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MICROTUBULES (MT) A KEY TARGET IN ONCOLOGY:

MATHEMATICAL MODELING OF ANTI-MT AGENTS

ON CELL MIGRATION

Emilie Denicolai1, Stéphane Honoré2,3, Florence Hubert4

and Rémi Tesson4,5,*

Abstract. Microtubules (MTs) are protein filaments found in all eukaryotic cells which are crucial
for many cellular processes including cell movement, cell differentiation, and cell division, making
them a key target for anti-cancer treatment. In particular, it has been shown that at low dose, MT
targeted agents (MTAs) may induce an anti-migratory effect on cancer and endothelial cells, leading
to new prospects in cancer therapy. In that context, we propose to better understand the role of
MT dynamics and thus of MTAs on cell migration using a mathematical cell centered model of cell
migration taking into account the action of microtubules in the process. The model use a fluid based
approach that describes, through level-set techniques, the deformation of the membrane during cell
migration. The fluid part of the model is mainly composed of Stokes equations and the biochemical
state of the cell is described using Reaction-Diffusion equations. Microtubules act on the biochemical
state by activating or inactivating proteins of the Rho-GTPases family. The numerical simulation of
the model is performed using Discrete Duality Finite Volume techniques. We describe the different
schemes used for the simulation, focusing on the adaptation of preexisting methods to our particular
case. Numerical simulation are performed, showing a realistic behavior of the simulated cells in term of
shape, speed and microtubules dynamics. Different strategies for a depolymerizing MTA (Vincristin)
mechanisms are investigated and show the robutness of our model.
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1. Introduction

Cell migration is a fundamental biological process involved in organogenesis, tissue repair response and
vascularization. In parallel, some pathological processes during cancer development, such as tumor progression

Keywords and phrases: Weighted essentially non-oscillatory, transport equation, discrete duality finite volume scheme.

1 Aix Marseille Univ, CNRS Centrale Marseille, I2M and CNRS, INP, Inst Neurophysiopathol, Faculté de Pharmacie de
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and metastasis are also cell motility dependent [11]. Therefore, the study and understanding of cell migration
represent a real challenge in the development of new therapeutic approaches.

The cell migration is defined as a complex and dynamic mechanism initiated by the protrusion and adhesion
of the cell membrane involving cytoskeleton and signaling networks regulated by Rho-family GTPases. This
cellular event is polarized along a front-rear axis. At the front of the migrating cell, protrusive structures named,
lamellipodia are driven by spatially and temporally-regulated actin polymerization and are generally stabilized
by adhering to the extracellular matrix [4, 41]. On the other hand, at the cell rear, actin filaments associated with
myosin exert a strength tension that induces a disassembly of adhesion sites allowing the cell tail detachment.
Rho-family GTPases are the main regulators of these events that lead to an effective cell migration. Among Rho-
GTPases, in this study we focus on Rac and Rho that mainly localize in front of the cell or the rear, respectively,
and antagonize mutually. Rac and Rho are pivots of the polarity in migrating cells. Active Rac mediates actin
polymerization in protrusion and then membrane extension, while active Rho increases actomyosin contractility
and induces focal adhesion detachment [20]. Rho regulates actomyosin formation through mammalian homolog of
Diaphanous (mDia) and Rho-associated coiled-coil-containing kinase (ROCK) [37]. The mDia protein promotes
actin nucleation and polymerization [15] while ROCK activates myosin light chain and cooperates with mDia
to form actomyosin bundles and generate contractility [37]. In this paper, Rho is assumed to activate ROCK
at the rear of the cell to regulate actomyosin contractility. Our model does not take into account the Rho
effect on mDia at the front of the cell, which has a similar effect than Rac [37]. Significantly, microtubules
(MTs), another cystokeleton component, directly regulate Rho-GTPase activity and indirectly act on actin
filaments and then cell movements [19, 51]. Especially, MT polymerization activates Rac to form protrusion,
and depolymerizing MT activates Rho for adhesion disassembly and rear retraction. MTs are polarized and
dynamic structures characterized by their dynamic instability. MTs undergo continuous cycles of polymerization
termed growth with add of GTP-tubulin and depolymerization termed shrinkage. The alternance between MT
growth and skrinkeage is mainly regulated by GTP-tubulin hydrolysis and GTP-tubulin concentration (see
[5, 30, 50]).

The interest of mathematical modeling for cell migration really began in the 1980’s with the works of
Abercrombie [1]. Since then, different models were proposed to study different mechanisms of cell migration.
The field is currently very active, with the recent works of Berlyand and Mizuhara [36], on moving cells on
patterned substrate, Meunier and Etchegaray [18] on persistence of the migration or Poignard [23] for models
of invadopodia.

To our knowledge, the action of MT on cell migration has never been studied from a mathematical point of
view. In this study, we design a first attempt of mathematical modeling to describe MTs impact on cell migration.
We start from a polarization model proposed by Edelstein-Keshet and collaborators [47] that describes the
effect and the distribution of Rac inside the cell during migration. We extend this model, introducing MT as
additional material inside the cell, responsible of the activation and inactivation of the two Rho-GTPases Rac
and Rho. The complete system consists in a Stokes equation coupled with transport-reaction-diffusion equations
and differential equations posed in a moving domain. We adopt a level set approach to represent the moving
domain. One of the difficulties encountered in the discretization of such problem is linked to the influence of the
artificial boundary conditions for the Stokes problem on the solution. To reduce this influence, we classically
have to work on a domain large in comparison with the cell size, leading to huge computational cost. To reduce
this cost, we propose to work on grids that are locally refined in the neighborhood of the cell. To discretize the
system on such a nonconformal grid, we adopt a Discrete Duality Finite Volume (DDFV for short) approach,
known to be efficient in a large class of elliptic, parabolic problems [3, 9, 17, 33]. The DDFV discretization of our
Stokes problem is an adaptation of [33]. We have developed in [45, 46] a DDFV-WENO scheme for the transport
of the level set. We show in this paper how the DDFV setting enables us to take into account the possible large
deformation of the cell in the discretization of the reaction-transport-diffusion equations in the moving domain.
The numerical model that we propose, is then a robust tool to study the influence of microtubules (MTs) and
the microtubule targetting agents (MTAs) on cell migration. We will see how the model is able to reproduce
a good behaviour in terms of shape of the cell, in terms of migration speed, in terms of microtubule dynamic
instability.
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The outline of the paper is the following. In Section 2, we present the model used to describe the impact of
microtubules on cell migration. In Section 3, we detail the DDFV discretization of the whole system and insist
on the DDFV discretization of reaction-transport-diffusion problems inside the moving cell. Then, in Section 4
we describe the calibration of the model and the influence of parameters linked to a MT depolymerizing drug
effect. We exhibit the good behaviour of the model.

2. Mathematical model of cell migration

The model that we have developed to describe the action of microtubule dynamics instability on cell migration
is mostly based on the ideas proposed in [47].

2.1. Global description of the model

In the model we consider a two-dimensional (2D) representation of the cell from the top-down point of view.
This representation is very suitable to describe in vitro situations where the cell adopts a very flat profile. It is
commonly accepted in the literature to consider the nucleus as a passive material and to neglect its presence
in the model [47]. This assumption is justified by the fact that cell fragments devoid of nuclei can still migrate
[48].

We adopt a fluid based model that considers the cell and its environment as a viscous fluid. Then the cell
membrane is seen as an elastic material moving through this fluid. In order to describe the interaction of the
cell with the extracellular matrix at the membrane, we use the Immersed Boundary Method. The main idea of
this method is to model the different interactions at the membrane as forces exerted on the cell membrane.

The forces responsible for the displacement of the membrane are mostly protrusive forces due to the poly-
merization of actin and contractile forces due to the actomyosin contraction. Here, we don’t model explicitly
the actin network, but, like in [47] we consider the family of the Rho-GTPases as a regulatory signal for the
activity of actin. In our approach, we introduce two kinds of proteins, the Rac protein, responsible for protrusive
forces and the Rho protein, responsible for contractile forces. The concentration of those proteins is driven by
diffusion processes inside the cytoplasm.

The main goal of this model is to understand the action on cell migration of another element of the cytoskele-
ton, the microtubules. They are polymers of tubulin that exhibit a very dynamic behavior. They quickly alter
between phases of growth and shrinkage. In this model, the activation of Rac and Rho is regulated by the
dynamic state of microtubules. Growing microtubules activate Rac whereas shortening microtubules activate
Rho (See [32, 49, 51] for more details).

2.2. Mechanical model

2.2.1. Determination of the cell speed

As mentioned before, the model is a fluid based model using the immersed boundary method. We assume
that the cell and its environment can be seen as a fluid and we use fluid mechanics tools to describe its motion.

In the context of cell migration, we can estimate the characteristic parameters of the fluid motion in particular
its Reynolds number:

V ∼ 1µm min−1, L ∼ 10µm, ρ ∼ 10−12g.µm−3, 10−3 . µ . 10−3(g.µm−1 min−1)

⇒ 10−8 . Re . 10−4.

The low Reynolds number supports the use of Stokes equation to describe the motion of the fluid. We denote
by u, the velocity of the fluid and p its pressure.

−µ∆u+∇p = Fpro + Fcont + Fel, x ∈ R2 (2.1)

div(u) = 0 (2.2)
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We consider three types of forces localized at the membrane of the cell, protrusive forces Fpro, contractile forces
Fcont and elastic forces Fel. Protrusive forces model the action of the actin polymerization on the membrane
whereas contractile forces correspond to the strength tension of the actomyosin system. They are induced
by biochemical reaction and their modeling will be described in Section 2.3. Elastic forces model the elastic
properties of the cell membrane, their expression depends strongly on the representation of the membrane.

The Stokes equations are defined on R2 and the velocity u is assumed to vanish at infinity.

2.2.2. The level-set method

An important part of the immersed boundary method consists in the evolution of the boundary, the cell
membrane in our case. Different techniques have been used to handle the displacement of the boundary. The
most commonly used are, the Lagrangian Marker Points technique (LMP), like in [47], the Volume Of Fluid
and the Level-Set method. In this work, we have preferred the use of the level-set methods that offers a full
eulerian formulation for the mechanical model which is very convenient for the numerical schemes. Moreover,
the framework of level-set allows to handle easily large deformations of the membrane.

The method consists in representing implicitly the cell membrane as the zero level set of a certain function
φ. The evolution of the function φ is then computed through a transport equation:

∂φ

∂t
+ u.∇φ = 0 (2.3)

Usually, the level-set function is initialized as the signed distance to the membrane. It takes positive values
outside of the cell and negative values inside the cell. This choice, besides offering an improved numerical
precision, gives to the level-set function an additional meaning. It is notably used in order to locate the forces
at the membrane. The forces are regularized in the numerical scheme in a neighborhood of the membrane. That
can actually be computed with the level-set function itself. More details about the Level-set technique can be
found in [24, 39].
Elastic force: Elastic force used in this model depends on the local variation in space of the local stretching
of the membrane. The expression of the local stretching of the interface depends strongly on its representation.
In [47], they used an LMP model which makes very easy the computation of both the local stretching and its
variations. Therefore, their works on elastic forces cannot be immediately transposed in the level-set context.

We use instead the expression proposed in [14]. They have shown that the local stretching of the interface
can be computed with the quantity |∇φ|. But despite this expression, the local variation of the stretching is
hard to compute due to the implicit representation of the interface. To overcome this difficulty, they propose in
[14] to derive the elastic force from an elastic energy for the membrane. We present here the regularized form
of this energy, that is the one used in the numerical schemes:

Fel = −λeldiv
(
|∇φ| − 1

|∇φ|
(∇φ⊗∇φ)

1

ε
ζ

(
φ

ε

))
, (2.4)

where λel is the magnitude of the force and the term 1
εζ(φε ) is an approximation of the Dirac function.

Renormalization: A key component of the level-set techniques is the redistanciation step. It is well known
that the level-set function does not remain a signed distance function at all time. It is necessary, to maintain
the information of distance and localize the forces to regularly reset the level-set function into a signed distance
function. The idea is to replace a given level-set function by a signed distance function that has the same
zero level set. To do that, there exist many techniques, one can cite for example the use of the redistanciation
equations introduced in [44]. The main problem in our case is that the level-set function does not encode only
the distance to the membrane but also keeps track of the stretching of the membrane. Hence we can’t reset the
level-set function without loosing all the information about the stretching. As an alternative, we choose to use
the method renormalization technique proposed in [12]. It consists in using the quantity φ

|∇φ| as a first order
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approximation, near the interface, of the signed distance. This method is quite easy to implement and has been
proved to be efficient in [13, 14].

2.3. Biochemical model

The biochemical model is the part of the model that describes the polarization process of the cell. The Rac
and Rho concentrations are the main components of this model and determine the protrusive and contractile
forces that allow the cell to move. The microtubules are the key element of the Rac and Rho evolution, they
regulate the activation rates of the proteins.

2.3.1. Rac and Rho equations

We consider the protein Rac and Rho on both active and inactive forms. The concentrations of the active
forms will be referred as Rac and Rho respectively whereas the inactive forms will be named Rac and Rho.

For the evolution of the proteins, we use reaction-diffusion-advection equations like in [47]:

∂P

∂t
+ u.∇P −DP∆P = gP , x ∈ Ω(t), t > 0, P ∈ {Rac,Rac,Rho,Rho}, (2.5)

with gP̄ = −gP . The equations are posed on Ω(t) the interior of the cell which is determined with the level-set
function φ. This domain is moving over the time at the speed u given by the mechanical model. The advection
term in the equations takes into account this motion. These equations are endowed with Neumann boundary
conditions on ∂Ω(t).

The term gP models the activation or inactivation of the proteins. Unlike [47], this term will be determined
by the dynamical state of the microtubules that we are going to describe in the next section. The coefficients
DRac, DRac, DRho, DRho are the diffusion coefficients of the proteins.

2.3.2. Microtubules modeling

The microtubules are, as mentioned before, very dynamic elements of the cytoskeleton. They are polymers
of tubulin that alternate very quickly between phases of growth and phases of shrinkage. This continuous
alternation is termed microtubule dynamic instability and characterizes their roles inside the cell. When a
microtubule is polymerizing, it activates the Rac protein whereas when it depolymerizes, it activates the Rho
protein. The specific process that regulates the dynamic instability is quite complex. More details about this
phenomenon can be found in [19, 32, 49, 51].

We introduce new unknowns to the model. First we consider the concentration of Tubulin, Tub, inside the
cell. It will be used as material for the polymerization of microtubules. The evolution of the tubulin is modeled,
like for Rac and Rho, by a reaction-diffusion-advection equation:

∂Tub

∂t
+ u.∇Tub−DTub∆Tub = gTub, x ∈ Ω(t), t > 0 (2.6)

The reaction term gTub models a consumption term and will be detailed later.
The role of the microtubule in cell migration is completely determined through its dynamical state. Hence, we

only need to locate the (+)-end dynamic extremity of the microtubule. Let NMT be the number of microtubules
present in the cell. We will denote by:

MTi, i = 1, . . . , NMT

the position of the microtubule (+)-end. We assume that microtubule polymerization speed γpol only depends
on the tubulin concentration. This assumption has been demonstrated for a long time and is well documented
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Figure 1. A cell with the microtubules MT+
i and MT−i represented (left). Example of tracks

of microtubules with the corresponding change of state (right).

in [35] for example. We assume here that the dependence is linear:

γpol(Tub) = αpol(Tub− cc), (2.7)

with αpol the magnitude of the speed and cc the critical concentration at which polymerization speed and
hydrolysis rate equilibrate [5, 30, 50].

The experimental observations of microtubules in a moving cell suggest that the microtubules are globally
aligned in the direction of polarization of the cell, with many microtubules oriented to the front and fewer
oriented to the rear. We define the direction of polarization, vpol of the cell as a combination of the velocity of
the cell u and the gradient of the protein Rac inside the cell:

vpol = α
u

||u||
+ β

∇Rac

||∇Rac||
. (2.8)

From a numerical point of view, the schemes seem to be more stable when we rely more on u than ∇Rac so in
practice we always use α > β. From a biological poitn of view, polarization is mostly due to the concentrations
of proteins like CdC42 that are not considered in this model. We distinguish two types of microtubules, the ones
oriented to the front of the cell and the ones oriented to the rear. In the following, we will call them MT+

i and
MT−i respectively (see Fig. 1). The direction vpol describes the main direction for the ones going to the front
whereas −vpol is the main direction for the ones going to the rear. We use as a secondary direction vsec for the
microtubules the gradient of free tubulin in the cell:

vsec =
∇Tub

||∇Tub||
. (2.9)

This choice means that the microtubules go in direction that maximizes their polymerization speed. The direction
of polymerization v±dir of the microtubules is a combination of the main and secondary direction:

v±dir =
ηvsec ± vpol

‖ηvsec ± vpol‖+ ε
, (2.10)

with ε a regularizing parameter. The notation v+
dir (respectively v−dir) stands for MTs going to the front (respec-

tively to the rear). The direction ηvsec ± vpol is used as the direction of polymerization as well as the direction
of depolymerization. The actual direction of depolymerization is the direction of the microtubule itself. Because
we don’t keep track of the whole microtubule but just the (+)-end, we assume that the direction of depolymer-
ization is the opposite of the direction of polymerization. This assumption needs that both the quantities u,
∇Rac and ∇Tub have a slow dynamic with respect to the growth lifetime of microtubules, which is the case in
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practice. Then the equation for the motion of the (+)-ends of microtubules is:

∂MT±i
∂t

= γpol(Tub(MTi))v
±
dir + u, (2.11)

where the term u reflects the fact that the cell is moving and the term v±dir models the microtubule dynamics.
The question that remains at this point of the modeling process concerns the behaviors of the microtubules

near the cell membrane. In equation (2.11), the microtubule is not aware of the presence of the membrane
and a numerical discretization of this equation leads to microtubules able to cross the membrane. In a moving
cell, different behavior for the microtubules at the membrane can be observed. Some microtubules stay to the
membrane for a while, others keep polymerizing along the membrane but most of the microtubules seem to
depolymerize after reaching the membrane. The observations suggest that those microtubule then depolymerize
up to the beginning of the lamellipodium. A biological hypothesis to explain this behavior could be that when
reaching the membrane, the microtubules are destabilized and then enter in a shrinkage phase.

To reproduce this behavior, we define two populations of microtubules, the “stable” one, referred as
MT±i [Stab], and the “unstable”, referred as MT±i [Pert] that has experienced a contact with the membrane.
We assume that the microtubule in an unstable state is depolymerizing and so its direction is the opposite of
the direction of polymerization:

∂MT±i [Stab]

∂t
= γpol(Tub(MT±i [Stab]))v±dir + u, (2.12)

∂MT±i [Pert]

∂t
= −γpol(Tub(MT±i [Pert]))v±dir + u. (2.13)

A microtubule can pass from one state to another when reaching a given zone inside the cell. The transition
from Stab to Pert is done when reaching the membrane whereas the transition from Pert to Stab is done at a
distance dStab from the membrane of the size of the lamellipodium (see Fig. 1):

If φ(MT±i [Stab]) = 0, then MT±i [Stab]→ MT±i [Pert]
If φ(MT±i [Pert]) = −dStab, then MT±i [Pert]→ MT±i [Stab]

In the following we will keep using the notation MTi when talking of a microtubule without stating if it is a
stable or unstable one.

2.4. Reaction terms

We define now the reaction terms in the equations (2.5) and (2.6) that depend on the dynamic state of the
microtubules.

The tubulin is attached to polymerizing microtubules and released by depolymerizing microtubules. Then
we set for the reaction term:

gTub = −
∑
i

dγpolδ0(x−MTi), (2.14)

with d the density of polymerized tubulin and δ0 the Dirac function.
The reaction terms for the Rac and Rho protein are done as in [47], with a positive feedback on the activation.

This positive feedback is here to maintain the polarization of the cell over time. The main change in the model
is that Rac protein, activation takes place only near a polymerizing microtubule. The inactivation of the protein
is modeled as a competition between the Rac and Rho proteins [42]. Thus, in our model when a microtubule is
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depolymerizing, the Rho protein is activated leading to a Rac inactivation. The reaction terms then read:

gRac =
∑
i

G(γpol, v
±
dir)

[(
τRac→Rac +

γRacRac2

K2
Rac + Rac2

)
k0(MTi)Rac

− τRac→Rac(1− k0(MTi))RhoRac

]
1B(MTi,dMT), (2.15)

with, τRac→Rac the intrinsic activation rate, τRac→Rac the inactivation rate, γRac, KRac parameters for the
positive feedback. The function k0 is used to know if a microtubule is polymerizing or not:

k0(MT±i [Stab]) = Hea(Tub(MT±i [Stab])− cc) (2.16)

k0(MT±i [Pert]) = 1−Hea(Tub(MT±i [Pert])− cc) (2.17)

The function 1B(MTi,dMT) is the indicator function of the ball of radius dMT centered in MTi. The distance dMT

is the radius of influence of the microtubules on the proteins. The function G models the influence of microtubule
dynamic instability on Rac activation. We assume that the activation occurs only in the neighbourhood of a
MT in polymerization (‖vdir‖ 6= 0) at a rate that increases with the polymerization speed γpol:

G(γpol, v
±
dir) =

||v±dir||
1 + e−Ksγpol

(2.18)

The reaction term for Rho is similar, exchanging the role of polymerization and depolymerization:

gRho =
∑
i

G∗(v
±
dir)

[(
τRho→Rho +

γRhoRho2

K2
Rho + Rho2

)
(1− k0(MTi))Rho

− τRho→Rhok0(MTi)RhoRac

]
1B(MTi,dMT), (2.19)

with the parameters defined as for the Rac protein and G∗(v
±
dir) = ||v±dir|| independent of γpol as mentioned

before.

2.5. Protrusive and contractile forces

The protrusive and contractile forces are defined by the action of the Rac and Rho proteins. We follow the
idea of [47] to define the protrusive force, only taking into account the level-set definition of the membrane:

Fpro = hRac(Rac)
∇φ
|∇φ|

1

ε
ζ

(
φ

ε|∇φ|

)
. (2.20)

The term ∇φ
|∇φ| is the outward pointing normal to he membrane. The function hRac define the Rac dependency

of the force. We use a force with inhibition like in [47]:

hRac(Rac) =

{
HRac

(
1− (Rac−Rac+)2

(Racc−Rac+)2

)
if Rac > Racc

0 else
. (2.21)

The constant HRac is the magnitude of the force, Racc the minimal concentration needed to observe a force and
Rac+ the concentration that generate an optimal force.
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Figure 2. Example of a cell and the direction of its move (left). Corresponding mesh refinement
used for the simulations (right).

The contractile force is defined in a similar way:

Fcont = −hRho(Rho)
∇φ
|∇φ|

1

ε
ζ

(
φ

ε|∇φ|

)
, (2.22)

with hRho defined as hRac.

3. Numerical model of cell migration in DDFV settings

The discretization of the different equations of the model is made with Finite Volume techniques. Because
the cell moves during the simulation and to avoid boundary effect, we must take a computing domain large
compared to the size of a cell, which can be very costly.

Locally refined meshes are commonly used in level-set problems. The main idea is to refine the mesh near
the interface and to use a coarser mesh away from the interface. As the interface moves, we can use dynamical
refinement techniques to adapt the mesh to the moving boundary. Here, we will use a less complicated approach
by refining the mesh on a zone where the cell will stay during the whole simulation (see Fig. 2). The zone to refine
is, for the purpose of our simulations, predicted depending on the initial polarization of the cell. We highlight the
fact that we cannot compute the solution only on this refined zone because of the imposed boundary conditions
on the velocity. In particular, a small computing zone will lead to large errors coming from the Stokes equations.
We choose to use DDFV schemes that have been successfully used to solve Stokes equations on very general
meshes like locally refined meshes.

The discretization of the complete model is made according to the following strategy. At each time step, we
solve:

– The Stokes equations discretized using a DDFV scheme as in [33].
– Reaction-diffusion-advection equations discretized using a splitting technique, between a diffusive part

and an advective part. The method is based on the one proposed in [47]. We propose an improvement
of the method based on DDFV that allows a sharper discretization, in particular in the context of high
deformations of the domain.

– Transport equations (both for the previous splitting scheme and for the Level-Set equation) discretized
using an original DDFV formulation of a WENO scheme ([31]) that we have developed for the use of this
model.

3.1. The DDFV discretization

Discrete Duality Finite Volume (DDFV) are Finite Volume methods introduced first in [17, 28]. They consist
in a decomposition of the computing domain Ω in a set of polygons. Those polygons form the primal mesh
and one unknown is associated to each polygon. Then additional unknowns are added on the vertices of the
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Figure 3. DDFV structure. From the left to the right: primal mesh, dual mesh and diamond
structure.

Figure 4. Example of a diamond with corresponding notations.

polygons. Those vertices are therefore seen as centers of other polygons that define a dual mesh as in Figure 3.
Introducing new unknowns allows to compute a discrete gradient in any directions, in duality with the classical
finite volume divergence.

Let us recall notation for DDFV scheme introduced in [3]. We denote by K a polygon of the primal mesh
M and K∗ a polygon of the dual mesh M∗. In the following, we will refer to an element of the primal or
dual mesh by C ∈M ∪M∗. We will also denote by ∂M the set of the edges contained in the boundary of the
domain ∂Ω, which can be seen as degenerated cells and by ∂M∗ the cells of the dual mesh associated to vertices
xK∗ ∈ ∂Ω. We name T = M ∪M∗ the global mesh. A third mesh, the diamond mesh D, can be associated to
the DDFV structure. We define the diamond cells Dσ,σ∗ being the quadrangles whose diagonals are a primal
edge σ = K|L = (xK , xL) and a dual edge σ∗ = K∗|L∗ = (xK∗ , xL∗) (see Fig. 4).

Hence, one diamond can be associated to each edge of the primal and dual mesh to construct the diamond
mesh like in Figure 3. This set of 3 meshes can seem to be complex but in practice only the diamond mesh is
used for the implementation of the mesh and needs to be constructed.

DDFV methods have been used to discretize a large class of differential operators, like Stokes or non linear
diffusion. The complete discretization of the gradient in this method presents the advantage to not imply
geometrical dependencies to the mesh that we choose to use. Consequently, in order to deal with locally refined
meshes and to release us from the orthogonality constraint imposed by the classical Finite Volume methods (see
[21]), we choose to use a DDFV strategy.

We briefly recall here the complete definition of the gradient and divergence operator that we use in the
following. For a discrete scalar field uT ∈ RT , we set the discrete gradient defined on each diamond D by:

∇DuT =
1

2|D|
[(uL − uK).|σ|nKσ + (uL∗ − uK∗).|σ∗|nK∗σ∗ ] ,
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where the notation |.| stands for the measure of the corresponding element (edge, cell, diamond,...). The discrete
divergence is defined for a vector field ξT ∈ (R2)D on each cell of the mesh by:

divT ξD =
((

divKξD
)
K∈M∪∂M

,
(

divK
∗
ξD
)
K∗∈M∗∪∂M∗

)
, (3.1)

with:

divKξD = 0,∀K ∈ ∂M

divKξD =
1

|K|
∑

Dσ,σ∗∈DK

|σ|ξD.nKσ, ∀K ∈M

divK
∗
ξD =

1

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|ξD.nK∗σ∗ , ∀K∗ ∈M∗

divK
∗
ξD =

1

|K∗|
∑

Dσ,σ∗∈DK∗

|σ∗|ξD.nK∗σ∗ +
∑

Dσ,σ∗∈DK∗∩Dext

dK∗,Lξ
D.nKσ, ∀K∗ ∈ ∂M∗

where we define DC = {D ∈ D,D ∩ C 6= ∅} for a given cell C and Dσ,σ∗ as the diamond defined with the two
diagonals σ and σ∗.

We can also define a discrete divergence divD on the diamond mesh:

divD(uT ) = Tr(∇DuT ), ∀D ∈ D (3.2)

3.2. Discretization of the Stokes equations

The Stokes equations of the mechanical model are discretized using the DDFV scheme developed in [33].
The method consists in a staggered scheme, where the unknowns for the components of the velocity are

located on the nodes of the both primal and dual meshes, whereas unknowns for the pressure are located on the
diamonds. The equation (2.1) is discretized on the primal and dual meshes and the equation (2.2) is discretized
on the diamond mesh D.

In order to have a well-posed and stable scheme, we use a stabilization of the scheme by a Brezzi-Pitkäranta
technique. The stabilized DDFV scheme for the Stokes equations can be written:

divT (−µ∇DuT + pDId) = F Tel + F Tpro + F Tcont, (3.3)

divD(uT )− λ|D|∆DpD = 0, (3.4)∑
D∈D

|D|pD = 0 (3.5)

with strong Dirichlet conditions: ∀C ∈ ∂M ∪ ∂M∗, uC = 0. More details about the discrete operators can be
found in [33].

3.3. The force terms in the Stokes equations

The originality of this work stands here on the discretization of the force terms.
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Protrusive and contractile forces: The protrusive and contractile forces are discretized in the same way.
We integrate the force on each cell C ∈M ∪M∗, then, we decompose the integral into integrals on the semi-
diamonds, which give for example for the protrusive force:

∫
C

Fpro =
∑
D∩C 6=∅

∫
D∩C

hRac(Rac)
∇φ
|∇φ|

1

ε
ζ

(
φ

ε|∇φ|

)
. (3.6)

The unknowns Rac and φ are defined at the nodes of primal and dual meshes. We can then compute a discrete
gradient of φ on each diamond. We approximate the gradient of the semi-diamond by the discrete gradient on
the diamond. The function hRac is evaluated at the center of the cell C. Then the complete discretization is
given by:

∀C ∈ T , (Fpro)C =
1

|C|
∑
D∩C 6=∅

|D ∩ C|hRac(RacC)
∇DφT

|∇DφT |
1

ε
ζ

(
φC

ε|∇DφT |

)
(3.7)

The discretization is equivalent for the contractile force.
Elastic force: The divergence expression of the elastic force makse it easy to discretize in a Finite Volume
context. We use here the discrete divergence divT on the primal and dual cells as well as the discrete gradient
∇D defined on the diamonds. The only difficulty remaining concerns the localization term which involves a
value of φ on the diamond. Here, in order to maintain the conservative form of the force, we choose to use a
weighted mean value of φ on the diamond:

φσ =

1
dK,σ

φK + 1
dL,σ

φL + 1
dK∗,σ

φK∗ + 1
dL∗,σ

φL∗

1
dK,σ

+ 1
dL,σ

+ 1
dK∗,σ

+ 1
dL∗,σ

(3.8)

with dC,σ the distance between xC and xσ. The discretization of the elastic force is then given by:

∀C ∈ T , (Fel)K = −λel
|K|

∑
D∈DC

|σ| |∇
DφT | − 1

|∇DφT |
(∇DφT ⊗∇DφT )

1

ε
ζ

(
φσ

ε|∇DφT |

)
nKσ (3.9)

3.4. Discretization of the diffusion equations

Consider the reaction-diffusion advection equation:

∂a

∂t
(t, x) + u.∇a(t, x)− ν∆a(t, x) = f(t, x), x ∈ Ω(t) (3.10)

a(0, x) = a0(x), (3.11)

∂a

∂n
= 0 (3.12)

with Ω(t) a moving domain with a divergence free speed u.
The main difficulty in the discretization of this equation lies in the time dependence of the domain Ω(t).
We follow and adapt the idea proposed in [47] to use a splitting method by separating the transport process

and the diffusion process. They propose to first solve a diffusion equation and then to transport the cell with a
Lagrangian method. Here we will present an improvement of this method that consists in reducing the problem
to a non-linear diffusion equation on a fixed domain. More details about this approach can be found in [45].
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3.4.1. Lagrangian change of variables

The first step to the splitting technique is to solve the equations on a fixed domain. The most natural change
of variable consists in using the characteristic curves of the flow.

Let us introduce Φ(.; t, x) solution to:
∂Φ

∂s
(s; t, x) = u(s,Φ(s; t, x))

Φ(t; t, x) = x

(3.13)

The function Φ(s; t, x) represents the position at time s of the particule that was at the position x at time t.
Then we set the change of variables:

X = Φ(0; t, x) := F (x). (3.14)

The function F defines a bijection from Ω(t) on Ω(0). We recall that the change of variable in the divergence
operator is given by the following formula.

Theorem 3.1. Let f be a regular vector field:

divx(f)(x) =
1

|det(∇XΦ(t; 0, X))|
divX

(
|det(∇XΦ(t; 0, X))|

(
∇XΦ(t; 0, X)

)−1
f̃
)

with f(t, x) = f̃(t,X) = f̃(t,Φ(0; t, x))

Here, as div(u) = 0, the flow preserves the volume and then:

det(∇XΦ(t; 0, X)) = 0 (3.15)

Equation on a fixed domain: That provides us a formulation in the X coordinates for the reaction-diffusion-
advection equation:

∂ã

∂t
(t,X)− ν divX

(
∇XΦ(t; 0, X)−1∇XΦ(t; 0, X)−T ã(t,X)

)
= f̃(t,X), X ∈ Ω(0) (3.16)

with ã defined by ã(t,X) = a(t,Φ(t; 0, X)).
We can note that the advection term is no longer present in the equation (3.16) but we have introduced an

anisotropic diffusion matrix ∇XΦ(t; 0, X)−1∇XΦ(t; 0, X)−T . Note that the hypothesis of ∇.u = 0 is important
to obtain an equation in a divergence form.
Boundary conditions: In the model we consider Neumann boundary conditions. It can actually be shown
that we find back Neumann boundary conditions after the change of variables:

∇Φ(t; 0, X)−1∇Φ(t; 0, X)−T∇X ã.n0 = 0, (3.17)

with n and n0 the outward pointing normal to respectively ∂Ω(t) and ∂Ω(0).
Anisotropy: The anisotropic diffusion matrix introduced in the equation (3.16) keeps tracks of the deformations
of the domain. One can easily ensure that in the case of non-deformating move, like a translation or a rotation,
there is no anisotropy, meaning ∇XΦ(t; 0, X)−1∇XΦ(t; 0, X)−T = Id. In the general case however, when the
domain is actually deformed, the diffusion is anisotropic.
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3.4.2. Splitting method

The previous change of variables shows that it is equivalent to solve the equations (3.10) or (3.16). The
equation (3.16) is defined on a fixed domain and so is easier to discretize and solve numerically. But because
we are interested in the function a and not ã, we must find a way to go back to the x-coordinates after solving
the equation (3.16). One difficulty is that we don’t have access to the function Φ explicitly. But we can use the
definition of the characteristic curves to observe that knowing the function ã we can solve a transport equation
to find back a.

Proposition 3.2. The function a(T, .) is the restriction to Ω(T ) of the solution at time T of the following
transport equation: 

∂a

∂s
(s, x) + u(s, x).∇a(s, x) = 0

a(0, .) = ã(T, .)

(3.18)

where ã is the extension of ã by 0 outside of Ω(0).

Then to know the solution of the equation (3.10) at times T1, . . . , TN we can use the splitting technique:

– Solving the anisotropic diffusion equation (3.16) on [Tk, Tk+1]× Ω(Tk) with initial condition a(Tk, .) and
∇Φ(t; 0, X) replaced by ∇Φ(t;Tk, X). This provides us ã(Tk+1, .) on Ω(Tk).

– Solving the transport equation (3.18) on [TK , Tk+1]×Ω, with Ω such as ∀s ∈ [Tk, Tk+1], Ω(s) ⊂ Ω, with
the initial condition is ã(Tk, .), the extension by 0 of ã(Tk+1, .).

The second part of this splitting technique is solved using the same scheme as for the level-set equation. This
scheme is detailed in Section 3.5.

3.4.3. Numerical scheme for the anisotropic diffusion

The DDFV method is known to be an efficient way to solve anisotropic diffusion in a finite volume framework.
The discretization of the equation using classical finite volume method implies an orthogonality condition on the
mesh which involves the anisotropic operator and which can be hard to satisfy in practice. The DDFV method
allows to discretize those schemes in a large class of meshes.

In the following we set:

M(t,X) = ∇XΦ(t; 0, X)−1∇XΦ(t; 0, X)−T , (3.19)

the anisotropic operator.
The time discretization of equation (3.16) is done with an Euler scheme. We use an implicit discretization

for the diffusion and an explicit discretization for the reaction.
Let hrd be the time step of the scheme, we note ãnT = (ãnC)C∈M∩M∗ the approximation of ã at time tn = nhrd

on the cell C ∈M ∩M∗.
Let Mn

D = (Mn
D)D∈D an approximation of M(t,X) on each diamond D at time tn. Description of this

discretization is given in Section 3.4.4.
The implicit DDFV scheme for 3.16 is given by:

∀C ∈M ∪M∗,
ãn+1
C − ãnC
hrd

− νdivC(Mn+1
D ∇Dãn+1

T ) = f̃(tn, xC) (3.20)

The Neumann boundary conditions are no flux conditions:

Mn+1
D ∇Dãn+1

T .n = 0, ∀D ∈ ∂D (3.21)
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3.4.4. Discretisation of the anisotropic operator

In the general case of our model, we don’t know explicitly the anisotropic diffusion operator and so we can’t
discretize it easily. However, we know an equation for the gradient of the characteristic curves that we write
thereafter in an integral form:

∇Φ(t; 0, X) = Id+

∫ t

0

∇u(τ,Φ(τ ; 0, X))∇Φ(τ ; 0, X) dτ . (3.22)

Using a left rectangle quadrature rule on (3.22), we obtain:

∇ΦnD = Id+ tn∇u(0, xD) = Id+ nhrd∇u(0, xD) (3.23)

To discretize M , we need first to discretize the inverse of ∇Φ(t; 0, X). Assuming nhrd to be small enough, we
can use a geometrical series troncated at order p:

(∇Φ−1)nD =

p∑
k=0

(−1)k(nhrd∇u(0, xD))k (3.24)

We do the same for the transpose. Taking p = 1 and neglecting the order 2 term in hrd we set:

Mn
D = Id− nhrd(∇u(0, xD) +∇u(0, xD)T ) (3.25)

This provides us a discretization of the anisotropic diffusion term.
One can think to use either a more complex integration rule for equation (3.22) or using a forward Euler

method in the differential equation defining ∇Φ(t; 0, X). The main difficulty are the term ∇Φ(t; 0, X) in the
right side of the equation and the term Φ(t; 0, X) inside the gradient of u. Because, in our model, u is not known
explicitly, those solutions seem quite difficult to use in practice.

Remark 3.3. Due to CFL conditions, the transport equation imposes the strongest constraint on the time
step. Then in practice we will usually choose hrd = Tk+1 − Tk, meaning we only do one step of diffusion for
multiple steps of transport.

Remark 3.4. The scheme proposed in [47] can be derived formally in the same way using a semi-implicit
version of equation (3.20) where the anisotropic diffusion operator is explicit:

∀C ∈M ∪M∗,
ãn+1
C − ãnC
hrd

− νdivC(Mn
D∇Dãn+1

T ) = f̃(tn, xC). (3.26)

Then, using this semi-implicit scheme and the choice of time step proposed in Remark 3.4 we find back the
scheme proposed in [47]. The complete derivation of the scheme presented in [47] can be found in [45].

3.4.5. Submesh for the diffusion equation

In our simulation we use a fixed mesh of a domain Ω such as Ω(t) ⊂ Ω∀t. Hence, at each time tk, we must
localize the sub-domain Ω(tk) and solve the reaction-diffusion equation only on this sub-domain. This can be
done using the level-set function. Let us define:

Mk = {K ∈M / φkK < 0} (3.27)
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We define then the dual mesh associated with this submesh:

M∗k = {K∗ ∈M∗ / K∗ ∩Mk 6= ∅} (3.28)

The submesh used to solve the diffusion equation is then Mk ∪M∗k.

3.5. Discretization of the transport equations

Transport equations are present in the model both for the level-set technique as well as in the solving of the
diffusion equations. To solve the equation, we use a high-order WENO scheme. WENO schemes are commonly
used in the level-set community. High-order schemes are needed for the transport of the level-set function in
order to conserve the volume of the cell. Other high-order schemes could be used for transport equations. One
can cite the MUSCL schemes [40] or the MOOD schemes [10].

First introduced by Harten, Osher and others [25–27, 43], WENO schemes are known to be efficient on
convection problems. The WENO strategy consists in computing a non-oscillating high degree polynomial
interpolation of the solution on the edge of the mesh.

A complete numerical study of this scheme can be found in [45, 46].

3.5.1. Time discretization

The transport equation on a bounded open set Ω ⊂ R2, with a divergence-free velocity u, can be written as:

dφ

dt
= −div(φu) := L(φ) (3.29)

For the time discretization, we follow [22, 43] and use a TVD Runge-Kutta of order 2. Let ∆t be the time step
of the method, we will denote by φn the approximation of function φ at time tn = n∆t. The RK2 scheme is
then given by the following steps:

φn,1 := φn + ∆tL (φn) (3.30)

φn+1 :=
1

2
φn +

1

2
φn,1 +

1

2
∆tL

(
φn,1

)
(3.31)

3.5.2. Discretization of operator div(φu)

Let φτ = (φC)C∈M∪M∗ , the vector of the approximations φC of the mean values φ̄C = 1
|C|
∫
C
φ of function φ

on the cells C ∈M ∪M∗ that we want to compute.
Following the Finite Volume strategy, we integrate the operator L on each cell:

1

|C|

∫
C

L(φ) =
∑
σ⊂∂C

∫
σ

φu.nCσ (3.32)

where n is the outer unit normal to the boundary ∂C of C.
The curve integral can be approximated using a p point Gaussian quadrature. In practice, we use p = 2 in

our numerical simulations. ∫
∂C

φu.n ≈
∑
σ⊂∂C

|σ|
p∑
l=1

ωlφ(xlσ)u(xlσ).nCσ. (3.33)

The WENO scheme consists in approximating for each cell C and each edge σ, the value φ(xσ) by a convex
combination of the value in xσ of several polynoms whose mean values coincide with the mean values of φ on a
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set of selected cells. This set of cells is called the stencil of the method. Let us assume that we dispose of such
an approximation φC,σ. Then we define the spatial discretization LC of operator L using an upwind flux as:

LC (φτ ) :=−
∑

σ=C∩C̃

|σ|
[
φC,σ(u(xσ).nCσ)+ − φC̃,σ(u(xσ).nCσ)−

]
−

∑
σ∈C∩∂Ω

|σ|
[
φC,σ(u(xσ).nCσ)+ − φb(xσ)(u(xσ).nCσ)−

]
(3.34)

where C̃ and C share the edge σ and φb prescribed through the boundary condition.
Let define φn,τ = (φnC)C∈M∪M∗ the vector of the approximation φnC of the mean value of φ on the cells C at

time tn. The full discretization is then given by:

φn+1
C := φnC +

1

2
∆t
[
L(φnC) + L

(
φnC + ∆tL(φnC)

)]
(3.35)

This discretization is done in the same way on both primal and dual meshes. The coupling between the two
meshes is ensured by the reconstruction process.

3.5.3. Approximation of φC,σ

Given a cell C and an edge σ, we want to reconstruct an approximation of φ(xσ) though we only know the
mean values (φ̄C) of φ on M ∪M∗. Following the WENO strategy, the approximation φC,σ is computed as a
convex combination of several polynomial interpolations of φ.

To find those polynomial interpolations, we fix a subset S ⊂M∪M∗, depending on C and σ, and we choose
the polynom PS [φ] among the polynoms of degree 2 as the solution of the following problem:

1

|C|

∫
C

PS [φ] = φ̄C , ∀C ∈ S. (3.36)

The weights in the convex combination are chosen in order to favor non-oscillating polynoms:

φC,σ =
∑
S

aSPS [φ](xσ) (3.37)

The coefficients aS are choosen in order to avoid oscillating polynoms. We choose to use the oscillating cri-

terium for the polynoms provided by Abgrall (c0) in [2]. This criterium is defined for a polynom P =
∑
|α|≤m

pαX
α

as:

c0(P ) =
∑
|α|=m

|pα|. (3.38)

Other criteria and weights can be found in [22] and [29]. Then, we set the weights aS as in [22, 31]:

aS =
(ε+ c0(PS [φ]))−4∑
T

(ε+ c0(PT [φ]))−4
. (3.39)

The stencils are associated to a couple cell-diamond (C,D). They are chosen randomly among the unknowns
in a neighbouring of the diamond. The complete process for the stencil selection is presented in [46].
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Table 1. Values provided by the calibration process.

Parameters Value Parameters Value

µ 1 pN.µm−2 min τRac→Rac 5× 10−1 µM min−1

λel 2 pN.µm−3 τRac→Rac 5× 10−2 µM min−1

HRac 25 pN.µm−3 τRho→Rho 3× 10−1 µM min−1

HRho 5 pN.µm−3 τRho→Rho 5× 10−2 µM min−1

Rac+ 12µM γRac 1× 10−1 µM min−1

Racc 8µM KRac 1× 10−1 µM
Rho+ 11µM γRho 4× 10−1 µM min−1

Rhoc 9µM KRho 5× 10−1 µM
DRac 0.5 µm2 min−1 αpol 3µm min−1.µM−1

DRac 50 µm2 min−1 cc 4µM
DRho 0.5 µm2 min−1 η 0.1
DRho 50 µm2 min−1 α 0.2
DTub 50 µm2 min−1 β 0.8
d 23.2µM.µm−1 dStab 1µm

4. Numerical illustrations of a MTas effects on cell migration

We present now numerical experiments to illustrate the behavior of the model and the influence of the
different parameters of the model. These simulations exhibit the importance of the microtubules dynamics to
maintain the cell polarisation and to drive cell migration.

In particular, some details are presented about the modeling of the action of microtubules targeted agents
on cell migration.

During in vitro experiments, several indicators are used to describe the microtubules dynamics as well as the
migration of the cells:

– growth speed: the mean polymerization speed of microtubules.
– growth lifetime: the mean duration of growth phases of microtubules.
– growth distance: the mean distance covered by microtubules during polymerization phases.
– migration distance: the distance covered by the cell.
– migration speed : average speed of the cell.

In the numerical simulations, we can compute the same quantities in order to compare them with the biological
data. That provides us quantitative criteria to estimate the global behavior of the model.

4.1. Calibration of the parameters

One of the crucial step of the modeling process is the calibration of the different parameters of the model in
order to simulate the migration of a given cell type. To do so, we use some data provided by the literature as
well as the data provided by biological experiments done in the Institute of Neurophysiopathology, in Marseille,
on U87 glioblastoma cells and designed especially for this purpose. Details about those experiments and the
calibration process can be found in [16, 45].

We just recall here the different values for the parameters provided by the calibration process.
We detail here the settings of the initial condition for the reference test. In the following we will only discuss

the change of settings regarding this test called reference test.
The initial form of the cell is a circle of radius 5µ m. The number of microtubules is settled to 45 at the front

of the cell and 15 at the back. At t = 0, the tubuline concentration is uniform inside the cell with a concentration
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Table 2. Parameters for the initial linear concentration of proteins.

Rac Rac Rho Rho

αA 0.5 µM.µm−1 0.65 µM.µm−1 0.5 µM.µm−1 0.65 µM.µm−1

βA 7 µM 15 µM 9 µM 20 µM

Table 3. Differents indicators of the migration for the control cell evaluated on a 1 min interval.
Data are described in [16, 45].

MT Growth Speed MT Growth Lifetime MT Growth Distance Cell migration Speed

Model 12.9 µm min−1 8.4 s 2.3 µm 1.7 µm min−1

Data 11.5 µm min−1 6.6 s 1.2 µm 2.6 µm min−1

of 8 µM. The other concentrations of proteins are linear function of x of the form:

A0(x, y) = αA(x− 5) + βA, A ∈ {Rac,Rac,Rho,Rho}, (4.1)

with the parameters used for each initial concentration presented in Table 2.
All simulations are performed on 3 min, with a time step dt = 0.01. The mesh used for the simulations is

shown in Figure 5, with space step of dx = dy = 0.46875µm.
The shapes and positions of the cell over time are presented in Figure 6. The indicators of the migration

introduced previously are computed and confronted to data experiments from [16, 45] in Table 3.
We can also compare the polarisation of the cell between t = 0 and t = 3 min. Results are shown in

Figure 7. We observe that the microtubules maintain and even reinforce the cell polarisation during migration
concomitantly with an activation of RAC (maximum value of RAC increasing from 7µM to 8.5µM).

4.2. Parameters involved in a drug effect

In the sequel, we focus more precisely on the influence of the parameters involved in the modeling of an
antimigratory effect by MTAs. Five important mechanisms, that can potentially be modulated by the action of
drugs, have been identified in the cell migration process: the number of active microtubules, cell polarisation,
MT instantaneous polymerization speed (γpol), the Rac activation rate and the tubulin-GTP hydrolysis rate
as shown in Figure 8. Those main regulating processes have been chosen based notably on the experiments of
E. Denicolai in [16]. Those experiments show in particular that the action of a drug like vincristine affecting
microtubules dynamics mainly reduces Rac activation and doesn’t seem to act on the activation of the Rho
protein. Indeed, we choose to consider only mechanisms linked to the Rac protein.

The hydrolysis rate in Figure 8 describes here the processes that allow to define the equilibrium of the MT
dynamic instability. The dynamical state of the microtubules depends in particular of the balance between two
processes occuring at the (+)-end of the microtubule: the hydrolysis of the GTP-tubulin into GDP-tubulin and
the incorporation of new GTP-tubulin. This equlibrium is modeled in a simplified way here by the definition of
the critical concentration cc (see [30]).

From a modeling point of view, modulating those mechanisms consists in changing respectively the parame-
ters: NMT, αRac, the function G (see Def. (2.18)), τRac→Rac, cc. We could choose other parameters in order to
affect those mechanisms but we select here a minimal set of parameters that seems biologicaly relevant.

4.3. Impact of the initial cell polarisation

The cell polarisation strongly impacts the migratory behavior of the cell. This influence can be seen in the
model by the influence of the initial polarisation. Even if microtubules have an effect, in this model, on the
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Figure 5. Localy refined mesh used for the simulations. Cell membrane is shown in black,
distances are in µm.

Figure 6. Time sequence of cell shapes over 3 min. Positions and shapes are shown at t = 0,
t = 1 min and t = 3 min.
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Figure 7. Concentration of active Rac protein at t = 0 min (left) and t = 3 min (right) for the
reference test.

Figure 8. Schematic view of the dynamics: links between MT dynamics and Rac activation.

Figure 9. Shape, microtubules and Rac concentration at t = 0 min (left) and t = 3 min (right)
in the case of no polarisation.

biochemical state of the cell, the polarisation process is not modeled here. We check that by simulating the
migration of the cell without initial polarisation, i.e. setting the initial concentration of Rac and Rho to uniform
concentrations. Then we can observe in Figure 9 the cell does not migrate between t = 0 min and t = 3 min,
even if the set concentration is enough to generate forces (Fig. 10). The polarisation of the cell also remains
constant during the whole simulation and without polarisation the microtubules stay at rest (Fig. 9).

4.4. Influence of the number of microtubules on the model

We are interested in this model by the impact of the microtubules on cell migration. To highlight the role of
microtubules in the model, we perform several tests with a different number of microtubules. First, the reference
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Figure 10. Vector field of the contractile force at t = 0 in the case of no polarisation.

Figure 11. Shapes of the cell at t = 3 min with no MT (blue), a 25 MT (black) and 60 MT
(red).

test shown previously was done with 45 microtubules at the front and 15 at the rear. We compare it to two
cases. We remove all the MTs in the first one, and take a small number of MTs in the second one (20 at the
front and 5 at the rear).

Figure 11 shows that without microtubules the cell does not move at all and that decreasing the number of
MTs slows down the migration. The migration speed is 1.1µm min−1 compared to 1.7µm min−1 in the reference
test. Note that we also have tested higher number of MTs, which does not lead to strong increase in migration
speed but affects the quality of the simulation process.

With these simulations (Figs. 11 and 9) we can see that the initial polarisation is very important to create
cell motion but also that microtubules dynamics actually control cell polarisation during motion.

4.5. Impact of the speed of polymerization

In the activation term used for Rac protein, we use a term G (2.18) that models the influence of the micro-
tubule polymerization speed on the activation of the Rac protein. Here we support that choice by comparing
two sets of simulations. In the first set, we use the function G as mentioned in Section 2.4 and in the sec-
ond one, we use instead G∗(γpol, v

±
dir) = ||v±dir|| where we skipped this influence. We perfomed simulations for

both functions G and G∗ for the reference test proposed in Section 4.1 and for a second one corresponding to
αpol = 6µm min−1.µM−1. In this particular case, the reference test can be seen as a vincristin effect compared
to the second one, as vincristin is known to suppress MT growth speed. We compare the different indicators of
the MT dynamics and cell migration in Table 4.

It seems that in absence of influence of G on microtubule polymerization speed in the activation rate, we
are not able to show an effect of the microtubule polymerization speed on the cell migration. This is due to the
difference of time scale between microtubules dynamics and cell migration. If the activation only depends on
the dynamic state, then at the time scale of the cell, the protrusive force is mainly due to the time spent by
polymerizing microtubules near the membrane which is the same for slow and fast microtubules.
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Table 4. Differents indicators of microtubules dynamics and migration depending on G.

MT Growth Speed MT Growth Lifetime MT Growth Distance Cell Migration Speed

Ref test with G 12.9µm min−1 8.4 s 2.3µm 1.7µm min−1

Ref test with G∗ 11.0µm min−1 6.7 s 2.3µm 1.9µm min−1

Second test with G 25.5µm min−1 4.2 s 2.2µm 2.4µm min−1

Second test with G∗ 22.3µm min−1 3.1 s 2.1µm 1.9µm min−1

Figure 12. Shapes of the cell with τRac→Rac = 0.1 µM min−1 (blue) at t = 3 min and
τRac→Rac = 0.5 µM min−1 (red) at t = 1 min (dotted) and t = 3 min.

Figure 13. Shapes of the cell at t = 3 min with cc = 5 µM (blue) and cc = 4 µM (red).

4.6. Impact of the Rac activation rate

We show here that a modification in the activation of Rac protein can lead to a change of cell migration. We
perform a new simulation taking τRac→Rac = 0.1 µM min−1. The results are shown in Figure 12. The cell goes
faster with a strong activation of the Rac protein. We observe in Figure 12 a delay of about 2 min in the cell
migration in the case of a low τRac→Rac = 0.1 µM min−1.

The activation of the Rac protein is an important parameter that can be modulated in order to simulate a
drug effect.

4.7. Impact of the GTP-hydrolysis

The microtubule polymerization is regulated by the balance between the hydrolysis of the GTP-tubulin and
the incorporation of new GTP-tubulin dimers. This equilibrium is characterized, in our model, by the parameter
cc (see [30]). As drugs like vincristine are known to impact this equilibrium by increasing the cc, we propose
to investigate the influence of this parameter on the dynamics. We perform a simulation taking cc = 5µM
instead of 4µM in the reference test. The results of the experiments are shown in Figure 13. We can observe
that increasing the parameter cc leads to a total inhibition of cell migration in this case due to a too low Rac
activation. We observe at t = 3 min a maximum value of RAC of 6.5µM against 8.5µM for the reference test.

The results of this simulation show optimistic results in the modeling of MTAs action on cell migration. A
specific study of the effect of vincristine and its modeling is presented in [16].
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5. Conclusion

In this paper, we proposed a novel modeling approach to describe how MT dynamics may impact cell
migration and developed numerical tools to efficiently solve the equations of this model. The model was developed
from a previous model of the literature [47] describing the effect of Rho-GTPases on cell migration. Microtubules
acting as a catalyst for the activation or inactivation of these proteins, we have coupled the previous model to
a relatively simple model of the microtubule dynamic instability. It describes on the one hand the mechanical
aspects of migration with a submerged boundary method using Stokes equations and a level-set technique for
monitoring interface involving transport equations. On the other hand, it describes the biochemical aspects of
the cell with mobile domain reaction-diffusion equations for Rac, Rho and tubulin. Microtubules are described
through the localization of their (+)-end. They act as catalysts for the activation of Rac and Rho proteins
through their dynamic state. The resolution of the different equations of the model has been implemented by
DDFV techniques allowing to use locally refined meshes around the cell. The use of a splitting method for the
resolution of the reaction-diffusion equations on a mobile domain was motivated by using a suitable change
of variables. We show that the resolution is equivalent to solving an anisotropic diffusion equation on a fixed
domain followed by the resolution of a transport equation. A DDFV version of a high order WENO scheme for
the resolution of transport equations has also been proposed.

Numerical illustrations performed were callibrated according to the experiments described in [16] in such
a way that our simulated microtubule dynamics, cell shape and cell migration indicators were biologically
relevant. Moreover, we were able to analyse the impact of several parameters identified as a crucial target of
MTAs. According to our results, our approach reveals to be robust to investigate MTAs effect on cell migration.

This paper opens large perspectives. At the level of modeling, it would be interesting to use a more precise
model for the MT dynamic instability, with the implication of GTP-tubulin hydrolysis and/or EB proteins
[5, 38, 50], and/or to include the effect of Cdc42 to regulate the initial polarization of the MT cytosqueleton
and protusion and thus the cell polarity [7, 8, 34, 52].

From a numerical point of view, we are still limited by the numerical cost of the scheme. In order to be able
to perform numerical simulations on larger times, it will be necessary to improve the WENO procedure and use
refinement/derefinement procedures to reduce the global size of the mesh.

Concerning the confrontation of the model with the biological experiments, the calibration of the parameters
is a long process described in [16]. The next step will be to identify the dose response effects of drugs on the
parameters of the model. Another development track concerns also the action of other MTAs such as paclitaxel,
a stabilizing agent or new MTAs such as BAL 101553 [6].
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Aix-Marseille Université, Marseille, France (2017).

[46] R. Tesson, High-order DDFV method for level-set equations arising in a cell migration model (2019).

[47] B. Vanderlei, J.J. Feng and L. Edelstein-Keshet, A computational model of cell polarization and motility coupling mechanics
and biochemistry. Multis. Model. Simul. 9 (2011) 1420–1443.

[48] A.B. Verkhovsky, T.M. Svitkina and G.G. Borisy, Self-polarization and directional motility of cytoplasm. Curr. Biol. 9 (1999)
11–S1.

[49] T. Watanabe, J. Noritake and K. Kaibuchi, Regulation of microtubules in cell migration. Trends Cell Biol. 15 (2005).
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