
HAL Id: hal-03039792
https://hal.science/hal-03039792

Submitted on 25 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Obstacle Detection based on Cooperative-Intelligent
Transport System Data

Brice Leblanc, Hacene Fouchal, Cyril de Runz

To cite this version:
Brice Leblanc, Hacene Fouchal, Cyril de Runz. Obstacle Detection based on Cooperative-Intelligent
Transport System Data. IEEE Symposium on Computers and Communications (ISCC 2020), Jul
2020, Rennes, France. �10.1109/ISCC50000.2020.9219629�. �hal-03039792�

https://hal.science/hal-03039792
https://hal.archives-ouvertes.fr

Obstacle Detection based on Cooperative-Intelligent
Transport System Data

Brice Leblanc, Hacène Fouchal and Cyril de Runz
CReSTIC, Université de Reims Champagne-Ardenne France

{brice.leblanc, hacene.fouchal}@univ-reims.fr,
BDTLN, LIFAT, University of Tours, France

cyril.derunz@univ-tours.fr

Abstract—Cooperative Intelligent Systems development is
growing and the data they produce is increasing exponentially.
This amount of data will soon be large enough to fall in big
data paradigm. We propose to exploit these data as data stream.
We aim to detect anomaly on the road using concept drift
detection methods over data stream. To achieve this purpose,
we create a data generation tool to obtain large data-sets of
vehicles taking an avoiding behavior and detect obstacles through
crowdsensing. We use two scenarios that we aim to detect: a
stopped car and a growing pothole. We focus our study on the
vehicle orientation information on which we apply Page-Hinkley
and ADWIN methods. We obtain interesting detection results
with ADWIN on the stopped car scenario. The Page-Hinkley
algorithm is obtaining good results but with a latency that makes
it unexploitable in real context. But for the pothole detection, both
approaches are not providing significant results.

I. INTRODUCTION

With the development of Cooperative Intelligent Transport
Systems (C-ITS), many vehicular trajectories are produced.
This data can be exploited to help road operators in the
detection and prevention of events. In this paper, we aim to
detect events happening on a road using crowdsensing. We
assume that if a large enough number of vehicles switch
from a classical driving behavior (with a low percentage of
overtaking behavior) to a behavior with a high percentage of
overtaking behavior, an obstacle on the road can be the cause
of it. Thus, we aim to detect these changes in the collected
data stream. To do so, we focus on the vehicles orientation
information. This information was estimated important in our
previous work on driving profile detection [8], [9], and we
believe it can also apply to this context. We base our study on
two different scenarios, a stopped car scenario, and a growing
pothole scenario. To obtain a data-set of vehicle producing
massive avoiding behavior and respecting the scenarios, we
build a data generation tool. This tool generates messages
containing the position, speed and heading of the vehicle,
and respecting the ETSI1 standardization for the frequency of
emission of messages. The variables contained in the generated
messages respect the Cooperative Awareness Message (CAM)
[1] standard.

1https://www.etsi.org/

To built our data generation tool, we made the following
assumptions:

• The generated vehicles maintain their speed at the maxi-
mum of the road limitation, even during the avoidance of
the obstacle. If not, we could see the change in the speed
of the vehicles which is a strong indicator of troubles
happening on the road.

• The generated drivers have no previous knowledge of the
obstacle and cannot anticipate it too much. This is why
in the data generation tool, we estimate that the angle to
avoid the obstacle can not be inferior to 4°. Otherwise,
the time that will be required to avoid it will be too long.

• The vehicles once starting to avoid the obstacle do not
change their direction until the vehicle is on the other
lane.

• Our default number of vehicles overtaking other vehicles
(number of avoiding behavior) is 5 percent.

The data that compose the stream are collected by a Road
Side Unit (RSU) placed along the road and monitoring the
traffic on a portion of the road. To detect anomaly on the road
we provide to concept drift algorithms the generated headings
of the vehicles. We select two algorithms and compare their
results for the two scenarios.

The paper is organized as follows. In section II, the state of
the art methods of concept drift detection in data streams is
presented, section III describes the data generation tool we use,
section IV presents the result of drift detection and in section
V we give a conclusion and provide some perspectives to this
work.

II. STATE OF THE ART

It is noticeable that, in the literature, road obstacle detection
approaches focus on smartphone data [11], ultrasonic sensors
[10] or even image processing for autonomous vehicles [3]. In
this study, we aim to explore the detection of road obstacles
by using data produced directly by vehicles. To do so, we are
handling these data as data stream.

There can be different kinds of change in a data stream.
From time to time an outstanding value appear, this is called
an outlier. When the data is changing from one behavior to
another, this is called a concept drift. A concept drift detector
is designed to find when the data is changing from one concept
to another, but it shall not trigger on outlier data. Different978-1-7281-8086-1/20/$31.00 ©2020 IEEE

Fig. 1: Picture of Voie Taittinger

concept drift detection approaches are used for the different
kind of data and stream. The parameters of these algorithms
are used to tune the algorithm to avoid a trigger on outlier or
not triggering at all. Parameters are varying depending on the
context.

To handle data stream, the algorithms can store some global
value relative to the stream that are updated for each new data
or rely on a window model to store part of the stream and
calculate the values on the stored data. In windows model,
data is stored until the window is full and since the memory
is limited older data will be removed from the window [6].
Here are some windows model that can be used:

Sliding window model : In this window model the data
is treated in a first-in first-out manner. The size of the
window can be fixed or variable but when the window is
full, oldest data are deleted so new data can be treated.

Damped window model : This model of window associate
an exponentially decaying weight to the observations and
delete the data when the weight totally fades out.

Landmark window model : The landmark model rely on
chunks of data separated by landmarks. A landmark can
be a time value (hour, day, month, . . .) or a number of
element observed. Every data in the landmark is treated
until the next landmark is reached. When it is reached,
the old data is removed and replaced by the new one.

In this study, we used two algorithms: Page-Hinkley and
ADWIN. These are really popular approaches due to their
effectiveness on many types of data, and we aim to know
if they are adapted to our type of data:

The Page-Hinkley algorithm [12] [5] analyzes sequentially
the data to detect change and do not use a window model since
no data is stored except a mean and a sum. It recalculates the
mean value of the data at each input. And it also recalculates
the sum of the difference to the mean with the alpha and
the delta parameters to adjust the sensitivity. The alpha and
the delta parameters help to mitigate outliers both in different
ways, the greater they are the more outliers will be needed
to detect a drift. If this sum passes over the lambda threshold
value then a drift signal is raised. The greater the threshold is,
the fewer false positives are but actual errors could be missed
or the detection delayed. Also the higher the alpha and delta
values are the harder it is to detect small variations. Page-
Hinkley is consuming very few resources since it is not storing
any part of the data stream. But its strongest issues are its

sensitivity to outlier when trying to detect concept drift on
low varying data and its delay on the detection of concept
drift when tuned to resist to outliers.

The ADaptative WINdowing (ADWIN) algorithm [4] is
based on a sliding window system. The size of the window,
instead of being fixed, is recomputed: if a drift is detected, the
window is reduced, if not, it is growing to its maximal size
defined by the user. To change the window size, it is made into
a bucket list that is split in bucket row of the same size, and
these buckets row contains buckets. The algorithm takes data
as input, stores it in a bucket that is put in the last bucket row.
If the bucket list is full, the two oldest bucket row are reduced
and merged. The process to detect the drift is triggered every
clock number of new data, only if the length of the window is
greater than the minimal sub-window length. To detect a drift,
the buckets are separated in two sub-windows, one containing
the oldest data (this one is bigger than the second one) and
the other containing newer data. If the data between these
two windows are too different (according to the delta value)
then a drift signal is raised, and the window size is reduced.
ADWIN has a small memory consumption due to its bucket
system and can detect quickly concept drift since part of the
stream is stored. But since a small part is stored long and
slow drift is hard to detect because the buckets are updated
with more and more drifting data without noticing it. And if
the algorithm is more sensitive to detect such change the rate
of false-positive will be higher.

Different approaches also exist such as ECDD or SONDE
among others :

The Exponentially weighted moving average (EWMA) [14]
for Concept Drift Detection (ECDD) [13] algorithm is learning
from the data stream using a classifier. The stream is parsed
once and not stored unlike ADWIN and when an event is
detected, the classifier is updated to handle it (it can be cleared
to restart the learning).

The Self-Organizing Novelty Detection (SONDE) [2] algo-
rithm is based on Self Organized Map (SOM) [7] to learn and
detect new patterns in the data stream.

III. DATA GENERATION

For our data generation we use real data issued from
open road testing (collected within the scope of the InterCor
European project) as basis. We select a part of 300 meters of
the Voie Taittinger in Reims which is a 4 ways road limited
to 90km/h that can be seen in Fig.1.

We limit to 300 meters the road portion for two reasons:
Firstly we suppose that our roadside unit should be placed
in the middle of the collection area. Secondly, our vehicles
have a 150 meters communication range. This communication
range has been decided according to the result of a French
governmental study on the C-ITS 2. This study shows that
after 150 meters the packet delivery ratio starts declining for
vehicle to infrastructure communication in highway scenario.

This road has been selected because it is straight, and the
latitude from the start to the end of the portion is not varying
a lot. This provides us with a worst-case scenario regarding
the CAM generation frequency management (GFM) explained
in III-A. The CAM GFM will not trigger and not increase the
frequency of the message sending because of the road natural
curve.

The data generation tool is producing a data-set containing
the position (latitude, longitude), the heading, a timestamp and
a vehicle id. We also add a boolean value as label to know
if a generated message is a taking an avoiding behavior or
not. The data generation has a defined duration, a number of
vehicle and a percentage of obstacle avoidance behavior.

A. CAM Generation Frequency Management (GFM)

In the C-ITS, CAM frequency is, by default, set at 1
per second. A system to send more messages per second
can be triggered in specific cases up to a maximum of 10
messages per second. This system is called Generation Fre-
quency Management (GFM) and allows a vehicle to send more
information about itself to other vehicles in its neighborhood
when an abnormal behavior is detected. It triggers if one of
the following conditions is met :

• The difference between the last emitted position and the
current position is greater than 4 meters.

• The difference of speed between the last emitted speed
and the current speed is greater than 0,5 m/sec.

• The absolute difference of heading between the last
emitted message and the current value is greater than 4°.

When the GFM is triggered, the frequency of sending is
update and equal to the time elapsed between the last message
emission and the detection. This frequency is maintained for
3 messages but the GFM can be triggered again when a new
event is detected to a minimum frequency of 100ms. In our
data generation tool, we assume that the GFM will not trigger
again.

B. Initial configuration

The data generation tool uses as landmark 12 fixed positions
(composed of latitude, and longitude) manually selected at a
distance of 25 meters each (90km/h in one second = 25 meter)
on Voie Taittinger. A vehicle heading was also added to the
landmark and was selected from real data generated by C-
ITS vehicles during open road tests on the same road. For
each generated vehicle, its first message contains the latitude,

2https://www.ecologique-solidaire.gouv.fr/sites/default/files/
Rapport%20GT%20technologies%20STI-vfin.pdf p.18/19

longitude, and heading of the first landmark with an initial
hazard. This hazard is from -200 to +200 for the latitude, -
3000 to +3000 for the longitude, and -2 to +2 for the heading.
The timestamp follows this linear equation : Let d the duration
of the generation, i the identifier of the vehicle, and v the total
number of vehicle.

d ∗ i/v (1)

C. Default behavior

In default behavior, the following messages of the vehicle
are separated by 1 second. The new messages are composed
of the corresponding landmark plus the initial hazard plus the
new hazard (this last one is not kept for further messages). The
latitude has a hazard of -200 to +200, the longitude -3000 to
+3000, and the heading of -2 to +2.

D. Avoiding behavior

Based on the CAM GFM specification, our vehicles must
have a minimum of 4° heading modification to start the
emission of the 3 higher frequency messages. For a vehicle to
change lanes in one second, the minimum angle is 10° on our
90Km/h example. Similarly, if a vehicle changes lanes with
a maximum angle of 4°, it will take 50 meters (2 seconds).
Therefore, a vehicle cannot change lanes without a trace in
the data. We have set the maximum angle at 45°.

In our case of avoiding behavior, the vehicle will produce
4 default messages before sending its first message with a
different timestamp. After sending the three avoiding behavior
messages, the vehicle will return to the default behavior. The
process of generating an avoiding message starts with the
random selection of the time difference from the last message
sent (between 100 ms and 1000 ms). Then, the angle taken by
the vehicle for overtaking is randomly selected between 4° and
45°. If the timestamp is less than 500 ms, an additional default
message will be replaced by an avoiding behavior message;
otherwise, two messages will be replaced. For each avoiding
message, the change in latitude and longitude is calculated
according to this formula :

lat = latOfLastMessage+ 300/(timestampInterval/10)
(2)

lon = lonOfLastMessage+3000/(timestampInterval/10)
(3)

Also the remaining default behavior messages have their
positions updated according to the position of the last avoiding
behavior message.

E. Used data-set

To produce a large data-set with a frequency of change in
avoiding behavior, we run multiple generations (that creates
blocks which will be concatenated). The timestamp and vehi-
cle identification are not reset between each data block. The
data-set is always ordered by timestamp before being passed
to the detection algorithms.

We generate two data sets that represent two different
events: In the first event, a stopped car that blocks the lane
appears before being removed with a traffic getting back to

Fig. 2: Detection of Page-Hinkley algorithm for stopped car scenario

Fig. 3: Detection of Page-Hinkley algorithm for pothole scenario

normal. The second event is a growing pothole that is avoided
by an increasing number of vehicles.

The detailed parameters used are presented in table I.
The algorithms, their configurations, and the results they

produce will be explained in the next section.

IV. DRIFT DETECTION

To detect the avoiding behaviors and the change of fre-
quency of them, we use ADWIN, and Page-Hinkley algo-
rithms.

The data-set previously generated by the data generation
tool is sorted by timestamp and then fed to the algorithms.
When the algorithms detect a change in the data it is treating,
a notification is given.

The notification and the real drifting messages are counted
by windows of 600 messages to have a better representation
of the results. These results are depicted in the figures 2, 3,

4 and 5. The red dots represent the number of messages with
an avoiding behavior in the last 600 messages and the blue
dots the number of drift detected by the algorithm. The higher
on the y-axis the dots are, the stronger the change is on the
period.

We use a python implementation of ADWIN and Page-
Hinkley algorithms3. A C++ and java implementation of
ADWIN developed by the authors is also available4. The
algorithms are used with the parameters in table II.

Fig. 2 presents the results for the Page-Hinkley algorithm for
the stopped car scenario. And Fig. 3 the result of Page-Hinkley
on the pothole scenario. The x-axis represents the generation
time (corresponding to the number of messages). The y-axis
represents, in red, the number of messages in the 600 last

3https://github.com/blablahaha/concept-drift
4https://github.com/abifet/adwin

Fig. 4: Detection of ADWIN algorithm for stopped car scenario

Fig. 5: Detection of ADWIN algorithm for pothole scenario

Scenario number of chunk duration of each
chunk

number of vehicle per
chunk

avoidance rate per chunk

Stopped car 10 10 1000 5, 5, 5, 100, 100, 100, 100, 5, 5, 5
Pothole 15 10 1000 0, 0, 5, 5, 10, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

TABLE I: Parameters of the data generation

Algorithm Parameters

Page-Hinkley delta lambda alpha
0.01 200 0.99

ADWIN delta maxBuckets minClock minWindowLength minSubWindowLength
0.0001 300 20 150 75

TABLE II: Parameters used for drif detection

messages that contain an avoiding behavior and in blue the
number of detection of this behavior by the algorithm.

For the Page-Hinkley algorithm, it is difficult to have an

accurate detection of large changes because the detection is
highly delayed. That is why we used parameters to detect
the smallest changes. This allows us to track the frequency

of changes in the overtaking behaviors. We can see that the
frequency increases as we enter the period when the overtaking
rate is the highest. But by design, the Page-Hinkley algorithm
has a certain delay in detecting new concepts, so the points
do not directly follow the change. The performance of this
algorithm is encouraging for the stopped car scenario since
we can see the increase in the number of detections when the
change occurs. But the delay in the detection of the events is
a strong backlash because we need a filtering step that will
delay the detection even more. For the pothole scenario, we
can see a slight increase in the detection rate of changes with
few spikes but this is not enough to be significant. And with
the delay in detection, it is not possible to have a correct view
of the detection until the concept stabilizes.

Fig. 4 presents the results for the ADWIN algorithm for the
stopped car scenario and Fig. 5 the result for ADWIN on the
pothole scenario.

For the ADWIN algorithm, in the stopped car scenario, there
is little detection in the low avoiding rates, but they do not hide
the high number of detections when large changes occur. In
this scenario, the results are really convincing and should be
tested in real cases. But in the case of the pothole scenario,
the detection is not accurate. Initially, the algorithm manages
to detect the change, but when the avoidance rate reaches
25%, the algorithm cannot detect the changes correctly. This
is because the algorithm is designed to adapt to changes, and
then, it fails to detect the next changes accurately because
the avoiding behavior has become part of the concept it has
learned and the difference in rates is no longer large enough
for it to detect them. For this type of behavior, other algorithms
may be better suited. Such algorithms should use a window
model with a fixed historical window as a basis for learning
since we want to detect abnormal behavior compared to typical
behavior. But the loss of adaptability to change will require
reconfiguration of the history window each time a change is
made to the road, its environment, or driver behavior (the
latter change could be due to an increasing number of C-
ITS, automated vehicles or other technical improvements or
recommendations).

V. CONCLUSION

In this paper, we described how our trajectory generator
based on C-ITS standardization works. We then explored our
generated data with concept drift detection algorithms to find
the generated avoiding behavior. We focused only on the
heading of the vehicles to perform our detection. We show
that in different scenarios the algorithms we used can perform
better or worse. Different parameters or approaches can allow
the detection of specific kinds of events. In further work, we
plan to use other algorithms and more scenarios. We will also
explore different variables such as the speed of the vehicle and
combine it with the heading variable.

REFERENCES

[1] Etsi en 302 637-2; intelligent transport systems (its); vehicular commu-
nications; basic set of applications; part 2: Specification of cooperative
awareness basic service.

[2] Marcelo Keese Albertini and Rodrigo Fernandes de Mello. A self-
organizing neural network for detecting novelties. In Proceedings of the
2007 ACM Symposium on Applied Computing, SAC ’07, page 462–466,
New York, NY, USA, 2007. Association for Computing Machinery.

[3] C. S. Arvind and J. Senthilnath. Autonomous vehicle for obstacle de-
tection and avoidance using reinforcement learning. In Kedar Nath Das,
Jagdish Chand Bansal, Kusum Deep, Atulya K. Nagar, Ponnambalam
Pathipooranam, and Rani Chinnappa Naidu, editors, Soft Computing for
Problem Solving, pages 55–66, Singapore, 2020. Springer Singapore.

[4] Albert Bifet and Ricard Gavalda. Learning from time-changing data with
adaptive windowing. In Proceedings of the 2007 SIAM international
conference on data mining, pages 443–448. SIAM, 2007.

[5] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. On
evaluating stream learning algorithms. Machine learning, 90(3):317–
346, 2013.

[6] Lukasz Golab and M Tamer Özsu. Issues in data stream management.
ACM Sigmod Record, 32(2):5–14, 2003.

[7] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE,
78(9):1464–1480, 1990.

[8] B. Leblanc, S. Ercan, and C. de Runz. C-its data completion to improve
unsupervised driving profile detection. In 2020 IEEE 91th Vehicular
Technology Conference (VTC2020-Spring), pages 1–4, 2020.

[9] B. Leblanc, H. Fouchal, and C. de Runz. Driver profile detection
using points of interest neighbourhood. In 2019 IEEE 90th Vehicular
Technology Conference (VTC2019-Fall), pages 1–4, Sep. 2019.

[10] R. Madli, S. Hebbar, P. Pattar, and V. Golla. Automatic detection and
notification of potholes and humps on roads to aid drivers. IEEE Sensors
Journal, 15(8):4313–4318, Aug 2015.

[11] A. Mednis, G. Strazdins, R. Zviedris, G. Kanonirs, and L. Selavo. Real
time pothole detection using android smartphones with accelerometers.
In 2011 International Conference on Distributed Computing in Sensor
Systems and Workshops (DCOSS), pages 1–6, 2011.

[12] Ewan S Page. Continuous inspection schemes. Biometrika, 41(1/2):100–
115, 1954.

[13] Gordon J. Ross, Niall M. Adams, Dimitris K. Tasoulis, and David J.
Hand. Exponentially weighted moving average charts for detecting
concept drift. Pattern Recognition Letters, 33(2):191 – 198, 2012.

[14] Arthur Yeh, Dennis Lin, Honghong Zhou, and Chandramouliswaran
Venkataramani. A multivariate exponentially weighted moving average
control chart for monitoring process variability. Journal of Applied
Statistics, 30(5):507–536, 2003.

