QU V is a deterministic mapping.

III. ID FOR THE COMPOUND BROADCAST CHANNEL

In this section, we derive an inner bound on the capacity
region of the compound which relies on Marton’s encoding
scheme with common and private codewords, generated and
mapped via superposition coding and random binning, but
resorts to ID at the decoders.

A. ID Inner Bound

The inner bound we derive here shares common ideas with
following works [25]. First, the idea used in [12] where –
roughly speaking– each receiver is required to decode its
intended message and is as well allowed to decode or not
the interfering message. Second, the fact that decoding non-
uniquely the interfering message alleviates an extra constraint
on the information rates yielding the same result as if the
decoder would have to successively decode the interfering and
the intended messages which is related to [15].

Theorem 3 (ID inner bound). An inner bound on the capacity
region of the compound BC consists in the set of all rates
(R1, R2) included in:

RID �
⋃

PQUV X ∈P

⋃
(R0,1,R0,2)
≤(R1,R2)︸ ︷︷ ︸

Rate Splitting

⋃
(T1,T2)∈

T(PQUV X )︸ ︷︷ ︸
Binning

⋂
j∈J
k∈K︸︷︷︸

(Compound)

4⋃
m=1︸︷︷︸

(4 Methods)

T ( j,k)
m (PQU V X , R0,1, R0,2, T1, T2),

where P is the set of all input p.m.f’s PQU V X such that
(Q, U, V ) −�− X −�− (Y1, . . . , YJ , Z1, . . . , Z K ).
The set T and the rate regions T ( j,k)

[1:4] are, respectively, defined
as follows:

T(PQU V X )�
{
(T1, T2) :

T1≥R1 − R0,1,

T2≥R2−R0,2,

T1 + T2>R1−R0,1 + R2 − R0,2 + I (U ; V |Q)
}

,

Proof. The proof is relegated to Appendix B. Hereafter we
summarize its main steps. The messages (W1, W2) are first



T ( j,k)
1 (PQU V X , R0,1, R0,2, T1, T2) �

⎧⎪⎪⎨
⎪⎪⎩

T1 ≤ I (U ; Y j |Q),
R0,1 + R0,2 + T1 ≤ I (QU ; Y j ),

T2 ≤ I (V ; Zk|Q),
R0,1 + R0,2 + T2 ≤ I (QV ; Zk),

T ( j,k)
2 (PQU V X , R0,1, R0,2, T1, T2) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1 ≤ I (U ; Y j |Q),
R0,1 + R0,2 + T1 ≤ I (QU ; Y j ),

T2 ≤ I (V ; ZkU |Q),
T1 + T2 ≤ I (U V ; Zk |Q) + I (U ; V |Q),

R0,1 + R0,2 + T1 + T2 ≤ I (QU V ; Zk) + I (U ; V |Q),

T ( j,k)
3 (PQU V X , R0,1, R0,2, T1, T2) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1 ≤ I (U ; Y j V |Q),
T1 + T2 ≤ I (U V ; Y j |Q) + I (U ; V |Q),

R0,1 + R0,2 + T1 + T2 ≤ I (QU V ; Y j ) + I (U ; V |Q),
T2 ≤ I (V ; Zk|Q),

R0,1 + R0,2 + T2 ≤ I (QV ; Zk),

T ( j,k)
4 (PQU V X , R0,1, R0,2, T1, T2) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T1 ≤ I (U ; Y j V |Q),
T1 + T2 ≤ I (U V ; Y j |Q) + I (U ; V |Q),

R0,1 + R0,2 + T1 + T2 ≤ I (QU V ; Y j ) + I (U ; V |Q),
T2 ≤ I (V ; ZkU |Q),

T1 + T2 ≤ I (U V ; Zk |Q) + I (U ; V |Q),
R0,1 + R0,2 + T1 + T2 ≤ I (QU V ; Zk) + I (U ; V |Q).

split into two parts: common messages (W0,1, W0,2) trans-
mitted through the common codeword Q, i.e., decoded by
both users, and private messages (Wp,1, Wp,2) transmitted
only through the private codewords U and V and intended
to their respective decoders. Encoding is performed in the
same fashion as Marton’s encoding schme through binning
and superposition coding.

Each user introduces the union of two sets of constraints
at the decoding, each set corresponds to decoding or not the
interference. This results –in terms of achievable rates– in the
union of four rate regions:

• The region T ( j,k)
1 is the same rate region as obtained with

Marton’s inner bound, which does not involve decoding
interfering messages,

• The region T ( j,k)
4 in which both decoders decode their

intended and the interfering messages,

• The regions T ( j,k)
2 and T ( j,k)

3 correspond to each desti-
nation decoding the interfering message in turns.

A similar rate region was also derived in [13], but it does not
take advantage of Marton’s encoding technique, i.e., random
binning with common and private codewords, and thus fails
at achieving even Marton’s inner bound in the compound
setting.

Remark 4. Consider the standard two-user BC, i.e., where
J = K = 1. Observe that the rate region RID contains
Marton’s rate region [3], which we will denote in the following
as RNID . These regions are given by

RID �
⋃

PQUV X ∈P
(T1,T2)∈

T(PQUV X )
(R0,1,R0,2)

4⋃
i=1

Ti (PQU V X , R0,1, R0,2, T1, T2),

RNID �
⋃

PQUV X ∈P
(T1,T2)∈

T(PQUV X )
(R0,1,R0,2)

T1(PQU V X , R0,1, R0,2, T1, T2).

It is clear that RNID ⊆ RID, but the question is whether this
inclusion strict or not. To check this, we need to evaluate both
regions and thus, we resort to FME to simplify the binning
rates (T1, T2), and bit recombination between the private rates
(R1, R2).1 Since the unions commute, we can write that:

RID=
4⋃

i=1

Ri = RNID ∪
(

4⋃
i=2

Ri

)
,

where the regions Rk , k ∈ {2, 3} are respectively defined by
the following sets of inequalities

R2 =
{

(R1, R2) :
R1≤I (QU ; Y ),

R1 + R2≤I (V ; Z |U Q) + I (QU ; Y ),

R1 + R2≤I (QU V ; Z)
}
,

R3 =
{

(R1, R2) :
R2≤I (QV ; Z),

R1 + R2≤I (U ; Y |V Q) + I (QV ; Z),

R1 + R2≤I (QU V ; Y )
}
,

R4 =
{

(R1, R2) :
R1 + R2≤I (QU V ; Y ),

R1 + R2≤I (QU V ; Z)
}
,

1For the interested reader a similar simplification through FME and bit
recombination is presented in Appendix D.



and while RNID is equal to R1 and is defined by

RNID =
{
(R0, R1, R2) :

R1≤I (QU ; Y ),

R2≤I (QV ; Z),

R1 + R2≤I (U ; Y |Q) + I (QV ; Z)

−I (U ; V |Q),

R1 + R2≤I (QU ; Y ) + I (V ; Z |Q)

−I (U ; V |Q)
}

.

From the above rate regions, we observe that by taking
U = Q, the region RNID contains R2. Similarly, setting
V = Q makes R3 included in RNID, while U = Q = V allows
R4 to be included in RNID. Hence, using the ID strategy for
the standard, i.e., non-compound BC, yields the same rate
region as Marton’s inner bound. This is explained by the
fact that the apparent gain provided by choosing to decode
or not the interference is recovered by an optimization of the
auxiliary codewords distribution PQU V .

For the compound BC setting, we observe similarly that the
rate region RID contains Marton’s rate region [3], which we
will denote in the following as RNID and which is given by:

RNID �
⋃

PQUV X
(T1,T2)∈

T(PQUV X )

⋂
j∈J
k∈K

T ( j,k)
1 (PQU V X , R0,1, R0,2, T1, T2). (2)

However, no evidence on the strict inclusion of RNID in
RID can be readily stated. To this end, we investigate in the
following a compound BC for which we show that the rate
region RID from Theorem 3 is tight, i.e, achieves capacity,
while the region RNID is strictly suboptimal.

B. ID is Optimal for a Class of Compound BCs

In this section, we investigate a compound BC model for
which Marton’s inner bound obtained through NID, is strictly
sub-optimal compared to ID inner bound, in which users are
allowed to decode or not the interference. For simplicity,
we restrict our analysis to the case in which J = 2 and K = 1.
This setting is complex enough to highlight the challenges of
coding for compound settings. We first discuss a criterion for
the construction of such a compound BC model and later,
prove the strict optimality of ID.

1) Irrelevant Compound BC Models:
Characterizing the optimal coding for a compound BC might
be rather challenging, as it can be trivial, depending on the
class of BCs over which the compound setting is defined.
We refer to as irrelevant models those of ordered BCs for
which ID cannot strictly outperform NID.

Consider a compound BC with two possible BCs X →
(Y1, Z) and X → (Y2, Z) where Y1 � Y2, i.e., Y1 is less
noisy than Y2. Then, it follows that, whatever the auxiliary
RVs (Q, U, V ) ∼ PQU V :

I (QU ; Y2) ≤ I (QU ; Y1), I (U ; Y2|Q) ≤ I (U ; Y1|Q).

TABLE I

DIFFERENT ORDERINGS ALLOWED BY THE BEC(E)/BSC(P) BC

Thus, NID yields the region

RNID =
{

(R1, R2) :
R1≤ min

j=1,2
I (QU ; Y j ),

R2≤I (QV ; Z),

R1 + R2≤ min
j=1,2

I (U ; Y j |Q) + I (QV ; Z)

−I (U ; V |Q),

R1 + R2≤ min
j=1,2

I (QU ; Y j ) + I (V ; Z |Q)

−I (U ; V |Q)
}

,

=
{

(R1, R2) :
R1≤I (QU ; Y2),

R2≤I (QV ; Z),

R1 + R2≤I (U ; Y2|Q) + I (QV ; Z) − I (U ; V |Q),

R1 + R2≤I (QU ; Y2) + I (V ; Z |Q) − I (U ; V |Q)
}
.

This rate region corresponds to one obtained in the presence
of only one BC channel: X → (Y2, Z), i.e., non-compound
setting. Since ID does not outperform NID for the two-user
non-compound BC setting, this class of BC channels becomes
irrelevant. Thus, if the possible channel outputs of user 1,
Y1 and Y2, are ordered, at least in the known sense of less
noisiness, the resulting compound model does benefit from ID.

2) Compound Binary Erasure and Binary Symmetric BC:
In this section, we construct the simplest while relevant
compound BC setting for which ID can be beneficial, i.e., for
which the inclusion RNID ⊂ RID is strict.

In section III-B1, we showed that Y1 and Y2 need not
be ordered in the strong sense of less-noisiness. In addition,
we need to provide for some inverse orderings, among the BC
channels of the compound setting, so as to impose a tradeoff
between two orders of supersposition coding schemes. To this
end, we consider a compound BC setting in which, for the
BC: X → (Y2, Z), Z is a better channel observation than
Y1, while for the BC: X → (Y2, Z) i Y2 is a better channel
observation than Z .

To illutsrate such a model, let us consider the Binary
Erasure Channel (BEC) with erasure probability e and the
Binary Symmetric Channel (BSC) with crossover probability
p. These two channels allow for a variety of orderings between
their outputs [6], depending on the pair (e, p), as summarized
in Table I. Define the compound BC with components:

W :
⎧⎨
⎩

X �−→ Z ≡ BSC(p) ,
X �−→ Y1 ≡ BSC( p1) ,
X �−→ Y2 ≡ BEC(e2) .



In order to build a relevant compound BC setting, we choose
Y2 to be more capable than Y1, which requires: 4 p1(1− p1) <
e2 ≤ H2(p1). Then we let Y1 be a physically degraded version
of Z , i.e., p < p1 < 0.5, and Y2 more capable than Z , i.e.,

4 p(1 − p) < 4 p1(1 − p1) < e2 ≤ H2(p) ≤ H2(p1). (3)

Lemma 1. The outer bound Co in (1) writes as:
Co = C1 ∩ C2 = C1,

where:
C1 =

⋃
α∈[0:1]

{
(R1, R2) :

R1≤1 − H2(p1 � α), (4)

R2≤H2(p � α) − H2(p)
}
,

C2 =
⋃

α∈[0:1]

{
(R1, R2) :

R1≤(1 − e2) H2(α),

R2≤1 − H2(p � α), (5)

R1 + R2≤(1−e2)
}

.

Proof. Let us denote by C̄1 the closure of C1. We have that:
C̄1 =

⋃
α∈[0:1]

{
(R1, R2) :

R1=1 − H2(p1 � α),

R2=H2(p � α) − H2(p)
}
.

In the following, we show that C̄1 ⊆ C2. To this end, let
(R1, R2) ∈ C̄1, and let α ∈ [0 : 1] such that

R1 = 1 − H2(p1 � α) and R2 = H2(p � α) − H2(p).

Let us show that (R1, R2) ∈ C2. We have that

R1 = 1 − H2(p1 � α)

=1 − H2(p1 � α) + H2(p � α) − H2(p) − R2

=1 − H2(p) + H2(p � α) − H2(p1 � α) − R2
(a)≤1 − H2(p) − R2 (6)

=(1 − H2(p))

(
1 − R2

1 − H2(p)

)
(b)≤ (1 − e2)

(
1 − R2

1 − H2(p)

)
, (7)

where (a) results from that p < p1 < 0.5 and (b) is stems
from e2 ≤ H2(p),see (3). Next, since,

0 ≤ 1 − R2

1 − H2(p)
≤ 1,

then there exists β ∈ [0 : 0.5] such that,

1 − R2

1 − H2(p)
= H2(β),

which implies that

R2 = (1 − H2(p)) (1 − H2(β)) .

With this definition of β, we have that

R1 = 1 − H2(p1 � α)
(a)≤ (1 − e2) H2(β)

R2 = (1 − H2(p)) (1 − H2(β))
(b)≤1 − H2(p � β)

R1 + R2 ≤ 1 − H2(p)
(c)≤1 − e2,

where (a) is a result of (7) and (b) stems from Mrs Gerber’s
lemma which yields

H2(p � β) ≤ H2(β)(1 − H2(p)) + H2(p),

while (c) is a consequence of (6) and e2 ≤ H2(p).
Thus, (R1, R2) ∈ C2 which ends the proof of the inclusion

C1 ⊆ C2.

3) Evaluation of ID Inner Bound in Theorem 3:
In this section, we evaluate the inner bound RID of The-

orem 3, and show that for the class of compound BEC/BSC
BC we construct following (3).

Theorem 5. The rate region RID of Theorem 3 is tight for
the compound BEC/BSC under investigation, i.e.,

RID = Co = C1,

where C1 is as defined in Lemma 1.

Proof. The rate region RID of Theorem 3 contains the rate
region given by⋃

PQUV X ∈P
(T1,T2)∈

T(PQUV X )

T (1)
3 (PQU V X , T1, T2)∩T (2)

4 (PQU V X , T1, T2),

where the intersection T (1)
3 ∩ T (2)

4 corresponds to decoding
method (3) for the BC (Y1, Z) and decoding method (4) for
the BC (Y2, Z), i.e.,

• For the BC channel (Y1, Z), user 1 which observes
Y1, decodes only its intedend messages, while user 2
which observes Z decodes its intended messages and
intereference as well

• For the BC channel (Y2, Z), user 1 (resp. user 2), observ-
ing Y2 (resp. Z ), decode both their intended messages as
well as the interfering ones.

In Appendix D, it is shown that, after FME on the binning
rates (T1, T2) and the rate splitting, the rate region R3,4
reduces to the set of rates satisfying:

R1≤I (QU ; Y1),

R1 + R2≤I (QU ; Y1) + I (V ; Z |QU),

R1 + R2≤I (QU ; Y1) + I (U V ; Y2|Q),

R1 + R2≤I (QU V ; Y2).

Then, by letting: V = X , Q̄ = (Q, U), and using the fact that
Y2 is more capable than Z , R3,4 becomes

R1≤I (Q̄; Y1),

R1 + R2≤I (Q̄; Y1) + I (X; Z |Q̄).



Fig. 1. Comparison between C1 and RID.

Let Q̄ �−→ X ≡ BSC(α), and X ∼ Bern(1/2). The rate
region R3,4 writes then as

R3,4 =
⋃

α∈[0:1]

{
(R1, R2) :

R1 ≤ 1 − H2(p1 � α), (8)

R1 + R2 ≤ 1 − H2(p1 � α) + H2(p � α) − H2(p)
}
.

In the following, we show that

R3,4 = C1.

First, let us note that R3,4 is the union of two rate regions,
C1 and RE , where RE is defined by

RE �
⋃

α∈[0:1]

{
(R1, R2) :

R2 ≥ H2(p � α) − H2(p),

R1 + R2 ≤ 1 − H2(p1 � α) + H2(p � α) − H2(p)
}
.

Fig. 1 illustrates the two rate regions for a given α ∈ [0 : 1].
The corner points C and D of RE belonf to C1. To show that
the point E lies in the region C1, note first that

E � (0, 1 − H2(p1 � α) + H2(p � α) − H2(p)).

Since Y1 is physically degraded with respect to Z , i.e., p ≤ p1,
and since α, p � α and p1 � α are all included in the interval
[0 : 0.5], one can write that −H2(p1 � α) + H2(p � α) ≤ 0.
Hence, the point E is dominated by the point C2 = (0; 1 −
H2(p)), which is already achievable in C1. The line between
C and E is then achievable by time sharing and convexity of
the rate region C1. Thus, since

R3,4⊆RID ⊆ C1,

and R3,4=C1,

the proof of the equality RID = C1 is complete.

Remark 6. Authors in [15, Proposition 7] derived the capac-
ity region of a specific class of three receiver broadcast
channel where a common message is to be delivered to three
users, obersving each a channel output, Y1, Y2 and Z, and
a private message is to be delivered only to the user with

observation Z. When the channel Z is less-noisy than Y1,
Nair & El Gamal show that the capacity region is given by

R1 ≤ min{I (U ; Y1), I (V ; Y2)},
R2 ≤ I (X; Z |U),

R1 + R2 ≤ I (V ; Y2) + I (X; Z |V )

with U −�− V −�− X. Though this setting is fundamentally
different from the compound setting we are investigating, due
to the degraded message set assumption, it turns out that when
we assume that Z is less-noisy than Y1, the optimal scheme
of [15, Proposition 7] yields an achievable rate region in our
case, since, whatever Y1 can decode, can be decoded as well
by Z. Plus, we can prove that the resulting rate region is tight
through a converse argument, outlined in the following,

n R1 ≤
n∑

i=1

I (W1 Y i−1
1 ; Y1,i )

≤
n∑

i=1

I (W1 Zi−1; Y1,i ),

n R1 ≤
n∑

i=1

I (W1 Y n
2,i+1; Y2,i )

≤
n∑

i=1

I (W1 Y n
2,i+1 Zi−1

1 ; Y2,i ),

n R2 ≤
n∑

i=1

I (Xi ; Z1,i |W1 Zi−1),

n R1 + n R2 ≤
n∑

i=1

I (W1 Y n
2,i+1 Zi−1; Y2,i )

+I (Xi ; Y1,i |W1 Zi−1Y n
2,i+1),

where the first inequality results from Nair’s inequality
for less-noisy channels [6], and where we define Vi �
(W1, Y n

2,i+1, Zi−1) and Ui � (W1, Zi−1). Thus, by letting
V = X, we recover the capacity result in Theorem 5, through
an alternative proof.

4) NID Inner Bound is Strictly Sub-Optimal:
In this section, we show that NID inner bound defined in (2) is
strictly suboptimal for the class of compound BEC/BSC BC
investigated. To this end, we first derive an outer bound on
the rate region RNID and then, show that this outer bound is
strictly included in RID.

Lemma 2. The rate region RNID defined in (2) satisfies

RNID ⊆ ROuterNID,

where ROuterNID is the closure of the set of rate pairs satisfying

ROuterNID �
{

(R1, R2) : (9)

R1≤min
j=1,2

I (Q̄; Y j ), (10)

R1 + R2≤I (X; Z |Q̄) + min
j=1,2

I (Q̄; Y j )
}
, (11)

for some joint p.m.f PQ̄ X where ||Q̄|| ≤ 4 and X ∼ Bern(1/2).



Proof. Let us note first that the NID rate region RNID defined
in (2) is included in the following rate region

R2 ≤ I (QV ; Z),

R1 ≤ min
j=1,2

I (QU ; Y j ),

R1 + R2 ≤ I (V ; Z |Q) + min
j=1,2

I (QU ; Y j ) − I (U ; V |Q),

R1 + R2 ≤ I (QV ; Z) + I (U ; Y2|Q) − I (U ; V |Q),

where we have used the fact that I (Q; Y1) ≤ I (Q; Z) since
Y1 is physically degraded with respect to Z . Next, this rate
region in is contained in the set of rate pairs satisfying

R1≤ min
j=1,2

I (QU ; Y j ),

R1 + R2≤I (X; Z |QU) + min
j=1,2

I (QU ; Y j ),

by fropping some contraints and using the fact that, for all
PQU V X such that (Q, U, V ) −�− X −�− Z ,

I (V ; Z |Q) − I (U ; V |Q) ≤ I (X; Z |QU).

Defining thus Q̄ � (Q, U), yields the rte region ROuterNID.
In Appendix E, we show that it suffices to evaluate ROuterNID
for all auxiliary RVs Q̄ that verify �Q̄� ≤ 4 and for
X ∼ Bern(1/2).

In the following, we show that ROuterNID defined in (11)
is striclty included in C1 by comparing the closures of both
regions. To this end, let us define the function t (·) on the
interval [0 : 1 − H2(p)] as

t (x) � sup
PX Q∈C(x)

min{I (Q; Y1), I (Q; Y2)},

where the class C(x) is given by

C(x) = {PX Q , Q −�− X −�− (Z , Y1, Y2)

X ∼ Bern(1/2), I (X; Z |Q) ≥ x
}
. (12)

The function t (·) characterizes the convex closure of the region
R̄Outer,NID, i.e.,

(R1, R2) ∈ R̄Outer,NID iff R1 = t (R2).

Similarly, let us characterize the convex closure of R̄ID,
by the function t1(·) defined on [0 : 1 − H2(p)] as

t1(x) � sup
PX Q∈C(x)

I (Q; Y1),

where C(x) is given in (12).

Lemma 3. The function t (·) can be upper bounded as follows

t (x) ≤ inf
a∈[0:1] ta(x) (13)

where

ta(x)� inf
λ∈R+

[
max

P(X×Q)

[
a I (Q; Y1) + ā I (Q; Y2)

+λ I (X; Z |Q)
]− λ x

]
.

Further, ta(·) can be written as follows

ta(x) = inf
λ∈R+

[
Fa(λ) − λ x

]
,

where

Fa(λ) � max
pX Q∈P(X×Q)

[
a I (Q; Y1) + ā I (Q; Y2)

]
.

Proof. The full proof is given in Appendix F.
We can now compare the two regions NID and ID, through

their closures, for all values of the rate R2.

Theorem 7. The functions t (·), t1(·) and ta(·) satisfy the
following

1) For all x ∈ [0 : H2(p � α0) − H2(p)],
t (x) = inf

a∈[0:1] ta(x) = t1(x),

2) For all x ∈ [H2(p � α0) − H2(p) : 1 − H2(p)],
t (x) ≤ inf

a∈[0:1] ta(x) < t1(x),

where in 1) and 2) α0 is the unique solution to

1 − H2(p1 � α0) = (1 − e2)(1 − H2(α0)).

Thus, ROuterNID and RID are equal for R2 ∈ [0 : 1 −
H2(p1 � α0)] while, ROuterNID is strictly contained in RID for
R2 ∈ [1 − H2(p1 � α0) : 1 − H2(p)].
Proof. 1) To proof part 1 of the Theorem 7, let us note first
that, from Theorem 5, t1(·) writes as:

t1(x) = 1 − H2(p1 � α)|H2(p�α)−H2(p)=x .

Next, let x ∈ [0 : 1 − H2(p)] and consider the specific
choice of (Qx , X)

X = Qx ⊕ Ux

where
Qx ∼ Bern(1/2) and Ux ∼ Bern(αx )

and αx ∈ [0 : 1] is such that,

H2(p � αx) − H2(p) = x .

It is clear that PX Qx ∈ C(x) and that

min{I (Qx ; Y1), I (Qx ; Y2)}
= min{1 − H2(p1 � α), (1 − e2)(1 − H2(α))}.

Thus,

t (x)� sup
PX Q∈C(x)

min{I (Q; Y1), I (Q; Y2)} (14)

≥min{I (Qx ; Y1), I (Qx ; Y2)} (15)

=min{1 − H2(p1 � αx ),

(1 − e2)(1−H2(αx ))}|H2(p�αx )−H2(p)=x . (16)

Let then α0 be the unique solution to the equality

1 − H2(p1 � α0) = (1 − e2)(1 − H2(α0)),

we have that, for all x ≤ H2(p � α0) − H2(p),

min{1 − H2(p1 � αx), (1 − e2)(1−H2(αx ))}
= 1 − H2(p1 � αx ). (17)



Fig. 2. da(R1) the normalized relative gain of ID (capacity region) with
respect to NID for a = 0.92, e2 = 0.46, p = 0.1 and p1 = 0.13.

Combining (16) and (17) allows to write that, for all x ≤
H2(p � α0) − H2(p),

t (x) ≥ 1 − H2(p1 � αx ) = t1(x).

This, along with (13), concludes the proof of t (x) = t1(x) on
[0 : H2(p � α0) − H2(p)] .

2) A closed form expression of the function ta(·) for an
arbitrary a brings about significant computational complexity,
we thus only chose to plot it using stochastic optimization
methods, i.e., Monte Carlo simulations. To this end, let
e2 = 0.46, p = 0.1 and p1 = 0.13. It can be readily shown
that these parameters verify (3).

In Fig. 2, we choose a = 0.92 and plot the normalized
difference function:

da(R1) = t−1
1 (R1) − t−1

a (R1)

max(| t−1
1 (R1) − t−1

a (R1) |) ,

over the interval of interest: [0 : 1− H2(p1�α0)]. The function
da being strictly positive, the claim of strict inclusion is thus
shown.

We have investigated so far the role that evolved decod-
ing techniques, namely Interference Decoding, play in the
compound BC where the actual controlling the communi-
cation are ordered, however, the order is unknown to the
transmitter. The decoding technique takes advantage of many
possible decoding methods to alleviate the constraint of a fixed
superposition order at the source, which allows the latter to
apply a symmetric encoding rule regardless of which channels
control the communication. In the sequel, we analyse a class
of non-ordered compound BC to infer novel strategies when
there is no specific order between users channels. In this case,
we will not seek to optimize the decoding strategies but rather
the encoding strategy.

IV. MULTIPLE DESCRIPTION CODING IN THE

COMPOUND BROADCAST CHANNEL

In this section, we investigate a coding technique, referred
to as Multiple Description (MD) coding, that can enhance the

achievable rates in the compound BC. This coding scheme is
particularly beneficial when the many possible channels of the
two users cannot be ordered. The main idea behind MD coding
is to convey the message intended to the one user through
a common description as well as a set of dedicated private
descriptions. The common description is decoded whatever the
actual channel realization, while the private descriptions are
each decoded when a specific channel statistic is encountered.
The common description –to be decoded in all cases– will be
rate limited since its rate needs to be low enough to meet the
decoding constraints of all possible channels, while the private
descriptions encounter no such constraint.

Alike the first part of the work, we consider an elementary
yet complex compound setting in which only one user has
two possible channels, namely Y1 or Y2, whilst the other user
suffers from no such uncertainty Z . We first derive two inner
bounds on the capacity region to be compared: the Common
Description (CD) inner bound that is equivalent to Marton’s
inner bound for the compound BC, and the MD inner bound.
We then show, for a class of compound MISO BC, and that
MD coding outperforms the standard CD coding strategy.
Finally, we analyse the behaviour of the obtained rate regions
compared to the outer bound of Theorem 1.

A. Multiple Description (MD) Inner Bound

In the following, we derive an inner bound based on MD
description coding that combines both a common description
U0 and two private descriptions U1 and U2.

Theorem 8 (MD inner bound). An inner bound on the
capacity region of 2 × 1 compound BC is given by the set
of rate pairs (R1, R2) satisfying:

RMD=
⋃

PQU0U1U2V X

{
(R1, R2) :

R1≤I (U0 U1; Y1|Q),

R1≤I (U0 U2; Y2|Q),

2 R1≤I (U0 U1; Y1|Q) + I (U0 U2; Y2|Q)

−I (U1; U2|QU0),

R2≤I (V ; Z |Q),

R1 + R2≤I (U0 U1; Y1|Q) + I (V ; Z |Q)

−I (U0 U1; V |Q), (18)

R1 + R2≤I (U0 U2; Y2|Q) + I (V ; Z |Q)

−I (U0 U2; V |Q),

2R1 + R2≤I (U0 U1; Y1|Q) + I (U0 U2; Y2|Q)

+I (V ; Z |Q) − I (U0 U1 U2; V |Q)

−I (U1; U2|QU0),

2 R1 + 2 R2≤I (U0 U1; Y1|Q) + I (U0 U2; Y2|Q)

+2 I (V ; Z |Q) − I (U0 U1; V |Q)−
I (U0 U2; V |Q) − I (U1; U2|QU0 V )

}
,

for some set of arbitrarily correlated RVs with
joint p.m.f PQU0 U1 U2 V X such that the Markov chain
(Q, U0, U1, U2, V ) −�− X −�− (Y1, Y2, Z) holds.



Proof. The full proof is given in Appendix H. Yet, a brief
outline of proof can be described as follows. The private
descriptions U1 and U2 are superimposed over the common
description U0, the three of which are binned against the
interfering codeword V . The common variable Q is introduced
mainly to allow for time sharing.

Remark 9. In this part of the work, we do not resort to rate
splitting, i.e., the common codeword is used mainly for time
sharing, since the resulting rate region would become rapidly
intractable and thus, out of the scope of this part where we
need to obtain closed form expressions of the MD coding inner
bound.

Also, authors in [15, Proposition 5] resort to a codebook
construction that appears to be similar to the one used in MD
inner bound, and which yields the rate region

R0 ≤ min{I (U0 U1; Y1), I (U0 U2; Y2)},
2 R0 ≤ I (U0 U1; Y1) + I (U0 U2; Y2)

−I (U1; U2|U0),

R0 + R1 ≤ I (X; Z), (19a)

R0 + R1 ≤ I (U0 U1; Y1) + I (X; Z |U0 U1), (19b)

R0 + R1 ≤ I (U0 U2; Y2) + I (X; Z |U0 U2), (19c)

2 R0 + R1 ≤ I (U0 U1; Y1) + I (U0 U2; Y2)+
I (X; Z |U0 U1 U2) − I (U1; U2|U0),

2R0 + 2 R1 ≤ I (U0 U1; Y1) + I (X; Z |U0 U1)

+I (U0 U2; Y2) + I (X; Z |U0 U2)

−I (U1; U2|U0),

2 R0 + 2 R2 ≤ I (U0 U1; Y1) + I (U0 U2; Y2)

+I (X; Z |U0 U1 U2) + I (X; Z |U0)

−I (U1; U2|U0).

Though the two inner bounds seem similar at first sight, they
are different in many respects. The two private descriptions
U1 and U2 play different roles in both regions. In carry part
of interference and allow therefore the users Y1 and Y2 to
decode each a distinct part of interference, as opposed to our
MD inner bound in which the private descriptions precodes
each for interference but each is optimized for its dedicated
channel, Y1 or Y2. As such, it is hard to state that either region
contains the other.

B. Common Description (CD) Inner Bound

Inspired by Marton’s inner bound, we can derive what
we call the “common description” CD coding inner bound,
i.e., worst-case of Marton’s inner bound for the compound
BC, which consists of all rate pairs (R1, R2) verifying:

R1 ≤ min
j∈{1,2}I (U ; Y j |Q),

R2 ≤ I (V ; Z |Q), (20)

R1 + R2 ≤ min
j∈{1,2}I (U ; Y j |Q) + I (V ; Z |Q)

−I (U ; V |Q),

where U , V and Q are arbitrarily correlated auxiliary RVs.

Remark 10. Withouth time-sharing, the variable Q ≡ ∅, this
inner bound imposes that, for both channels Y1 and Y2 in
the compound setting, the decoded messages are the same.
This does not allow to treat the two possible channels outputs
differently, though they might observe two different interfering
signals. When time-sharing is allowed, the performances of
this region can be enhanced since it allows for different
interference mitigation strategies across different time slots.
The combination of the two techniques is denoted in literature
as symbol or block expansion [17] and allows CD coding to
achieve the optimal DoF for some classes of the compound
MISO BC.

It is easy to check that MD inner bound in (18) recovers the
CD inner bound in (20) by setting both private descriptions to
U1 ≡ ∅ and U2 ≡ ∅. In the following, we investigate whether
MD coding can striclty outperform CD coding.

C. MD Coding Over the BC and the Compound
Point-to-Point Channel

In this section, we show that for both the single user
(non-broadcast) compound channel and the standard two-user
(non-compound) BC, MD coding does not outperform CD
coding.

As for the single user compound channel, let us assume that
we have a compound model with two possible channel outputs
denoted by Y1 and Y2. In the following, we show that, for all
joint p.m.f’s PQU0 U1 U2 X , the rate achieved by MD coding
RMD, is no greater than the rate achieved by CD coding RCD,
where RMD and RCD write as

RMD� max
PQU0 U1 U2 X

min
{

I (U0 U1; Y1|Q), I (U0 U2; Y2|Q),

1

2

[
I (U0 U1; Y1|Q) + I (U0 U2; Y2|Q)

−I (U1; U2|QU0)
]}

,

RCD� max
PQU0 X

min{I (U0; Y1|Q), I (U0; Y2|Q)}.
It is clear that RCD ≤ RMD. TO prove the inverse inequality,
we have that:

I (U0 U1; Y1|Q) ≤ I (U0 U1 U2; Y1|Q),

I (U0 U2; Y2|Q) ≤ I (U0 U1 U2; Y2|Q),

and thus,

RMD ≤ max
PQU0 U1 U2 X

min
j∈{1,2} I (U0 U1 U2; Y j |Q).

By letting U �
0 = (U0 U1 U2), the desired inequality holds

RMD ≤ max
PQU0 X

min{I (U0; Y1|Q), I (U0; Y2|Q)} = RCD.

As for the standard two-user (non-compound) BC,
i.e., Y1 ≡ Y2, let us denote RMD the MD inner bound in
(18) and RCD the CD inner bound in (20). The inclusion
RCD ⊆ RMD is trivial. To show the converse, let us fix a
joint p.m.f PQU0 U1 U2 V X and let us assume, for instance,
that

I (U0 U1; Y1|Q) − I (U0 U1; V |Q)

≤ I (U0 U2; Y1|Q) − I (U0 U2; V |Q).



It is easy to see that the choice U � = (U0, U2) allows us to
obtain:

RMD⊆
⋃

PQUV X

{
(R1, R2) :

R1≤I (U, Y |Q)

R2≤I (V ; Z |Q)

R1 + R2≤I (U, Y |Q) + I (V ; Z |Q) − I (U ; Z |Q)
}

,

which is equal to RCD.
Thus, MD coding does not outperform CD for setting in

which channel uncertainty and interference are not coupled.
In the following, we show that for a class of compound

Gaussian MISO BC, MD coding can be strictly beneficial as
compared to CD coding.

V. THE REAL VALUED COMPOUND MISO
BC AND MD BASED DPC

Consider the compound Gaussian MISO BC which consists
of a source equipped with 2 antennas and 2 single antenna
receivers. Receiver 1 can observe one of two possible channel
outputs, namely, Y1 and Y2, and let Z be the channel output
of the receiver 2, where, for i = [1 : n] the difference outputs
are given by {

y j,i = ht
j xi + n j,i ,

zi = gt xi + wi ,
(21)

for j ∈ {1, 2}, where: h j and g are 2 × 1 generic real-valued
channel vectors that are assumed to be constant throughout
the transmission. Moreover, it is assumed that any subset of
2 channels among them are linearly independent; x is the
2 × 1 power limited channel input vector so that E[xt x] ≤ P
and last, the noise sequences {n j,i }i∈[1:n] and {wi }i∈[1:n] are
assumed to be i.i.d. draws according to a Gaussian distribution
N (0, N).

The optimal transmit strategy for the non-ordered Gaussian
MISO BC is to apply Dirty-Paper Coding (DPC) [24], [26],
which is a non-linear coding technique that allows the encoder
to precode against interference and suppress it at the decoder
without having the decoder explicitly decode it.

In the folowwing, in order to compare the two strategies
of MD coding and CD coding, we will combine them with
a DPC construction yielding thus two schemes that we will
denote MD-DPC and CD-DPC. Besides, we will compare the
CD to two variations of MD-DPC schemes, depending on the
correlation between the private descriptions RVs we assume.
In the first MD-DPC scheme, the private descriptions are time-
orthogonal, in the sens that the encoder communicates part
of the time a private description U1 to cancel interference at
user Y1, and a private description U2 during the remaining part
of the time to help user Y2, which annihilates the correlation
cost, i.e, the mutual information I (U1; U2|QU0) becomes
zero. In the second scheme, we consider an MD-DPC strategy
where both private descriptions are transmitted across the
whole time slot, however their correlation corst might not
be null, i.e, the mutual information term I (U1; U2|QU0) is
strictly positive.

A. Preliminaries and Definitions

In the sequel, we resort to DPC [24] in its vector formu-
lation, thus some basic definitions and analytic formulas will
be introduced herein to lighten the notation afterwards.

Let us consider the following coding scheme:
X=Xu Bu + Xv Bv , (22a)

U0=Xu + αXv , (22b)

V =Xv , (22c)

where Xu ∼ N (0, Pu ) and Xv ∼ N (0, Pv ) are independent
RVs such that Pu + Pv ≤ P . It is then easy to check that:

I (U0; Y j ) − I (U0; V ) = log2

(
h2

j,u Pu + N

I j (α − β j )2 + N

)
, (23)

where:

β j= Pu h j,u h j,v

h2
j,u Pu + N

, (24)

I j=
(

Pv

Pu

) (
h2

j,u Pu + N
)2

h2
j,u Pu + h2

j,v Pv + N
. (25)

In the sequel, besides the common description U0 which
precodes against the interfering signal Xv , we are interested
in introducing a private description U j that will be required
to precode as well against interference. If we now choose to
transmit an additive private description X p ∼ N (0, x) while
keeping the total useful power equal to Pu , i.e., 0 ≤ x ≤ Pu .
Then, with the following coding scheme:

X=(Xu + X p)Bu + XvBv , (26a)

U0=Xu + αXv , (26b)

U j=X p + α j Xv , (26c)

V =Xv , (26d)

we can optimize the value of the private DPC parameter α j

to state the following result.

Lemma 4 (Optimizing the private descriptions).

max
α j ∈R

[
Iα j (U0U j ; Y j ) − Iα j (U0U j ; V )

]

= 1

2
log2

⎛
⎜⎜⎜⎜⎝

h2
j,u Pu + N

I x
j N(α − βx

j )
2

h2
j,u x + N

+ N

⎞
⎟⎟⎟⎟⎠ ,

and where, for j ∈ {1, 2}, we have:

βx
j =

(Pu − x) h j,u h j,v

h2
j,u Pu + N

, (27)

I x
j =
(

Pv

Pu − x

) (
h2

j,u Pu + N
)2

h2
j,u Pu + h2

j,v Pv + N
. (28)



Proof. The key point of the proof is that the private descrip-
tion, when optimized, yields an interference free link:

max
α j ∈R

[
Iα j (U j ; Y j |U0) − Iα j (U j ; V |U0)

]
=I (X p; Y j |Xu Xv ) = 1

2
log2

(
h2

j,u x + N

N

)
.

The rest of the proof is relegated to Appendix I.

B. Common Description DPC (CD-DPC)

In the following, we evaluate the CD inner bound under a
CD based DPC scheme for the channel model defined by (21).
To this end, let us define the two following rate regions
resulting from two DPC schemes:

R1(Bu , Bv , Pu , Pv ) �
{

(R1, R2) :

R1 ≤ max
α

min
j∈{1,2}

1

2
log2

(
h2

j,u Pu + N

I j (α − β j )2 + N

)
,

R2 ≤ 1

2
log2

(
g2

u Pu + g2
v Pv + N

g2
u Pu + N

)}
,

where β j and I j are given by (24) and (25).
The second rate region is given by the set of rate pairs

satisfying:
R2(Bu , Bv , Pu, Pv ) �

{
(R1, R2) :

R2 ≤ 1

2
log2

(
g2

v Pv + N

N

)
,

R1 ≤ min
j=1,2

1

2
log2

(
h2

j,u Pu + h2
j,v Pv + N

h2
j,v Pv + N

)}
.

Proposition 1 (CD inner bound). An inner bound on the
capacity region of the compound MISO BC defined in (21)
is given by the set of rates satisfying:

RCD-MISO BC =
⋃

(Pu ,Pv ,Bu,Bv )
Pu+Pv≤P

�Bu�=�Bv�=1

R1(Bu , Bv , Pu , Pv ) ∪

R2(Bu, Bv , Pu , Pv ). (29)

Proof. First, note that the rate regions R1 and R2 are nothing
but the two corner points of the CD rate region given in (20).
The rate region R1 is obtained by evaluating the corner point

R1≤ min
j∈{1,2}I (U ; Y j |Q) − I (U ; V |Q),

R2=I (V ; Z |Q),

using the following coding scheme:
X=XuBu + XvBv ,

U=Xu + αXv ,

V =Xv ,

where Xu ∼ N (0, Pu) and Xv ∼ N (0, Pv ) are independent
RVs such that Pu + Pv ≤ P .

As for the second rate region R2, it results from the
evaluation of the second corner point of CD with the following
DPC scheme

X=XuBu + XvBv ,

U=Xu,

V =Xv + αXu ,

in which the codeword V dirty-paper codes against the inter-
ference U ; the analysis follow in a similar manner.

C. MD-DPC With Orthogonal Private Descriptions

In the following, we evaluate the MD inner bound given in
Theorem 8. To this end, we explore two different constructions
of an MD-DPC scheme, depending on the existing correlation
between the private descriptions. We will restrict our analysis
to the specific corner point given by

R1≤ min
j∈{1,2}

[
I (U0 U j ; Y j |Q) − I (U0 U j ; V |Q)

]
,

2 R1≤
∑

j∈{1,2}

[
I (U0 U j ; Y j |Q) − I (U0 U j ; V |Q)

]
−I (U1; U2|U0 V Q), (30)

R2=I (V ; Z |Q).

The MD inner bound we derive in this section is based on the
evaluation of (30) via a time-sharing argument [17], where
each private description, U1 (resp. U2), is transmitted only
part of the time. Let then Q be a binary valued time-sharing
RV such that:

PQ(1) � t and PQ(2) = 1 − t = t̄ .

For Q = 1, we let U2 = ∅ and for Q = 2, we let U1 = ∅,
which annihilates the correlation cost, i.e.,

I (U1; U2|U0 V Q) = 0.

Let us define the following rate region Ru as:

R1≤max
α

min
j∈{1,2}

{
1

2
PQ( j) log2

(
h2

j,u x + N

N

)

+1

2
log2

⎛
⎜⎝ h2

j,u Pu + N

I x
j

(
α − βx

j

)2 + N + h2
j,u x

⎞
⎟⎠},

R2≤1

2
log2

(
g2

u Pu + g2
v Pv + N

g2
u Pu + N

)
,

where βx
j and I x

j are given by (27) and (28).

Proposition 2 (MD-DPC inner bound with orthogonal private
descriptions). An inner bound on the capacity region of the
compound MISO BC defined in (21) is given by:

RMD-orth-MISO BC =
⋃

(x,Pu,Pv ,Bu,Bv )
Pu+Pv≤P
0≤x≤Pu�Bu�=�Bv �=1
t∈[0:1]

Ru(Bu, Bv , x, t, Pu , Pv ).



Proof. For Q = 1, we let:
X=(Xu + X p) Bu + XvBv ,

U0=Xu + α Xv ,

U2=∅,

U1=X p + α1 Xv ,

V =Xv .

Conversely, for Q = 2, let:
X=(Xu + X p) Bu + XvBv ,

U0=Xu + α Xv ,

U1=∅,

U2=X p + α2 Xv

V =Xv .

In this case, I (U1; U2|QU0) = 0 since U1 and U2 are never
transmitted in the same time slot. Hence, (30) reduces to

R1≤I (U0; Y1|Q) − I (U0; V |Q)+
t
[

I (U1; Y1|U0, Q =1) − I (U1; V | U0, Q = 1)
]
,

R1≤I (U0; Y2|Q) − I (U0; V |Q)+
t̄
[

I (U2; Y2|U0, Q =2) − I (U2; V |U0, Q = 2)
]
,

R2≤I (V ; Z |Q).

The key point is then to note that, for j ∈ {1, 2},
I (U0; Y j |Q) − I (U0; V |Q)

(a)= 1

2
log2

⎛
⎜⎝ h2

j,u Pu + N

I x
j

(
α − βx

j

)2 + N + h2
j,u x

⎞
⎟⎠ ,

where (a) follows similarly to the proof of Lemma 4 to
maximize the private DPC parameters α1 and α2.

D. MD-DPC With Correlated Private Descriptions

In this section, we allow the private descriptions U1 and U2
in (30) to be arbitrarily correlated and no longer time-
orthogonal. Let the rate region Rc defined by:

R1≤min{ f1(α, x), f2(α, x)},
R1≤1

2

[
f1(α, x) + f2(α, x) + 1

2
log2(1 − ρ2)

]
,

R2≤1

2
log2

(
g2

u Pu + g2
v Pv + N

g2
u Pu + N

)
,

where:

f j (α, x)�1

2
log2

(
h2

j,u Pu + N

I x
j (α − βx

j )
2 + N + h2

j,u x

)

+1

2
log2

(
h2

j,u x + N

N

)

−1

2
log2

(
h2

j,u x(1 − ρ) + 2N

2N

)
,

and βx
j and I x

j are given by (27) and (28) .

Proposition 3 (MD inner bound with correlated private
descriptions). An inner bound on the capacity region of the
compound MISO BC is given by:

RMDcorr-MISO BC =
⋃

(x,Pu,Pv ,Bu ,Bv )
Pu+Pv≤P
0≤x≤Pu�Bu�=�Bv �=1
ρ∈[−1:1]

α∈R

Rc(Bu, Bv , α, x, ρ, Pu , Pv ).

Proof. To prove our claim, we resort to the MD coding inner
bound letting, for the discrete memoryless case, the two ARVs
U1 and U2 be arbitrarily correlated given Q, U0, and V .

Let us use the following coding scheme:
X = (Xu + X p1 + X p2)Bu + XvBv ,

U0 = Xu + αXv ,

U1 = X p1 + α1 Xv ,

U2 = X p2 + α2 Xv ,

V = Xv ,

where X p1 and X p2 are jointly Gaussian Random Variables,
independent from all other variables, with covariance matrix:

K1,2 = σ 2
[

1 ρ
ρ 1

]
such that x = 2σ 2(1 + ρ). Then, the correlation cost of the
two private descriptions is given by

I (U1; U2|U0 V Q) = I (X p1 ; X p2) = −1

2
log2(1 − ρ2).

Following similar calucations as in the proof of Lemma 4,
the proof follows.

E. MD-DPC Strictly Outperforms CD-DPC

Let us now consider the compound Gaussian MISO BC
model where the possible channels of user 1, h1 and h2, are
unit-norm orthogonal channels. Assume also that the second
user’s channel is quite accommodating such that g is orthog-
onal to the mean channel of user 1,

g ⊥ 1√
2
(h1 + h2) = h1,2 .

In order to show that MD-DPC strictly outperforms CD-DPC
for this setting, we need to evaluate CD-DPC inner bound
based on the corresponding channel models. Then, we show
that the MD-DPC inner bound strictly outperforms it.

1) CD-DPC Inner Bound:
We start by characterizing CD-DPC inner bound in a closed
form.

Proposition 4 (CD-DPC inner bound). The CD-DPC inner
bound writes as the set of rate pairs satisfying:

R1≤1

2
log2

(
Pu + 2 N

P(η) + 2 N

)
,

R2≤1

2
log2

(
(1 − η)Pv + 2 N

2 N

)
,



for some η ∈ [−1 : 1], where

P(η) � (1 − η)Pv Pu

P + 2 N +√(P + 2N)2 + (η2 − 1)P2
v

.

Proof. The proof is relegated to Appendix J.

Remark 11. In order to derive the optimal value of η for the
overall rate region, we look at the resulting weighted sum-
rate. If we let μ ∈ �+, then the optimization of R1 + μR2
over η depends on the value of μ. For μ = 0, the optimal
choice is η = 1 that is we have to transmit in a direction
that is collinear with the mean channel h1,2, as for the case
μ → ∞, the optimal choice is to let η = −1, which means
to transmit the information for the second user in a direction
that is colinear to its channel. For intermediate values of μ,
the weighted sum-rate is not necessarily maximized with either
choices of η.

We evaluate the two MD-DPC inner bounds as a function
of x , the power dedicated to private descriptions, and compare
them to the case x = 0, i.e., the CD-DPC inner bound. We let
Bu = h1,2 and thus, by transmitting information to user 1
orthogonal to the channel of user 2.

2) MD-DPC With Uncorrelated Private Descriptions Out-
performs CD-DPC:
As for MD-DPC inner bound with uncorrelated private
descriptions, the constraint on the rate R1 writes as:

R1 ≤ 1

2
log2

(
Pu + 2 N√

2N (1 + g(x))

)
,

where the function g(·) is defined by

g(x) � (Pu − x)√
x + 2 N

P(η)

Pu
+ √

x + 2N ,

and where we have considered a time-sharing t = t̄ = 0.5.
The function g(·) is not necessarily strictly decreasing in x
for all values of η. However, it is clear that:

g�(x) = (x + 2N)P(η) + (Pu + 2N)(Pu − P(η))

2Pu(x + 2N)3/2 ,

and since 0 ≤ x ≤ Pu , we have

g�(x) ≤ 1

4 Pu N
√

2 N
(Pu + 2N)

(
Pu − 2 P(η)

)
.

Thus, P(η) > Pu
2 suffices to have the function g strictly

decreasing in x , and thus, the claim of strict optimality would
be proved. Note that if, for instance, e.g. P ≥ 4N , then for
values of η close to −1, i.e., R2 close to second user’s capacity,
the gain is strictly positive and more significant.

3) MD-DPC With Correlated Private Descriptions Outper-
forms CD-DPC:
To evaluate the gain of MD-DPC inner bound with arbitrarily
correlated private descriptions, note that if at least ρ = 0, then

the bound on R1 can be written as follows:
R1,M D = max

α∈R min { f1(α, x), f2(α, x)}

−1

2
log2

( x

4N
+ 1
)

= 1

2
log2

⎛
⎜⎜⎝ Pu + 2 N

(Pu−x)

x + 2 N

2N

Pu
P(η) + 2 N

⎞
⎟⎟⎠

−1

2
log2

( x

4N
+ 1
)

= 1

2
log2

⎛
⎜⎜⎝ Pu + 2 N

(Pu−x)

x + 2 N

(x + 4N)

2 Pu
P(η) + (x + 4N)

2

⎞
⎟⎟⎠ .

Let us define,

h(x) � (Pu−x)

x + 2 N

(x + 4N)

Pu
P(η) + (x + 4N),

we show in the following that, for some x ∈ [0 : Pu] and
η ∈ [−1 : 1],

h(x) ≤ h(0).

We have that

h(x) − h(0)

= (Pu−x)

x + 2 N

(x + 4N)

Pu
P(η) + x − 2 P(η)

=P(η)

[
(Pu−x)

Pu

(x + 4N)

x + 2 N
− 2

]
+ x,

thus, if suffices that the two functions η �→ P(η) and x �→
x[

2 − (Pu−x)
Pu

(x+4N)
x+2 N

] , have values in intersecting intervals,

which will be plot later for the example investigated.

F. Block Expansion and Plots

Last, the bounds we have studied so far did not allow for
different encoding parameters across time slots. The reason is
that the question we were investigating is one of the utility of
private descriptions in the compound MISO BC. Now, if we
combine CD inner bound and MD inner bound with correlated
private descriptions both with a time-sharing argument where
in each time slot a new coding scheme is used (in terms of
beam directions, power allocations and DPC parameters), then
one could expect that the gain of multiple descriptions over one
common description is still captured by the obtained bounds.

In Fig. 3, we plot the corresponding rate regions for
SNR = 10 dB, and the assumptions made on the channels’
structure. Fig. 3 shows four inner bounds on the capacity
region of the compound Gaussian MISO BC. It can be
seen that CD-DPC is strictly included in all MD-DPC inner
bounds, i.e., MD-DPC with time-orthogonal descriptions and
MD-DPC with arbitrary correlated private under both assump-
tions rho = 0 (uncorrelated) and rho variable (optimized).
It can be seen that already at ρ = 0, MD-DPC is still strictly
better than CD-DPC. It can be noticed as well that in this case,
both MD-DPC bounds are equal, though this is not necessarily
the case for more general settings.



Fig. 3. Comparison of the CD-DPC and MD-DPC with uncorrelated
and correlated private descriptions inner bounds with block expansion:
SNR = 10 dB.

G. Outer Bound on the Capacity of the Compound MISO BC

In this section, we present an outer bound on the capacity
region of the compound MISO BC which consists in the
intersection of four rate regions.

Let us introduce the following channel matrices:
g1,2 �

[
g h1 h2

]
,

h1,z �
[
h1 g

]
,

h2,z �
[
h2 g

]
.

We then define the corresponding channel outputs to the
channel g1,2, that has the same marginal p.d.f as the output
formed by the concatenation of [Z Y1 Y2], as Z1,2, and we
define similarly the two outputs Y1,z and Y2,z . The following
theorem gives the resulting outer bound.

Theorem 12 (Outer bound on the capacity of the compound
MISO BC). An outer bound on the capacity region of the
compound MISO BC is given by the set of rate pairs:

O = C1 ∩ C2 ∩ C1,2 ∩ Cz,

where C j is the capacity region of the BC with outputs (Y j , Z),
for j ∈ {1, 2},

C j =
⋃

(Ku ,Kv )

tr(Ku+Kv )≤P

{
(R1, R2) ∈ R2+ ,

R1 ≤ 1

2
log2

(
ht

j Kuh j + N

N

)
,

R2 ≤ 1

2
log2

(
gt (Ku + Kv )g + N

gt Kug + N

)
,

or

R1 ≤ 1

2
log2

(
ht

j (Ku + Kv )h j + N

ht
j Kvh j + N

)
,

R2 ≤ 1

2
log2

(
gt Kvg + N

N

)}
,

C1,2 is the capacity region of the compound MISO BC with
outputs (Y1, Z1,2) and (Y2, Z1,2),

C1,2 =
⋃

(Ku,Kv )

tr(Ku+Kv )≤P

{
(R1, R2) ∈ R2+ ,

R1 ≤ min
j∈{1,2}

1

2
log2

(
ht

j (Ku + Kv )h j + N

ht
j Kvh j + N

)
,

R2 ≤ 1

2
log2

(∣∣gt
1,2Kvg1,2 + NI3

∣∣
N3

)}

and finally, Cz is the capacity region of the compound BC with
outputs (Y1,z, Z) and (Y2,z, Z),

Cz =
⋃

(Ku,Kv )

tr(Ku+Kv )≤P

{
(R1, R2) ∈ R2+ ,

R1 ≤ min
j∈{1,2}

1

2
log2

⎛
⎝
∣∣∣ht

j,zKuh j,z + NI2

∣∣∣
N2

⎞
⎠

R2 ≤ 1

2
log2

(
gt (Ku + Kv )g + N

gt Kug + N

)}
.

Proof. The proof is straightforward from the following obser-
vations. The fact that the capacity of the considered com-
pound model is always included in the intersection of the
capacities of the BCs C1 and C2, and that this setting is a
degraded version of the setups where there is a least one user
with an extra receive antenna, whose capacities are given in
references [27], [10].

Remark 13. The outer bound stated in Theorem 12 is tight in
the high SNR regime and thus is DoF optimal. To check this,
notice that the bounds C1, C2 and Cz attain each the points
(d1 ≤ 1, d2 ≤ 1) by letting Ku = g⊥ × (g⊥)t . As for the
bound C1,2, it achieves all the points (2 d1 +d2 ≤ 2), thus the
intersection of these two regions leads to the optimal DoF.

In Fig. 4, we plot the inner and outer bound for intermediate
SNR values. Although the gap to the outer bound suggests that
the inner and outer regions do not meet, it is our belief that
the inner bound might be tighter than the outer bound, and
that better outer bounds could be derived for the compound
Gaussian MISO BC.

VI. DISCUSSION

We start our conclusions with the analysis of the relative
behavior of the MD and the ID inner bounds, to understand if
there is any mutual inclusion between the two rate regions. The
question we want to answer is whether introducing multiple
descriptions, one for each instance in the compound setting,
allows to recover the ID inner bound. We also would like to
understand to what extent decoding interference is crucial for
Marton’s worst case inner bound.



Fig. 4. Comparison of the inner bounds and the intersection of the outer
bounds: SNR = 10 dB.

A. Can Multiple Descriptions or Interference Decoding
Techniques Recover Each Other?

We evaluate the MD inner bound in the case of the discrete
example studied in Section III-B and try to identify a set of
auxiliary RVs yielding the capacity region. For the discrete
compound BC we studied earlier, we assumed that user 1
could observe one of two possible channel instances, namely,
Y1 and Y2, such that Y2 is more capable than both Y1 and Z ,
and Y1 be a degraded version of Z . The maximizing choice
of auxiliary RVs led to Z and Y2 decoding all the signal and
Y1 decoding only its intended information.

The capacity region writes as

R1≤I (Q; Y1),

R1 + R2≤I (Q; Y1) + I (X; Z |Q).

We next discuss a formulation of the MD inner bound that
captures the intuition of the capacity achieving choice of
auxiliary RV for ID inner bound. Indeed, the encoder does not
transmit a common description to the two users interested in
the same message, but communicate only private descriptions
to them. However, in the present case the common auxiliary
RV Q is no longer a time-sharing variable as it was the case in
Section IV, it can carry common information to all receivers
as well. With this, we can achieve the set of rate pairs R3-ARV
defined by

R3-ARV �
⋃

PQU1U2V X
(T1,1,T1,2,T2)∈
T(PQU1U2V X )

M(PQU1U2V X , T1,1, T1,2, T2), (31)

where the rate region M is defined by

T2≤I (V ; Z |Q) ,

R0 + T2≤I (QV ; Z) ,

T1,1≤I (U1; Y1|Q) ,

R0 + T1,1≤I (QU1; Y1) ,

T1,2≤I (U2; Y2|Q) ,

R0 + T1,2≤I (QU2; Y2) ,

and the set T is given by

T
(

PQU1U2V X
)

�
{

(T1,1,T1,2, T2) :
T2 ≥ R2

min{T1,1, T1,2} ≥ R1 ,

T1,1 − R1 + T2 − R2 > I (U1; V |Q) ,

T1,2 − R1 + T2 − R2 > I (U2; V |Q) ,

T1,1 − R1 + T1,2 − R1 > I (U1; U2|Q) ,

T1,1 + T1,2 − 2 R1 + T2 − R2 > I (U1; U2|Q)+
I (U1 U2; V |Q)

}
.

Proof. The proof is relegated to Appendix K.

We know that an optimal transmission scheme to achieve
the capacity region of the considered BEC/BSC requires both
users Z and Y2 to decode all messages while restricting
the weaker user Y1 to decode only the common message.
Hence, we rely on this argument to build the straightforward
extension of Marton’s coding scheme, i.e., V = U2 = X and
U1 = Q, which along with rate splitting leads to the following
achievable rate region:

R1≤I (Q; Y1) ,

R1 + R2≤I (X; Z |Q) + I (X; Y2|Q) − H (X |Q)

+ min{I (Q; Y1), I (Q; Y2)}.
In the general case, there is strong evidence that the above
rate region induced by MD is strictly included in the capacity
region given by:

R1≤I (Q; Y1) ,

R1 + R2≤I (X; Z |Q) + I (Q; Y1) ,

that is achieved by using ID, which yields:
R1≤I (Q; Y1) ,

R1 + R2≤min{I (X; Z |Q), I (X; Y2|Q)}
+I (Q; Y1),

R1 + R2≤min{I (X; Z), I (X; Y2)},
where Y1 is degraded with respect to Z and Y2 is more capable
than Z . The inclusion results from the fact that there exist
PX |Q for which

I (X; Y2|Q) − H (X |Q) < 0.

Thus, MD does not seem to be enough to achieve the capacity
region of the compound model investigated in Section III-B.
This is due to the fact that the cost engendered by precoding
against interference prevents from decoding it which results
in a loss proportional to its entropy. Therefore, it appears that
ID outperforms MD in some cases.

On the other hand, in the MISO case, imposing users
to decode interference is sub-optimal, at least from a DoF
perspective, since ID introduces sum-rates constraints of the
form:

R1 + R2 ≤ I (X; Y1),



and thus, prevents the sum-DoF from reaching values greater
than 1 which we already know is sub-optimal. Therefore, it is
crucial to precode against interference.

Summarizing, since neither MD coding or ID seem to
generalize all the results obtained herein, one can benefit
from the combination of both techniques and thus, from the
optimization of both encoding and decoding schemes.

B. Conclusion

In this work, we explored a decoding and a encoding
technique for the two-user memoryless compound Broadcast
Channel (BC). We first studied the role of ID for which
we derived an achievable rate region is derived by using
superposition coding and random binning. At the decoders,
the constraint of decoding only the intended message is allevi-
ated to allow each of the users to decode or not the other user’s
(interference) message. Unlike the standard two-user BC, the
compound BC benefits from ID since channel uncertainty
prevents the encoder from coding optimally for each possible
BC formed by all pairs of channels in the set. A simple outer
bound is also derived based on the best outer bound hitherto
known on the capacity region of the two-user BC, i.e, Nair
& El Gamal outer bound. This outer bound is limited by the
difficulty to write Csiszár & Körner’s sum-identity for more
than 2 users.

Surprisingly enough, ID not only outperforms NID tech-
nique, i.e., Marton’s worst-case rate region, but also allows to
achieve the capacity of a class of non-trivial BC while NID is
strictly suboptimal. Thus, though the coding scheme is simple
(in terms of the number of auxiliary variables involved and
of the complexity of the encoding operation) the decoders’
optimization allows to alleviate the uncertainty at the source.

Later, we studied an encoding technique with a more
involved coding strategy, namely MD coding. The source
transmits for each possible channel output, of the same user,
common and private descriptions. For the specific case of
the compound MISO BC, resorting to MD is essential since
a common description, i.e., applying DPC with a single
description cannot accommodate the interference seen by each
instance of the users channels in the set, unless combining it
with a time-sharing argument. The key point in the MISO BC
setting is that using a fraction of power to transmit the private
descriptions is useful for all SNR ranges while turns out to
be DoF optimal. Indeed, each private description creates an
interference free link and thus each user can recover a part of
its rate interference free.

Finally, we addressed the question of whether MD or ID
may include each other. It appears that none of these schemes
can perform well for ordered and non-ordered class of com-
pound BCs at once, mainly because the two strategies strongly
rely on two different interference mitigation techniques: pre-
coding against interference and decoding interference. The
former results in a rate loss tantamount to a correlation cost
while the latter results in an extra sum-rate constraint.

As a conclusion, it would be worth mentioning the benefits
of combining these two schemes to yield a larger inner
bound, and thus, full advantage would be taken from the joint

optimization of the encoding technique (MD coding) and the
decoding technique (ID).

APPENDIX A
USEFUL NOTIONS AND AUXILIARY RESULTS

In this appendix we provide basic notions on some concepts
used in this paper.

Following [28], we use in this paper strongly typical sets and
the so-called Delta-Convention. Some useful facts are recalled
here. Let X and Y be RVs on some finite sets X and Y ,
respectively. We denote by pXY (resp. pY |X , and pX ) the joint
p.m.f of (X, Y ) (resp. conditional distribution of Y given X ,
and marginal distribution of X ).

Definition 14. For any sequence xn ∈ X n and any sym-
bol a ∈ X , N(a|xn) denotes the number of occurrences
of a in xn.

Definition 15. A sequence xn ∈ X n is called (strongly)
δ-typical w.r.t. X (or simply typical if the context is clear) if∣∣∣∣1n N(a|xn) − PX (a)

∣∣∣∣ ≤ δ for each a ∈ X ,

and N(a|xn) = 0 for each a ∈ X such that PX (a) = 0. The
set of all such sequences is denoted by T n

δ (X).

Definition 16. Let xn ∈ X n. A sequence yn ∈ Yn is called
(strongly) δ-typical (w.r.t. Y ) given xn if for all a ∈ X , b ∈ Y∣∣∣∣1n N(a, b|xn, yn) − 1

n
N(a|xn)PY |X (b|a)

∣∣∣∣ ≤ δ,

and, N(a, b|xn, yn) = 0 for each a ∈ X , b ∈ Y such that
PY |X (b|a) = 0. The set of all such sequences is denoted by
T n

δ (Y |xn).

Delta-Convention [28]: For any sets X , Y , there exists a
sequence {δn}n∈N∗ such that the lemmas below hold.2 From
now on, typical sequences are understood with δ = δn . Typical
sets are still denoted by T n

δ (·).

Lemma 5 ( [28, Lemma 1.2.12]). There exists a sequence
ηn −−−→

n→∞ 0 such that

Pn
X (T n

δ (X)) ≥ 1 − ηn .

Lemma 6 ( [28, Lemma 1.2.13]). There exists a sequence
ηn −−−→

n→∞ 0 such that, for each xn ∈ T n
δ (X),

∣∣∣∣1n log�T n
δ (X)� − H (X)

∣∣∣∣ ≤ ηn,∣∣∣∣1n log�T n
δ (Y |xn)� − H (Y |X)

∣∣∣∣ ≤ ηn .

2As a matter of fact, δn → 0 and
√

n δn → ∞ as n → ∞.



Lemma 7 (Asymptotic equipartition property). There exists
a sequence ηn −−−→

n→∞ 0 such that, for each xn ∈ T n
δ (X) and

each yn ∈ T n
δ (Y |xn),∣∣∣∣− 1

n
log Pn

X (xn) − H (X)

∣∣∣∣ ≤ ηn,∣∣∣∣− 1

n
log Pn

Y |X (yn|xn) − H (Y |X)

∣∣∣∣ ≤ ηn .

Lemma 8 (Joint typicality lemma [29]). There exists a
sequence ηn −−−→

n→∞ 0 such that for all xn ∈ T n
δ (X)∣∣∣∣− 1

n
log Pn

Y (T n
δ (Y |xn)) − I (X; Y )

∣∣∣∣ ≤ ηn .

APPENDIX B
SKETCH OF THE PROOF OF THEOREM 3

Let ( j, k) ∈ J × K be the index of an arbitrary pair of
users in the compound set. We first show the achievability of
the union of the four regions for this channel

⋃
i∈[1:4] Ti . For

convenience of notations we drop the index ( j, k).

A. Outline of Proof

The coding scheme we use is as follows:
• We consider three messages: a common message w0, and

two private messages w1 and w2,
• We use three auxiliary RVs Q (resp. U and V ) to code

for the common message (resp. private messages),
• We perform random binning on the two auxiliary RV

U and V which are superposed on Q,
• The decoders resort to list decoding, which allows us

to combine many decoding techniques, by intersecting
different lists,

• The error probability is directly related to the list size,
and thus, bounding the list size yields a bound on the
average probability of error.

B. Detailed Proof

Codebook generation:
The encoding is similar to that of Marton’s coding with a

common message.
Fix the p.m.f’s PQ , PU |Q , PV |Q and PX |QU V , and let

T1 ≥ R1 and T2 ≥ R2 be four positive real numbers.
Generate 2nR0 sequences qn(w0),w0 ∈ M0 with probabil-

ity distribution:

Pn
Q(w0) =

n∏
i=1

PQ(qi (w0)),

and denote the set of all such codewords as C0.
For each qn(w0), generate 2nT1 sequences un(l1, w0), where

l1 ∈ [1 : 2nT1 ], following

Pn
U |Q(un(l1, w0)) =

n∏
i=1

PU |Q(ui (l1, w0)|qi(w0)),

and set all these sequences randomly in 2nR1 bins, each
indexed with w1 ∈ [1 : 2nR1 ]: C(w1, w0).

Generate similarly 2nT2 sequences vn(l2, w0), l2 ∈ [1 : 2nT2 ]
following Pn

V |Q(vn(l2, w0)) and set them randomly into 2nR2

bins: C(w2, w0).
Encoding:
To send a message vector: (W0, W1, W2), the encoder first

finds a pair of sequences (un(L1, W0), v
n(L2, W0)) in the

product bins C(W1, W0) × C(W2, W0) such that:(
qn(W0), un(L1, W0), v

n(L2, W0)
) ∈ T n

δ (QU V ),

and then transmits: xn
(
qn(W0), un(L1, W0), v

n(L2, W0)
)

which is generated randomly with p.m.f PXn |QnU n V n =∏n
i=1 PX |QU V (xi |qi(W0), ui (L1, W0), vi (L2, W0)).
Decoding:
First, assume that no encoding error has occurred and

let us note 
0 the event of no error. Let then (L1, L2) the
chosen indices. For a matter of conciseness, we consider only
Decoder 1.

Given a received sequence yn , define the two lists:
L1(yn) �

{
(w0, w1)

∣∣ for un(l1, w0) ∈ C(w1, w0)

(qn(w0), un(l1, w0), yn) ∈ T n
δ (QUY )

}
,

L2(yn) �
{
(w0, w1)

∣∣for some w2 s.t.

for some vn(l2, w0) ∈ C(w2, w0)

and some un(l1, w0) ∈ C(w1, w0)),

(qn(w0), un(l1, w0), v
n(l2, w0), yn)

∈ T n
δ (QU V Y )

}
.

These two lists correspond to two different decoding strategies:
non-unique decoding of the other user’s message (interfence),
and no-interference decoding. Denote the intersection of these
two lists by

L(n) � L1(yn) ∩ L2(yn). (32)

Analysis of the probability of error:
To analyze the probability of error at user 1, we need to

control the expected cardinality of the intersection of the above
lists. The next lemma states this result.

Lemma 9. For every 
1 > 0, there exists an integer N1, such
that, for all n ≥ N1, the average probability of error is linked
to the list size as follows:

P(n)
e ≤ P{�L(n)� ≥ 2} + 
1.

Proof. Proof is given in Appendix C.

Now, bounding the probability of error will mainly consist
in bounding the decoding list size.

Bounding the list size:
On the one hand, the list size being an integer valued RV,

we can write:
P{�L(n)� ≥ 2} ≤ E[�L(n)�] − P{�L(n)� ≥ 1}. (33)

On the other hand:
E�L(n)� = P{(W0, W1) ∈ L(n)}

+
∑

(Ŵ0,Ŵ1) �=(W0,W1)

P{(Ŵ0, Ŵ1) ∈ L(n)}. (34)



The next lemma provides a bound on the expected list size
from the RHS of (34).

Lemma 10 (Bounding the probability of undetected errors).
For all 
2 > 0 and 
3 > 0, there exists an integer N2 > 0 such
that, for all n ≥ N2, the probability of decoding (Ŵ0, Ŵ1) �=
(W0, W1), can be upper-bounded as follows:∑

(Ŵ0,Ŵ1) �=
(W0,W1)

P{(Ŵ0, Ŵ1) ∈ L(n)} ≤ min{I (n)
1 , I (n)

2 }, (35)

where:
I (n)
1 � exp2

(
n [T1 − I (U ; Y |Q) + 
2]

)
+ exp2

(
n [R0 + T1 − I (QU ; Y ) + 
2]

)
,

I (n)
2 � exp2

(
n [T1 − I (U ; Y V |Q) + 
3]

)
+ exp2

(
n [T1 + T2 − I (U V ; Y |Q)

−I (U ; V |Q) + 
3]
)

+ exp2

(
n [R0 + T1 + T2 − I (QU V ; Y )

−I (U ; V |Q) + 
3]
)
.

Proof. Proof is given in Appendix C.

Hence, from (33), (34) and (35) we can write that:
P{�L(n)� ≥ 2} ≤ min{I (n)

1 , I (n)
2 }. (36)

Then Lemma 1 and (36), imply that for n large enough:
P(n)

e ≤ P{�L(n)� ≥ 2} + 
1 ≤ min{I (n)
1 ; I (n)

2 } + 
1.

Thus, provided that:
lim sup

n→∞
min{I (n)

1 , I (n)
2 } = 0,

the probability of error at user 1, knowing that no encoding
error occurred, will tend to 0 as n → ∞.

Following the proof of the covering lemma [29], the prob-
ability of encoding error can be upper bounded as n grows
large enough as follows:
P(
0) ≤ exp2

(
n [I (U ; V |Q) − (T1 − R1 + T2 − R2) + 
�]).

The condition for no such error does not depend on the users
pair index, and thus, it intersects the union of all regions,
which concludes the proof.

APPENDIX C
THE PROBABILITY OF ERROR IS LINKED TO LIST SIZE

1) Proof of Lemma 9: Let us start by recalling:
L1(Y

n) ∩ L2(Y
n) = L(n).

Let (Ŵ0, Ŵ1) be the estimated messages at decoder 1, where

P{(Ŵ0, Ŵ1) �= (W0, W1)}
= δ.P{∃(ŵ0, ŵ1) �= (W0, W1) :

(ŵ0, ŵ1) ∈ L(n)|(W0, W1) ∈ L(n)}
+(1 − δ).P{∃(ŵ0, ŵ1) �= (W0, W1) :

(ŵ0, ŵ1) ∈ L(n)|(W0, W1) /∈ L(n)}
≤ P{�L(n)� > 1} + (1 − δ),

with (1 − δ) � P{(W0, W1) /∈ L(n)}.

Then, following standard arguments, by the LLN and inde-
pendence of codebooks, we can easily show that, for all

1 > 0, ∃ N1 such that for n ≥ N1, we have (1 − δ) ≤ 
1.

This ends the proof of the statement:
P(n)

e ≤ P{�L(n)� ≥ 2} + 
1.

2) Proof of Lemma 10: Let (Ŵ0, Ŵ1) �= (W0, W1) be the
supposedly decoded pair of messages. We have, recalling (32),
that:

P{(Ŵ0, Ŵ1) ∈ L(n)} ≤ min
j=1,2

P{(Ŵ0, Ŵ1) ∈ L j (Y
n)}.

For the first list, we have, following similar arguments of
Lemma 8, that:

P{(W0, Ŵ1) ∈ L1(Y
n)}

= P{(qn(W0), un(L̂1, W0), yn) ∈ T n
δ (QUY )

for some L̂1 ∈ [1 : 2n(T1−R1)]}
≤
∑
L̂1∈

[1:2n(T1−R1)]

P{(qn(W0), un(L̂1, W0), yn) ∈ T n
δ (QUY )}

≤ exp2
(
n [T1 − R1 − I (U ; Y |Q) + 
2]

)
,

and similarly, if moreover Ŵ0 �= W0,

P{(Ŵ0, Ŵ1) ∈ L1(Y
n)}

≤ exp2
(
n [T1 − R1 − I (QU ; Y ) + 
2]

)
.

Now, for the second list, i.e, decoding method, we know that:
1) If Ŵ0 = W0, Ŵ1 �= W1 and L̂2 = L2 which implies
Ŵ2 = W2:

P
{
(Qn(W0), Un(L̂1, W0), V n(L2, W0), Y n) ∈
T n

δ (QU V Y ) for L̂1 ∈ [1 : 2n(T1−R1)]}
≤ exp2

(
n [T1 − R1 + H (QU V Y ) − H (Q)

−H (U |Q) − H (Y V |Q) + 
3]
)

= exp2

(
n [T1 − R1 − I (U ; Y V |Q) + 
3]

)
,

where we used the fact that, since Ŵ1 �= W1, then Un(L̂1, W0)
and V n(L2, W0) are independent conditionally on Qn(W0).
2) If Ŵ0 = W0, Ŵ1 �= W1, and L̂2 �= L2 then:

P
{
(Qn(W0), Un(L̂1, W0), V n(L̂2, W0), Y n)

∈ T n
δ (QU V Y ) for L̂1 ∈ [1 : 2n(T1−R1)]}

≤ exp2

(
n [T1 − R1 + H (QU V Y ) − H (Q)

−H (U |Q) − H (V |Q) − H (Y |Q) + 
3]
)

= exp2

(
n [T1 − R1 − I (U V ; Y |Q)

−I (U ; V |Q) + 
3]
)
.

3) Finally, if Ŵ0 �= W0, then whatever L̂1 and L̂2:

P
{
(Qn(Ŵ0), Un(L̂1, Ŵ0), V n(L̂2, Ŵ0), Y n)

∈ T n
δ (QU V Y )

}
≤ exp2

(
n [H (QU V Y ) − H (Q) − H (U |Q)

−H (V |Q) − H (Y ) + 
3]
)

= exp2

(
n [−I (QU V ; Y ) − I (U ; V |Q) + 
3]

)
.

This ends the proof of Lemma 2.



APPENDIX D
PROOF OF ACHIEVABILITY OF THE CAPACITY

From Theorem 3, we can see that the region RSNID verifies:⋃
PQUV X ∈P
(T1,T2)∈

T(PQUV X )

T (1)
3 (PQU V X , T1, T2) ∩ T (2)

4 (PQU V X , T1, T2) ⊆ RID.

In this section, we evaluate the region given by

R�
ID �

⋃
PQUV X ∈P
(T1,T2)∈

T(PQUV X )

T (1)
3 (PQU V X , T1, T2) ∩ T (2)

4 (PQU V X , T1, T2)

where T (1)
3 ∩ T (2)

4 is the subset of �2+ defined by the
inequalities:

T2≤I (V ; ZU |Q),

T1 + T2≤I (U V ; Z |Q) + I (U ; V |Q),

R0 + T1 + T2≤I (QU V ; Z) + I (U ; V |Q),

T1≤I (U ; Y2 V |Q),

T1 + T2≤I (U V ; Y2|Q) + I (U ; V |Q),

R0 + T1 + T2≤I (QU V ; Y2) + I (U ; V |Q),

T1≤I (U ; Y1|Q),

R0 + T1≤I (QU ; Y1),

T1 ≥ R1 , T2 ≥ R2 ,

T1 + T2>R1 + R2 + I (U ; V |Q).

Recalling here that Y1 is physically degraded towards Z ,
we can first rewrite the decoding constraints as the following:

T2≤I (V ; ZU |Q),

T1≤min{I (U ; Y1|Q), I (U ; Y2 V |Q)},
R0 + T1≤I (QU ; Y1),

T1 + T2≤I (U V ; Y2|Q) + I (U ; V |Q),

R0 + T1 + T2≤I (QU V ; Y2) + I (U ; V |Q).

The, we can run FME over the binning rate pair (T1, T2) to
get the following region:

R2≤I (V ; ZU |Q),

R1≤min{I (U ; Y1|Q), I (U ; Y2V |Q)},
R0 + R1≤I (QU ; Y1),

R1 + R2≤I (U V ; Y2|Q),

R1 + R2≤I (V ; Z |U Q)

+ min{I (U ; Y1|Q), I (U ; Y2 V |Q)},
R0 + R1 + R2≤I (QU V ; Y2),

R0 + R1 + R2≤I (V ; Z |U Q) + I (QU ; Y1).

Later, we chose to apply bit recombination on the admissible
rates (R0, R1, R2) as follows:

R0 = R�
0 + R�

01 + R�
02,

R1 = R�
1 − R�

01 ≥ 0,

R2 = R�
2 − R�

02 ≥ 0,

R�
01≥ 0, R�

02 ≥ 0.

It is straightforward that this bit recombination fits the
decoding logic of the terminals, i.e., part of the private
messages is mapped into the common message, enabling each
terminal to still recover the totality of its intended message.
The region writes thus as:

R�
2 − R�

02 ≤ I (V ; ZU |Q),

R�
1 − R�

01 ≤ min{I (U ; Y1|Q), I (U ; Y2 V |Q)},
R�

0 + R�
1 + R�

02 ≤ I (QU ; Y1),

R�
1 − R�

01 + R�
2 − R�

02 ≤ I (U V ; Y2|Q),

R�
1 − R�

01 + R�
2 − R�

02 ≤ I (V ; Z |U Q)

+ min { I (U ; Y1|Q), I (U ; Y2 V |Q)},
R�

0 + R�
1 + R�

2 ≤ I (QU V ; Y2),

R�
0 + R�

1 + R�
2 ≤ I (V ; Z |U Q) + I (QU ; Y1),

R�
1 ≥ R�

01, R�
2 ≥ R�

02 , R�
01 ≥ 0, R�

02 ≥ 0.

Performing again FME over the splitting rate pair (R�
01, R�

02),
we get the following region:

R�
0 + R�

1 ≤ I (QU ; Y1),

R�
0 + R�

1 + R�
2 ≤ I (QU ; Y1) + I (U V ; Y2|Q),

R�
0 + R�

1 + R�
2 ≤ I (QU ; Y1) + I (V ; ZU |Q), (37)

R�
0 + R�

1 + R�
2 ≤ I (QU ; Y1) + I (V ; Z |U Q)

+ min { I (U ; Y1|Q), I (U ; Y2 V |Q)}, (38)

R�
0 + R�

1 + R�
2 ≤ I (QU V ; Y2),

R�
0 + R�

1 + R�
2 ≤ I (V ; Z |U Q) + I (QU ; Y1). (39)

We clearly notice that the constraints: (37) and (38) are implied
by (39), thus, the resulting region R�

ID is defined by the
following constraints:

R�
0 + R�

1≤I (QU ; Y1),

R�
0 + R�

1 + R�
2≤I (QU ; Y1) + I (U V ; Y2|Q),

R�
0 + R�

1 + R�
2≤I (QU V ; Y2),

R�
0 + R�

1 + R�
2≤I (V ; Z |U Q) + I (QU ; Y1).

Thus, letting R�
0 = 0, and noting the rate pairs as (R1, R2),

one gets the desired rate region.

APPENDIX E
CARDINALITY BOUNDS

Consider a pair of RVs (Q, X) following the joint p.m.f
PQ X . Since the input is binary, let the four continuous func-
tions on PX |Q :

f1
(

PX |Q(0|q)
)=PX |Q(0|q),

f2
(

PX |Q(0|q)
)=H (Z |Q = q) = H2(p � PX |Q(0|q)),

f3
(

PX |Q(0|q)
)=H (Y1|Q = q) = H2(p1 � PX |Q(0|q)),

f4
(

PX |Q(0|q)
)=H (X |Q = q) = H2(PX |Q(0|q)).



By the usual consequence of Fenchel-Eggleston-Caratheodory
theorem [28], we can construct an auxiliary RV Q� such that:∑

q

PQ(q)PX |Q(0|q)=
∑

q �
PQ �(q �)PX |Q(0|q �) = PX (0),

H (Z |Q)=H (Z |Q�),
H (Y1|Q)=H (Y1|Q�),
H (X |Q)=H (X |Q�),

�Q��≤4.

Thus, we conclude that with this new auxiliary RV Q�,
the region is unchanged:

I (X; Z |Q)=H (Z |Q) − H (Z |X)

= H (Z |Q�) − H2(p)

= I (X; Z |Q�),
I (Q; Y1)=H (Y1) − H (Y1|Q)

= H2 (p1 � PX (0)) − H (Y1|Q�)
= I (Q�; Y1),

I (Q; Y2)=(1 − e) (H (X) − H (X |Q))

= (1 − e) (H2(PX (0)) − H (X |Q�))
= I (Q�; Y2).

Optimality of uniform input

In [6] the c-symmetric BC is defined as the BC formed by 2
c-symmetric channels. Following this same idea, and consider-
ing equivalently the compound BC or the compound channel,
we can say that the BC resulting from the simultaneity of two
c-symmetric BC is c-symmetric.

As it is shown in [6, Lemma 2] that uniform input distri-
bution is optimal for such channels, thus X ∼ Bern(1/2) is
optimal for the compound BC as well.

APPENDIX F
PROOF OF PROPOSITION 3

We follow the method in [30] to write:
t (x) � sup

pX Q∈C(x)
min {I (Q; Y1) , I (Q; Y2)}

= sup
pX Q∈C(x)

min
a∈[0:1]

[
a I (Q; Y1) + ā I (Q; Y2)

]
≤ min

a∈[0:1] sup
pX Q∈C(x)

[
a I (Q; Y1) + ā I (Q; Y2)

]
,

for all x ∈ [0 : 1 − H2(p)]. Let define for each a ∈ [0 : 1]
and ta ∈ [0 : 1 − H2(p)],

ta(x) � sup
pX Q∈C(x)

[
a I (Q; Y1) + ā I (Q; Y2)

]
.

Notice that:
• The case a = 1 was already studied in [30] and it was

shown that:
t1(x) = 1 − H2(p1 � px),

where H2(p � px) − H2(p) = x .

• The case a = 0 can be studied in a very similar fashion
as in [30] by finding out that:

t0(x) = inf
λ∈R+ [F0(λ) − λ x]

= (1 − e2)

(
1 − x

1 − H2(p)

)
,

where:
F0(λ) = max {(1 − H2(p)) λ, (1 − e2)} .

Now, to upper bound ta , we could have written that:
ta(x) ≤ a sup

C(x)

I (Q; Y1) + ā sup
C(x)

I (Q; Y2) (40)

= a t1(x) + ā t0(x) (41)

≥ t1(x), (42)

where (42) follows from what we have proved in
Section III-B2, i.e., t0 dominates t1 over the interval [0 :
1 − H2(p)]. Thus, we cannot restrict ourselves to the upper
bound in (40) on ta since it is rather loose, and we will hence
bound more tightly the function ta .

Proposition 5. The function ta satisfies the following
properties:

• (i) For all x ∈ [0 : 1 − H2(p)],
ta(x) = max

pX Q∈C(x)
[a I (Q; Y1) + ā I (Q; Y2)] ,

• (ii) ta is concave in x,
• (iii) ta can be described identically by its supporting lines,
• (iv) ta is decreasing in x.

Proof. The proof is relegated to Appendix G.

The next result allows to transform the optimization of a
rate region into optimizing one function denoted as Fa(λ).

The following conclusions can be drawn:
(a) The constraint in (12) can be transformed into:

I (X; Z |Q) = x .

(b) We have that:

ta(x) = inf
λ∈R+

[
max

P(X×Q)

[
a I (Q; Y1) + ā I (Q; Y2)

+λ I (X; Z |Q)
]− λ x

]
= inf

λ∈R+

[
Fa(λ) − λ x

]
,

where

Fa(λ) � max
pX Q∈P(X×Q)

[
a I (Q; Y1) + ā I (Q; Y2)

]
.

where (a) follows from the non-increasing property of ta and
(b) follows from the concavity of the function ta since a con-
cave function can be described by its supporting lines [31].



APPENDIX G
PROOF OF PROPOSITION 5

Recall that:
ta(x) � sup

PQX ∈C(x)

[
a I (Q; Y1) + ā I (Q; Y2)

]
.

We want to show that:
1) For all x ∈ [0 : 1 − H2(p)],

ta(x) = max
PQX ∈C(x)

[
a I (Q; Y1) + ā I (Q; Y2)

];
2) ta is concave in x ;
3) ta can be described identically by its supporting lines;
4) ta is decreasing in x .

Proof. 1) We have that:

C(x) =
{

PX Q ∈ P : Q −�− X −�− (Y, Z1, Z2),

X ∼ Bern(1/2), I (X; Z |Q) = x

}
.

Since, we have proved that the optimizing probabilities have
a finite cardinality, the conditional mutual information being
continuous, C(x) is thus compact. As the probability space
P(X ×Q) has a finite dimension, the set C(x) is thus closed.
Thus, the supremum is achieved.

2) Concavity: Let x1, x2 ∈ [0 : 1 − H2(p)] and let α ∈
[0 : 1]. Denote x = α x1 + (1 − α) x2. We need to show that:
ta(x) ≥ α ta(x1) + (1 − α) ta(x2).

Let for i ∈ {1, 2},
PXi ,Qi = argmax

PQX ∈C(x)

[
a I (Q; Y1) + ā I (Q; Y2)

]
.

Define moreover: T ∼ Bern(t) independent of all other RVs.
Define

(X, QT ) =
{

(X1, Q1) if T = 0,
(X2, Q2) if T = 1,

and by letting Q = (QT , T ), we have:
• X ∼ Bern(1/2).
• Q −�− X −�− (Y, Z1, Z2) is a valid Markov chain.
• And the following equalities hold:

I (X; Z |Q)

= α I (X1; Z |Q1) + (1 − α) I (X2; Z |Q2)

= α x1 + (1 − α) x2 = x .

We thus have that: pX Q ∈ C(x). Thus,

α ta(x1) + (1 − α) ta(x2)

= α
(
a I (Q1; Y1) + ā I (Q1; Y2)

)
+(1 − α)

(
a I (Q2; Y1) + ā I (Q2; Y2)

)
= a I (QT ; Y1|T ) + (1 − a) I (QT ; Y2|T )

≤ a I (T QT ; Y1) + (1 − a) I (T QT ; Y2)

= a I (Q; Y1) + (1 − a) I (Q; Y2)

≤ max
PQX ∈C(x)

[
a I (Q; Y1) + (1 − a) I (Q; Y2)

]
= ta(x),

which concludes the proof of concavity.

3) This property follows from the concavity of ta .
4) Monotony: Since ta is concave, we have that:

t �a(x) ≤ t �a(0) = lim
x→0+

ta(x) − ta(0)

x
.

Since,

ta(0) = a (1 − H2(p1)) + (1 − a) (1 − e2) > ta(x),

for all x ∈ [0 : 1 − H2(p)], we have that:
t �a(x) ≤ t �a(0) ≤ 0,

ta is thus decreasing in x .

APPENDIX H
PROOF OF ACHIEVABILITY OF MULTIPLE

DESCRIPTION INNER BOUND

In this section, we establish the achievability of the MD
inner bound in (8). Let W1 be the message decoded by user 1,
and let W2 be the message decoded by user 2, and let R1
and R2 denote their respective rates. Let T1 and T2 denote the
corresponding binning rates. We construct the following code.

Codebook generation:
Generate 2n T1 sequences un

0(l1) where l1 ∈ [1 : 2nT1 ] each
following:

Pn
U0

(un
0(l1)) =

n∏
i=1

PU0(u0,i (l1)),

and map all these sequences randomly to 2nR1 bins C0(w1),
each indexed with w1 ∈ [1 : 2nR1 ].

Generate similarly 2nT2 sequences vn(l2) with l2 ∈ [1 : 2nT2 ]
each following Pn

V (vn(l2)) and set them randomly into 2nR2

bins Cv (w2).
For each un

0(l1) where l1 ∈ [1 : 2nT1], generate 2n R̂ j

sequences un
j (s j , l1) with s j ∈ [1 : 2nR̂1 ] following each:

Pn
U j |U0

(un
j (s j , l1)) =

n∏
i=1

PU j |U0(u j,i (s j , l j )|u0,i (l1)).

Encoding:
To send a message pair (W1, W2), the encoder finds a pair

of sequences un
0(l1) and vn(l2) in the product bin C0(W1) ×

Cv (W2) and a pair of indices (s1, s2) such that(
un

0(l1), un
1(s1, l1), un

2(s2, l1), v
n(l2)

)
∈ T n

δ (U0U1U2V ).

It then transmits an sequence xn
(
un

0(l1), un
1(s1, l1), un

2(s2, l1),
vn(l2)

)
which is generated via a stochastic mapping.

Using the well known second order moment method, one
can make the probability of the encoding error event arbitrarily
small if:

T1 − R1 + R̂1 + R̂2 ≥ I (U1; U2|U0),

T1 − R1 + T2 − R2 ≥ I (U0; V ),

T1 − R1 + R̂1 + T2 − R2 ≥ I (U0 U1; V ),

T1 − R1 + R̂2 + T2 − R2 ≥ I (U0 U2; V ),

T1 − R1 + R̂1 + R̂2 + T2 − R2 ≥ I (U0 U1 U2; V )

+I (U1; U2|U0).



Decoding:
The second user, upon receiving the sequence zn , looks for

the unique index w2 such that for some vn(l2) ∈ Cv (w2),
the following holds:(

vn(l2), zn) ∈ T n
δ (V Z).

The probability of error in such a decoding rule is arbitrarily
small provided that:

T2 ≤ I (V ; Z).

Concerning the two instances of the first user Y1 and Y2 let
us identify each of them by a decoder. Decoder j finds the
unique index l1 such that for some s j where, the following
joint typicality holds:(

un
0(l1), un

j (s j , l1), yn
j

) ∈ T n
δ (U0U j Y j ).

The probability that the decoded l1 does not fall into the bin
specified by w1 is made arbitrarily provided that:

T1 + R̂ j ≤ I (U0 U j ; Y j ).

Then the overall decoding error events occur with arbitrary
small probability provided that:⎧⎨

⎩
T1 + R̂1 ≤ I (U0U1; Y j ),

T1 + R̂2 ≤ I (U0U2; Y j ),
T2 ≤ I (V ; Z).

After running FME on the system of inequalities bearing in
mind the natural encoding constraints:

R̂1≥0,

R̂2≥0,

T1≥R1,

T2≥R2,

the region given in (8) follows immediately.

APPENDIX I
PROOF OF LEMMA 4

We derive the optimal rate obtained when the following
coding scheme is used:

X=(Xu + X p)Bu + XvBv

U0=Xu + αXv ,

U1=X p + α1 Xv ,

V =Xv ,

where X p ∼ N (0, x), Xu ∼ N (0, Pu −x) and Xv ∼ N (0, Pv )
are pairwise independent RVs and such that: Pu ≤ P − Pv .
This means that we transmit two descriptions intended for
user 1 making these two descriptions compensate “jointly”
the interference, hence, we are interested in computing the
rate: R0,1 = I (U0 U1; Y ) − I (U0 U1; V ). Some algebraic
manipulations yield

R0,1 = 1

2
log2

⎛
⎜⎜⎜⎝ h2

u Pu + N

Pv

(
h2

u Pu + N
)

h2
u Pu + h2

v Pv + N
P(α, α1) + N

⎞
⎟⎟⎟⎠ ,

where the quadratic polynomial P(α, α1) is given by:
P(α, α1)=h2

u(α1 − βx
1 + α − βx)2 + N

x
(α1 − βx

1 )2

+ N

Pu − x
(α − βx)2,

and, βx = (Pu − x) hu hv

h2
u Pu + N

and βx
1 = x hu hv

h2
u Pu + N

.

An interesting insight brought by this expression is that
to achieve the optimal DoF, we need only have α1 + α =
βo

1 + αo rather than pairwise equality α1 = βo
1 and α = αo.

This translates perfectly the joint interference management of
both decoded descriptions U0 and U1, recovering trivially the
optimal interference free rate as both descriptions cancel the
interference fully each on their own α1 − α�

1 = α0 − α�
0 = 0.

Upon optimizing the polynomial P(α, α1) over α1,
the resulting rate is given by the rather simple expression:

R0,1 = 1

2
log2

⎛
⎜⎜⎝ h2

u Pu + N

I x
j

N

h2
u x + N

(α − βx )2 + N

⎞
⎟⎟⎠ , (43)

where I x
j is given by (28). It can be readily checked that this

expression corresponds to the following

R0,1 = I (U0; Y ) − I (U0; V ) + I (X p; Y |Xu Xv ),

where

I (X p; Y |Xu Xv ) = 1

2
log2

(
h2

u x + N

N

)
,

and where I (U0; Y )− I (U0; V ) corresponds to the case where
Xu dirty-paper codes Xv under the noise component variance:
h2

u x + N .
This means that the optimal choice of the variable U1

is the one that maximizes the DPC term I (U1; Y |U0) − I
(U1; V |U0).

APPENDIX J
OPTIMIZATION OF COMMON DESCRIPTION INNER BOUND:

Let us first optimize the second corner point of the CD inner
bound. We have that

R2 =
{

(R1, R2) ∈ R2+,

R2≤1

2
log2

(
g2

v Pv + N

N

)
,

R1≤ min
j=1,2

1

2
log2

(
h2

j,u Pu + h2
j,v Pv + N

h2
j,v Pv + N

)}
.

Since h1 and h2 are orthogonal and of unit norm, thus, we can
write that: h2

1,u = 1 − h2
2,u and h2

1,v = 1 − h2
2,v . The rate R2

does not depend on the beam Bu , thus, we start by optimizing
the rate R1 over it. The two min operands are both monotonic,
one operand is increasing in h2

1,u , while the other is decreasing
in in h2

1,u . Thus, the maxmin point corresponds to the equality
point. Which by simple algebraic calculations leads to the
condition:

h2
1,u = h2

1,v Pv + N

Pv + 2 N
,



and yields then a rate (independent of the beam Bv ) equal to:

R1 ≤ 1

2
log2

(
Pu + Pv + 2N

Pv + 2N

)
. (44)

Note then that the maximizing beam direction Bv = g, thus
one can easily check that this verifies: h1,v = −1/

√
2 and

thus, from (44), that |h1,u | = 1/
√

2. Thus transmitting the first
user’s signal in the mean channel direction is an admissible
optimal solution. Later in the proof, we show that this secong
corner point R2 is dominated by the first corner point of the
CD inner bound R1 which is investigated below. In the sequel,
we will perform the optimization under the choice of h1,u =
1/

√
2 and gu = 0, i.e., we transmit the signal intended to user

1 in the mean channel direction, which makes it orthogonal
to the second user’s channel; the optimality of which is very
involved and is not of central importance.

We can rewrite the first corner point of the CD inner bound
as follows:

R1 =
⋃

a∈[0:1]

{
(R1, R2) ∈ �2+ ,

R1 ≤ 1

2
max
α∈R min

j∈{1,2}

log2

⎛
⎜⎜⎜⎝ Pu + 2 N

Pv

Pu

(Pu + 2 N)2

Pu + 2 N + 2 h2
j,v Pv

(α − α j )2 + 2 N

⎞
⎟⎟⎟⎠

R2 ≤ 1

2
log2

(
g2

v Pv + N

N

)}
,

where α j =
√

2Pu

Pu + 2 N
h j,v . Since �h j � = �Bv� = 1 and,

h1 and h2 are orthogonal, we can let h1,v = cos(θv) and
h2,v = sin(θv).

The key point in the optimization is to solve the equation*:

(α − α1)
2

Pu + 2 N + 2 cos(θv)2 Pv
= (α − α2)

2

Pu + 2 N + 2 sin(θv)2 Pv
.

The optimization of the rate of the first user R1 yields the
following:

(i) If cos2(θv) = 1

2
and cos(θv) = − sin(θv), then the

optimal rate is given by:

R1 ≤ 1

2
max

α
min

j∈{1,2}

log2

⎛
⎜⎜⎝ Pu + 2 N

Pv

Pu

(Pu + 2 N)2

(P + 2 N)
(α − α j )2 + 2 N

⎞
⎟⎟⎠

= 1

2
max

α
log2

⎛
⎜⎜⎝ Pu + 2 N

Pv

Pu

(Pu + 2 N)2

(P + 2 N)
(|α| + |α j |)2 + 2 N

⎞
⎟⎟⎠

= 1

2
log2

⎛
⎜⎝ Pu + 2 N

2 N + Pv
Pu

P + 2N

⎞
⎟⎠

= 1

2
log2

(
Pu + Pv + 2 N

Pv + 2 N

)
,

where α1 = −α2 = Pu

Pu + 2 N
. It turns out then, that the

optimization over the DPC parameter α yields α = 0, meaning
that the two inteference signals to be precoded are orthogonal,
and thus, precoding against both of them is impossible. A very
important remark, is that this yields exactly the first corner
point of the region.

(ii) If cos2(θv) = 1

2
and cos(θv) = sin(θv), then the optimal

rate is given by:

R1 ≤ 1

2
max

α
min

j∈{1,2}

log2

⎛
⎜⎜⎝ Pu + 2 N

Pv

Pu

(Pu + 2 N)2

(P + 2 N)
(α − α j )2 + 2 N

⎞
⎟⎟⎠

= 1

2
log2

(
Pu + 2 N

2 N

)
,

which corresponds to the point where h1,v = h2,v i.e. α1 = α2.
Thus, we would have h1 − h2 orthogonal to Bv , but since
h1 −h2 is collinear to the second user’s channel, then it means
that no information is transmitted to it with the beam Bv . The
power optimization of this point corresponds to the corner
point (C1, 0).

(iii) If cos2(θv) �= 1

2
, then there are two optimizing solutions

α�
1 and α�

2 such that:

α�
1 − α1 = Pu

Pu + 2 N

(− cos(θv) + sin(θv)) c(θv)

s(θv) + c(θv)
,

α�
2 − α1 = Pu

Pu + 2 N

(cos(θv) − sin(θv)) c(θv)

s(θv) − c(θv)
,

where s(θv) and c(θv) are given by

s(θv )=
√

Pu + 2 N + 2 sin2(θv)Pv ,

c(θv)=
√

Pu + 2 N + 2 cos2(θv)Pv .

The root that yields the greater rate is α�
1. Then, we can rewrite

with the following transformation y = sin(2θv) that:
(α�

1 − α1)
2

= P2
u

(Pu + 2 N)2

(1 − y) c2(θv)

(s(θv) + c(θv))
2

= P2
u

(Pu + 2 N)2

(1 − y) c2(θv)

P + 2 N +√(P + 2N)2 + (y2 − 1)P2
v

.

Note that the value of y = −1, i.e., θv = −π/4, is included in
this expression. Thus we drop the case distinctions cos2(θv) =
1/2 and cos2(θv) �= 1/2.



As a conclusion, CD inner bound writes as:

RC D =
⋃

y∈[−1:1]

{
(R1, R2) ∈ �2+ ,

R1≤1

2
log2

(
Pu + 2 N

P(y) + 2 N

)

R2≤1

2
log2

(
(1 − y)Pv + 2 N

2 N

)}
,

where P(y) is defined by

P(y) � Pv Pu(1 − y)

P + 2 N +√(P + 2N)2 + (y2 − 1)P2
v

.

APPENDIX K
PROOF OF ACHIEVABILITY OF R3−ARV

Codebook generation:
We fix a p.m.f PQU1U2V X . Let R0, R1, R2 denote the

message rates and T1,2, T1,1 and T2 denote the binning
rates. Generate 2n R0 sequences qn(w0), w0 ∈ [1 : 2n R0 ]
each following the p.m.f:

∏n
i=1 PQ(qi (w0)). For each w0,

generate 2n T2 sequences vn(l2, w0) following the p.m.f∏n
i=1 PV |Q(vi (l2, w0)|qi(w0)) and map them randomly in

2n R2 bins Bn(w2, w0). Generate similarly 2n T1,1 sequences
un

1(l1,1, w0) and map them randomly in 2n R1 bins Bn
1 (w1, w0)

and 2n T1,2 sequences un
2(l1,2, w0) and map them in a distinct

set of 2n R1 bins Bn
2 (w1, w0).

Encoding:
for each message triple (w0, w1, w2) to be transmitted, find

in the product of all bins Bn(wi , w0), a triple of sequences
un

1(l1,1, w0), un
2(l1,2, w0), v

n(l1, w0) such that:(
qn(w0), un

1(l1,1, w0), un
2(l1,2, w0), v

n(l2, w0)
)

∈ T n
δ (QU1U2V ) . (45)

Send then a random mapping sequence: xn(w0, l1,1, l1,2, l2).
The encoding is error free if all inequalities in T are verified.

Decoding:
Each receiver decodes its intended messages (w0, w j ) by

decoding the index l j and non-uniquely the common message,
yielding the constraints of M.
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