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On the maximization problem for solutions of reaction-diffusion
equations with respect to their initial data.

Grégoire Nadin∗ Ana Isis Toledo Marrero†

Abstract

We consider in this paper the maximization problem for the quantity
∫

Ω
u(t, x)dx with respect to

u0 =: u(0, ·), where u is the solution of a given reaction diffusion equation. This problem is motivated
by biological conservation questions. We show the existence of a maximizer and derive optimality
conditions through an adjoint problem. We have to face regularity issues since non-smooth initial data
could give a better result than smooth ones. We then derive an algorithm enabling to approximate the
maximizer and discuss some open problems.

1 Introduction

1.1 Statement of the problem and earlier works
We investigate in this paper the following optimization problem: given T > 0, we want to maximize the
functional JT (u0) :=

∫
Ω
u(T, x)dx among all possible initial data u0 ∈ Am, where

Am :=
{
u0 ∈ A :

∫
Ω

u0 = m
}

with A :=
{
u0 ∈ L1(Ω), 0 ≤ u0 ≤ 1

}
(1.1)

and u = u(t, x) is the solution of the reaction-diffusion equation
∂tu− d∆u = f(u) in (0, T )× Ω,
u(0, x) = u0(x) in Ω,
∂u
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω

(1.2)

Here, u represents the density of a population,
∫

Ω
u(t, x)dx is thus the total population at time t. Given

an initial total population m, we thus want to place it in such a way that the total population at time T is
maximized.

This is a very natural problem but, as far as we know, it has never been addressed. Let us just mention
three papers that investigate similar questions.

In [9], the case of a particular initial datum uα0 = I[−L2 −
α
2 ,−

α
2 ]∪[α2 ,

L
2 +α

2 ], with α ≥ 0, has been
investigated for a bistable nonlinearity f(u) = u(1 − u)(u − ρ), at infinite horizon T = +∞. In that
case, when Ω = R, for any given α ≥ 0 it is known from [18] that there exist a critical mass L∗(α) > 0
such that for any L < L∗(α) the solution goes to 0 and for L > L∗(α) it converges to 1. The authors
provided numerics [9] showing that one could get L∗(α) < L∗(0) for α small. This means that for
a given initial total population L ∈

(
L∗(α), L∗(0)

)
, the initial datum uα0 associated with two blocks
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separated by a small gap will converge to 1, while the initial datum u0
0 associated with a single block

will converge to 0 (fig. 1). This example shows that our present optimization problem could be difficult,
since fragmented initial data could give a better total population at time T >> 1. Hence, we expect
regularity issues on a possible maximizer.
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Figure 1: The graphs shows the influence of the distribution at time T = 0. On the left hand side the initial
population u(0, x) is concentrated into a single block of mass m = 2.22, it means that the whole population
was released at the same spot. Also is showed the resulting distribution after different times laps: clearly the
infected population tends to disappear as time goes by.
On the right hand side we shows a population with the same initial mass but distributed into two blocks
slightly separated ũ(0, x). The resulting density after same given time periods is clearly bigger, in this case
the infected population tends to invade the environment.

In [7] a similar problem as the present one is investigated, with a more complex cost, but for a
concave nonlinearity f , which will latter appear to be quite restrictive in our case (see Section 4.1), and
with a global control at every time t ∈ (0, T ). First order optimality conditions are heuristically derived,
but the authors do not investigate it further in order to determine the optimal control.

Lastly, in [16], the authors consider a bistable nonlinearity f(t, u) = u(1 − u)
(
u − ρ(t)

)
, and the

control is ρ, which is assumed to belong to [0, 1] for all t ≥ 0. The authors prove that with such a control,
one could get arbitrarily close from a target function -a travelling wave- considering a sufficiently large
time.

Let us also mention [2] , where a similar model is investigated. In this paper, a particular bistable
nonlinearity is considered, and the authors optimize the L2 distance to 1 at time T for several releases
at various times. They prove the existence of an optimizer, compute the first order derivative, and then
consider a toy model (with f ≡ 0) and the particular case where u0 lies in the class of additions of
Gaussian-type functions, for which they optimize on the centers of the Gaussian functions numerically.

The main contribution of this paper are the following. First, we show that there exists a maximizer for
the functional JT . Second, we establish some optimality conditions for this maximizer arising from the
study of the adjoint state. This allows us to provide a numerical algorithm to approximate this optimal
distribution in practice.

Before getting into the statement of our results, let us briefly comment on the biological motivations
of this work.

1.2 Biological motivation
Dengue fever also known as breakbone fever and dandy fever is caused by dengue virus, which is ported
and transmitted by Aedes Aegypti mosquitoes. Nowadays the progress of this virus is increasing and so
the interest of finding a way to control it in absence of an effective medical treatment increases.

Manipulation of the arthropod population by introducing a maternally inherited bacterium called
Wolbachia has been catching the attention of biologists in the last years [3, 12, 13, 17]. In the in-
fected mosquito this bacterium prevents the development of the virus but also induces a cytoplasmic
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incompatibility which declines their reproduction rate when the infected population is small but became
unimportant once its density becomes sufficiently large [4].

Reaction-diffusion equations have been widely used in order to describe biological phenomena of
spreading and species competition, thanks to the works of [4] the dynamic between infected and non
infected mosquitoes population can be described using a Lotka-Volterra system. It has been rigor-
ously shown that it may be studied by mean of a single reaction diffusion equation on the density
u : R+ × Ω→ [0, 1] of infected population.

In such models, the reaction term f(u) is such that it reflects the positive correlation between popula-
tion density and individual fitness, known as Allee effect. In the current problem, this effect is caused by
the cytoplasmic incompatibility, so there exists a critical density threshold ρ under which the population
of infected mosquitoes declines, but increases for large densities. In fact we have f(u) < 0 if 0 < u < ρ
and f(u) > 0 if ρ < u < 1. Hence there is a bistable mechanism, either the infected population disap-
pears (i.e. u → 0 when t → ∞, also called extinction), either the whole population get infected after a
sufficiently large lapse of time (i.e. u→ 1 when t→∞, also called invasion).

Of important and practical interest is the study of sufficient conditions on the different parameters
of the problem in order to reach the invasion state once the deliberately infected mosquitoes population
gets released in the environment. Different approaches to this problem has been done in recent literature,
from the biological point of view [10] and also from the mathematical one. In [16], that we already
mentioned, it is proposed as a strategy to modify the Allee threshold ρ in order to reach an a priori given
target trajectory; in practice this is possible by mean of manipulation of different biological factors which
affect directly the mosquitoes population like increasing or decreasing natural predator’s population or
affecting carrying capacity of the environment. A similar problem is studied in [5], in fact it is proved
that there exists a systematic way to choose a time T > 0, a bounded domain Ω and a distributed control
law g(u) supported in Ω, such that for any initial value u0 the solution of the control problem{

∂tu− d∆u = f(u) + g(u)1[0,T ], in (0, T )× Ω,
u(0, x) = u0(x), in Ω,

(1.3)

satisfies u(t, x)→ 1 when t→ +∞, for any x in Rd.
In practice, the process of manually to infect mosquitoes can be laborious and costly; so it is usual that

institutions has a limited amount of resource and it would be suitable to know which is the best way to
use it. If we assume that we have a fixed mass of infected mosquitoes to be released on the environment,
it is crucial to find out how to distribute them in order to maximize the effect of this infected founding
population after some time T , see for example the works [?] and [1].

2 Problem formulation and main result
We will consider in this paper a bounded, smooth, connected domain Ω, and we make the following
standard assumptions on the reaction term f

(H1) f ∈ C1(Ω),

(H2) f ′ Lipschitz-continuous,

(H3) f(0) = f(1) = 0,

Under the above assumptions, the problem (1.2) has a unique solution u(t, x) and it is such that
0 ≤ u(t, x) ≤ 1, so we can define the operator JT : A ⊂ L1(Ω)→ R in the following way

JT (u0) =

∫
Ω

u(T, x)dx, (2.4)

where u is the solution of eq. (1.2). We can now formulate our main result,

Theorem 1. Let Ω be a bounded domain and let f satisfy the hypothesis (H1), (H2) and (H3). Then
there exist u0 ∈ Am such that

max
u0∈Am

JT (u0) = JT (u0). (2.5)
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Moreover, setting u the solution of (1.2) associated with this optimum initial data and p the unique
solution of (2.6) 

−∂tp− d∆p = f ′(u)p in (0, T )× Ω,
p(T, x) = 1 in Ω,
∂p
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω,

(2.6)

then there exists a real value noted by c such that

i) if 0 < u0(x) < 1 then p(0, x) = c,

ii) if u0(x) = 0 then p(0, x) ≤ c,
iii) if u0(x) = 1 then p(0, x) ≥ c.

The existence of such a maximizer u0(x) corresponds with the best possible way to distribute a fixed
initial mass m in a bounded domain Ω in order to maximize the total mass at t = T . Any way, the issue
of uniqueness is still an open problem.

The second part of the Theorem 1 give us some useful information regarding the profile of an optimal
initial data; in fact it implies that any optimum can be written as

u0(x) = 1{p0(x)>c} + γ(x)1{p0(x)=c}, (2.7)

with 0 ≤ γ(x) ≤ 1. In particular if the adjoint state p0(x) is not constant in any subset of Ω, then
the optimum is u0(x) = 1{p0(x)>c}. In the section 5 we will see that this result allows us to define a
numerical algorithm to approximate a local maximum of JT .

3 Proof of Theorem 1
We first state some results concerning the regularity of u, J and the adjoint state p that we will later
invoke.

Lemma 2. Under the hypothesis (H1), (H2) and (H3) stated above on f , the solution u = u(t, x) of
(1.2) satisfies the following estimates:

1. 0 ≤ u(t, x) ≤ 1, for all (t, x) ∈ [0, T ]× Ω,

2. u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

3. ∂tu ∈ L2(0, T ;H−1(Ω)).

Proof. The first assertion is a straightforward consequence of the maximum principle and the properties
of f . In fact, since 0 ≤ u0(x) ≤ 1 and f(0) = f(1) = 0 we have that U = 1 is a super-solution and
U = 0 is a sub-solution so we get the result.

In order to prove now the other two estimates let us multiply the equation (1.2) by u and integrate on
Ω, we obtain

1

2
∂t

∫
Ω

u2(t, x)dx+ d

∫
Ω

(∇xu(t, x))2dx =

∫
Ω

u(t, x)f(u(t, x))dx; (3.8)

thus, choosing M such that |f ′(u)| ≤M, ∀u ∈ A we have

1

2
∂t‖u(t)‖2L2(Ω) ≤

∫
Ω

u(t, x)f(u(t, x))dx ≤M‖u(t)‖2L2(Ω). (3.9)

By Gronwall inequality we get

‖u(t)‖2L2(Ω) ≤ e
2Mt‖u0‖2L2(Ω) ≤ |Ω|e

2MT . (3.10)

Note that the constant in the right hand side is independent of t, so we have actually proved that
u ∈ L∞(0, T ;L2(Ω)).
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Integrating (3.8) in time we get

1

2

∫
Ω

(u)2(T, x)dx− 1

2

∫
Ω

(u0)2(x)dx+ d

∫ T

0

∫
Ω

(∇xu(t, x))2dx =

∫ T

0

∫
Ω

u(t, x)f(u(t, x))dx

(3.11)
and so it yields

d‖∇xu‖2L2(0,T ;L2(Ω)) =

∫ T

0

∫
Ω

u(t, x)f(u(t, x))dx+
1

2
‖u0‖2L2(Ω) −

1

2
‖u(T, ·)‖2L2(Ω)

≤M‖u‖L∞(0,T ;L2(Ω)) + ‖u0‖2L2(Ω).

Finally, choosing v ∈ H1(Ω) such that ‖v‖H1(Ω) ≤ 1 and multiplying and integrating again in (1.2)
it holds ∫

Ω

∂tu(t, x)v(x)dx+ d

∫
Ω

∇xu(t, x)∇xv(x)dx =

∫
Ω

f(u(t, x))v(x)dx (3.12)

from which we can deduce that

‖∂tu(t, ·)‖H−1(Ω) ≤M‖u‖2L2(Ω) + ‖∇xu‖2L2(Ω) (3.13)

and therefore, thanks to the estimate on the L2 norm of∇xu we obtain ∂tu ∈ L2(0, T ;H−1(Ω)).

Lemma 3. The operator JT defined in (2.4) is differentiable. Furthermore, choosing p as the unique
solution of (2.6) and h such that

∂th− d∆h = f ′(u)h in (0, T )× Ω,
h(0, x) = h0(x) in Ω,
∂h
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω,

(3.14)

it holds
〈DJT (u0), h0〉 =

∫
Ω

h0(x)p(0, x)dx, (3.15)

〈
D2JT (u0), h0

〉
=

∫ T

0

∫
Ω

f ′′(u(t, x))p(t, x)h2(t, x) dx dt, (3.16)

where 〈·, ·〉 is the scalar product in L2(Ω).

Proof. Let h0(x) be defined over Ω such that h0 ∈ L2(Ω), then there exist hε such that the solution vε
of (1.2) with initial condition v(0, x) = u0 + εh0 can be written as vε = u+ εhε, where hε is the unique
solution of (3.17)

∂thε − d∆hε = 1
ε (f(u+ εhε)− f(u)) in (0, T )× Ω,

hε(0, x) = h0(x) in Ω,
∂hε
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω.

(3.17)

The Gateaux derivative of JT writes then

〈DJT (u0), h0〉 = lim
ε→0
ε 6=0

JT (vε0)− JT (u0)

ε
= lim
ε→0
ε6=0

∫
Ω
vε(T, x)dx−

∫
Ω
u(T, x)dx

ε

= lim
ε→0
ε 6=0

∫
Ω

(u(T, x) + εhε(T, x)) dx−
∫

Ω
u(T, x)dx

ε

= lim
ε→0
ε 6=0

∫
Ω

hε(T, x)dx.

(3.18)

By the Lipschitz continuity of f there exist a positive constant M such that∣∣∣∣f(u+ εhε)− f(u)

ε

∣∣∣∣ ≤M |hε|, ∀ε > 0, (3.19)
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then the Gronwall inequality, applied just as in the proof of the first assertion in Lemma 2, implies
that hε ∈ L∞(0, T ;L2(Ω)). As a consequence, when ε → 0 it is possible to extract a subsequence
εn → 0 such that hεn

∗
⇀ h in L∞(0, T ;L2(Ω)) and after possible another extraction it satisfies that

hεn(T, x) ⇀ h(T, x) weakly in L2(Ω). We can then conclude that the Gateaux derivative of JT writes

〈DJT (u0), h0〉 =

∫
Ω

h(T, x)dx, (3.20)

where h is also the unique solution of the differential equation (3.14) obtained by passing in to the limit
in the weak formulation of (3.17).

If we show the continuity of this operator u0 7→ DJT (u0), the differentiability of JT follows. Let hw,
hv be the solution of (3.14) for u = w, v respective solutions of (1.2) with w0, v0 as initial conditions, it
is then easy to check that

|〈DJT (w0), h0〉−〈DJT (v0), h0〉| = |
∫

Ω

(hw−hv)(T, x)dx| ≤
√
|Ω|‖(hw−hv)(T, ·)‖L2(Ω). (3.21)

Multiplying the equation on hw − hv by hw − hv and integrating on Ω we get

1

2
∂t

∫
Ω

(hw−hv)2(t, x)dx+d

∫
Ω

(∇x(hw−hv))2(t, x)dx =

∫
Ω

(f ′(w)hw−f ′(v)hv)(hw−hv)(t, x)dx

Noting δw,v(t, x) = (w − v)(t, x) it holds

1
2∂t
∫

Ω
(hw − hv)2(t, x)dx ≤

∫
Ω

(f ′(δw,v + v)hw − f ′(v)hv)(hw − hv)(t, x)dx
≤
∫

Ω
((Cδw,v + f ′(v))hw − f ′(v)hv)(hw − hv)(t, x)dx

≤ C
∫

Ω
hwδw,v(hw − hv)(t, x)dx+M

∫
Ω

(hw − hv)2(t, x)dx;
(3.22)

the second and third inequalities in (3.22) follows from the regularity of f , the constants C and M are
such that |f ′′| ≤ C and |f ′| ≤M .

By the Gronwall Lemma, for some real L > 0 it holds that
∫

Ω
δ2
w,v(t, x)dx ≤ L‖δw0,v0

‖L2(Ω).
Together with the Cauchy-Schwartz’s inequality and the fact that hw and hv are bounded, this result
allows us to get

∂t‖(hw − hv)‖L2(Ω) ≤ CL‖δw0,v0‖L2(Ω) +M‖(hw − hv)‖L2(Ω), (3.23)

from which we deduce a L2-bound to hw − hv

‖(hw − hv)(t, x)‖L2(Ω) ≤
CL

M
‖δw0,v0

‖L2(Ω)e
Mt. (3.24)

Combining (3.24) and (3.21) yields the continuity of u0 7→ DJT (u0) and hence the differentiability of
JT in a larger sense,

|〈DJT (w0), h0〉 − 〈DJT (v0), h0〉| ≤
√
|Ω|CL

M
‖δw0,v0

‖L2(Ω)e
MT . (3.25)

Multiplying (3.14) by the solution p of (2.6) and integrating by parts we can rewrite (3.20) as

〈DJT (u0), h0〉 =

∫
Ω

h(T, x)dx =

∫
Ω

h0(x)p(0, x)dx (3.26)

and consequently DJT (u0) = p(0, x); this p is often called the adjoint state of h.

Let us now find an expression for the second order derivative of JT . We set vε = u+ εh+ ε2

2 kε and
we write the differential equation satisfied by vε. From the regularity hypothesis on f and the estimation
(3.24) on h, vε and uε it follows that kε ∈ L∞(0, T ;L2(Ω)). A passage to the limit when ε → 0
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implies, after extraction, the existence of a subsequence kεn ∈ L∞(0, T ;L2(Ω)) such that kεn
∗
⇀ k in

L∞(0, T ;L2(Ω)). By mean of a Taylor expansion we deduce the differential equation satisfied by k,
∂tk − d∆k = f ′(u)k + f ′′(u)h in (0, T )× Ω,
k(0, x) = 0 in Ω,
∂k
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω.

(3.27)

An analysis similar to that yielding (3.26) shows that∫
Ω

k(T, x)dx =

∫ T

0

∫
Ω

f ′′(u)h2p dx dt, (3.28)

in this case we multiply (3.27) by p and we integrate in space and time. Finally we have proved that
when ε→ 0, it holds

JT (u0 + εh0) =

∫
Ω

u(T, x)dx+ ε

∫
Ω

h(T, x)dx+
ε2

2

∫
Ω

k(T, x)dx+ o(ε2)

= JT (u0) + ε〈DJT (u0), h〉+
ε2

2

∫ T

0

∫
Ω

f ′′(u)h2p dx dt+ o(ε2),

which establishes the formula

〈D2JT (u0), h0〉 =

∫ T

0

∫
Ω

f ′′(u(t, x))h2(t, x)p(t, x) dx dt. (3.29)

Lemma 4. Let Ω be a bounded domain, then the solution p of the equation (2.6) is such that

1. pt, ptt,∇p,∇2p,∇pt,∇2pt ∈ Lqloc
(
(0, T )× Ω

)
for all 1 ≤ q <∞,

2. ∀c ∈ R, for almost every x ∈ {p(0, ·) = c}, one has

f ′
(
u0(x)

)
= −pt(0, x)/p(0, x).

Proof. Let us start by proving that p is bounded. In fact, if we consider p the solution of the ordinary
differential equation {

−∂tp = Mp in (0, T ),
p(T ) = 1,

(3.30)

withM = ‖f ′‖L∞ , it is clear that 0 ≤ p(t, x) ≤ p(t), which is a consequence of the maximum principle.
Since we know explicitly that p = eM(T−t) ∈ L∞(0, T ) then it holds

p ∈ L∞(0, T ;L∞(Ω)) (3.31)

Second, we know from the classical Lq regularity theory for parabolic equations (see for instance
Theorem 9.1, in chapter IV of [15]) that, as 0 ≤ u ≤ 1, one has pt,∇p,∇2p ∈ Lqloc

(
(0, T )× Ω

)
for all

1 ≤ q <∞. Similarly, one has ut,∇u,∇2u ∈ Lqloc
(
(0, T )× Ω

)
for all 1 ≤ q <∞.

Next, let us define φ := pt, deriving on (2.6) we obtain that it is the only solution of the equation
−∂tφ−∆φ = G, in (0, T )× Ω,
φ(T, x) = 0, in Ω,
∂φ
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω,

(3.32)

where G = f ′′(u)utp + f ′(u)φ. Due to the previous estimates, one has G ∈ Lqloc
(
(0, T ) × Ω

)
for all 1 ≤ q < ∞. Hence, again the Lq regularity theory for parabolic equations yields
φt,∇φ,∇2φ ∈ Lqloc

(
(0, T )×Ω

)
for all 1 ≤ q <∞. This means in particular that pt ∈ Lqloc

(
(0, T ),W 2,q

loc (Ω)
)

7



for all 1 ≤ q <∞. Taking q large enough, the Morrey inequality thus yields p ∈ C0,α
loc

(
(0, T ),W 2,q

loc (Ω)
)

for all 1 ≤ q <∞ and α ∈ (0, 1).
Now, as p(0, ·) ∈W 2,1

loc (Ω), we know (see for example [11]) that for almost every x ∈ {p(0, ·) = c},
one has ∆p(0, x) = 0. Moreover, as ptt ∈ Lqloc

(
(0, T ) × Ω

)
for all 1 ≤ q < ∞, one has

pt ∈ C0,α
loc

(
(0, T ), Lploc(Ω)

)
and, in particular, pt(0, ·) ∈ Lqloc(Ω). We eventually derive from (2.6)

that for almost every x ∈ {p(0, ·) = c}, one has

−pt(0, x) = f ′
(
u(0, x)

)
p(0, x).

Now we proceed with proof of Theorem 1.

Proof. This proof falls naturally into two parts, firstly we set the existence of a maximal element and
then we characterize it.
Step 1: Existence of a maximal element

The basic idea of this part of the proof is to establish the existence of a supremum element in the set
{JT (u0) : u0 ∈ Am} and then to show that it is reached for some element u0 ∈ Am defined as the limit
of a maximizing sequence in Am.

From the first estimate on Lemma 2 it follows that JT is bounded. We note also that JT is a conti-
nuous operator thanks to the results in Lemma 3,

|JT (u0)− JT (v0)| ≤ |Ω| 12 eMT ‖u0 − v0‖L2(Ω). (3.33)

It must exist, therefore, a supremum element in the set of images of JT , and so a maximizing se-
quence un0 in Am, which means

lim
n
JT (un0 ) = sup

{Am}
JT (u). (3.34)

Since 0 ≤ un0 (x) ≤ 1, it is clear that un0 ∈ L∞(Ω) and so after an extraction, we can state that
un0

∗
⇀ u0 weakly in L∞(Ω), for some u0 ∈ L∞(Ω) i.e.∫

Ω

un0 (x)ϕ(x)dx→
∫

Ω

u(x)0ϕ(x)dx, ∀ϕ ∈ L1(Ω). (3.35)

Choosing ϕ = 1 in (3.35), we get that u0 is still in Am.
Now, to each un0 , n = 1, 2, . . . we can associate the solution of the problem (1.2) with initial datum

un0 
∂tu

n − d∆un = f(un) in (0, T )× Ω,
un(0, x) = un0 (x) in Ω,
∂un

∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω,
(3.36)

in a weak sense this means that ∀ϕ ∈ C∞(0, T )× Ω the following holds

〈un(T ), ϕ(T )〉 −
∫ T

0

〈un(t), ∂tϕ(t)〉dt− d
∫ T

0

〈un(t),∆ϕ(t)〉 =

∫ T

0

〈f(un(t)), ϕ(t)〉dt+ 〈un0 , ϕ(0)〉.
(3.37)

Thanks to the first assertion of Lemma 2, we can deduce that un(T, x) ∈ L2(Ω) for all n = 1, 2, . . .
and consequently the existence of an element ũ ∈ L2(Ω) such that, after extraction, un(T, x) ⇀ ũ in
L2(Ω), i.e.

〈un(T ), ϕ〉 → 〈ũ, ϕ〉, ∀ϕ ∈ L2(Ω). (3.38)

Since un ∈ L∞(0, T ;L2(Ω)), after possibly another extraction, there exist U ∈ L∞(0, T ;L2(Ω))

such that un ∗⇀ U in L∞(0, T ;L2(Ω)), i.e.∫ T

0

〈un(t), ϕ(t)〉dt −→
∫ T

0

〈U(t), ϕ(t)〉dt, ∀ϕ ∈ L∞(0, T ;L2(Ω)). (3.39)
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Again, from the second assertion in Lemma 2, it follows the existence of a subsequence still noted
by ∂tun and v ∈ L2(0, T ;H−1(Ω)) such that ∂tun

∗
⇀ v in L2(0, T ;H−1(Ω)), i.e.∫ T

0

〈∂tun(t), ϕ(t)〉dt→
∫ T

0

〈v(t, x), ϕ(t, x)〉dt ∀ϕ ∈ L2(0, T ;H1(Ω)). (3.40)

We can easily to prove that ∂tU = v. In fact, from the weak definition of partial derivative the following
equality must holds for all ϕ ∈ C∞c (0, T )× Ω∫ T

0

〈∂tun(t), ϕ(t)〉dt = −
∫ T

0

〈un(t), ∂tϕ(t)〉dt; (3.41)

a simple passage to the limit implies the desired result and consequently that U ∈ H1(0, T ;L2(Ω)),∫ T

0

〈v(t), ϕ(t)〉dt = −
∫ T

0

〈U(t), ∂tϕ(t)〉dt. (3.42)

Now choosing ϕ ∈ H1(0, T ;L2(Ω)) such that ϕ(0, x) = 0 for all x ∈ Ω, after an integration by
parts we get ∫ T

0

〈∂tun(t), ϕ(t)〉dt = 〈un(T ), ϕ(T )〉 −
∫ T

0

〈un(t), ∂tϕ(t)〉dt (3.43)

and so passing to the limit and integrating by parts again we obtain∫ T

0

〈v, ϕ(t)〉dt = 〈ũ, ϕ(T )〉 −
∫ T

0

〈U, ∂tϕ(t)〉dt

= 〈ũ, ϕ(T )〉 − 〈U(T ), ϕ(T )〉+

∫ T

0

〈∂tU,ϕ〉dt.

This equality together with (3.42) implies that ũ(x) = U(T, x) almost everywhere in Ω. Similarly
choosing ϕ adequately we prove that u0(x) = U(0, x) almost everywhere in Ω.

Finally we know that being un0 ∈ L2(Ω) then ∀τ > 0 the solution un of (3.36) is C∞([τ, T ]×Ω), [6,
Th X.10] and so compactly embedded in L2(Ω), [8, Sec 5.7]. This means that un(t)→ U(t) strongly in
L2(Ω), for all t ∈ [τ, T ], with τ > 0 and as a consequence

f(un(t))→ f(U(t)) in L2 for almost every t ∈ (0, T ]. (3.44)

Now we can pass to the limit in (3.37), gathering (3.35), (3.38) and (3.44) to obtain that ∀ϕ ∈ C∞(0, T )×Ω
it holds

〈U(T ), ϕ(T )〉 −
∫ T

0

〈U(t), ∂tϕ(t)〉dt−
∫ T

0

〈U(t),∆ϕ(t)〉 =

∫ T

0

〈f(U(t)), ϕ(t)〉dt+ 〈u0, ϕ(0)〉,
(3.45)

which means that U is a weak solution to the problem
∂tU − d∆U = f(U) in (0, T )× Ω,
U(0, x) = u0(x) in Ω,
∂U
∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω.

(3.46)

Now, we get the following equalities from (3.34) and (3.38) choosing ϕ = 1

sup
{Am}

JT (u) = lim
n
JT (un0 ) = lim

n

∫
Ω

un(T, x)dx =

∫
Ω

U(T, x)dx = JT (u0), (3.47)

which in fact means that u0 is a maximizing element of JT in Am.
Step 2: Characterization of the maximal element
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We first prove (i).
Let µ be the Lebesgue measure. We define the set T = {x ∈ Ω : 0 < u0(x) < 1} and we suppose

that µ(T ) 6= 0, otherwise there exist a set D such that u0 = ID almost everywhere. We note that T can
be written as T = ∪∞k=1Tk where Tk = {x ∈ Ω : 1

k < u0(x) < 1− 1
k}. Let us fix a sufficiently large k

such that µ(Tk) > 0 and consider two points x∗, y∗ in this set. For ε ∈ R and r ∈ R+, we define

v0(x) = u0(x) + ε
µ(B(x∗, r))

µ(B(x∗, r) ∩ Tk)
IB(x∗,r)∩Tk − ε

µ(B(y∗, r))

µ(B(y∗, r) ∩ Tk)
IB(y∗,r)∩Tk , (3.48)

here IC is the characteristic function of the set C. Thanks to the Lebesgue Density Theorem, for almost
every x ∈ Tk, it holds

lim
r→0+

µ(B(x, r))

µ(B(x, r) ∩ Tk)
→ 1. (3.49)

In particular we can choose r small enough and x∗, y∗ ∈ Tk such that µ(B(x∗,r))
µ(B(x∗,r)∩Tk) < 2 and

µ(B(y∗,r))
µ(B(y∗,r)∩Tk) < 2 and |ε| < 1

2k as well, then it is clear that 0 < v0 < 1 and so v0 is still in T .
We note also that∫

Ω

v0(x)dx =

∫
Ω

u0(x) + ε
µ(B(x∗, r))

µ(B(x∗, r) ∩ Tk)

∫
Ω

IB(x∗,r)∩Tkdx− ε
µ(B(y∗, r))

µ(B(y∗, r) ∩ Tk)

∫
Ω

IB(y∗,r)∩Tkdx

= m+ εµ(B(x∗, r))− εµ(B(y∗, r))

= m,

so v0 ∈ Am. We shall now use the fact that u0 is a maximizing element in Am; gathering (3.20) and
(3.26) we have

0 = lim
ε→0

1

ε

[
JT

(
u0 + ε

(
µ(B(x∗, r))IB(x∗,r)∩Tk
µ(B(x∗, r) ∩ Tk)

−
µ(B(y∗, r))IB(y∗,r)∩Tk
µ(B(y∗, r) ∩ Tk)

))
− JT (u0)

]
=

∫
Ω

(
µ(B(x∗, r))IB(x∗,r)∩Tk
µ(B(x∗, r) ∩ Tk)

−
µ(B(y∗, r))IB(y∗,r)∩Tk
µ(B(y∗, r) ∩ Tk)

)
p(0, x)dx

=
µ(B(x∗, r))

µ(B(x∗, r) ∩ Tk)

∫
B(x∗,r)∩Tk

p(0, x)dx− µ(B(y∗, r))

µ(B(y∗, r) ∩ Tk)

∫
B(y∗,r)∩Tk

p(0, x)dx.

Here we can multiply the whole equality by 1
µ(B(x∗,r)) to obtain

0 =
1

µ(B(x∗, r) ∩ Tk)

∫
B(x∗,r)∩Tk

p(0, x)dx− 1

µ(B(y∗, r) ∩ Tk)

∫
B(y∗,r)∩Tk

p(0, x)dx

then, making r goes to zero we get that for almost every x∗, y∗ ∈ Tk it holds

0 = p(0, x∗)− p(0, y∗).

We have finally obtained the existence of a constant c ∈ R such that p(0, x) = c almost everywhere in
Tk. The same statement holds for every k large enough, so with k → +∞ we have the result for almost
every x ∈ T .

Lets now prove (ii).
Lets define the set T 0 = {x ∈ Ω : u0(x) = 0} and for every k = 1, 2, . . . the set

T 0
k = {x ∈ Ω : 0 ≤ u0(x) < 1

k}, we note that T 0 = ∩∞k=1T
0
k . We assume that µ(T 0) > 0, oth-

erwise u0 > 0 almost everywhere and we pass to (iii). Choosing x∗ ∈ T 0
k and y∗ ∈ Tk defined as above;

r sufficiently small such that µ(B(x∗,r))
µ(B(x∗,r)∩T 0

k )
< 2 and µ(B(y∗,r))

µ(B(y∗,r)∩Tk) < 2 as in (3.49) and 0 < ε < 1
2k , it

holds

0 ≤ v0(x) = u0(x) + ε
µ(B(x∗, r))

µ(B(x∗, r) ∩ T 0
k )

IB(x∗,r)∩T 0
k
− ε µ(B(y∗, r))

µ(B(y∗, r) ∩ Tk)
IB(y∗,r)∩Tk ≤ 1,
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and similarly to the previous case
∫

Ω
v0(x)dx = m, so v0 ∈ Am. Since u0 is a maximizing element in

Am and ε is strictly positive, we get

0 ≥ lim
ε→0

1

ε

[
JT

(
u0 + ε

(
µ(B(x∗, r))IB(x∗,r)∩Tk
µ(B(x∗, r) ∩ Tk)

−
µ(B(y∗, r))IB(y∗,r)∩Tk
µ(B(y∗, r) ∩ Tk)

))
− JT (u0)

]
=

∫
Ω

(
µ(B(x∗, r))IB(x∗,r)∩Tk
µ(B(x∗, r) ∩ Tk)

−
µ(B(y∗, r))IB(y∗,r)∩Tk
µ(B(y∗, r) ∩ Tk)

)
p(0, x)dx

=
µ(B(x∗, r))

µ(B(x∗, r) ∩ Tk)

∫
B(x∗,r)∩Tk

p(0, x)dx− µ(B(y∗, r))

µ(B(y∗, r) ∩ Tk)

∫
B(y∗,r)∩Tk

p(0, x)dx

again, we can multiply the inequality by 1
µ(B(x∗,r)) > 0 and obtain

0 ≥ 1

µ(B(x∗, r) ∩ Tk)

∫
B(x∗,r)∩Tk

p(0, x)dx− 1

µ(B(y∗, r) ∩ Tk)

∫
B(y∗,r)∩Tk

p(0, x)dx.

Passing to the limit when r → 0 we get

0 ≥ p(0, x∗)− p(0, y∗),

from where c ≥ p(0, x∗) for almost every x∗ ∈ T 0
k and every k large enough. We have done the proof

of (ii) making k → +∞.
In a similar way we can prove (iii) and thus end with the proof of the Theorem 1.

4 The u0-constant case
We will restrict ourselves in this section to the study of the case where the initial mass m is distributed
homogeneously over the bounded domain Ω. We thus consider u0 := m

|Ω| with 0 < m < |Ω|, which is
the only constant initial distribution that belongs in Am. In this case the solution of the equation (1.2) is
homogeneous in space for every t ∈ [0, T ], meaning that u(t, x) = u(t) for all x ∈ Ω. More precisely u
satisfies the ordinary differential equation{

∂tu = f(u) in (0, T ),
u(0) = m

|Ω| .
(4.50)

We also assume that the reaction term f(u) satisfies (H1), (H2), (H3) and the following additional
hypothesis

(H4) ∃ρ ∈ [0, 1] and δ > 0 such that ∀x ≥ ρ : f(x) > 0 and f ′′(x) < −δ; f ∈ C2([0, 1]).

Proposition 5. Let u0 be the constant distribution defined as u0 := m
|Ω| , ∀x ∈ Ω and f satisfying

(H1)-(H3). Then the following assertions holds:

i.) If (H4) is satisfied and if m
|Ω| ≥ ρ, then u0 is a local maximizer of JT in the L2-norm.

ii.) In dimension one, if u0 is a local maximizer of JT in the L2-norm, then f ′′(u0) ≤ 0.

Proof. As seen previously, the derivative of the target operator JT (u0) on the admissible set Am writes
〈DJT (u0), h0〉 =

∫
Ω
h0(x)p0(x) for every zero mean value function h0 ∈ L2(Ω) and p0(x) = p(0, x)

being the adjoint state, which is characterized by{
−∂tp = f ′(u)p in (0, T )× Ω,
p(T, x) = 1 in Ω.

(4.51)

It is easy to check that p(t, x) = f (u(T )) /f (u(t)), which is also homogeneous in space. Conse-
quently p0 = f (u(T )) /f

(
m
|Ω|

)
is constant and 〈DJT (u0), h0〉 = p0

∫
Ω
h0(x)dx = 0 which means

that u0 := m
|Ω| is a critical point.
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Let us now to check that, provided that the initial mass is large enough, the second order optimality
conditions on this critical point are satisfied. We suppose that

u0 :=
m

|Ω|
> ρ, (4.52)

then, since f(u0) is positive, u(t) stay increasing in time implying that ρ < u(t) < 1 for every t > 0
and consequently from (H4) we get f ′′(u(t)) < −δ. Besides, from (4.51) follows that p(t) ≥ e−M(T−t)

where M is such that f ′(u(t)) ≥M, ∀t > 0. Gathering those estimates we obtain

〈
D2JT (u0), h0

〉
=

∫ T

0

∫
Ω

f ′′(u(t))p(t)h2(t, x)dxdt ≤ −δ
∫ T

0

e−M(T−t)
∫

Ω

h2(t, x)dx dt. (4.53)

As shown in a previous section, h(t, x) satisfies the equation{
∂th− d∆h = f ′(u)h in (0, T )× Ω,
h(0, x) = h0(x) in Ω,

(4.54)

from which we can deduce ‖h(t)‖2L2(Ω) ≤ ‖h0‖2L2(Ω)e
2Mt.

Finally, for a certain positive constant C depending only on δ, M and T , it holds that〈
D2JT (u0), h0

〉
≤ −C‖h0‖2L2(Ω), (4.55)

which ensures that the second order optimality conditions on this critical point are fulfilled and concludes
the proof of the first assertion.

Note that in this case, the constant c derived from the Theorem 1 is necessarily c ≡ p0 otherwise
u0(x) is either null or totally saturated over the domain Ω which would imply that u0 /∈ Am. Hence the
set {p0 = c} coincides with the whole domain Ω.

Let us now show the second part of the Proposition 5. We suppose that u0 is a local maximizer in the
L2-norm, then for any sufficiently small perturbation h0(x) the second order optimality condition holds,
i.e. 〈

D2JT (u0), hk(x)
〉
≤ 0. (4.56)

In particular we consider hk0(x) = cos(kx), k = 1, 2, . . . , for the sake of simplicity Ω = (0, π) and we
assume a diffusion coefficient d = 1. Then we can explicitly calculate the second order derivative of our
target operator JT , which depends on the solution hk(t, x) of the differential equation

∂th
k −∆hk = f ′(u)hk in (0, T )× (0, π),

hk(0, x) = hk0(x) = cos(kx) in Ω,
∂hk

∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ {0, π}.
(4.57)

The solution of (4.57) is explicitly given by

hk(t, x) = e−k
2t cos (kx)

f(u(t))

f(u0)
(4.58)

and consequently from (3.16) and thanks to the Laplace method it follows that

〈
D2JT (u0), hk0

〉
=

f(u(T ))

f2(u0)

∫ T

0

f ′′(u(t))f(u(t))e−2k2t

∫ π

0

cos2(kx)dx dt (4.59)

=
π

2

f(u(T ))

f2(u0)

∫ T

0

f ′′(u(t))f(u(t))e−2k2tdt (4.60)

∼
k→∞

π

4
p0
f ′′(u0)

k2
. (4.61)

Gathering (4.61) and (4.56) we get that necessarily f ′′(u0) ≤ 0, which completes the prove.
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4.1 The case of a concave nonlinearity
In this section we consider concave nonlinearities. We have in mind in particular the well known Fisher-
KPP equation where the reaction term f(u) = ru(1− u) and the system is monostable. We remark the
fact that this particular f satisfies (H1)-(H4) so the Proposition 5 applies for homogeneously distributed
initial data. In what follows we will prove that a constant initial distribution is in fact the optimal
distribution.

We start by showing that the functional JT (u0) inherits the concavity from the reaction term. In a
general framework we have the following

Proposition 6. Let u be the solution of the differential equation (1.2). If the reaction term f(u) is
concave, then the functional JT (u0) defined by (2.4) is also concave.

Proof. Let α, β ∈ [0, 1] be such that α + β = 1, if we call u the solution of (1.2) with initial condition
ũ0(x) = αu1

0(x) + βu2
0(x) and we set û(t, x) = αu1(t, x) + βu2(t, x) where ui is the solution of (1.2)

with initial condition ui0(x), i ∈ {1, 2}, because of the concavity of f we have

∂tû−∆û = αf(u1) + βf(u2) ≤ f
(
αu1 + βu2

)
= f(û), (4.62)

so thanks to the maximum principle û(t, x) ≤ u(t, x), and therefore

JT
(
αu1

0 + βu2
0

)
= JT (ũ0) =

∫
Ω

u(T, x)dx ≥
∫

Ω

û(t, x)dx = αJT (u1
0) + βJT (u2

0), (4.63)

which means that JT is concave.

This concavity property in the Fisher-KPP case ensures that if u0 is a critical point then it is a
maximizer for JT . As straightforward consequence of the Proposition 5 we have that u0(x) ≡ m

|Ω| is a
global maximum for JT . Explicitly, the solution writes

u(t, x) =
κ0e

rt

1 + κ0ert
, κ0 :=

m

|Ω| −m
, p(t, x) =

er(T−t)

e2r
∫ T
t
u(s)ds

. (4.64)

and in consequence the maximum value of the functional is JT (u0) = merT

1−u0(1−erT )
.

5 Numerical Algorithm
The aim of this section is to describe an algorithm to find approximately an optimal distribution provided
that the space Ω, the mass m and the time T are prescribed. In order to achieve this goal, the first order
optimality conditions (i)-(iii) on Theorem 1 will be crucial. The strategy, which is is basically inspired
by gradient descent optimization algorithms, will be to find a maximizing sequence u1

0, u
2
0, u

3
0 . . . which

converges to the optimal element u0(x).
From now on we shall make the assumption that Ω ∈ R is an interval. Let us recall that the question

we study can be seen as an optimization problem under constraints

max
u0∈A

JT (u0) (5.65)

s.t.
∫

Ω

u0(x)dx = m. (5.66)

We can then consider the associated problem

min
λ∈R+

max
u0∈A

L(u0, λ) = JT (u0)− λ
(∫

Ω

u0(x)dx−m
)
, (5.67)

where λ ∈ R+ is the Lagrangian multiplier.
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As already proved, JT is differentiable so L is also differentiable, therefore any critical point must
satisfy 〈

∂u0
L(u0, λ), h0

〉
=

∫
Ω

(
p0(x)− λ

)
h0(x)dx ≥ 0, ∀h0 ∈ L2(Ω) : u0 + h0 ∈ A, (5.68)

∂λL(u0, λ) =

∫
Ω

u0(x)dx−m = 0, (5.69)

where p0(x) = p(0, x) is the solution of (2.6) whose reaction term depends on u(t, x), which solves
(1.2) with u0(x) as initial datum.

We choose as the first element u0
0(x) a single block of mass m with maximal density, symmetrically

distributed in Ω. Let us precise now how to define un+1
0 (x) from un0 (x) at the n-th iteration of our

algorithm. Numerically solving the differential equation (1.2) with u0(x) = un0 (x) we can compute
un(t, x) and then pn(t, x) as the solution of

−∂tpn − d∆pn = f ′(un)pn in (0, T )× Ω,
pn(T, x) = 1 in Ω,
∂pn

∂ν (t, x) = 0 for all t ∈ (0, T ), for all x ∈ ∂Ω.

(5.70)

Let us assume that the new element will be set as un+1
0 (x) = un0 (x)+hn0 (x) for some optimal increment

hn0 (x). It is suitable to increase the valueL(un0 ); we should then move into the positive gradient direction,
that is

〈∂u0L(un0 , λ), hn0 〉 =

∫
Ω

(pn0 (x)− λ)hn0 (x)dx ≥ 0. (5.71)

For some value λn, that we will clarify later, if pn0 (x) > λn then it is necessary that hn0 (x) be positive
and as large as possible, in order to improve as much as possible the current value of the functional JT .
Since 0 ≤ un+1

0 (x) ≤ 1, the largest hn0 (x) is such that un+1
0 (x) = 1. Analogously, if pn0 (x) < λn then

hn0 (x) need to be negative and as small as possible, thus un+1
0 (x) = 0.

The definition of un+1
0 (x) in the subset Ωp,λn := {x ∈ Ω : pn0 (x) = λn} is not a straightforward

fact. We propose an alternative based on a discretized in time version of the equation (5.70) in the set
Ωp,λ around t = 0. We use an explicit finite difference scheme with time step dt

−
(
pn(dt, x)− λn

dt

)
= f ′(un+1

0 (x))λn, (5.72)

then un+1
0 (x) for x ∈ Ωp,λ can be choose as a solution of (5.72). Depending on the form of the reaction

term f , the equation (5.72) might have several roots which mean that this definition is not well posed.
Numerically this issue can be overcome by considering all the possibilities and keeping the one which
have a better image by JT . In particular, for a bistable dynamic the function f ′ have has at most two
roots over the interval (0, 1), which means that for every node in Ωp,λ we have two possible values for
un+1

0 at most. In order to simplify the computation time in each iteration we have considered just two
possibilities, either we assign to un+1

0 the value of the first root of the equation (5.72) for all the nodes
in Ωp,λ, either we assign to all of them the value of the second root.

The issue of computing the value assigned to λn in each iteration is tackled numerically by bisection
method. Indeed, starting by λn,0 =

max(pn0 (x))−min(pn0 (x))
2 we search a root of (5.69), which means that∫

Ω
un+1

0 (x)dx = m. Note that the dependence of un+1
0 (x) on λn is implicitly given by its definition; i.e

un+1
0 (x) = 1, ∀x : pn0 (x) > λn, (5.73)

un+1
0 (x) = 0, ∀x : pn0 (x) < λn, (5.74)

un+1
0 (x) solution of (5.72), ∀x : pn0 (x) = λn. (5.75)

Remark that defining un+1
0 (x) this way, is compatible with the characterization given at Theorem 1 of

any optimal element.
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In practice, iterating this algorithm might fall into an infinite loop due to the fact that the functional
value JT (un0 ) is not increasing in general. In order to overcome this issue we define an intermediate state

u
n+ 1

2
0 exactly as in (5.73-5.75):

u
n+ 1

2
0 (x) = 1, ∀x : pn0 (x) > λn, (5.76)

u
n+ 1

2
0 (x) = 0, ∀x : pn0 (x) < λn, (5.77)

u
n+ 1

2
0 (x) solution of (5.72), ∀x : pn0 (x) = λn; (5.78)

λn being choose such that
∫

Ω
u
n+ 1

2
0 (x)dx = m. Then we define un+1

0 as the best convex combination

of un0 and un+ 1
2

0 , i.e.

un+1
0 := (1− θn)un0 + θnu

n+ 1
2

0 , (5.79)

θn := arg max
θ∈[0,1]

JT

(
(1− θ)un0 + θu

n+ 1
2

0

)
. (5.80)

Since the mass of un0 and un+ 1
2

0 is m, this way to define un+1
0 is mass conserving and guarantees the

monotonicity of the algorithm. Although this transformation seems to violate the optimality conditions
set on Theorem 1, once the algorithm converges the limit distribution satisfies it, but this is not a straight-
forward fact so we prove it as follows.
Claim: If the numerical algorithm describes above converges after K iterations, i.e.

∀n > K, un0 (x) = un+1
0 (x),∀x ∈ Ω, (5.81)

then the following statements holds:

i) if 0 < un0 (x) < 1 then pn0 = λn,

ii) if un0 (x) = 0 then pn0 ≤ λn,

iii) if un0 (x) = 1 then pn0 ≥ λn.

Proof. From the definition of un+1
0 trough the convex combination of un0 and un+ 1

2
0 and as a consequence

of (5.81) it holds that
θn
(
u
n+ 1

2
0 − un0

)
= 0, for every n ≥ K. (5.82)

From this equality we deduce that for all n ≥ K one of the following two possibilities must stand,

(a) u
n+ 1

2
0 = un0 ;

(b) θn = 0.

If (a) stands, then by the definition of un+ 1
2

0 , the optimality conditions set on Theorem 1 necessarily
holds for c = λn. Relatively less intuitive is the fact that the optimality conditions also holds in the (b)
case. Indeed, for every µ ∈ [0, 1] we have

JT ((1− µ)un0 + µu
n+ 1

2
0 ) ≤ JT ((1− θn)un0 + θnu

n+ 1
2

0 ); (5.83)

using a Taylor expansion in both sides we get

(µ− θn)〈DJT (un0 ), u
n+ 1

2
0 − un0 〉 ≤ 0 (5.84)

15



in particular for µ > θn we obtain 〈DJT (un0 ), u
n+ 1

2
0 − un0 〉 ≤ 0. Now we use the explicit formula for

the derivative of JT established in Lemma 3

〈DJT (un0 ), u
n+ 1

2
0 − un0 〉 =

∫
Ω

pn0 (u
n+ 1

2
0 − un0 )dx

=

∫
Ω

(pn0 − λn)(u
n+ 1

2
0 − un0 )dx

=

∫
{pn0>λn}

(pn0 − λn)(u
n+ 1

2
0 − un0 )dx+

∫
{pn0<λn}

(pn0 − λn)(u
n+ 1

2
0 − un0 )dx

=

∫
{pn0>λn}

(pn0 − λn)(1− un0 )dx+

∫
{pn0<λn}

(pn0 − λn)(0− un0 )dx

≥ 0.

(5.85)

Together (5.85) and (5.84) imply that 〈DJT (un0 ), u
n+ 1

2
0 − un0 〉 = 0 or equivalently∫

{pn0>λn}
(pn0 − λn)(1− un0 )dx+

∫
{pn0<λn}

(pn0 − λn)(0− un0 )dx = 0 (5.86)

from which we deduce (i)-(iii).

This mechanism not only improves the convergence but also makes it easy to identify; in fact if at
the nth-iteration the best θ for the convex combination is θ = 0 then it means that the algorithm has
converged, i.e. un+1

0 = un0 and then we can stop iterating. For a general picture of the algorithm see
fig. 2.

On the issue of symmetry
The fact of choosing a symmetrically distributed density for the initialization of the algorithm strongly
induces the symmetric feature over the searching space of solutions. Although this choice can be inter-
preted as a bias to the search space, it can actually be theoretically justified.

Without lost of generality, consider Ω = (0, a). As the solution satisfies Neumann boundary con-
ditions, any optimal density distribution u0 defined over Ω is associated with a symmetric distribution
u0s defined over Ωs = (−a, a). Reciprocally, any maximizer v0 in the class of symmetric initial data
on Ωs = (−a, a) induces a solution satisfying a Neumann boundary condition at x = 0. Hence v0

restricted to (0, a) is also a maximizer for the problem set on (0, a). Hence, there is a bijection between
the maximizers on (0, a) and the maximizers in the class of symmetric functions on (−a, a).

Numerical simulations in the bistable case
For the numerical simulations we have coded the algorithm in a MATLAB routine. At each iteration
we solve the differential equations for un and pn by using a forward Euler’s scheme in time and a finite
difference approximation of the Laplace term in space. We consider a domain in space Ω = (−50, 50)

with dx = 0.1 and a time space t ∈ [0, T ] for a given T and dt chosen such that dt = dx2

3D which respect
the CFL condition and the stability condition for this scheme.

The simulations shows that the algorithm described above converges after a few iterations and in-
crease successfully the values of JT (u0) in comparison with the trivial single block distribution (fig. 3
(a)); we can also observe singularities which are associated with the values verifying p(0, x) = λ; this
behaviour will be discussed later on section 6, (fig. 4).
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It. n un0 un pn, pn0

u
n+ 1

2
0

It. n+ 1 un+1
0

{
∂tu

n − d∆un = f(un)
un(0, x) = un0

{
−∂tpn − d∆pn = f ′(un)pn

pn(T, x) = 1

u
n+ 1

2
0 (x) :=

 1, if p(x) > λn

0, if p(x) < λn

solution of (5.72), if p(x) = λn

λn chosen such that:
∫
Ω u

n+ 1
2

0 dx = m.

Define un+1
0 := un+1

0,θn
, where

un+1
0,α := (1− α)un0 + αu

n+ 1
2

0 ;

θn : JT (un+1
0,α ) ≤ JT (un+1

0,θn
); ∀α ∈ [0, 1]

Figure 2: Scheme of the numeric algorithm.
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Figure 3: Considering a fixed mass L = 10, this figure shows the initial data associated with the first and the
last iteration of the algorithm and the corresponding solutions of eq. (1.2) (a). We also show the evolution
line of the operator J50(ui0) from the first iteration to the last one (b). Note that the limit reached after 18
iterations is an initial data separated in two blocs and shows singularities as a consequence of the definition
of the initial solution within the set Ωp,λ18 .

6 Discussion

6.1 Possible generalizations
We have considered in this paper the cost function JT (u0) =

∫
Ω
u(T, x)dx. Other costs are possible,

such as, for example, IT (u0) = −
∫

Ω
‖1 − u(T, x)‖2dx, where we put a minus in front of the cost so

that we still want to maximize this function. More generally, assume that we want to maximize a cost
function

IT (u0) :=

∫
Ω

F
(
u(T, x)

)
dx,

where F is Lipschitz-continuous over [0, 1]. In this case, the reader could easily verify that our method
is still valid, the only change being that the condition at t = T for the adjoint p becomes

p(T, x) = F ′
(
u(T, x)

)
.

The reader could also check that Dirichlet or Robin boundary conditions on ∂Ω could also be ad-
dressed with our method. The case of unbounded domains is more tedious. If, for example, Ω = R, then
a concentration-compactness theorem should be used when trying to prove the existence of a maximizer
u0 ∈ Am. We leave such a generalization for a possible future work.

6.2 Letting T → +∞
Assume that we have as much time as needed, and that we want to optimize the initial datum u0 in order
to promote invasion, that is, convergence to 1. Such a problem is not well-posed, since many initial data
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Figure 4: The figure correspond to the 2nd and also last iteration of the algorithm for a given final time
T = 50 and a fixed mass L = 4. At the left hand side we show the adjoint state p which is the solution of
the equation (5.70) and its associated value λ2 mentioned in Theorem 1. Note that in this case the set Ωp,λ2

is not negligible so the associated u20 showed at the right side present singularities arising from the solution
of (5.72) within this set.

should give the convergence to 1 at large time. Hence the set of maximizing initial data could be quite
large. But still a way of reaching it would be useful.

A natural ansatz is the limit of uT0 with T > 0 if it exists, where uT0 is a maximizer of JT . Let
(uT , pT ) the solutions associated with uT0 . Consider a limit, up to extraction, u∞0 of uT0 as T → +∞,
for the L∞ weak star convergence. Let u the solution on (0,∞)×Ω associated with u∞0 , which is indeed
the limit of uT .

Next, define p̃T := mT pT , where mT is a positive constant chosen so that
∫

Ω
p̃T (0, x)dx = 1. We

know from Theorem 1 that there exists a constant cT such that

i) if 0 < uT0 (x) then p̃T (0, x) ≥ cT ,

ii) if uT0 (x) < 1 then p̃T (0, x) ≤ cT .

Parabolic regularity yields that the solution p̃T converges in W 1,2
q,loc

(
(0,∞) × Ω

)
for all q ∈ (1,∞)

as T → +∞ to a solution p of the backward equation
−∂tp− d∆p = f ′(u)p in (0,∞)× Ω,
p(t, x) > 0 in (0,∞)× Ω,
∂p
∂ν (t, x) = 0 for all t ∈ (0,∞), for all x ∈ ∂Ω,

(6.87)

Indeed, we know from Proposition 2.7 of [14] that such a solution is unique, up to normalization, which
is indeed given here by

∫
Ω
p(0, x)dx = 1. The following partial characterization of u∞0 follows:

i) if 0 < u∞0 (x) then p(0, x) ≥ c,
ii) if u∞0 (x) < 1 then p(0, x) ≤ c,

where c is indeed the limit of cT .
Of course, such a partial characterization is mostly theoretical, since there is no way of constructing

p numerically, except by approximating it as the limit of the functions p̃T . Note that this adjoint function
does not depend on the cost function anymore, which is satisfying since, as we expect convergence to 1
at large time, the shape of the cost function should not play any role.
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