

# Protein sequence comparison of human and non-human primate tooth proteomes

Carine Froment, Clément Zanolli, Mathilde Hourset, Emmanuelle

Mouton-Barbosa, Andreia Moreira, Odile Burlet-Schiltz, Catherine Mollereau

# ▶ To cite this version:

Carine Froment, Clément Zanolli, Mathilde Hourset, Emmanuelle Mouton-Barbosa, Andreia Moreira, et al.. Protein sequence comparison of human and non-human primate tooth proteomes. Journal of Proteomics, 2021, 231, pp.104045. 10.1016/j.jprot.2020.104045. hal-03039831

# HAL Id: hal-03039831 https://hal.science/hal-03039831

Submitted on 4 Dec 2020

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Protein sequence comparison of human and non-human primate tooth proteomes

Carine Froment<sup>1</sup>, Clément Zanolli<sup>2</sup>, Mathilde Hourset<sup>3,4</sup>, Emmanuelle Mouton-Barbosa<sup>1</sup>, Andreia Moreira<sup>3</sup>, Odile Burlet-Schiltz<sup>1</sup> and Catherine Mollereau<sup>3</sup>

<sup>1</sup> Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France.

<sup>2</sup> Laboratoire PACEA, UMR 5199 CNRS, Université de Bordeaux, Pessac, France.

<sup>3</sup> Laboratoire d'Anthropobiologie Moléculaire et Imagerie de Synthèse (AMIS), UMR 5288 CNRS, Université de Toulouse, UPS, Toulouse, France

<sup>4</sup> Faculté de chirurgie dentaire de Toulouse, Université de Toulouse, UPS, Toulouse, France.

Corresponding authors: Dr Catherine Mollereau <u>catherine.mollereau-manaute@ipbs.fr</u> Laboratoire AMIS Faculté de médecine, 37 allées Jules Guesde 31073 Toulouse Cedex 03, France Tel : 33 561 14 55 13 and Dr Odile Burlet-Schiltz, <u>odile.schiltz@ibps.fr</u> IPBS 205, Route de Narbonne BP 64182 31077 Toulouse Cedex 04, France Tel: 33 561 17 55 47

Keywords: Palaeoproteomics; Tooth; Primates; nanoLC-MS/MS; Taxonomy

# **Conflict of interest**

The authors declare that they have no conflict of interest.

### Acknowledgements

We are sincerely grateful to J. Braga (AMIS, Toulouse France), S. Jiquel (ISEM, Montpellier France) and R. Macchiarelli (HNHP, Poitiers France) for giving us access to their primate collections. We also thank the two colleagues that gave their surgically extracted molars. The work was supported by the French CNRS (PEPS blanc INEE 2016 and DefiXlife 2018-2019), in part by the Région Occitanie, European funds (Fonds Européens de Développement Régional, FEDER), Toulouse Métropole, and by the French Ministry of Research with the

Investissement d'Avenir Infrastructures Nationales en Biologie et Santé program (ProFI, Proteomics French Infrastructure project, ANR-10-INBS-08).

# Abstract

In the context of human evolution, the study of proteins may overcome the limitation of the high degradation of ancient DNA over time to provide biomolecular information useful for the phylogenetic reconstruction of hominid taxa. In this study, we used a shotgun proteomics approach to compare the tooth proteomes of extant human and non-human primates (gorilla, chimpanzee, orangutan and baboon) in order to search for a panel of peptides able to discriminate between taxa and further help reconstructing the evolutionary relationships of fossil primates. Among the 25 proteins shared by the five genera datasets, we found a combination of peptides with sequence variations allowing to differentiate the hominid taxa in the proteins AHSG, AMBN, APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE and SERPINA1. The phylogenetic tree confirms the placement of the samples in the appropriate genus branches. Altogether, the results provide experimental evidence that a shotgun proteomics approach on dental tissue has the potential to detect taxonomic variation, which is promising for future investigations of uncharacterized and/or fossil hominid/hominin specimens.

#### 1 1. Introduction

2 In the last ten years, major advances have been achieved in the field of human evolution with the increasing recovery of Late Pleistocene human genomes. These advances 3 have unveiled the existence of a new human group, the Denisovan hominins, an extinct 4 5 relative of Neanderthals [1, 2], in addition to recurrent interbreeding between archaic and modern humans during their period of cohabitation in Eurasia [3, 4]. However, despite the 6 7 exceptional retrieval of 0.4 million-year (My) old hominin genomic data from Sima de los Huesos in Spain [5, 6], the use of a DNA-based approach for older specimens, beyond the 8 Middle Pleistocene [7], remains limited due to a high degree of fragmentation of ancient DNA 9 over time [8, 9]. Therefore, the next challenging step is the biomolecular characterization of 10 fossils further back in time, in particular for the Early Pleistocene-Late Pliocene key period (3-11 12 2 My ago) corresponding to the emergence of the genus Homo. Such invaluable missing 13 data are essential for a more accurate reconstruction of the phylogenetic relationships 14 between the different hominin taxa [10].

15 As an alternative to DNA, proteins appear to be more resistant to post-mortem 16 damage, potentially allowing biomolecular investigation of the deeper time [11, 12]. Even in 17 unfavorable conditions proteins survive longer than DNA, as demonstrated by the recovery of > 3 My old peptides entrapped in ostrich egg shell in the warm African environment [13] and 18 19 more recently, of dental proteins from a subtropical Early Pleistocene specimen (1.9 My ago) 20 representative of the extinct Asian hominid Gigantopithecus blacki [14]. Given the ever increasing performance of mass spectrometers, in terms of sensitivity, sequencing speed 21 22 and resolution, it is now possible to study the protein content of ancient samples, using small 23 amount of precious paleontological and paleoanthropological material. This opens the way to a new field of research: Palaeoproteomics. Proteins have been sequenced from Late to Early 24 Pleistocene faunal and human fossils [7, 14-17], providing invaluable functional information 25 on past human (patho)physiology [18-20] and ancient diets [21, 22]. In addition, phylogenetic 26 reconstruction and taxonomic placement based on protein identification have also been 27 possible for extinct species and/or when DNA was no longer available [16, 23-27]. The two 28 main examples below on debated hominin fossils, have recently shed light on the 29 30 relationships between human lineages during evolution. On the basis of a collagen variant, 31 Chen et al. [24] were able to assign the mandible of Xiahe from the Tibetan plateau to a 32 Denisovan individual. For the first time, the presence of this hominin outside the Siberian Altaï area was therefore demonstrated together with its anatomical relationship with other 33 archaic hominin fossils in China. By analyzing the enamel proteome of a representative of 34 Homo antecessor from Atapuerca (Spain) dated to 0.8-0.9 My ago, Welker et al. [27] have 35

suggested a very close affinity between this species and the last common ancestor ofmodern humans, Neanderthals and Denisovans.

38 Collagen sequences are widely used to identify or characterize specimens [9, 28, 29], but they are sometimes not enough informative because of a high conservation between 39 40 species limiting accurate phylogenetic reconstruction [30]. It is therefore necessary to identify other proteins with sufficient taxonomic variability. In this context, the tooth proteome is 41 42 expected to be more informative than the bone proteome [9, 14, 16, 27]. Indeed, in addition to collagens, it also contains a variety of specific non-collagenous proteins with taxonomic 43 44 interest, including the X and Y forms of amelogenin able to provide information about the sex 45 of ancient individuals [27, 31-34].

In the present study we used a shotgun proteomics approach to compare the tooth proteomes of modern humans from the 21<sup>th</sup> century and non-human primates (gorilla, chimpanzee, orangutan, baboon) from the 19<sup>th</sup>-mid 20<sup>th</sup> century, in order to search for a panel of peptides able to discriminate between taxa. We focused on the analysis of the proteins shared by the five genera datasets to allow for comparison. We found in 14 proteins a combination of peptides with taxonomic variation potentially useful for future studies on uncharacterized and/or older hominid/hominin specimens.

53

# 54 2. Materials and Methods

55 2.1 Samples

Non-human primate teeth (2 individuals per genus) from 19<sup>th</sup>-mid 20<sup>th</sup> century 56 collections were obtained from the University of Poitiers with the agreement of Pr R. 57 58 Macchiarelli (samples T1: Gorilla, T2: Papio, T5: Pan., T6: Pan), from the University of 59 Toulouse with the agreement of Pr J. Braga (samples T3: Papio, T4: Gorilla), and from the 60 University of Montpellier with the agreement of S.Jiquel (samples T7: Pongo, T8: Pongo). Except for the two chimpanzee specimens that are attributed to *Pan troglodytes*, the species 61 of the other non-human primate samples is not known. Human teeth were obtained from two 62 63 colleagues who kindly donated their own M3 that had been surgically extracted three (LOS2) and fifteen (LKS2) years ago. Description of the teeth is given in Table S1. Teeth were 64 65 handled under a laminar flow hood and the operator was equipped with disposable clothes. The surface of the teeth was carefully cleaned with a solution of 1% SDS and abundantly 66 rinsed with sterile pure water. The tooth area to be sampled, (preferably chosen on the 67 cervical part of the crown so that the damaged area is minimally visible after repositioning the 68 tooth on the jaw) was first manually drilled with a micromotor STRONG 207-106 (Pouget-69 70 Pellerin, France) to abrade the surface. Then a spherical carbide drill (1-1.2 mm in diameter) 71 was used to pierce the enamel through the dentine tissue, over a sterile microtube to collect 72 the powder. Sample amounts ranged from 2 to 26 mg for non-human primates and 60 mg for

humans, respectively (Table S1). Collected powder was immediately processed for proteinextraction.

#### 75 2.2. Protein extraction and Trypsin digestion

76 Samples were prepared as five independent series, each including an extraction blank 77 with no material (Blk) that was processed in the same way as the tooth samples. Protein 78 extraction was performed by using the filter-aided sample preparation (FASP) protocol 79 described in [31]. It was slightly modified to include an additional step for recovering the flowthrough content of the first Amicon™ Ultra-4 (10kDa) filter unit (Merck Millipore) after 80 centrifugation which may contain material of interest (Fig. 1). After a demineralization step in 81 0.5 M EDTA pH 8 for 18 h at room temperature under rotation, the pellet was extracted in 0.1 82 M Tris pH 8, 0.1 M DTT, 4% SDS for 2h at 60 °C. The supernatants from the 83 demineralization and extraction steps were mixed with 8 M urea in 0.1 M Tris pH 8 and ultra-84 85 filtered through an Amicon<sup>™</sup> Ultra-4 (10kDa) centrifugal filter unit (4000g, swinging rotor, 86 room temperature). The flow-through (except for LOS2) was collected and ultra-filtered 87 through an Amicon<sup>™</sup> Ultra-4 (3kDa) centrifugal filter unit to recover smaller protein fragments 88 excluded from the 10kDa filtration. The two filtration units (giving at end samples referred as 89 T and Tpep, respectively) were then similarly processed. After a wash with 2 ml of 8 M urea 90 in 0.1M Tris pH 8, protein alkylation (50 mM 2-Chloroacetamide in 8M urea, 0.1 M Tris pH8) 91 was performed on the filter units for 20-30 min at room temperature in the dark. The units 92 were then washed (2 x 1 ml) with 8M urea in 0.1 M Tris pH 8, followed by 50 mM ammonium bicarbonate washes (1 x 1 ml, 1 x 0.5 ml). Proteins (T samples) and peptides (Tpep 93 94 samples) retained on the filter were dissolved in 50 mM ammonium bicarbonate and an 95 aliquot was harvested for quantification using the Qubit protein assay kit (Thermo Fisher Scientific). They were digested by overnight incubation at 37 °C with 2 µg sequencing grade 96 modified porcine trypsin (Promega). The digestion was prolonged the next day for 4-6 h with 97 2 µg additional trypsin. The tryptic peptide mixtures were recovered by centrifugation over a 98 new tube. The centrifugates were then transferred to microtubes, dried by using a centrifugal 99 100 vacuum concentrator and kept at -20°C until mass spectrometry analysis.

EDTA, Tris, and SDS were purchased from Invitrogen, urea and ammonium bicarbonatefrom Acros Organics, chloroacetamide from Sigma-Aldrich.

103 2.3. nanoLC-MS/MS analysis

The dried peptides were resuspended with 0.05% trifluoroacetic acid in 2% acetonitrile
at an estimated concentration of 1µg/µl based on protein quantification, and then analyzed
by online nanoLC using an UltiMate® 3000 RSLCnano LC system (Thermo Scientific,
Dionex) coupled to an Orbitrap Fusion Tribrid<sup>™</sup> mass spectrometer (Thermo Scientific,
Bremen, Germany). 1µl of the samples were loaded on a 300 µm ID x 5 mm PepMap C18

109 pre-column (Thermo Scientific, Dionex) at 20  $\mu$ l/min in 2% acetonitrile, 0.05% trifluoroacetic 110 acid. After 5 minutes of desalting, peptides were on-line separated on a 75  $\mu$ m ID x 50 cm 111 C18 column (in-house packed with Reprosil C18-AQ Pur 3  $\mu$ m resin, Dr. Maisch, and 112 equilibrated in 95% of buffer A (0.2% formic acid)) with a gradient of 5 to 25% of buffer B 113 (80% acetonitrile, 0.2% formic acid) for 80 min then 25% to 50% for 30 min at a flow rate of 114 300 nL/min.

115 The instrument was operated in the data-dependent acquisition (DDA) mode using a top-speed approach (cycle time of 3s). The survey scans MS were performed in the Orbitrap 116 over m/z 350-1550 with a resolution of 120,000 (at 200 m/z), an automatic gain control 117 (AGC) target value of 4e5, and a maximum injection time of 50 ms. Most intense ions per 118 119 survey scan were selected at 1.6 m/z with the quadrupole and fragmented by Higher Energy Collisional Dissociation (HCD). The monoisotopic precursor selection was turned on, the 120 intensity threshold for fragmentation was set to 50,000 and the normalized collision energy 121 122 was set to 35%. The resulting fragments were analyzed in the Orbitrap with a resolution of 30,000 (at 200 m/z), an automatic gain control (AGC) target value of 5e4, and a maximum 123 injection time of 60 ms. The dynamic exclusion duration was set to 30 s with a 10 ppm 124 tolerance around the selected precursor and its isotopes. For internal calibration the 125 445.120025 ion was used as lock mass. 126

Each sample was subjected to two independent LC-MS/MS runs (TR1, TR2) for assessing the identification reproducibility. To control for carry-over contamination, the MS workflow process included a washing step followed by two blank MS runs using gradient conditions similar to those of the samples and performed before and after each sample MS run (including the blank samples).

# 132 2.4. Bioinformatics analysis of nanoLC-MS/MS data

All raw mass spectrometry files were processed in parallel using two different protein 133 identification softwares: Proteome Discoverer<sup>™</sup> software 2.3.0.523 (Thermo Fischer 134 Scientific) with Mascot 2.6.2 (Matrix Science, London, UK) combined with the Percolator 135 algorithm (version 2.05) for PSM search optimization, and PEAKS<sup>™</sup> Studio 10.0 software 136 137 (Bioinformatics Solutions Inc., Waterloo, ON, Canada) using the full set of available 138 processes PEAKS de novo > PEAKS DB > PEAKS PTM> PEAKS SPIDER [35, 36]. For both 139 softwares, data obtained from T and Tpep samples were searched against the UniProtKB 140 Swiss-Prot and TrEMBL protein databases (including canonical and isoform sequences, and 141 supplemented with frequently observed contaminants) corresponding to their own taxon: Uniprot\_isoF\_Human database released 2019\_09 with Homo sapiens taxonomy (195349 142 sequences), Uniprot isoF Gorilla database released 2019 07 with Gorilla taxonomy (46070 143 sequences), Uniprot\_isoF\_Pan database released 2019\_06 with Pan (chimpanzees) 144

taxonomy (154055 sequences), Uniprot\_isoF\_Pongo released 2019\_02 with *Pongo*(orangutan) taxonomy (96058 sequences), Uniprot\_isoF\_Papio released 2019\_02 with *Papio*(baboons) taxonomy (46692 sequences). Data obtained from the blank samples were
searched against the five databases.

For Proteome Discoverer analysis, Mascot database searches were performed 149 individually for each raw file using a processing workflow consisting of the following 150 151 parameters: mass tolerances in MS and MS/MS were set to 10 ppm and 0.02 Da, respectively. Carbamidomethylation of cysteine was set as a fixed modification. The enzyme 152 153 specificity was selected as semi-tryptic, with a maximum of three missed cleavages. The 154 main protein modifications commonly observed in damaged and ancient proteins were set as 155 variable modifications: deamidation (N, Q), oxidation (M, P), carbamylation (K, N-terminal protein), and conversion to pyro-glutamic acid (N-terminal Q). The Percolator algorithm was 156 used to validate PSMs and peptides based on Posterior Error Probability (PEP) values at a 157 FDR  $\leq$  1% [37, 38]. FDR was estimated by a target-decoy approach using the reversed 158 database. Afterwards, the processing workflow results (.msf files) were combined into 159 sample (technical replicates TR1 + TR2), genus (technical replicates TR1 + TR2, T and Tpep 160 samples) or extraction blank multiconsensus reports. Each resulting dataset was then filtered 161 using a consensus workflow consisting of the following parameters: Only PSMs with rank 1 162 and Mascot ion score  $\geq$  20 were considered. Peptide identifications were grouped into 163 proteins according to the law of parsimony and filtered to 5% FDR. 164

165 For PEAKS analysis, all the raw files belonging to the same genus (technical replicates TR1 + TR2, T and Tpep samples) or to the extraction blanks were loaded into a single 166 167 identification workflow per genus or per extraction blank and processed using the following parameters: mass tolerances in MS and MS/MS were set to 10 ppm and 0.02 Da, 168 169 respectively. Carbamidomethylation of cysteine was set as a fixed modification, deamidation 170 (N, Q) and oxidation (M, P) as variable modifications. A maximum of 3 modifications per peptide was allowed. In the PEAKS PTM module, all the 313 modifications and also a 171 172 maximum of 3 modifications per peptide were considered, and the validation was based on an average local confidence (ALC) score  $\geq$  15%. Trypsin with semi-specific digest mode and 173 174 a maximum of three missed cleavages were selected. Finally, each resulting dataset per genus and per extraction blank obtained from the PEAKS SPIDER module, was filtered and 175 exported using the following threshold values: Peptide score of -10 lgP  $\geq$  20-22 adjusted to 176 obtain a FDR  $\leq$  1% for PSMs and peptides, Protein score of -10lgP  $\geq$  25-49 adjusted to 177 obtain a FDR  $\leq$  5% without taking into account the criterion of unique peptide and only 178 considering significant peptides, and *de novo* only ALC (%)  $\geq$  50. FDR was estimated by the 179 180 PEAKS "decoy-fusion" approach.

For each analysis, the proteins marked as contaminant or found in the extraction blanks were excluded from the datasets analyzed. All the MS/MS spectra of the taxonspecific peptides were inspected manually. The species specificity of peptides with taxonomic interest were checked by a protein Blast (BlastP) search in Uniprot (https://www.uniprot.org/) and NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

All the RAW data files, the output files corresponding to Proteome Discoverer<sup>™</sup> (.msf files) and PEAKS (.csv files and HTML reports) analyses, and all the fasta files used for the database searches have been deposited on the ProteomeXchange Consortium [PMID 24727771] via the PRIDE partner repository and can be accessed with the dataset identifier PXD018933.

191 2.5. Proteomic data analysis

To be able to compare proteomes between genera, the accession numbers of the 192 193 proteins identified in the different taxa were converted to human gene names by using the 194 Retrieve ID functions of Uniprot (https://www.uniprot.org/), or the db2db conversion tool of 195 bioDBnet (https://biodbnet-abcc.ncifcrf.gov/), and/or by BLAST alignment and manual 196 inspection. Classification of the identified proteins into functional categories according to GO 197 terms was performed by using the GSEA software at https://www.gseamsigdb.org/gsea/msigdb/annotate.jsp [39]. Graphic representations and statistical analysis of 198 the data were performed by using Prism 7 (GraphPad Software Inc., USA). Online tool found 199 at http://bioinformatics.psb.ugent.be/webtools/Venn/ was used to produce the Venn 200 diagrams. 201

# 202 2.6 Phylogenetic analysis

The phylogenetic tree was based on the alignment of 14 proteins (AHSG, AMBN, 203 APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE, 204 205 SERPINA1). The concatenated protein sequences identified in each genus sample were 206 aligned to the concatenated corresponding protein sequences from 8 hominoids (Homo sapiens. Gorilla gorilla, G.gorilla gorilla, Pan troglodytes, Pan paniscus, Pongo abelii, Pongo 207 208 pygmaeus, Nomascus leucogenys) and 3 Papionini (Papio anubis, Papio hamadryas, 209 Mandrillus leucophaeus) by using the Catfasta2phyml tool available at https://github.com/nylander/catfasta2phyml. The concatenated alignment is given in the 210 supplementary Phylotreealign.fasta file. The best-fit model for generating the phylogenetic 211 tree was selected based on the Akaike's information criterion corrected (AICc) implemented 212 in jModelTest 2 [40]. The tree was built using RAxML-NG [41] with a bootstrapping procedure 213 214 (X1000) as statistical test for branch support.

216 3. Results

3.1. Comparative analysis of human, gorilla, chimpanzee, orangutan and baboon toothproteomes.

For each genus, two types of samples (T and Tpep) were prepared (Fig. 1). The T 219 samples correspond to proteins retained on the filter unit of the FASP protocol and usually 220 221 analyzed in proteomic experiments. The Tpep samples were recovered from the elution of 222 the filter units that is usually discarded but might also contain material of interest such as 223 peptides or protein fragments present in the demineralized/lysed extracts. The samples from 2 individuals per genus (Homo, Gorilla, Pan, Pongo and Papio) were analyzed in duplicate 224 by using a nanoLC-MS/MS data-dependent analysis of the tryptic digestions. The Proteome 225 Discoverer software was used with the Mascot search engine for protein identification in 226 genus-specific protein databases. This led to identification of 32 to 172 proteins per T 227 228 samples, with only a few additional ones identified in Tpep samples (Fig. S1A and S1B).

229 The total number of proteins identified per taxon by Proteome Discoverer ranged from 230 33 in chimpanzee (Pan) to 228 in human (Fig. S1C and Table S2 for the raw list of proteins). 231 To allow for the comparison between the five proteomes, the protein accessions were 232 converted into the corresponding human gene names. This resulted in a reduced number of 233 identification (Fig.S1C) because of redundant proteins corresponding to multiple accession 234 numbers (isoforms, incomplete sequence, etc.) for a same gene. The analysis of the 235 distribution of proteins between the five proteomes (Fig. 2A) indicates that 25 proteins are common to the five genera (Table 1). Less than 15% of proteins are unique to each taxon, 236 237 with the exception of Homo (45%) and Papio (25%). A gene set overlap analysis according 238 to GO annotation terms indicates that the Top 20 most significant gene sets are different between the common and the exclusive pooled proteins (Fig.2B). While shared proteins are 239 annotated with terms related to extracellular matrix organization/ossification and 240 blood/wound healing, 20% to 46% of the proteins unique in the Homo, Gorilla, Pongo and 241 Papio samples are significantly associated with immunity, in addition to extracellular matrix 242 organization and coagulation (Fig.2B, Table S3). Identifying proteins involved in the immune 243 244 system in the variable proteome is not unexpected since it may reflect the different sanitary 245 status between taxa and/or individuals, in addition to a possible genus-specific expression of 246 proteins [42].

247

# 3.2. Analysis of the proteins of interest for taxonomic discrimination

A comparative analysis of the peptide lists from the proteins common to the five primate proteomes was performed to search for the presence of taxon-specific peptides that could be useful markers for specimen identification. Compared to the only use of protein database search engines, *de novo* peptide sequencing algorithms that do not require a

protein sequence database [35], or error-tolerant search algorithms that utilize protein 252 sequence databases while allowing sequence deviation [43], represent powerful approaches 253 254 in palaeoproteomics to allow for the identification of novel amino acid substitutions. Therefore, to potentially improve the identification of taxon-specific peptides, an additional 255 round of bioinformatic data analysis was performed using PEAKS software which uses a de 256 novo-assisted database search algorithm to maximize the peptide identification efficiency 257 258 [35, 36]. As shown in Fig.S3A, PEAKS yielded slightly more protein identifications than Proteome Discoverer (Fig. S1C), with a 40-72% overlap of the identifications between the 259 260 two datasets (Fig. S3B) if considering gene name correspondence rather than protein 261 accessions to avoid protein redundancy.

262 The 25 proteins found in the five primate samples, especially the collagens, were mainly identified by peptides covering regions of highly conserved sequences. However, a 263 number of peptides showing amino acid variations between taxa were identified in 14 264 proteins (AHSG, AMBN, APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, 265 OMD, PCOLCE, SERPINA1). The lists of all the peptides identified for each protein in each 266 dataset per genus with Proteome Discoverer or PEAKS softwares are given in Tables S4 to 267 S17. The phylogenetic tree based on the concatenated alignment of the 14 proteins confirms 268 the placement of the five samples in the appropriate genus branches (Fig. 3). Because of 269 missing protein sequences in the database for some species, in particular G. gorilla, P. 270 271 pygmaeus, P. hamadryas, and as no peptide strictly specific to a species was identified in 272 the dataset, with the exception of *H. sapiens* (Table 2), the taxonomic discrimination at the level of the species is less guaranteed. The main representative peptides showing amino 273 274 acid substitutions able to discriminate between the hominids taxa are presented in Table 2, 275 after the validation of their specificity by a BlastP search. The HCD MS/MS spectra are 276 shown in Fig. 4 and 5 and Fig. S4. Peptides specific to the taxa Homo, Gorilla and Pongo 277 were identified. No Pan-specific peptides were detected, probably because of the lower 278 protein coverage in this sample (see discussion). Despite the phylogenetic distance and a high number of amino acid variations with respect to the four other primates, no Papio-279 specific peptide was found (Tables S4-S17). 280

The protein displaying the most diversity is alpha-2-HS-glycoprotein/Fetuin A (AHSG) 281 282 which is well covered in the five genera (Table 1). A number of discriminating peptides were identified in this protein (Tables 2 and S4). Peptides covering AHSG-[72-99] with a lysine 283 residue at the position 99 are specific to Gorilla (Fig. 4A) while the peptides covering AHSG-284 [104-117] with a lysine residue at the position 117 and AHSG-[328-337] with a leucine 285 residue at the position 329 are specific to Pongo (Fig. 4B and 4C). Interestingly, a particular 286 combination of amino acids in the peptides covering AHSG-[318-337] specifically 287 differentiates Homo (P329/V333) and Pongo (L329/V333) from the two other taxa 288

(P329/A333) (Fig. 4C, and Table 2). In addition, the position 45 and 52 in the peptide AHSG-289 [29-57] allows to distinguish Homo and Gorilla (145/L52) from Pan and Pongo (145/H52) and 290 from Papio (V45/L52) (Fig.4D and Tables 2 and S4). Among the other proteins, Homo-291 specific peptides are identified in the F2 protein (F2-[199-217]), Gorilla-specific peptides are 292 identified in the proteins COL3A1 (COL3A1-[351-368] and -[902-923]), DSPP (DSPP-[403-293 411]) and SERPINA1 (SERPINA1-[126-149]), and Pongo-specific peptides are identified in 294 295 the proteins APOA1 (APOA1-[185-195]) and BGN (BGN-[220-239]) (Table 2 and Fig. S4). Beside the taxon-specific peptides, peptides with a variable signature or a combination of 296 297 variable amino acids among taxa, may be also informative. For example, peptides covering 298 PCOLCE-[305-320] distinguish Homo and Pan (S309) from Gorilla and Pongo (T308) (Table 299 2 and Fig. 5). Peptides C9-[232-242] bearing A238, C9-[546-558] bearing I546/E554/N557 and DSPP-[362-370] bearing T365/A367 are specific to the Homininae taxon (Table 2 and 300 Fig. S4). The peptide DSPP-[56-66] with a leucine residue at the position 60 is specific to 301 302 Homo and Pan. Taken together, the data demonstrate therefore that it is possible by using a 303 MS-based proteomics approach on dental tissue to identify a combination of peptides enabling the distinction between members of the four hominid genera (Homo, Gorilla, Pan 304 and Pongo) in accordance with the phylogenetic tree (Fig. 3). 305

306

#### 307 4. Discussion

308 The present study is, to our knowledge, the first comparative analysis of tooth proteomes from five living primate genera, including one cercopithecidae (Papio) and the 309 four extant hominids (Homo, Pan, Gorilla, Pongo). It is noteworthy that we had to deal with 310 311 the incomplete genomic annotation of non-human primates to convert protein accessions from each species into the corresponding canonical (human) gene names, a prerequisite for 312 allowing comparison between taxa. However, even if a few mis-conversions or 313 unrecognitions might still remain, a total of 312 proteins corresponding to the pooled proteins 314 from all samples across all genera after removing of duplicates, were identified (Fig. S5A). 315 67% belong to dentine tissue, compared to the recently reported comprehensive human 316 317 dentine proteome [44]. The other 30% proteins include the amelogenin protein specific to the 318 enamel tissue, diverse collagens, in addition to constituents of the extracellular matrix and 319 immune system proteins (Fig S5B). The later components may reflect the dynamic and 320 heterogeneous part of dentine, a tissue rich in diverse bioactive peptides involved in host defense, regenerative process, angiogenesis, growth and differentiation [44-47]. These are 321 322 expected to vary between species or individuals depending on health status and/or traumatic 323 injury [42, 47, 48]. The number of proteins identified was lower in chimpanzee compared to the other specimens, and this was not due to a smaller tooth sampling (same amount as in 324

orangutan, Table S1). Without excluding a possible poor preservation of proteins in the 325 chimpanzee specimens, or a less efficient protein extraction, the low number of proteins 326 327 could also reflect a different level of protein expression in the dental tissue in this taxon [49]. 328 Indeed, the chimpanzee has a particularly thin enamel which is more prone to tooth damage 329 than in the other great apes [50]. Another explanation could be related to the tooth types that were sampled. While for all the other specimens, enamel and dentine powder were collected 330 331 from permanent teeth, for the two chimpanzees we could only sample their deciduous teeth. The nature and degree of protein expression might differ between permanent and deciduous 332 333 teeth, although this does not appear to be the case in humans [51] and this will need to be 334 investigated further.

335 All the proteins common to the five proteomes, with the exception of COL10A1 and COL23 A1, have already been identified in human dentine extracts [44, 46, 52], although 336 AMBN may also be derived from the enamel [45, 53]. COL22A1 and F2 have been detected 337 at the enamel-dentine junction (EDJ), an interface between the mineralized tissues involved 338 in mechanical load [54]. The analysis of the peptides in the proteins common to the five 339 proteomes allowed for the identification of sequence variations in AHSG, AMBN, APOA1, 340 BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE and SERPINA1 341 enabling a taxonomic placement at the genus level (Fig.3 and Table 2). However, no species 342 marker was detected, excepted for the species H.sapiens. Interestingly, nine of the proteins 343 344 have been detected in 5000-year-old bovine dentin samples [55]. These include AHSG also 345 identified in the 1.9 My old enamel of the extinct primate Gigantopithecus blacki [14] and COL3A1 identified in the dentine from the Xiahe specimen attributed to Denisova [24]. 346 347 Therefore, some of the proteins described here and showing a potential taxonomic interest 348 survive in time and to fossilization processes.

349 AHSG has already been reported to be resistant to degradation and to display 350 enough sequence variation to be of interest for phylogenetic studies [9, 12]. Here, although 351 the protein was identified by 3 peptides in only 2 out of 20 blank replicates (Table S2), it was 352 identified by a larger number of peptides in the samples (Table 1) suggesting a probable endogenous origin of the protein in the samples. AHSG was therefore kept in the analysis to 353 make a comparison with the data from the literature on ancient specimens. Among the 354 355 peptides identified in AHSG, those bearing amino acids K-99 or L-329 are specific to Gorilla and Pongo, respectively. In addition, the combination of P-329 and V-333 is specific to the 356 Homo taxon. In Gigantopithecus blacki [14] only one peptide was identified in a highly 357 conserved region of the protein (AHSG-[133-145]) susceptible to contamination in our 358 analysis (Table S4). AMBN was poorly covered in our samples (Tables 1 and S5) and not 359 360 detected in the dentine of the Xiahe Denisovan [24], in contrast to the other paleontological specimens sampled from dental enamel [14, 27]. This suggests that using enamel tissue to 361

extract this protein is more appropriate than using dentine alone, or both dentine and 362 enamel. Similarly to ancient samples (Homo antecessor, Homo erectus, Gigantopithecus 363 blacki), the N-terminal part of the AMBN including the substitutions S34T and R55G that 364 365 distinguish Papio from the other hominid taxa were covered in our samples (Table S5). 366 However, no peptides were identified in the region overlapping a combination of amino acid substitutions that differentiates Pongo (V264/G269) and Papio (M265/G170) from the others 367 368 taxa (V265/E270), and which indeed helps to affiliate Gigantopithecus to the pongine clade. The dentine proteome of the Denisovan specimen from Xiahe exclusively contains collagens. 369 370 Interestingly, all the peptides identified in the ancient COL3A1 were also identified in our 371 samples (Table S11). In particular, they include the peptides covering the substitution A364V 372 specific to Gorilla, and the substitution S796G that differentiates Homo/Gorilla/Pan (S) from Pongo/Papio (G). 373

A number of taxon-specific peptides were identified in the other dentine proteins 374 375 (Table 2), with the exception of *Pan* due to the low protein coverage of the chimpanzee 376 samples, and probably also because of the high sequence homology with Homo (lower bootstrap at the hominin node, Fig.3). Peptides with taxonomic specificity were generally 377 identified together with the corresponding peptides in the other taxa proteins (Fig. 4, Fig. 5, 378 Fig. S4 and Tables S4-S17). As some positions were also covered in ancient samples, the 379 results support the potential of a MS-based proteomics approaches for protein identification 380 381 and taxonomic discrimination of extant and fossil primates from tooth samples.

382 In conclusion, the present comparison between human and non-human primates tooth proteomes shows that a shotgun proteomics approach on dental tissue has the 383 384 potential to discriminate between the hominid taxa Homo, Gorilla, Pan and Pongo, despite a 385 high protein sequence homology (Fig.3). The results also suggest that dentine proteins offer 386 informative variability. However the data highlight the limitation of the method to differentiate 387 individual species. A targeted MS-based approach using a combination of the peptides identified in this study, especially in AHSG, APOA1, BGN, COL3A1, DSPP, F2 and 388 389 PCOLCE, could be applied for further in-depth taxonomic investigations of ancient samples, as previously done with amelogenin peptides for sex estimation [31]. In light of the recent 390 papers on Pleistocene specimens [14, 27] a promising way is open to characterize the 391 392 taxonomic attribution and phylogenetic relationships of fossil hominid remains, notably for those older than the Middle Pleistocene for which DNA information may not be preserved or 393 394 not retrievable with the currently available methods.

# References

[1] Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222-6.
 Epub 2012/09/01. doi: 10.1126/science.1224344. PubMed PMID: 22936568; PubMed Central PMCID: PMC3617501.

[2] Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature.
2014;505(7481):43-9. Epub 2013/12/20. doi: 10.1038/nature12886. PubMed PMID: 24352235; PubMed Central PMCID: PMC4031459.

[3] Fu Q, Hajdinjak M, Moldovan OT, Constantin S, Mallick S, Skoglund P, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature.
2015;524(7564):216-9. doi: 10.1038/nature14558. PubMed PMID: 26098372; PubMed Central PMCID: PMCPMC4537386.

[4] Slon V, Mafessoni F, Vernot B, de Filippo C, Grote S, Viola B, et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature. 2018. doi:

10.1038/s41586-018-0455-x. PubMed PMID: 30135579.

[5] Meyer M, Arsuaga JL, de Filippo C, Nagel S, Aximu-Petri A, Nickel B, et al. Nuclear
DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature.
2016;531(7595):504-7. doi: 10.1038/nature17405. PubMed PMID: 26976447.

[6] Meyer M, Fu Q, Aximu-Petri A, Glocke I, Nickel B, Arsuaga JL, et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature. 2014;505(7483):403-6. doi: 10.1038/nature12788. PubMed PMID: 24305051.

[7] Orlando L, Ginolhac A, Zhang G, Froese D, Albrechtsen A, Stiller M, et al.
 Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature. 2013;499(7456):74-8. Epub 2013/06/28. doi: 10.1038/nature12323. PubMed PMID: 23803765.

[8] Cappellini E, Collins MJ, Gilbert MT. Biochemistry. Unlocking ancient protein palimpsests. Science. 2014;343(6177):1320-2. Epub 2014/03/22. doi:

10.1126/science.1249274. PubMed PMID: 24653025.

[9] Welker F. Palaeoproteomics for human evolution studies. Quaternary Science Reviews. 2018;190:137-47.

[10] Herries AIR, Martin JM, Leece AB, Adams JW, Boschian G, Joannes-Boyau R, et al.
 Contemporaneity of Australopithecus, Paranthropus, and early Homo erectus in South Africa.
 Science. 2020;368(6486). doi: 10.1126/science.aaw7293. PubMed PMID: 32241925.

[11] Schweitzer MH, Schroeter ER, Goshe MB. Protein molecular data from ancient (>1 million years old) fossil material: pitfalls, possibilities and grand challenges. Anal Chem.

2014;86(14):6731-40. Epub 2014/07/02. doi: 10.1021/ac500803w. PubMed PMID: 24983800.

[12] Wadsworth C, Buckley M. Proteome degradation in fossils: investigating the longevity of protein survival in ancient bone. Rapid communications in mass spectrometry : RCM.
2014;28(6):605-15. Epub 2014/02/13. doi: 10.1002/rcm.6821. PubMed PMID: 24519823.

[13] Demarchi B, Hall S, Roncal-Herrero T, Freeman CL, Woolley J, Crisp MK, et al. Protein sequences bound to mineral surfaces persist into deep time. Elife. 2016;5. doi: 10.7554/eLife.17092. PubMed PMID: 27668515; PubMed Central PMCID: PMCPMC5039028.

[14] Welker F, Ramos-Madrigal J, Kuhlwilm M, Liao W, Gutenbrunner P, de Manuel M, et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature. 2019;576(7786):262-5. doi: 10.1038/s41586-019-1728-8. PubMed PMID: 31723270; PubMed Central PMCID: PMCPMC6908745.

[15] Cappellini E, Jensen LJ, Szklarczyk D, Ginolhac A, da Fonseca RA, Stafford TW, et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins. Journal of proteome research. 2012;11(2):917-26. Epub 2011/11/23. doi: 10.1021/pr200721u. PubMed PMID: 22103443.

[16] Cappellini E, Welker F, Pandolfi L, Ramos-Madrigal J, Samodova D, Ruther PL, et al.
Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny.
Nature. 2019;574(7776):103-7. doi: 10.1038/s41586-019-1555-y. PubMed PMID: 31511700;
PubMed Central PMCID: PMCPMC6894936.

[17] Nielsen-Marsh CM, Richards MP, Hauschka PV, Thomas-Oates JE, Trinkaus E, Pettitt PB, et al. Osteocalcin protein sequences of Neanderthals and modern primates. Proc Natl Acad Sci U S A. 2005;102(12):4409-13. Epub 2005/03/09. doi: 10.1073/pnas.0500450102.
PubMed PMID: 15753298; PubMed Central PMCID: PMC555519.

[18] Jersie-Christensen RR, Lanigan LT, Lyon D, Mackie M, Belstrom D, Kelstrup CD, et al. Quantitative metaproteomics of medieval dental calculus reveals individual oral health status. Nature communications. 2018;9(1):4744. doi: 10.1038/s41467-018-07148-3. PubMed PMID: 30459334; PubMed Central PMCID: PMCPMC6246597.

[19] Maixner F, Overath T, Linke D, Janko M, Guerriero G, van den Berg BH, et al.
Paleoproteomic study of the Iceman's brain tissue. Cellular and molecular life sciences :
CMLS. 2013;70(19):3709-22. Epub 2013/06/07. doi: 10.1007/s00018-013-1360-y. PubMed
PMID: 23739949.

[20] Warinner C, Rodrigues JF, Vyas R, Trachsel C, Shved N, Grossmann J, et al.
Pathogens and host immunity in the ancient human oral cavity. Nature genetics.
2014;46(4):336-44. Epub 2014/02/25. doi: 10.1038/ng.2906. PubMed PMID: 24562188;
PubMed Central PMCID: PMC3969750.

[21] Hendy J, Warinner C, Bouwman A, Collins MJ, Fiddyment S, Fischer R, et al.
Proteomic evidence of dietary sources in ancient dental calculus. Proc Biol Sci.
2018;285(1883). doi: 10.1098/rspb.2018.0977. PubMed PMID: 30051838; PubMed Central PMCID: PMCPMC6083251.

[22] Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C, et al. Direct evidence of milk consumption from ancient human dental calculus. Scientific reports.
2014;4:7104. Epub 2014/11/28. doi: 10.1038/srep07104. PubMed PMID: 25429530; PubMed Central PMCID: PMC4245811.

[23] Brown S, Higham T, Slon V, Paabo S, Meyer M, Douka K, et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Scientific reports. 2016;6:23559. Epub 2016/03/30. doi: 10.1038/srep23559.
PubMed PMID: 27020421; PubMed Central PMCID: PMC4810434.

[24] Chen F, Welker F, Shen CC, Bailey SE, Bergmann I, Davis S, et al. A late Middle
Pleistocene Denisovan mandible from the Tibetan Plateau. Nature. 2019. doi:
10.1038/s41586-019-1139-x. PubMed PMID: 31043746.

[25] Rybczynski N, Gosse JC, Harington CR, Wogelius RA, Hidy AJ, Buckley M. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nature communications. 2013;4:1550. Epub 2013/03/07. doi: 10.1038/ncomms2516. PubMed PMID: 23462993; PubMed Central PMCID: PMC3615376.

[26] Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, et al. Ancient proteins resolve the evolutionary history of Darwin's South American ungulates. Nature. 2015;522(7554):81-4. Epub 2015/03/25. doi: 10.1038/nature14249. PubMed PMID: 25799987.

[27] Welker F, Ramos-Madrigal J, Gutenbrunner P, Mackie M, Tiwary S, Rakownikow Jersie-Christensen R, et al. The dental proteome of Homo antecessor. Nature.

2020;580(7802):235-8. doi: 10.1038/s41586-020-2153-8. PubMed PMID: 32269345.

[28] Buckley M, Collins M, Thomas-Oates J, Wilson JC. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid communications in mass spectrometry : RCM. 2009;23(23):3843-54. Epub 2009/11/10. doi: 10.1002/rcm.4316. PubMed PMID: 19899187.

[29] Welker F, Hajdinjak M, Talamo S, Jaouen K, Dannemann M, David F, et al.

Palaeoproteomic evidence identifies archaic hominins associated with the Chatelperronian at the Grotte du Renne. Proc Natl Acad Sci U S A. 2016. Epub 2016/09/18. doi:

10.1073/pnas.1605834113. PubMed PMID: 27638212.

[30] Cappellini E, Prohaska A, Racimo F, Welker F, Pedersen MW, Allentoft ME, et al.
Ancient Biomolecules and Evolutionary Inference. Annu Rev Biochem. 2018;87:1029-60. doi:
10.1146/annurev-biochem-062917-012002. PubMed PMID: 29709200.

[31] Froment C, Hourset M, Saenz-Oyhereguy N, Mouton-Barbosa E, Willmann C, Zanolli C, et al. Analysis of 5000year-old human teeth using optimized large-scale and targeted proteomics approaches for detection of sex-specific peptides. J Proteomics.
2020;211:103548. doi: 10.1016/j.jprot.2019.103548. PubMed PMID: 31626997.

[32] Stewart NA, Gerlach RF, Gowland RL, Gron KJ, Montgomery J. Sex determination of human remains from peptides in tooth enamel. Proc Natl Acad Sci U S A.

2017;114(52):13649-54. doi: 10.1073/pnas.1714926115. PubMed PMID: 29229823; PubMed Central PMCID: PMCPMC5748210.

[33] Wasinger VC, Curnoe D, Bustamante S, Mendoza R, Shoocongdej R, Adler L, et al.
 Analysis of the Preserved Amino Acid Bias in Peptide Profiles of Iron Age Teeth from a
 Tropical Environment Enable Sexing of Individuals Using Amelogenin MRM. Proteomics.
 2019;19(5):e1800341. doi: 10.1002/pmic.201800341. PubMed PMID: 30650255.

[34] Zanolli C, Hourset M, Esclassan R, Mollereau C. Neanderthal and Denisova tooth protein variants in present-day humans. PLoS One. 2017;12(9):e0183802. doi:
10.1371/journal.pone.0183802. PubMed PMID: 28902892; PubMed Central PMCID: PMCPMC5597096.

[35] Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid communications in mass spectrometry : RCM. 2003;17(20):2337-42. doi: 10.1002/rcm.1196.
PubMed PMID: 14558135.

[36] Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, et al. PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics. 2012;11(4):M111 010587. doi: 10.1074/mcp.M111.010587. PubMed PMID: 22186715; PubMed Central PMCID: PMCPMC3322562.

[37] Kall L, Storey JD, MacCoss MJ, Noble WS. Posterior error probabilities and false discovery rates: two sides of the same coin. Journal of proteome research. 2008;7(1):40-4. doi: 10.1021/pr700739d. PubMed PMID: 18052118.

[38] Sinitcyn P, Rudolph JD, Cox J. Computational methods for understanding mass spectrometry-based shotgun proteomic data. Annula Review of Biomedical Data Science.
2018;1:28. doi: <u>https://doi.org/10.1146/annurev-biodatasci-080917-013516</u>.

[39] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50. doi:

10.1073/pnas.0506580102. PubMed PMID: 16199517; PubMed Central PMCID: PMCPMC1239896.

[40] Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. doi: 10.1038/nmeth.2109.
PubMed PMID: 22847109; PubMed Central PMCID: PMCPMC4594756.

[41] Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics.
2019;35(21):4453-5. doi: 10.1093/bioinformatics/btz305. PubMed PMID: 31070718; PubMed Central PMCID: PMCPMC6821337.

[42] Haley PJ. Species differences in the structure and function of the immune system.Toxicology. 2003;188(1):49-71. doi: 10.1016/s0300-483x(03)00043-x. PubMed PMID: 12748041.

[43] Welker F. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment. BMC Evol Biol. 2018;18(1):23.
doi: 10.1186/s12862-018-1141-1. PubMed PMID: 29463217; PubMed Central PMCID: PMCPMC5819086.

[44] Widbiller M, Schweikl H, Bruckmann A, Rosendahl A, Hochmuth E, Lindner SR, et al.
Shotgun Proteomics of Human Dentin with Different Prefractionation Methods. Scientific reports. 2019;9(1):4457. doi: 10.1038/s41598-019-41144-x. PubMed PMID: 30872775;
PubMed Central PMCID: PMCPMC6418255.

[45] Jagr M, Eckhardt A, Pataridis S, Broukal Z, Duskova J, Miksik I. Proteomics of human teeth and saliva. Physiol Res. 2014;63 Suppl 1:S141-54. PubMed PMID: 24564654.

[46] Park ES, Cho HS, Kwon TG, Jang SN, Lee SH, An CH, et al. Proteomics analysis of human dentin reveals distinct protein expression profiles. Journal of proteome research.
2009;8(3):1338-46. doi: 10.1021/pr801065s. PubMed PMID: 19193101.

[47] Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR. Dentine as a bioactive extracellular matrix. Arch Oral Biol. 2012;57(2):109-21. doi:

10.1016/j.archoralbio.2011.07.008. PubMed PMID: 21855856.

 [48] Bahar FG, Ohura K, Ogihara T, Imai T. Species difference of esterase expression and hydrolase activity in plasma. J Pharm Sci. 2012;101(10):3979-88. doi: 10.1002/jps.23258.
 PubMed PMID: 22833171.

 [49] Horvath JE, Ramachandran GL, Fedrigo O, Nielsen WJ, Babbitt CC, St Clair EM, et al.
 Genetic comparisons yield insight into the evolution of enamel thickness during human evolution. Journal of human evolution. 2014;73:75-87. doi: 10.1016/j.jhevol.2014.01.005.
 PubMed PMID: 24810709.

[50] Lee JJ, Morris D, Constantino PJ, Lucas PW, Smith TM, Lawn BR. Properties of tooth enamel in great apes. Acta Biomater. 2010;6(12):4560-5. doi: 10.1016/j.actbio.2010.07.023. PubMed PMID: 20656077.

[51] Wright JT, Hall K, Yamauchi M. The protein composition of normal and developmentally defective enamel. Ciba Found Symp. 1997;205:85-99; discussion -106. doi: 10.1002/9780470515303.ch7. PubMed PMID: 9189619.

[52] Jagr M, Eckhardt A, Pataridis S, Miksik I. Comprehensive proteomic analysis of human dentin. Eur J Oral Sci. 2012;120(4):259-68. doi: 10.1111/j.1600-0722.2012.00977.x. PubMed PMID: 22813215.

[53] Castiblanco GA, Rutishauser D, Ilag LL, Martignon S, Castellanos JE, Mejia W.
Identification of proteins from human permanent erupted enamel. Eur J Oral Sci.
2015;123(6):390-5. doi: 10.1111/eos.12214. PubMed PMID: 26432388.

[54] Jagr M, Ergang P, Pataridis S, Kolrosova M, Bartos M, Miksik I. Proteomic analysis of dentin-enamel junction and adjacent protein-containing enamel matrix layer of healthy human molar teeth. Eur J Oral Sci. 2019;127(2):112-21. doi: 10.1111/eos.12594. PubMed PMID: 30466169.

[55] Procopio N, Chamberlain AT, Buckley M. Exploring Biological and Geological Agerelated Changes through Variations in Intra- and Intertooth Proteomes of Ancient Dentine.
Journal of proteome research. 2018;17(3):1000-13. doi: 10.1021/acs.jproteome.7b00648.
PubMed PMID: 29356547. Table 1: List of the proteins common to the five proteomes.

The list of proteins was retrieved from the comparison of the protein lists obtained from each dataset per genus with Proteome Discoverer (PD) or PEAKS (PX) softwares. For each protein, Uniprot accession numbers correspond to the master protein and the first protein of the protein group identified by PD and by PX, respectively. The number of total identified peptides (and unique peptides) that allowed for protein identification is indicated. \* In the case of proteins identified with only 1 unique peptide, the HCD MS/MS spectra of unique peptides are presented in Fig. S2. nd (not detected)

|           |                                    |                   | Нот                  | o                         | Goril                    | lla                       | Pan                      | 1                         | Pong                           | 0                      | Papie                    | D                         |
|-----------|------------------------------------|-------------------|----------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|--------------------------------|------------------------|--------------------------|---------------------------|
| Gene name | Protein name                       | Ident<br>Software | Uniprot<br>Acession  | #<br>Peptides<br>(unique) | Uniprot<br>Acession      | #<br>Peptides<br>(unique) | Uniprot<br>Acession      | #<br>Peptides<br>(unique) | Uniprot<br>Acession            | # Peptides<br>(unique) | Uniprot<br>Acession      | #<br>Peptides<br>(unique) |
| AHSG      | Alpha 2-HS<br>glycoprotein         | PD<br>PX          | P02765<br>B7Z8Q2     | 27 (27)<br>51 (19)        | E1U7Q5<br>E1U7Q5         | 47 (44)<br>89 (85)        | A0A2R9ADR9<br>A0A2R9ADR9 | 5 (5)<br>29 (29)          | H2PC98 E1U7Q6<br>H2PC98 E1U7Q6 | 24 (2)<br>59 (4)       | A0A096NPS0<br>B9MSS3     | 36 (36)<br>71 (71)        |
| AMBN      | Ameloblastin                       | PD<br>PX          | Q9NP70<br>Q9NP70     | 6 (6)<br>8 (8)            | G3RCU1<br>nd             | 2 (2)                     | A0A2R9CKL8<br>A0A2J8PF83 | 2 (2)<br>2 (2)            | A0A2J8UTQ2<br>nd               | 2 (2)                  | A0A096NFU6<br>A0A096NFU6 | 3 (3)<br>1(1)             |
| APOA1     | Apolipoprotein A1                  | PD<br>PX          | A0A024R3E3<br>P02647 | 12 (12)<br>17 (15)        | G3QY98<br>G3QY98         | 7 (7)<br>11 (11)          | K7D1U8<br>P0DJG0         | 5 (5)<br>8 (8)            | P0DJG1<br>A0A2J8X1C8           | 9 (9)<br>12 (12)       | P68293<br>P68293         | 12 (12)<br>17 (16)        |
| BGN       | Biglycan                           | PD<br>PX          | B4DDQ2<br>A6NLG9     | 11 (11)<br>17 (17)        | A0A2I2YJ91<br>A0A2I2YJ91 | 15 (15)<br>38 (37)        | H2R1R5<br>H2R1R5         | 10 (10)<br>20 (19)        | H2PX51<br>H2PX51               | 14 (14)<br>17 (17)     | A0A096NEE7<br>A0A096NEE7 | 27 (27)<br>61 (59)        |
| C3        | Complement C3                      | PD<br>PX          | P01024<br>V9HWA9     | 6 (6)<br>18 (17)          | G3RBJ0<br>G3RBJ0         | 7 (7)<br>17 (17)          | A0A2R9B9K1<br>K7CUE1     | 4 (4)<br>11 (11)          | A0A2J8R6I7<br>A0A2J8R6I7       | 3 (3)<br>4 (4)         | A0A0A0MUD9<br>A0A0A0MUD9 | 3 (3)<br>13 (13)          |
| C9        | Complement C9                      | PD<br>PX          | A0A024R035<br>P02748 | 3 (3)<br>6 (6)            | G3RIM1<br>G3RIM1         | 12 (12)<br>26 (26)        | A0A2R9BNI9<br>A0A2R9BNI9 | 2 (2)<br>10 (10)          | H2PFE3<br>H2PFE3               | 4 (4)<br>6 (6)         | A0A096N4A4<br>A0A096N4A4 | 12 (12)<br>23 (23)        |
| CLEC11A   | C-type lectin<br>domain family 11A | PD<br>PX          | M0R081<br>Q5U0B9     | 3 (3)<br>4 (2)            | G3S6C9<br>G3S6C9         | 2 (2)<br>4 (4)            | A0A2J8J1C9<br>H2QGY4     | 2 (2)<br>3 (0)            | A0A2J8U8Y9<br>nd               | 1 (1)*                 | A0A2I3M1B2<br>A0A2I3M1B2 | 5 (5)<br>8 (8)            |
| COL10A1   | Collagen alpha-1(X) chain          | PD<br>PX          | Q5QPC7<br>nd         | 1 (1)*                    | G3S3J2<br>A0A2I2YVF5     | 3 (2)<br>4 (3)            | A0A2R9A6P1<br>nd         | 2 (1)*                    | A0A2J8U152<br>A0A2J8U152       | 1 (1)*<br>1 (1)        | A0A096NA96<br>A0A096NA96 | 2 (2)<br>5 (4)            |
| COL11A1   | Collagen alpha-<br>1(XI) chain     | PD<br>PX          | D3DT71<br>P12107-4   | 9 (6)<br>12 (9)           | A0A2I2Z7V8<br>G3QG18     | 20 (18)<br>24 (23)        | A0A2I3TI23<br>A0A2I3RPT1 | 6 (5)<br>10 (9)           | A0A2J8VCH4<br>A0A2J8VCG6       | 7 (7)<br>8 (8)         | A0A2I3LKH0<br>A0A096MQI3 | 19 (17)<br>27 (24)        |
| COL11A2   | Collagen alpha-<br>2(XI) chain     | PD<br>PX          | A0A1U9X7I9<br>P13942 | 30 (27)<br>34 (30)        | G3R2X9<br>G3R2X9         | 34 (32)<br>52 (50)        | H2R4E0<br>A0A2J8NYG5     | 8 (7)<br>15 (0)           | A0A2J8Y2T4<br>A0A2J8Y2T2       | 7 (7)<br>11 (11)       | A0A096NHF5<br>A0A2I3NDC2 | 33 (31)<br>48 (47)        |
| COL22A1   | Collagen alpha-<br>1(XXII) chain   | PD<br>PX          | Q8NFW1<br>Q8NFW1-2   | 7 (7)<br>10 (1)           | G3R3K3<br>G3R3K3         | 19 (19)<br>27 (27)        | H2QWR6<br>H2QWR6         | 5 (5)<br>9 (2)            | A0A2J8SAY6<br>A0A2J8SAY6       | 9 (9)<br>7 (1)         | A0A096NYZ3<br>A0A2I3NDC7 | 9 (9)<br>16 (16)          |
| COL23A1   | Collagen alpha-                    | PD                | Q86Y22               | 1 (1)*                    | G3QVJ2                   | 2 (2)                     | A0A2J8JTY4               | 4 (3)                     | A0A2J8SD64                     | 1 (1)*                 | A0A096NDQ8               | 2 (2)                     |

|          | 1(XXIII) chain                                      | PX       | nd                   |                    | nd                       |                    | A0A2R9C687               | 2 (1)              | nd                       |                    | nd                       |                    |
|----------|-----------------------------------------------------|----------|----------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|--------------------------|--------------------|
| COL3A1   | Collagen alpha-<br>1(III) chain                     | PD<br>PX | P02461<br>P02461     | 90 (31)<br>92 (69) | G3RK87<br>G3RK87         | 38 (26)<br>46 (28) | K7D7I8<br>K7D7I8         | 45 (15)<br>53 (6)  | A0A2J8WW41<br>A0A2J8WW41 | 50 (33)<br>48 (10) | A0A096N2I8<br>A0A096N2I8 | 59 (41)<br>84 (58) |
| COL5A1   | Collagen alpha-1(V)<br>chain                        | PD<br>PX | B2ZZ86<br>Q59EE7     | 17 (14)<br>17 (13) | G3R760<br>G3R760         | 15 (13)<br>25 (24) | K7CMZ9<br>K7D7I8         | 11 (10)<br>22 (3)  | A0A2J8UIU7<br>A0A2J8UIT7 | 13 (13)<br>18 (18) | A0A096NWJ0<br>A0A096NWJ0 | 18 (17)<br>35 (32) |
| COL5A2   | Collagen alpha-2(V)<br>chain                        | PD<br>PX | P05997<br>P05997     | 39 (37)<br>39 (37) | G3RDT1<br>G3RDT1         | 37 (33)<br>60 (14) | H2R6B8<br>A0A2R9AJC2     | 18 (14)<br>32 (28) | H2P838<br>H2P838         | 34 (31)<br>32 (29) | A0A096MVP2<br>A0A096MVP2 | 42 (41)<br>65 (62) |
| DSPP     | Dentin<br>sialophosphoprotein                       | PD<br>PX | Q9NZW4<br>Q9NZW4     | 7 (7)<br>11 (11)   | G3SE58<br>G3SE58         | 11 (11)<br>21 (21) | A0A2J8MA47<br>A0A2J8MA47 | 2 (2)<br>6 (6)     | A0A2J8V572<br>A0A2J8V572 | 4 (4)<br>9 (9)     | A0A2I3M6W8<br>A0A2I3M6W8 | 4 (4)<br>9 (9)     |
| F2       | Prothrombin                                         | PD<br>PX | P00734<br>P00734     | 20 (3)<br>31 (4)   | G3QVP5<br>G3QVP5         | 25 (25)<br>35 (7)  | A0A2R9C6X1<br>H2Q3l2     | 6 (6)<br>13 (13)   | Q5R537<br>Q5R537         | 8 (8)<br>16 (16)   | A0A096N4Z1<br>A0A096N4Z1 | 11 (11)<br>24 (24) |
| HSPG2    | Heparan sulfate<br>proteoglycan                     | PD<br>PX | P98160<br>A0A024RAB6 | 2 (2)<br>5 (5)     | A0A2I2YAC3<br>A0A2I2YAC3 | 8 (8)<br>10 (10)   | H2PY96<br>A0A2R9C5E1     | 3 (3)<br>4 (4)     | H2N8P5<br>H2N8P5         | 6 (6)<br>6 (6)     | A0A096N531<br>A0A096N531 | 3 (3)<br>5 (5)     |
| LUM      | Lumican                                             | PD<br>PX | P51884<br>Q53FV4     | 10 (10)<br>10 (10) | G3S376<br>G3S376         | 9 (9)<br>13 (13)   | A0A2R8ZXH3<br>H2Q6L3     | 5 (5)<br>7 (7)     | Q5RFG1<br>H2NI87         | 3 (3)<br>6 (6)     | A0A096MQ49<br>A0A096MQ49 | 9 (9)<br>15 (15)   |
| OMD      | Osteomodulin                                        | PD<br>PX | B2R7N9<br>B2R7N9     | 7 (7)<br>11 (11)   | A0A2I2YQC5<br>A0A2I2YQC5 | 7 (7)<br>11 (11)   | H2QXG5<br>H2QXG5         | 2 (2)<br>6 (6)     | H2PSP3<br>H2PSP3         | 2 (2)<br>4 (4)     | A0A096P237<br>A0A096P237 | 6 (6)<br>11 (11)   |
| PCOLCE   | Procollagen C-<br>endopeptidase<br>enhancer1        | PD<br>PX | A4D2D2<br>Q15113     | 8 (8)<br>10 (10)   | G3R5A8<br>G3R5A8         | 11 (11)<br>16 (16) | A0A2R9C060<br>H2QV35     | 3 (3)<br>5 (5)     | A0A2J8XUJ5<br>A0A2J8XUJ5 | 3 (3)<br>4 (4)     | A0A096NNW4<br>A0A096NNW4 | 11 (11)<br>14 (14) |
| SERPINA1 | Alpha-1-antitrypsin                                 | PD<br>PX | A0A384MDQ7<br>E9KL23 | 9 (9)<br>24 (24)   | S4UFD6<br>G3QXZ8         | 4 (4)<br>16 (16)   | A0A2J8QMJ5<br>A0A2J8QMJ5 | 2 (2)<br>4 (4)     | Q5RCW5<br>Q5RCW5         | 5 (5)<br>8 (8)     | P01010<br>P01010         | 3 (3)<br>5 (5)     |
| SERPINC1 | Antithrombin-III                                    | PD<br>PX | P01008<br>A0A0K0Q2Z1 | 9 (9)<br>13 (10)   | G3S9Q7<br>G3S9Q7         | 6 (5)<br>9 (8)     | A0A2R9CFX9<br>A0A2R9CFX9 | 5 (5)<br>13 (9)    | Q5R5A3<br>Q5R5A3         | 4 (4)<br>5 (5)     | A0A096N0R9<br>A0A096N0R9 | 7 (7)<br>19 (11)   |
| SPARC    | Secreted protein<br>acidic rich in<br>C/Osteonectin | PD<br>PX | P09486<br>D3DQH8     | 5 (5)<br>7 (1)     | G3RJ76<br>G3RJ76         | 13 (13)<br>27 (27) | A0A2R9BZI6<br>H2QRU3     | 6 (6)<br>17 (17)   | Q5R767<br>Q5R767         | 10 (10)<br>11 (11) | A0A096MNJ1<br>A0A096MNJ1 | 15 (15)<br>48 (48) |
| VTN      | Vitronectin                                         | PD<br>PX | P04004<br>D9ZGG2     | 8 (8)<br>18 (18)   | G3R679<br>G3R679         | 7 (7)<br>11 (11)   | H2QCH3<br>A0A2R9BDP7     | 2 (2)<br>6 (6)     | H2NT31<br>A0A2J8TMB3     | 2 (2)<br>3 (3)     | A0A096P388<br>A0A096P388 | 6 (6)<br>9 (9)     |

Table 2: Proteins with the main representative peptides showing a taxonomic variation among the hominids.

The list of peptides was retrieved from each dataset obtained per genus with Proteome Discoverer (PD) or PEAKS (PX) softwares (the complete lists of peptides is given in Tables S4-S17, with more detailed information). For each peptide, a Blast search on protein (BlastP) was performed in Uniprot and NCBI to check the species specificity (100% identity and Query cover).

Red bold high size character indicates a position showing an amino acid variation specific to the taxon. \*The ancestral/derived amino substitution is provided with respect to the position in the human Uniprot protein accession indicated in brackets. Black bold high size character indicates a discriminative variation between groups of hominids. The spectra of the peptides are shown in Fig. 4, Fig. 5 and Fig. S4.

|              | <i>Hom</i> o sample                             |          |                        |                                                                                |
|--------------|-------------------------------------------------|----------|------------------------|--------------------------------------------------------------------------------|
| Gene<br>name | Uniprot accession                               | Position | Ancestral<br>/derived* | BlastP result                                                                  |
| AHSG         | P02765                                          |          |                        |                                                                                |
|              | QPNCDDPETEEAALVAIDYINQNLPWGYK                   | 29-57    |                        | H. sapiens, G. gorilla gorilla, G. gorilla                                     |
|              | HTFMGVVSLGS <b>P</b> SGE <b>V</b> SHPR          | 318-337  |                        | H. sapiens                                                                     |
|              | LGS <b>P</b> SGE <b>V</b> SHPR                  | 326-337  |                        | H. sapiens                                                                     |
| DSPP         | Q9NZW4                                          |          |                        |                                                                                |
|              | ESGVLVHEGDR                                     | 56-66    |                        | H. sapiens, P. troglodytes, P. paniscus                                        |
|              | ESE <b>T</b> H <b>A</b> VGK                     | 362-370  |                        | H. sapiens, G. gorilla gorilla (na G. gorilla), P. troglodytes,<br>P. paniscus |
| F2           | P00734                                          |          |                        |                                                                                |
|              | SEGSSVNLSPPLEQCVPDR                             | 199-217  | S210L                  | H. sapiens                                                                     |
|              | N.LSPPLEQCVPDR.G                                | 206-217  |                        | H. sapiens                                                                     |
| PCOLCE       | A4D2D2/Q15113                                   |          |                        |                                                                                |
|              | TEE <b>S</b> PSAPDAPTCPK                        | 306-320  |                        | H. sapiens, P. troglodytes, P. paniscus                                        |
|              | <i>Gorilla</i> sample                           |          |                        |                                                                                |
| Gene<br>name | Uniprot accession                               | Position | Ancestral<br>/derived* | BlastP result                                                                  |
| AHSG         | E1U7Q5/A0A2I2ZQ06                               |          | (P02765)               |                                                                                |
|              | QPNCDDPETEEAALVAIDYINQNLPWGYK                   | 29-57    |                        | H. sapiens, G. gorilla gorilla, G. gorilla                                     |
|              | QPSGELFEIEIDTLETTCHVLDPTPVA <b>K</b>            | 72-99    | R99K                   | G. gorilla gorilla, G. gorilla                                                 |
|              | VLDPTPVA <mark>K</mark>                         | 91-99    |                        | G. gorilla gorilla, G. gorilla                                                 |
|              | HTFMGVV <b>SL</b> GS <b>P</b> SGE <b>A</b> SHPR | 318-337  |                        | G. gorilla gorilla, G. gorilla, P.troglodytes, P. paniscus                     |
|              | LGS <b>P</b> SGE <b>A</b> SHPR                  | 326-337  |                        | G. gorilla gorilla, G. gorilla, P.troglodytes, P. paniscus                     |
| C9           | G3RIM1                                          |          |                        |                                                                                |
|              | TSNFNA <b>A</b> ISLK                            | 232-242  |                        | H. sapiens, G. gorilla gorilla (na G. gorilla), P. troglodytes,<br>P. paniscus |
|              |                                                 | E16 EE0  |                        | H sapiens G gorilla gorilla (na G gorilla) P troglodytes                       |
|              | ISEGLPAL <b>E</b> FP <b>N</b> E                 | 540-556  |                        | P. paniscus                                                                    |
| COL3A1       | ISEGLPAL <b>E</b> FP <b>N</b> E<br>G3RK87       | 540-556  | (P02461)               | P. paniscus                                                                    |

|                                | DGP <mark>A</mark> GPAGNTGAPGSPGVSGPK                                                                                                                                                                  | 902-923                                                                 | P405A                                                                | G. gorilla gorilla (na G. gorilla)                                                                                                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DSPP                           | G3SE58                                                                                                                                                                                                 |                                                                         | (Q9NZW4)                                                             |                                                                                                                                                                                                                                                               |
|                                | ESE <b>T</b> H <b>A</b> VGK                                                                                                                                                                            | 362-370                                                                 |                                                                      | H.sapiens, gorilla gorilla, P. troglodytes, P. paniscus                                                                                                                                                                                                       |
|                                | gqhgmil <mark>s</mark> k                                                                                                                                                                               | 403-411                                                                 | G410S                                                                | G. gorilla gorilla (na G. gorilla)                                                                                                                                                                                                                            |
| F2                             | G3QVP5                                                                                                                                                                                                 |                                                                         |                                                                      |                                                                                                                                                                                                                                                               |
|                                | K. <b>G</b> QPSVLQVVNLPIVER.P                                                                                                                                                                          | 518-533                                                                 |                                                                      | G.gorilla gorilla (na G. gorilla), H. sapiens, P. troglodytes,<br>P. paniscus                                                                                                                                                                                 |
| PCOLCE                         | G3R5A8                                                                                                                                                                                                 |                                                                         |                                                                      |                                                                                                                                                                                                                                                               |
|                                | TEE <b>T</b> PSAPDAPTCPK                                                                                                                                                                               | 306-320                                                                 |                                                                      | G. gorilla gorilla (na G. gorilla), P. abelii (na P. hamadryas)                                                                                                                                                                                               |
| SERPINA1                       | S411ED6/G30X78                                                                                                                                                                                         |                                                                         | (P01000)                                                             |                                                                                                                                                                                                                                                               |
|                                | TI NOPDSOLOI TTG <mark>S</mark> GLELSEGLK                                                                                                                                                              | 126-149                                                                 | (F01009)<br>N140S                                                    | G. gorilla gorilla, G. gorilla                                                                                                                                                                                                                                |
|                                |                                                                                                                                                                                                        |                                                                         |                                                                      |                                                                                                                                                                                                                                                               |
| 0                              | Pongo sample                                                                                                                                                                                           |                                                                         | A                                                                    |                                                                                                                                                                                                                                                               |
| Gene                           | Uniprot accession                                                                                                                                                                                      | Position                                                                | Ancestral                                                            | BlastP result                                                                                                                                                                                                                                                 |
| name                           |                                                                                                                                                                                                        |                                                                         | /derived                                                             |                                                                                                                                                                                                                                                               |
| name<br>AHSG                   | H2PC98/ E1U7Q6                                                                                                                                                                                         |                                                                         | (P02765)                                                             |                                                                                                                                                                                                                                                               |
| name<br>AHSG                   | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK                                                                                                                                                        | 29-57                                                                   | (P02765)                                                             | P abelii, P. pygmaeus, P. troglodytes, P. paniscus                                                                                                                                                                                                            |
| name<br>AHSG                   | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK                                                                                                                                      | 29-57<br>104-117                                                        | (P02765)<br>Q117K                                                    | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br><b>P. abelii, P. pygmaeus</b>                                                                                                                                                                           |
| AHSG                           | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR                                                                                                                        | 29-57<br>104-117<br>328-337                                             | (P02765)<br>Q117K<br>P329L                                           | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br><b>P. abelii, P. pygmaeus</b><br><b>P. abelii, P. pygmaeus</b>                                                                                                                                          |
| AHSG                           | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8                                                                                                   | 29-57<br>104-117<br>328-337                                             | (P02765)<br>Q117K<br>P329L<br>(P02647)                               | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br><b>P. abelii, P. pygmaeus</b><br><b>P. abelii, P. pygmaeus</b>                                                                                                                                          |
| AHSG<br>APOA1                  | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR                                                                                    | 29-57<br>104-117<br>328-337<br>185-195                                  | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T                      | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelli, P.pygmaeus                                                                                                                               |
| AHSG<br>APOA1<br>BGN           | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR<br>H2PX51                                                                          | 29-57<br>104-117<br>328-337<br>185-195                                  | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T<br>(P21810)          | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelli, P.pygmaeus                                                                                                                               |
| AHSG<br>APOA1<br>BGN           | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR<br>H2PX51<br>ELHLDNNKLAGVPSGLPDLK                                                  | 29-57<br>104-117<br>328-337<br>185-195<br>220-239                       | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T<br>(P21810)<br>R291G | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelli, P.pygmaeus<br>P. abelii (na P. pygmaeus)                                                                                                 |
| AHSG<br>APOA1<br>BGN           | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR<br>H2PX51<br>ELHLDNNKLAGVPSGLPDLK<br>LAGVPSGLPDLK                                  | 29-57<br>104-117<br>328-337<br>185-195<br>220-239<br>228-239            | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T<br>(P21810)<br>R291G | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelii, P.pygmaeus<br>P. abelii (na P. pygmaeus)<br>P. abelii (na P. pygmaeus)                                                                   |
| AHSG<br>APOA1<br>BGN<br>PCOLCE | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAİDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR<br>H2PX51<br>ELHLDNNKLAGVPSGLPDLK<br>LAGVPSGLPDLK<br>A0A2J8XUJ5                    | 29-57<br>104-117<br>328-337<br>185-195<br>220-239<br>228-239            | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T<br>(P21810)<br>R291G | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelii, P.pygmaeus<br>P. abelii (na P. pygmaeus)<br>P. abelii (na P. pygmaeus)                                                                   |
| AHSG<br>APOA1<br>BGN<br>PCOLCE | H2PC98/ E1U7Q6<br>QPNCDDPETEEAALVAIDYINQNHPWGYK<br>QLKEHAVEGDCDFK<br>SLSGEVSHPR<br>P0DJG1/A0A2J8X1C8<br>THLAPYTDELR<br>H2PX51<br>ELHLDNNKLAGVPSGLPDLK<br>LAGVPSGLPDLK<br>A0A2J8XUJ5<br>TEETPSAPDAPTCPK | 29-57<br>104-117<br>328-337<br>185-195<br>220-239<br>228-239<br>305-319 | (P02765)<br>Q117K<br>P329L<br>(P02647)<br>S191T<br>(P21810)<br>R291G | P abelii, P. pygmaeus, P. troglodytes, P. paniscus<br>P. abelii, P. pygmaeus<br>P. abelii, P. pygmaeus<br>P. abelii, P.pygmaeus<br>P. abelii (na P. pygmaeus)<br>P. abelii (na P. pygmaeus)<br>G. gorilla gorilla (na G. gorilla), P. abelii (na P. pygmaeus) |

### Legend to figures

Figure 1: Schematic of the FASP protocol describing the steps for the preparation of the T samples (tryptic peptides issued from protein digestion) and the Tpep samples (tryptic peptides issued from the digestion of peptides and/or fragmented proteins already present in the demineralized/lysed extract). See Materials and Methods for details.

Figure 2: Comparison of human (*Homo*); gorilla (*Gorilla*) chimpanzee (*Pan*), orangutan (*Pongo*) and baboon (*Papio*) tooth proteomes.

(A) Venn diagram (<u>http://bioinformatics.psb.ugent.be/webtools/Venn/</u>) showing the distribution between genera of the proteins identified in each resulting dataset per genus using Proteome Discoverer, and converted into the corresponding human gene names for allowing comparison. (B) Gene set overlap analysis according to GO annotation terms of the proteins common to the five taxa (Common), or uniquely identified in each genus, by using the GSEA tool at <u>https://www.gsea-msigdb.org/gsea/msigdb/annotate.jspdb</u>. The bar graph shows the pattern of distribution of the proteins sorted with significant FDR q-values <0.05 in the Top 20 GO Gene Sets. The distribution was calculated as the ratio of the protein counts in each category (blood/wound-healing, extracellular matrix/ossification, immune response and others the rest of the less represented GO terms) to the total protein counts in the Top 20 gene sets, and was represented as stacked bars for each sample.

Figure 3: Phylogenetic tree based on the concatenated alignment of 14 proteins (AHSG, AMBN, APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE, SERPINA1).

The position of the sample datasets is visualized in bold characters.

The tree was built using RAxML-NG. Node values (%) correspond to 1000 bootstraps and branch length indicates the rate of amino acid substitution.

Figure 4: HCD MS/MS spectra of AHSG peptides with taxonomic interest.

(A) AHSG-[91-99] Gorilla-specific peptide VLDPTPVAK (doubly charged precursor ion, MH2+, m/z at 470.2787; scan 17775; OFCCF180623 18 SP01 CCF01530 T4 TR1 Gorilla.raw). (B) AHSG-[104-117] Pongospecific peptide QLKEHAVEGDCDFK (triply charged precursor ion, MH3+, at m/z 559.5901; scan 12157; OFCCF200122\_13\_SP03\_CCF01646\_T8\_TR1\_Pongo.raw). (C) AHSG-[318-337] Homo-specific peptide HTFMGVVSLGSPSGEVSHPR (triply charged precursor ion, MH3+. m/z 694.3470; 57611; at scan

OFCCF180912\_14\_S3\_CCF01452\_LOS2\_TR1\_Human.raw), AHSG-[318-337] Gorilla peptide HTFMGVVSLGSPSGEASHPR (triply charged precursor ion, MH3+, at m/z 685.0026; scan 57284; OFCCF180623 18 SP01 CCF01530 T4 TR1 Gorilla.raw) and AHSG-[328-337] Pongo-specific peptide SLSGEVSHPR (doubly charged precursor ion, m/z MH2+, at 534.7749; scan 6900: OFCCF200122\_31\_SP03\_CCF01646\_T8\_TR2\_Pongo.raw). (D) AHSG-[29-57] Homo- and Gorilla- specific peptide QPNcDDPETEEAALVAIDYINQNLPWGYK (triply charged precursor ion, MH3+, m/z 1121.8558; scan 65473; at OFCCF180623\_24\_SP01\_CCF01530\_T4\_TR2\_Gorilla.raw) and the corresponding AHSG-[29-57] Pongo-specific peptide QPNcDDPETEEAALVAIDYINQNHPWGYK (triply charged precursor ion, MH3+, at m/z 1129.8445; scan 54151; OFCCF200122\_31\_SP03\_CCF01646\_T8\_TR2\_Pongo.raw). Series of y- and b-ions are highlighted in blue and red, respectively. c: carbamidomethylated cysteine residue.

Figure 5: HCD MS/MS spectra of PCOLCE peptides with taxonomic interest.

cysteine residue.

PCOLCE-[306-320] Homo peptide TEESPSAPDAPTcPK (doubly charged precursor ion, MH2+, at m/z 793.8555; scan 14888; OFCCF180912 22 S3 CCF01452 LOS2 TR2 Human.raw) and, the corresponding Gorilla PCOLCE-[306-320] and Pongo PCOLCE-[305-319] peptides TEETPSAPDAPTcPK (doubly charged precursor ion, MH2+, at m/z 800.8607; 19435: scan OFCCF180623 24 SP01 CCF01530 T4 TR2 Gorilla.raw, and doubly charged precursor scan MH2+, m/z 800.8613; 14388; ion. at OFCCF200122\_13\_SP03\_CCF01646\_T8\_TR1\_Pongo.raw, respectively). Series of y- and b-ions are highlighted in blue and red, respectively. c: carbamidomethylated

Figure 1: Schematic of the FASP protocol describing the steps for the preparation of the T samples (tryptic peptides issued from protein digestion) and the Tpep samples (tryptic peptides issued from the digestion of peptides and/or fragmented proteins already present in the demineralized/lysed extract). See Materials and Methods for details.



Figure 2: Comparison of human (*Homo*); gorilla (*Gorilla*) chimpanzee (*Pan*), orangutan (*Pongo*) and baboon (*Papio*) tooth proteomes.

(A) Venn diagram (<u>http://bioinformatics.psb.ugent.be/webtools/Venn/</u>) showing the distribution between genera of the proteins identified in each resulting dataset per genus using Proteome Discoverer, and converted into the corresponding human gene names for allowing comparison. (B) Gene set overlap analysis according to GO annotation terms of the proteins common to the five taxa (Common), or uniquely identified in each genus, by using the GSEA tool at <u>https://www.gsea-msigdb.org/gsea/msigdb/annotate.jspdb</u>. The bar graph shows the pattern of distribution of the proteins sorted with significant FDR q-values <0.05 in the Top 20 GO Gene Sets. The distribution was calculated as the ratio of the protein counts in each category (blood/wound-healing, extracellular matrix/ossification, immune response and others the rest of the less represented GO terms) to the total protein counts in the Top 20 gene sets, and was represented as stacked bars for each sample.



Figure 3: Phylogenetic tree based on the concatenated alignment of 14 proteins (AHSG, AMBN, APOA1, BGN, C9, COL11A2, COL22A1, COL3A1, DSPP, F2, LUM, OMD, PCOLCE, SERPINA1).

The position of the sample datasets is visualized in bold characters.

The tree was built using RAxML-NG. Node values (%) correspond to 1000 bootstraps and branch length indicates the rate of amino acid substitution.



0.005

Figure 4: HCD MS/MS spectra of AHSG peptides with taxonomic interest.

(A) AHSG-[91-99] Gorilla-specific peptide VLDPTPVAK (doubly charged precursor ion, MH2+, at m/z 470.2787; scan 17775; OFCCF180623 18 SP01 CCF01530 T4 TR1 Gorilla.raw). (B) AHSG-[104-117] Pongo-specific peptide QLKEHAVEGDCDFK (triply charged precursor ion, MH3+, at m/z 559.5901; scan 12157; OFCCF200122 13 SP03 CCF01646 T8 TR1 Pongo.raw). (C) AHSG-[318-337] Homospecific peptide HTFMGVVSLGSPSGEVSHPR (triply charged precursor ion, MH3+, at m/z 694.3470; scan 57611; OFCCF180912\_14\_S3\_CCF01452\_LOS2\_TR1\_Human.raw), AHSG-[318-337] Gorilla peptide HTFMGVVSLGSPSGEASHPR (triply charged precursor ion, MH3+, at m/z 685.0026; scan 57284; OFCCF180623\_18\_SP01\_CCF01530\_T4\_TR1\_Gorilla.raw) and AHSG-[328-337] Pongo-**SLSGEVSHPR** (doubly charged 534.7749; 6900; specific peptide precursor ion, MH2+, at m/z scan OFCCF200122\_31\_SP03\_CCF01646\_T8\_TR2\_Pongo.raw). (D) AHSG-[29-57] Gorillapeptide Homoand specific QPNcDDPETEEAALVAIDYINQNLPWGYK (triply charged MH3+, 1121.8558; precursor ion, at m/z scan 65473; corresponding OFCCF180623\_24\_SP01\_CCF01530\_T4\_TR2\_Gorilla.raw) AHSG-[29-57] and the *Pongo*-specific peptide (triply charged MH3+, QPNcDDPETEEAALVAIDYINQNHPWGYK m/z 1129.8445; 54151: precursor ion, at scan OFCCF200122 31 SP03 CCF01646 T8 TR2 Pongo.raw). Series of y- and b-ions are highlighted in blue and red, respectively. c: carbamidomethylated cysteine residue.



Figure 5: HCD MS/MS spectra of PCOLCE peptides with taxonomic interest.

PCOLCE-[306-320] Homo peptide TEESPSAPDAPTcPK (doubly charged precursor ion, MH2+, at m/z 793.8555; scan 14888; OFCCF180912\_22\_S3\_CCF01452\_LOS2\_TR2\_Human.raw) and, the corresponding Gorilla PCOLCE-[306-320] and Pongo PCOLCE-[305-319] peptides TEETPSAPDAPTcPK (doubly charged precursor MH2+, m/z 800.8607; ion, at scan 19435: OFCCF180623\_24\_SP01\_CCF01530\_T4\_TR2\_Gorilla.raw, and doubly charged precursor ion, MH2+, at m/z 800.8613; scan 14388; OFCCF200122\_13\_SP03\_CCF01646\_T8\_TR1\_Pongo.raw, respectively). Series of y- and b-ions are highlighted in blue and red, respectively. c: carbamidomethylated cysteine residue.

