
HAL Id: hal-03039679
https://hal.science/hal-03039679

Submitted on 4 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Studying the Impact of Policy Changes on Bug
Handling Performance

Zeinab Abou Khalil

To cite this version:
Zeinab Abou Khalil. Studying the Impact of Policy Changes on Bug Handling Performance. The In-
ternational Conference on Software Maintenance and Evolution (ICSME), Sep 2019, cleveland, United
States. �10.1109/icsme.2019.00093�. �hal-03039679�

https://hal.science/hal-03039679
https://hal.archives-ouvertes.fr


Studying the Impact of Policy Changes on Bug
Handling Performance

Zeinab Abou Khalil
zeinab.aboukhalil@umons.ac.be
University of Mons, Belgium

University of Lille & Inria Lille, France

Abstract—The majority of the software development
effort is spent on software maintenance. Bug handling
constitutes one of the major software maintenance
activities. Earlier studies have empirically investigated
various aspects of bug handling, such as bug triaging,
bug fixing, and bug process analysis. However, results
from previous studies may not be applicable to contem-
porary agile software development practices. Moreover,
these studies did not investigate how changes in the
development policies and supporting tools impact the
bug handling process. Therefore, our main goal is to
investigate the impact of such changes on the bug han-
dling process performance. To do so, we are conducting
empirical studies on large and long-lived open source
software projects. We report on our current research
findings and outline the ongoing Ph.D. research project
of the first author.

I. Introduction
Continuous software engineering is a common practice for
large open source software (OSS) projects that involves
developing, testing, updating and deploying software re-
leases. Every major software release introduces a signif-
icant amount of new functionality and modifies existing
functionality compared to the previous release. As part
of the release life cycle, the quality of each release is
reviewed to ensure that it meets its specified requirements,
and that the most important bugs have been resolved or
fixed [1]. The software development team strives to tackle
as many bugs as possible in current and upcoming releases,
but in practice every deployed software release inevitably
contains remaining bugs.
Many existing empirical studies have focused on under-
standing and improving the overall bug handling process,
as well as identifying the factors affecting bug fixing
and bug triaging. Very little research has focused on the
distinction between what happens before and after each
release, how this evolves over time, and how important
changes in the development policy or in tool support
impacts the performance of the bug handling process.
My PhD research project therefore proposes to empirically
study these issues in large and long-lived OSS projects. In
a follow-up step, the obtained research findings will be
exploited to provide specific recommendations, guidelines
and tools allowing both individual developers and commu-
nities to improve upon their bug handling practices.

The empirical investigation will be guided by four research
questions:
RQ1 How does the bug handling performance
evolve? The rationale behind this question is to assess
whether we can find particular trend break in the handling
process over time.
RQ2 How does the release schedule affect bug han-
dling activity? This question aims to verify the assump-
tion that the release schedule impacts the way in which
bugs are handled; we expect that maintainers handle bugs
more intensively in the period right before an upcoming
release to increase its quality w.r.t bugs, as well as an
increased bug report rate right after a new release.
RQ3 How does the release policy influence the bug
handling process? Some OSS projects are striving to
frequently deliver updates to applications using policies
such as a rolling release, rolling update, or continuous
delivery [2]. A possible concern about such policies is that
developers have less time to test the software and to fix
all known bugs identified by developers or end users. This
could imply that less bugs will be fixed before a release
and that bugs may persist longer than they would for
traditional release models. To assess this hypothesis, we
study the characteristics of the bug handling process in
pre- and post-release bug reports and compare it between
previous and current adopted release policies.
RQ4 : How do bug handling tools and policies affect
the bug handling performance? The rationale of this
question is to investigate if introducing new policies, such
as how to resolve a bug, and the use of new tools (such
as bug trackers, error reporting tools and code reviewing
tools) influence bug handling performance.
To answer these questions, we will follow a mixed-method
research approach on a selection of OSS projects, by
combining quantitative historical analyses and qualitative
analyses based on interviews and online surveys with
practitioners.

II. Related Work
A. Bug fixing in rapid release cycles
Khomh et al. [3] empirically studied the effect of transi-
tioning to rapid releases on software quality for Mozilla
Firefox. As quality metrics they considered runtime fail-
ures, presence of crash reports and outdatedness of used



releases. They found that less bugs are fixed during the
testing period and that bugs are fixed faster in the rapid
releases. In follow-up work [4] they showed that in a more
rapid release model, compared to the traditional release
model, less post-release bugs are fixed even though they
are fixed faster. Interviewed Mozilla employees reported
that they can be “less effective at triaging bugs with rapid
release” and that more bugs can be generated when more
beta testers use the rapid release model.
Da Costa et al. [5] studied the impact of Mozilla’s rapid
release cycles on the integration delay of addressed issues.
They showed that addressed issues are delivered faster in
the traditional releases compared to the rapid releases.
They also found that the issues are triaged and fixed faster
in rapid releases. In a follow-up work [6], however, they
found no significant difference in triaging and fixing time
between the traditional and rapid releases.

B. Bug handling characteristics
Panjer [7] studied Eclipse and found that attributes (e.g.,
severity, product, component, and version) of an initial
bug report are the most influential factors of the bug
lifetime, as well as comments in post submission informa-
tion. Giger et al. [8] found that the people involved and
the month when the bug was reported have the strongest
influence on the bug fixing time in Mozilla, Eclipse and
Gnome. Marks et al. [9] studied different features of a bug
report in relation to bug fixing time in Mozilla and Eclipse
projects. They found bug location and bug reporting time
to be the most influential factors on bug fixing time.
Zou et al. [10] examined the characteristics of the bug
fixing rate and studied the impact of a reporter’s different
contribution behaviors to the bug fixing rate in Eclipse and
Mozilla. They observed an increase in the fixing rate over
the years for both projects, however, the observed rates
were not high, especially for Mozilla.
Zhang et al. [11] studied factors affecting delays incurred
by developers in the bug fixing time in three Eclipse
projects: Mylyn, Platform and PDE. They found that the
delays in starting to address issues are due mainly to the
severity, operating system, issue description and presence
of comments.
Saha et al. [12] analyzed code change metrics, such as
the number of changed files, to find the reasons behind
bug-fixing delays and to improve the overall bug fixing
process in four Eclipse projects. Their results indicate that
many long-lived bugs could be reduced through careful
triaging and prioritization by predicting their severity,
change effort and change impact in advance.
Rwemalika [13] studied the characteristics and differences
between pre-release bugs and post-release bugs in 37 in-
dustrial Java projects. They found that post-release bugs
are more complex to fix since they require modification of
several source code files, written in different programming
languages and configuration files.

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1
0

releases

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

 o
f F

IX
ED

 b
ug

s

FixRate_before
FixRate_after
ResRate_before
ResRate_after

Fig. 1: Evolution of ResRate and F ixRate before and after
each release.

Zimmermann and Casanueva [14] analyzed the Coq
project to determine the impact of switching the bug
tracker from Bugzilla to GitHub. They found this transi-
tion to result in an increase in bug reporting, particularly
from developers. They also observed an increased user
engagement with the bug tracker, with more comments
by developers and users.

III. Past Research
In our prior work [15], we studied the research questions
through an empirical analysis of the bug handling process
of four core Eclipse products over a 15-year period, consid-
ering 138K bug reports from Bugzilla, including 16 annual
Eclipse releases and two quarterly releases. We relied
on four metrics to quantify bug handling: bug triaging
and fixing time, and bug resolution and fixing rate. Bug
triaging time is the time interval between when the bug
was reported and when it was assigned. Bug fixing (resp.
resolution) time is the time interval between when the bug
was reported and when it was fixed (resp. resolved). Bug
resolution rate ResRate is measured as the proportion of
reported bugs that have been resolved, and bug fixing rate
FixRate is defined as the ratio of fixed over resolved bugs.

RQ1 How does the bug handling performance
evolve?
For each considered release, we computed the number
of reported, resolved, fixed and assigned bugs targeting
this release. We found that the number of reported bugs
targeting a given release is monotonically decreasing all
along the 3.x range of releases. Starting from release 4.2,
the number of bug reports appears to become stable.
Based on the results of Fig. 1, we observe a decreasing
resolution rate all along the Eclipse releases, while FixRate
is increasing. For the 4.x annual release range we observe
a stability in the rates up until release 4.5, after which
ResRate continues to decrease and FixRate continues to
increase. This suggests that Eclipse has a mature and high-
quality bug handling process.

RQ2 How does the release schedule affect bug han-
dling activity?



0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.5
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.9
Reported before release
Reported after release

Fig. 2: Kaplan-Meier survival curve with 95% confidence in-
terval for fixing time before and after each release.

Bug resolution and fixing rates: We computed
ResRate and FixRate before and after each release date.
Fig. 1 shows a decreasing trend of ResRate over the
different releases. We did not find any significant difference
between the resolution rate before and after each release.
Fixing rates before each release were statistically higher
(according to a Wilcoxon rank sum test) than fixing
rates after the release. We also observed that FixRate
is increasing faster since release 4.5.
Bug triaging and fixing time: We used survival anal-
ysis [16] to model the expected time duration until bug
assignment and until bug fixing event occurs. As an exam-
ple, Fig. 2 shows the survival curves for bug fixing before
and after releases 4.5 and 4.9. Using logrank tests [17] we
verified that bug triaging time before a release tends to
be lower than triaging time after that release. We also
observed that the difference between the survival curves
tends to decrease over successive releases; for many recent
releases the difference is very low or absent. For bug fixing
time, we observed that it takes less time to fix a bug before
compared to after a release. Starting from release 4.7 we
could no longer observe statistical differences.
Bug triaging and fixing time when approaching a
release deadline: For each release, we computed triaging
time and fixing time for each bug. We grouped the results
in two periods based on when the assignment or fixing
took place: the early period corresponds to the first 9
months after the current release; and the pressure period
corresponds to the last 3 months before the next release.
We found that during the pressure period, bugs for the
next release are handled faster than for the current release.
This can be explained by an increasing deadline pressure,
requiring developers to prioritise the bugs of the next
release to deliver the release with fewer bugs.
For both the current and the next release, we investigate

the differences in triaging and fixing time between the
early period and the pressure period. For the current
release, most analyses showed that it took longer to triage
or fix bugs during the pressure period compared to the
early period. These results indicate that bugs handled in
the pressure period have been open for a long time and
that developers tend to handle many bugs that had lived
for a long time in the current release before releasing
the next one. For the next release, we do not observe
a difference between the triaging time of the bugs in
the pressure period and early period, meaning that bugs
are triaged in the same way regardless of the considered
period. This means that developers try to triage these bugs
as soon as possible. Moreover, there is very little difference
in the time to fix bugs of the next release during the early
period compared to the pressure period.
RQ3 How does the release policy influence the bug
handling process?
We investigated the effect of the transition from an annual
to a quarterly release policy starting at release 4.9. The
Eclipse community has been working towards this a tran-
sition for over a year by introducing intermediate (quar-
terly) “update” releases since Eclipse 4.6 in 2016. After the
transition we no longer observe any difference between the
number of reported, assigned and fixed bugs before and
after a release, suggesting an increasingly balanced bug
handling workload. Also, after the transition we no longer
observe any statistical difference in triaging and fixing time
before and after releases (see Fig. 2). Our results highlight
the importance of well preparing the transition from a
traditional to a rapid release policy so as the community
to become more effective in bug handling activities.
RQ4 How do tools and policies affect the bug han-
dling performance?
Error reporting tool: Eclipse 4.5 introduced the Auto-
mated Error Reporting client (AERI). The Eclipse com-
munity considered AERI as beneficial: it eases reporting
errors as users do not need to create Bugzilla entries; they
report the issue directly from within Eclipse. In turn, users
can provide comments with their reports which are helpful
when fixing bugs; according to [18] commented bug reports
are fixed twice as fast.Our empirical analysis confirmed
AERI’s positive effect on the bug fixing rate. Fig. 1 shows
that FixRate before and after a release is improving faster
since release 4.5. We assume that this change is caused by
the introduction and continuous use of AERI.
Change of resolution policy: In 2007 Eclipse decided to
stop using the resolution statuses LATER and REMIND
as they gave rise to bugs that remained unresolved for
too long. By analyzing the delays of a follow-up resolution
of the REMIND/LATER bugs (3479 bugs), we found that
most of them lingered for more than 3 years before getting
their follow-up resolution. The decision to stop using these
resolution statuses coincided with a decrease in resolution
rate, while the fixing rate increased.



IV. Ongoing Research
This section summarizes our ongoing work, where we aim
to: (i) generalise our results, (ii) perform more quantitative
analyses, (iii) conduct qualitative analyses to confirm our
results, and (iv) study the impact of other important tool
and policy changes.
Result generalisation: More systems that have changed
their release policy will be investigated to uncover factors
affecting the bug handling process w.r.t. our RQs. For
instance, Mozilla Firefox has shifted from the traditional
development model to a rapid release model. All our
research questions will be studied for Firefox to analyze
its bug handling performance over releases, taking into ac-
count specific policy or tool changes. We will also compare
the effect of switching to a rapid release policy between
Eclipse and Firefox.
The traditional release cycle of Firefox was applied to
major releases (1.0 to 4.0) that would take 12-18 months to
be shipped. Firefox adopted a rapid release cycle in March
2011 where a major release is shipped every 6 weeks. We
retrieved the bug history of all actual bugs of Firefox, by
excluding enhancements, reported between Firefox 3.5 and
Firefox 60, resulting in a dataset with 221,048 bugs. Since
approximately 80% of the bugs are missing their version
field, we will link each bug to a version using Version
Control System (VCS) data and by following the approach
of Da Costa et al. [5]. This is achieved by extracting the
commit logs and finding the commits fixing specific issues
(as their ID is mentioned in the commit message). Bugzilla
also contains tracking flag information that can assist
in linking bugs to releases; flags are used by developers,
triagers, QA and the release management teams to keep
track of bugs that affect particular release(s).
More quantitative analyses: We will use regression
discontinuity analysis to confirm the causal of policy
changes [19]. We will use multiple regression models to
study which combination of factors impacts the bug han-
dling process. We will also study if the type (e.g security
related) and severity of the bugs that are triaged and fixed
faster in the new adopted release policy are different from
the previous one. Such analyses will disclose how practices
are affected by changes in the release policy.
Qualitative analyses: As quantitative analyses pro-
vide limited insights, we also plan to perform qualita-
tive analyses since they are appropriate to retrieve the
pragmatic stance of software engineering research [20]. We
will conduct semi-structured interviews with the developer
communities of the selected projects. We are currently
studying the bug handling performance of bug reports
from two systems and we are planning to interview de-
velopers to find out the preparations that took place
when changing policy and bug handling practices. The
goal of these interviews is to better explain our results
and find out if the selected bug handling process changed
after changing release policy. Moreover, the difficulties
faced when changing the release policy will be discussed

during the interviews to gain developers’ perspective of
the possible impact on the bug handling process and
what aspects of bug handling performance developers care
about.
Impact of switching to new tools: For most software
projects, bug tracking tools are vital for managing bugs.
Broadly, in such tools, all users have access to bug report-
ing. Given the impact they can have on the bug handling
process, it is essential to study the performance of a com-
munity when using different bug tracking environments.
To the best of our knowledge, only Zimmermann and
Casanueva [14] have measured the impact of changing
the bug reporting environment when Coq, an open source
proof assistant, switched from Bugzilla to GitHub. They
found increased developer activity when reporting their
own bugs and discussing bug reports on GitHub. More-
over, the users were more likely to have an active role by
commenting on bug reports. This is an indicator of shift in
the dynamics of the bug reporting process as more people
are engaged in the process, and openness and transparency
are increased. Zimmerman and Casanueva however, only
considered two outcome variables: the number of bug
reports and comments. I aim to analyze other variables
such as the speed of bug resolution, bug tossing, resolution
rate and bug reopening rate.For instance, the OpenStack
Infrastructure team has migrated all of their project bugs
from LaunchPad to StoryBoard [21].
Process mining: As a complementary way to study the
effect of switching to a new tool or policy, we will use
the technique of process mining [22]. We plan to use this
technique to find if and how the bug handling process has
changed after the switch.

V. Conclusion
This paper reports on our current research findings and
outlines the proposed research work of the first author
toward earning her PhD. This work is motivated by the
need to understand the evolution of the bug handling
performance in OSS and how changes in development
policies and supporting tools can impact the bug handling
process. Our main goal is to investigate the impact of such
changes on the bug handling process performance and in a
follow-up step, try to improve it. To do so, we are currently
conducting empirical studies on large and long-lived open
source software projects.

Acknowledgment
This paper reports on the ongoing PhD research by the
first author, under joint supervision by Pr. Tom Mens
and Eleni Constantinou (University of Mons) and Pr. Lau-
rence Duchien and Clément Quinton (University of Lille).
This research was partially supported by the FNRS and
FWO under the Excellence of Science project 30446992
SECO-ASSIST and the FRQ-FNRS collaborative research
project R.60.04.18.F SECO-Health. Zeinab Abou Khalil is
partially supported by Région Hauts-de-France.



References
[1] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies

of open source software development: Apache and mozilla,”
ACM Transactions on Software Engineering and Methodology,
vol. 11, pp. 309–346, July 2002.

[2] Wikipedia contributors, “Rolling release.” https://
en.wikipedia.org/w/index.php?title=Rolling release&oldid=
896696167.

[3] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster
releases improve software quality? An empirical case study
of Mozilla Firefox,” in IEEE Working Conf. Mining Software
Repositories (MSR), pp. 179–188, June 2012.

[4] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding
the impact of rapid releases on software quality,” Empirical
Software Engineering, vol. 20, pp. 336–373, Apr 2015.

[5] D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan,
“The impact of switching to a rapid release cycle on the integra-
tion delay of addressed issues - An empirical study of the Mozilla
Firefox project,” in Working Conference on Mining Software
Repositories (MSR), pp. 374–385, IEEE, 2016.

[6] D. A. da Costa, S. McIntosh, C. Treude, U. Kulesza, and A. E.
Hassan, “The impact of rapid release cycles on the integration
delay of fixed issues,” Empirical Software Engineering, pp. 1–70,
2018.

[7] L. D. Panjer, “Predicting Eclipse bug lifetimes,” in International
Workshop on Mining Software Repositories, p. 29, IEEE Com-
puter Society, 2007.

[8] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of
bugs,” in International Workshop on Recommendation Systems
for Software Engineering, pp. 52–56, ACM, 2010.

[9] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for
bugs in large open source projects,” in International Conference
on Predictive Models in Software Engineering, ACM, 2011.

[10] W. Zou, X. Xia, W. Zhang, Z. Chen, and D. Lo, “An empirical
study of bug fixing rate,” in Computer Software and Applica-
tions Conference (COMPSAC), pp. 254–263, IEEE, 2015.

[11] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical
study on factors impacting bug fixing time,” in Working Con-
ference on Reverse Engineering, pp. 225–234, IEEE, 2012.

[12] R. K. Saha, S. Khurshid, and D. E. Perry, “Understanding the
triaging and fixing processes of long lived bugs,” Information
and software technology, vol. 65, pp. 114–128, 2015.

[13] R. Rwemalika, M. Kintis, M. Papadakis, Y. Le Traon, and
P. Lorrach, “An industrial study on the differences between
pre-release and post-release bugs,” in 2019 35th International
Conference on Software Maintenance and Evolution (ICSME),
pp. 1–12, IEEE, 2019.

[14] T. Zimmermann and A. Casanueva Art́ıs, “Impact of switching
bug trackers: a case study on a medium-sized open source
project,” in 2019 35th International Conference on Software
Maintenance and Evolution (ICSME), pp. 1–12, IEEE, Mar.
2019.

[15] Z. Abou Khalil, E. Constantinou, T. Mens, L. Duchien, and
C. Quinton, “A longitudinal analysis of bug handling across
Eclipse releases,” in 2019 35th International Conference on
Software Maintenance and Evolution (ICSME), pp. 1–12, IEEE,
2019.

[16] O. Aalen, O. Borgan, and H. Gjessing, Survival and event
history analysis: a process point of view. Springer Science &
Business Media, 2008.

[17] J. M. Bland and D. G. Altman, “The logrank test,” BMJ,
vol. 328, no. 7447, p. 1073, 2004.

[18] A. Sewe, “One year of automated error reporting.”
https://www.eclipse.org/community/eclipse newsletter/
2016/july/article3.php, July 2016.

[19] J. D. Angrist and J.-S. Pischke, Mastering’metrics: The path
from cause to effect. Princeton University Press, 2014.

[20] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Se-
lecting Empirical Methods for Software Engineering Research,
pp. 285–311. London: Springer London, 2008.

[21] Michael Krotscheck, “Goodbye launchpad, hello storyboard.”
https://krotscheck.net/2014/11/20/goodbye-launchpad-hello-
storyboard.html, 2014.

[22] W. Poncin, A. Serebrenik, and M. Van Den Brand, “Process
mining software repositories,” in 2011 15th European Confer-
ence on Software Maintenance and Reengineering, pp. 5–14,
IEEE, 2011.

https://en.wikipedia.org/w/index.php?title=Rolling_release&oldid=896696167
https://en.wikipedia.org/w/index.php?title=Rolling_release&oldid=896696167
https://en.wikipedia.org/w/index.php?title=Rolling_release&oldid=896696167
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://krotscheck.net/2014/11/20/goodbye-launchpad-hello-storyboard.html
https://krotscheck.net/2014/11/20/goodbye-launchpad-hello-storyboard.html

